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Abstract

We consider several subclasses of the problem of grouping n items

(indexed 1, ..., n) into m subsets so as to minimize the function

g(S1, ..., S ). In general, these problems are very difficult to solve to

optimality, even for the case m = 2 . Here we provide several sufficient

conditions on g(-) which guarantee that there is an optimum partition in which

each subset consists of consecutive integers (or else the partition S1 , ... S

satisfies a more general condition called "semi-consecutiveness"). Moreover, by

restricting attention to "consecutive" (or "semi-consecutive") partitions we can

solve the partition problem efficiently for small values of m . If in addition,

g is symmetric then the partition problem reduces to a shortest path problem,

solvable in O(n2m) steps.

We apply the above results to the problem of grouping inventory items into

subgroups with a common order cycle per subgroup so as to minimize the resulting

economic order quantity costs. Under relatively minor assumptions on the cost

structure and on the set of feasible policies, we may reindex the items a priori

so as to guarantee the optimality of a "consecutive" partition.
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1. Introduction

Let al, ..., a and bl, ..., bn be real numbers ordered so that for

some integer 0 r n, bl, ..., b are negative, br, ..., b are non-r r+l' n

negative and

a1 / b1 . a / b and ar+ / br+l •a /b (1)

where for bi = 0 we consider ai / bi to be +* or -- according as

a > 0 or ai < O . If ai = bi = , ai / bi is defined arbitrarily so

that inequality (1) holds. As usual, we let a and b denote the vectors

whose coordinates are ai and bi , respectively.

Let N = {, ..., n . For each subset S of N let aS = iS ai and

let bS = .iS bi . We consider the problem of partitioning the set N into m

sets, say S, ... S , including possibly some empty sets, so as to minimize a

real-valued function g (S1 ..., S ), where g () is assumed to have the form

gm(S1s '' Sm hm(as1' b ' ' ' a ' bs ) (2)
1 1 im m

where h (-) is a real valued function of 2m variables. We allow that them

function h (.) be nonsymmetric, in which case the cost of a partition dependsm

on the order in which the sets are selected.

A subset S c N is called consecutive if its elements are consecutive

integers, e.g., {4,5,6}. In particular, the empty set is considered to be con-

secutive. A partition P = {S1, ..., S} is called consecutive if Si is

consecutive for each i . A partition P = {S1, ..., S } is called semi-consecutive

if there is a permutation of the set of integers 1, ..., m such that the sets

S (1) u ... u S are consecutive for j - 1, ..., m . For example, the partition

{S1,S2,S3} = {{3,7,8}-, {1,2,91 {4,5,61} is semi-consecutive because the three

subsets S3, S3 u S1, S3 u S1 u S2 are all consecutive.
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The purpose of this paper is to provide sufficient conditions that the

optimization problem defined above has an optimal consecutive or semi-consecutive

partition. Specifically, we show that if h is concave in its 2m variablesm

then there is an optimal semi-consecutive partition. Moreover, if in

addition, b 0 or a 0 , then there is an optimal consecutive partition.

Also, we show that if b. = 1 for each i and , in addition, h is concave
1 m

in the "a variables" for each fixed value of the "b variables" then a consecutive

optimal partition exists. Of course, when b 1 for each i we have that for

a set S c {l, ..., n} bS equals ISI, the cardinality of S . In this case, for

a given partition P = S1 ..., S } (bS ... bS ) is called the shape of
1 m

the partition P (e.g., Hwang [19811).

When we wish to specify the number m of sets in a partition P we call P

an m-partition. We observe that the number of ordered m-Dartitions that are con-

secutive is O(m!nm -l) and the number of semi-consecutive partitions is O(m!n2m-2)

Thus for a fixed value of m we can determine an optimal consecutive or semi-

consecutive m-partition in polynomial time via complete enumeration. Although

complete enumeration is quite impractical even for moderate sizes of m , the

above fact contrasts sharply with the NP-completeness of the optimal partition

problem for any fixed m 2 , as the knapsack problem is a special case of the

partition problem for m = 2 . (Of course, the total number of ordered m-partitions

is m .) We note that the sensitivity of optimal consecutive partitions to

changes in m can be studied by using the results of Denardo, Huberman and

Rothblum [1982].

We formally state our main results concerning the existence of consecutive

and semi-consecutive optimal partitions in Section 2, where we also survey a

number of places where special cases of our results are used. In Section 3, we

show how our results apply to problems that involve optimal groupings for joint

II
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replenishment of inventories. Next, in Section 4, we discuss the special case

where g (-) is separable and symmetric, in which case optimal consecutive

partitions can be determined in (mn2 ) steps and optimal semi-consecutive

partitions can be determined in O(mn4 ) steps. In Section 5, we discuss issues

of NP-completeness which apply to our results. Finally, proofs of our results

are given in Section 6.
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2. The Main Results

We next state our main results concerning optimal partitions that are

either consecutive or semi-consecutive. The proofp are deferred to Section 6.

Theorem 1: Suppose h is concave in its 2m variables and in addition
m

b 0 or a 0 . Then there exists a consecutive optimal partition.

Theorem 2: Suppose that h is concave in its 2m variables. Then there
m

exists a semi-consecutive optimal partition.

Theorem 3: Suppose b. = 1 for i = 1, ... , n and h (-) is concave in

the "a variables" for each fixed value of the "b variables." Then there exists

a consecutive optimal partition.

Although the partition problems considered in the above Theorems are quite

restricted, there have been several realms where special cases of these results

have been used. We next give a brief survey of such applications.

One classical partitioning problem occurs in Hypothesis Testing in Statistics.

Outcomes of a random phenomenon are partitioned into two sets, one of which corres-

ponds to the region where the null hypothesis is accepted and the other to the

region where it is rejected. In this case the "a variables" correspond to proba-

bility of type 1 error, the "b variables" correspond to probability of type 2 error

and the corresponding objective function is linear. It follows that Theorem 1

applies and an optimal consecutive partition exists. This fact is the well-known

Neyman-Pearson Lemma. For more details on the applicaton to statical testing see

DeGroot [1975, p. 374].

111
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We next give a number of examples of studies where special cases of the

results of Theorem 3 were obtained. In particular, the special case of Theorem 3

where h is separable and symmetric is discussed in Chakravarty, Orlin and Rothblum

[1982]. They apply the corresponding result to a problem of inventory grouping

with joint replenishment (see Section 4 for more complex such problems). Also,

Hwang [1981] and Hwang, Sun and Yao [1982] consider restricted classes of functions

for which a corresponding optimization problem have consecutive optimizers. Their

conditions entail monotonicity and additivity requirements, and some of their

results are special cases of Theorem 3. The above papers provide applications

of their results to problems in storage and problems in group testing. Finally,

Barnes and Hoffman [1982] considered a special instance of the partitioning problem

studied in Theorem 3. The motivation for their work arose in connection with the

partitioning of eigenvalues of a matrix so as to derive estimates on a graph

theoretic partitioning problem. They used the theory of submodular set functions

to establish the existence of consecutive optimal partitions. Their results were

developed independently of those in Chakravarty, Orlin and Rothblum [1982], and

their proof is an interesting application of the theory of submodular set functions.

In Section 5, we show that the Barnes-Hoffman partitioning problem is NP-complete.
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3. An Application to Inventory Grouping

Consider an economic order quantity model involving n items, where the

i-th item has (deterministic) demand rate Di , a unit inventory holding cost

hi per unit time and a fixed cost Ki for placing an order. The problem is

to partition the n items into m subgroups and choose order cycles for the

groups out of a given set of allowable (joint) order cycles, so as to minimize

the net average cost per unit time. Motivation and more detailed explanation of

special cases of this model are given in Chakravarty [1982a, 1982b]. This model

is a generalization of the joint replenishment models considered by Goyal [1974],

Silver [1975], and Nocturne [1973] who study the problem in which a unit of order

time X is determined for the group of n items, and the order cycles for each

item is an integer multiple of X . They give heuristic solutions to this problem.

A related model was studied by Chakravarty, Orlin and Rothblum [1982].

Let a. = 21h Di and bi = K where the items are labeled so that (1)

holds. As in the ordinary EOQ model (e.g., Wagner [1969, pp. 18-19]), if item

i has order cycle T then its order quantity is Di , and the average net cost

per unit time of a group S of items having the same order cycle T is:

1 1 -- l
c(S,T) = I 2 tD.h + K.t- = Ta + T b . (3)

ieS iS 

So, if the items are partitioned into groups S1, ..., S having order cycles

t, ..., t , respectively, the total average cost per unit time is

m
C (S1 .Sm, ... = (S tj) (4)

j=1

The m-vector of order cycles is assumed to be taken out of a set T of allowable

m-vectors of order cycles. This formulation allows one to impose joint restrictions

on the order cycles, e.g., the requirement that all order cycles are integer

III
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multiples of the smallest one, or individual restrictions, e.g., that each order

cycle be an integer in the set {1,7,30}. It follows that for a fixed partition

S1, ..., S of the items, the minimum average cost per unit time is:

gm(S, ..., Sm ) inf c (Sl, S, t, ..., t)

m-

= inf tja S + t b (5)
teT j=l j j

Evidently, as c (S .. S , t, ..., t) > 0 , the infimum defining g is
m l' m 1 m

finite for each partition. The problem is to find a partition of the items into

subsets so as to minimize g (' ) , where gm is given above. Now, as c(S,t)

is linear in aS and bS (for fixed t ), we conclude that c (S1, ..., S ,

tl, ... tm ) is linear in aS, bs1, ..., a bS and therefore g(S, ..., S) I
1 1 m m

as the infimum of linear functions, is concave in aS , b, a bS i.e.,
1 1 m m

the assumptions of Theorem 1 are satisfied. Hence, our results apply and there

exists an optimal partition consisting of consecutive sets.

We next consider a modified version of the model described above where the

terms Ta S and T lbS in (3) are replaced, respectively, by expressions e (aS)
T S

and f( -lbs) , where e (.) and f () are real valued functions. This

formulation allows one to introduce discounting on the holding cost as well as

the setup cost, where the value of the discount depends on the monetary volume.

Under the above modification (5) has to be replaced by:

m

gm(S1, ..., S) = inf Z etj(tja S ) + fS (6)
eT j=l i aj 3 3

It is easily seen that if the function eT and f are concave then the assum-

tions of Theorem 1 hold and if Ki is independent of i and the functions e

are concave then the assumptions of Theorem 3 hold. In either case we con-

clude that there exists an optimal grouping of the products where each set is



-8-

consecutive. We emphasize that concavity of the functions e and f is

reasonable as it represents higher discounting as the volume increases.

A special case of the general model allows the decision maker to choose the

order cycles of the groups independently out of a given set (which is independent

of the enumeration of the group), i.e., T = U x U x ... x U for some set U c R

In this case gm is symmetric and separable and the results of (the forthcoming)

Section 4 apply. In particular, the problem of finding an optimal grouping can

be reduced to a shortest path problem.

Finally, we consider the case in which the cost of ordering in period P is

concave in the total quantity ordered in that period, where we might have a simul-

taneous reorder from different groups. If we let P be the least common multiple

of the order cycles, then the total cost of ordering is:

P-1

I e( I tja ) (7)
p=O tj IP

where tjlp means that t. is an integral divisor of p . As before, the infimum

of concave functions is concave, and thus there is a consecutive optimal partition.
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4. The Symmetric Separable Case

We next consider the case where g is symmetric and separable, i.e., for

2
some function h : R R

m
g (S1, ... S ) = h(as ) .b

j=1 J j

In this case the order of the subsets in a consecutive partition does not matter.

In particular, without loss of generality, one can assume that in an (optimal)

consecutive partition the indices in Si precede the indices in Sj for i < j

Chakravarty, Orlin and Rothblum [1982] showed that the problem of determining

an optimal consecutive partition reduces to the problem of finding the shortest

path between two nodes in a graph where the number of edges in the path is at

most m . This problem can be solved in 0(mn2 ) steps using a standard dynamic

programming recursion.

In the symmetric and separable case, one can determine an optimal semi-

consecutive partition as follows. Let Sij = {i+l, ..., j} for all i,j with

O < i j n . Let fij be the optimal value of a semi-consecutive partitioning

of Sij into t subsets. Finally, let h'(S) - h(as,bS) for each S c N .

1
Then f - h'(Si ) for 0 < i j < n.ij iJ

fi- = min h'(Sik U S ) + ft (S) (8)

It is easy to see that the above recursions can be computed in 0(n4) steps

It is easy to see that t he a bove recursions can be computed in 0(n4 ) steps

for each value of t , and thus the total number of computations is (mn4 )
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5. The NP-Completeness of an Optimal Partition Problem

Barnes and Hoffman [19821 consider the following partition problem. Given a set

of n integers al, ... , a and m non-negative integers dl, ..., dm, where

m 1 di = N, partition N into m subsets S, ... Sm such that ISi = di
ii i=

for i = 1, ..., m and so as to maximize

m 2
I d. 1 ( ai) (9)

j=l 3 itS.

Barnes and Hoffman demonstrated that there is always an optimal partition con-

sisting of consecutive subsets. Moreover, since they were interested in problems

in which m was quite small (e.g., m = 3) , implicit enumeration of all feasible

consecutive partitions was quite practical.

The Barnes-Hoffman partition problem satisfies the conditions of Theorem 3

(except for the fact that they maximize a convex function rather than minimize a

concave function). Thus the optimality of consecutive partitions is a special case

of Theorem 3.

Although the Barnes-Hoffman problem is polynomially solvable for fixed m ,

the corresponding recognition problem is NP-complete if m is allowed to vary

jointly with n . We next prove the NP-completeness via a transformation from

3-partition.

3-PARTITION

2
INPUT: non-negative integers bl, ..., b3k such that b k for i = 1, _.., 3k

QUESTION: Is it possible to partition {1, ..., 3k} into k subsets S1 , ..., Sk

such that
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3k
bi = (l/k) I bi for j = 1, ...,k ? (10)

itS. i=l

We consider the version of 3-Partition in which the subsets are not specified

to havw three elements each. Garey and Johnson [1973] showed that the above

variant of the 3-Partition problem is NP-complete.

Theorem 4. The recognition version of the Barnes-Hoffman partition problem

is NP-complete.
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6. Proofs

Proof of Theorem 1.

We consider only the case where b 0 as the case where a 0 follows

from analogous arguments. Our proof follows by induction on the number m of

subsets in the partitions. The case m = 1 is trivial. We next consider the

case m = 2 . We first remark that the case where ai = bi = 0 for some i can

be ignored. Noting that each 2-partition may be written as {S, N \ S} for

some set S c N and that for such S, aN\ S
= and b b bS weaN\SaN N\S N s

can write the optimal partitioning problem with m = 2 as the following

optimization problem:

min g2(S, N\S) = min h2(as, bs, aN\S' bN\S) (11)
ScN ScN

= min h2(aS, b, aN - aS' bN - b S)
ScN

Since the set of ordered pairs {(as, b) : S c N} is finite, its convex hull,

which will be denoted by C , is a convex polyhedron. It now follows from (11)

that

amin g2(S, N\S) = min h2(as, b, aN - as, b -b (12)
ScN ScN

> min h2 (x, y, a- x, bN - y)
(x,y)2cC

Since the function h (x, y, aN - x, bN - y) is concave in the variables (x, y) ,

the latter minimization problem attains a minimum at an extreme point of C . It

therefore suffices to show that for each extreme point (x , y ) of C there

exists a set S c N such that (x , y ) (as, bs*) and {S , N \ S is

a consecutive partition.
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Let (x , y ) be an extreme point of C . Since C is a polyhedron, it is

well known that there exists a linear function f on C that attains its unique

minimum over C at (x , y ) . Since f is linear it has a representation

f(x, y) = ax + y where a and B are real numbers. The uniqueness of (x , y )

as the minimizer of f over C assures that we do not have a B 0 . Next

observe that as C is the convex hull of (as, b) : S c N} ,

ax + y = min ax + By = min aa+bS=min (aa. + bi) .(13)
(x,y)EC ScN ScN iES

The set S = {i : aa i + bi < 0} is clearly optimal for the last optimization

* *
problem. Hence, we conclude from the uniqueness of (x , y ) as the minimizer of

f over C that (x , y ) - (aS*, bs*)

We next show that the fact that b 0 assures that both S and N \ S

are consecutive. We consider a number of cases separately. If a > 0 then

* *S = {i : ai / bi < - / and if < 0 then S { : ai / bi > - / )
In either case (1) assures that both S and N \ S are consecutive. Finally,

if a = 0 then B O0 , and S - {i : bi < } -t if B > 0 and S =

{i :b. > } if B < 0 . In either case we trivially have that both S and

N \ S are consecutive. This completes our proof of Theorem 1 when m = 2

We next consider the case where m 3 . For each subset S of N , let

max S = max U{ : i E S} , min S = min {i : i S} and d(S) = max S - min S

Let P = {S1, ..., S } be an optimal m-partition of N that minimizes d(S)

with repsect to all such (optimal) partitions. We claim that for each j = 1, ..., m ,

Sj is consecutive. We see this as follows. Suppose that not all subsets are

consecutive. Then we may determine two sets of P , say S1 and S2 ,such that

for some i S2 , min S1 < i < max S1 . For j = 1, 2, let mj = min S and

M. = max Sj . Observe that min {M1, i} > i and max {ml1, m2 } < i . Hence,3 i j 1' 2

s/sll� ��__
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min {M1 , M2} -max {ml m2 } O (14)

Let {S, S} be an optimal parition of S1 u S2 into two subsets which are

consecutive with respect to S1 u S2 where S3, ..., S remain fixed (as is

possible by the established result of Theorem 1 when m = 2 and the observation

that h is concave in the variables corresponding to S1 and S2 when the
m 1 2

remaining variables are fixed). Then

d(Si) + d(S') < max {M1, M2} - min {ml, m2 - 1 (15)

and therefore, using (14), we conclude that

d(S1) + d(S2) = M 1 - m1 + M2 - 2 (16)

= max {M1, M2} + min {M1, M2} - min {ml, m 2} - max {m1, m2}

> d(S{) + d(S') + 1 .

This contradicts the choice of S1, ..., Sm , completing our proof. L

Proof of Theorem 2.

Our proof follows by induction on the number m of subsets in the partitions.

The case m = 1 is trivial. We next consider the case m = 2 . The argument

used in the proof of Theorem 1 shows that it suffices to prove that for every

pair of real numbers a and B , the set S = {i : ai + bi < 0} has the pro-

perty that {S , N \ S 3 is a semi-consecutive partition of N , or equivalently, that

either S or N \ S is a consecutive set. We consider a number of cases separ-

ately. If a > O then S = {i = 1, ..., r : ai / bi > -B / a u

{i = r+l, ..., n : ai / bi < -B / a} and if a < 0 then S = {i - 1, ..., r

ai / bi < - / a} u {i = r+l, ..., n : ai / bi > -B / a . In the former case

II
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(1) assures that S is consecutive and in the latter case (1) assures that N \ S

is consecutive. Hence, in either case the partition {S , N \ S } is semi-

consecutive. Finally, if a = 0 then 8 X 0 and S = {i : bi < 0 = {1l, ..., r}

if $ > 0 and S = {i : b > 0) if < 0 . In eitner case we have that S

is consecutive (though in the latter case N \ S is not consecutive if r > 1

and for some i, a i > 0 = bi) and therefore the partition {S , N \ S} is semi-

consecutive.

Next assume that the conclusions of Theorem 2 hold whenever the number

of sets in the partitioning problem is less than m ( 3), and consider

partitioning problems where the number of sets is m . We prove the existence

of a semi-consecutive optimal partition for the corresponding partitioning

problems by induction on the number of elements in the partitioned set N

The cases where the number of elements in N is 1, 2 or 3 are straight

forward. Next assume that each partitioning problem of a set consisting of

less than n elements into m sets, where the assumptions of Theorem 2 are

satisfied, has a semi-consecutive optimal partition. We next consider such

partitioning problems of a set N where the number of elements in N is n

For each subset S c N, let S = S n {1, ..., r and S+ = S n {r+l, ..., n},

where r is defined through (1). Given any optimal partition, say {S1, ... S },

one can hold Si,... S, ..., Sm fixed and, by applying Theorem 1, repartition

S 1 U ... U S
+ N+ such that the sets in the new (optimal) partition of N

1 m

are all consecutive. Similarly, by applying an appropriate modification of

Theorem 1, one can hold the (new) sets S + ... , S+ fixed and repartition

S1 u ... u S = N such that the sets in the new (optimal) partition of N are

all consecutive. The above arguments establish the existence of an optimal

partition {Sl' ..., S I for which S1, ..., S , SS, .. S. are all consecutive.
m 1m m

We remark that if r = 0 or r = n then the partition {S 1, ..., S is con-
I m

secutive and therefore semi-consecutive. Henceforth, we assume through the end

of this proof that 1 r < n.

____P__IIII·_l__l__1__1__1111111____1�
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We continue our proof by assuming that the partitioning problem of N into

m sets has an optimal partition {S1, ..., S } for which the sets S, ..., Sm

1' ~~mm

with either IS > 1 or > 1 We consider only the case where S i >1

as the alternative case follows from similar arguments. Let T = S . One can

combine all the elements in T into a single element and attach an "a" value

aT and a "b" value bT to this combined element. Evidently, as T N we
T T

have that if a ai / bi b for each i E T then a c aT / bT < B It

follows that the corresponding partitioning problem where the elements in T are

combined into a single element satisfies (1) and the other assumptions of Theorem

2 . As the number of elements in the partitioned set of this modified problem is

less than n , we conclude from the induction assumption that a semi-consecutive

optimal partition exists. It immediately follows that the original problem too

has a semi-consecutive optimal solution.

It remains to consider the case where any optimal partition {S1, ..., S }
m

for which Si, ... S , S .. S are all consecutive has the property that

each of the sets Si, ... S S, ... , S has at most a single element. Let

{S1, ..., S } be such an optimal partition (whose existence follows from our

earlier arguments). Let S and S be the sets in {S1, ..., S } which contain

r and r+l , respectively (recall that 1 r < n ). We establish existence

of a semi-consecutive optimal partition by considering two cases.

First assume that either S or S is consecutive. We consider only the
P q

former case as the latter case follows from identical arguments. By using the

induction assumption concerning partitioning problems of a set into m - 1 sets,

one can fix S and repartition u {St : t = 1, ..., m, t p such that the
P t

resulting partition of this set, say {S : t = 1, ..., m, t p} will be semi-

consecutive and will not reduce the value of the objective function. It easily

II
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follows that, with Sp = Sp 1,{l' ..., S} is a semi-consecutive optimal

partition of N

We next consider the case where neither S nor S is consecutive. As
p q

ISpI 1 and JS+J 1 we have that S = {r} and S+ = {r+l} . Also observe
P q P q

that as ISp 1 , IS+ 1 and S is not consecutive, we have that r+l S+
p P P p

and for some r+l < j n , S = {j} . In particular, p q . A similar
p

argument shows that for some 1 i < r , S = {i . We can next hold

{St : t = 1, ..., m, t p, t q} fixed and apply the (established) conclusions

of Theorem 2 for the case m = 2 , to repartition S u S = {i, r, r+l, j}
P q

into sets Sp and S where {Sp, } is a semi-consecutive partition with

respect to {i, r, r+l, j and where the value of the objective is not reduced.

Now, if either of the sets S , S , , consists of more than a single
P q p q

element, one can apply a combination of the arguments used earlier to establish

the existence of a semi-consecutive optimal partition. Specifically, if for

example |s > 1 , one can repartition N- into k-l sets where k is the
p

number of nonempty sets among {S1, ..., S } where each of the sets in the new
m

partition is consecutive. As IN- = k we have that one of these sets contains

at least two elements. By combining the elements in that set and applying the

induction assumption concerning partitioning problems of sets consisting of less

than n elements into m sets, we conclude the existence of a semi-consecutive

optimal partition. We continue by assuming that the sets S, each

contains at most a single element, in which case each contains precisely one

element. It follows from the semi-consecutiveness of the partition {S , S }
p q

with respect to {i, r, r+l, j} that either S = {r, r+l}. or S = {r, rl} .
P q

In either case, the set containing r (which also contains r+l ) is consecutive

and our earlier arguments assure the existence of a semi-consecutive optimal

partition. O

7"�·*"81�s�-----·------�-san�-araar�-·ll ____1�
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Proof of Theorem 3:

Chakravarty, Orlin and Rothblum established a special case of Theorem 3

where g (' ) is symmetric and separable. Their arguments apply to the general

case considered in Theorem 3 and are omitted. D

Proof of Theorem 4:

Let bl, ..., b3k be the input for a given 3-Partition problem. We will

show below how to transform the 3-Partition problem into the Barnes-Hoffman parti-

tion problem. The transformation is based on the following elementary lemma.

Lemma. Let al, ..., a and dl, ..., d be the data for the
n m

Barnes-Hoffman partition problem. Then the maximum cost partition has

value at most i=l ai . Moreover, it is possible to achieve this

bound if and only if it is possible to determine a feasible partition

S1, ... S such that a. = a for every two indices i,t in the
m 1 t

same subset S'

Proof of Lemma. By the Cauchy-Schwarz inequality

"( ai) 2 IS a and equality holds if and only if
iS. iS.

j j

a. = a for all i,t S . Thus:
. t j

m 12 n 2
C jsj2 2I I-1 ( I i) I a.

j=l . isS. i=l 

and equality holds if and only if ai = at

in the same subset.

To complete the proof of the theorem, let b = k

subset sum for each subset of the 3-partition). Let

and let di = bi for i = 1, ... , 3k . Finally, leti i~~..

for every two indices i,t

-1 3k b )
i=l bi

i=l bi

(b is the

, let m 3k

ai+jS = j for 1 < i b and O0 j m-l .i+j b
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Thus there are exactly b indices i for which ai = j for any j = 0, ..., m-1

By the previous lemma, we can achieve a value of n.l a if only if we can

determine a feasible partition S1, ..., S such that a = at for all i,tm t

in the same subset. Suppose we can achieve this latter result. Then let

{PO, ..., Pk 1} be a partition of {b, ... bk such that Pi consists of0 k-i 1' 3k- 1

those elements bj such that at = i for t S Then {P, ... Pk is

a 3-partition of b1, ..., b3k . Conversely, if {P0, ... , Pk-1 } is a 3-partition

of bl, ..., b3 k , then let S consist of b. elements whose corresponding

"a" value is t , where b. E P . We have thus seen that there is a feasible
0 t

partition {S1, ..., S } such that the "a" value for each Si is constant if

and only if there is a 3-partition for the b's . Thus the Barnes-Hoffman partition

problem is NP-hard. Since the recognition variant is clearly in the class NP ,

the latter problem is NP-complete. I

-- *D� �_ �
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