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ABSTRACT

The problem that we address is to determine the inventory stockage levels

in a multi-echelon inventory system for a low demand repairable item. In its

simplest form the multi-echelon system consists of a set of operating sites

supported by a centrally-located repair depot. Each operating site requires a

set of working items and maintains an inventory of spare items. The repair

depot also holds an inventory of spare items. Item failures are infrequent and

are replaced on a one-for-one basis. In this paper we present an exact model

for finding the steady-state distribution of the net inventory level at each

site. This model assumes that the failures are generated by a compound Poisson

process and that the shipment time from the repair depot to each site is

deterministic. No assumptions are made with regard to the repair cycle at

the depot. We contrast this model with existing models for these systems.

Based on the exact model we present an approximation for the steady-state

distribution for the case with ample servers at the repair depot. We show

that this approximation is very accurate on a set of test problems.



1.0 Introduction

In many industries and service organizations the reliance on multi-echelon

logistic systems for repairing and supplying low-demand, recoverable items is

becoming more and more prevalent. The military's use of and interest in these

systems is well known (e.g. Demmy and Presutti [3], Clark [2]). Manufacturers

in high technology fields are also resorting to multi-echelon inventory systems

for supporting their field service operations for their products. For instance,

most computer and office equipment manufacturers must maintain a service organi-

zation to service and repair their products in the field. Much of the service

work done by these organizations requires the replacement of failed electronic

modules that can ultimately be repaired. Consequently, these service organiza-

tions will have a multi-echelon inventory system consisting of field inventories

for spare modules, and a centrally-located repair depot that repairs the modules

and replenishes the field inventories. Communication networks also require

multi-echelon inventory systems to ensure reliable service. For instance, a

telephone system consists of a linked network of spatially-dispersed switching

centers. Each switching center may have thousands of electronic modules that

are each subject to infrequent failure. In most instances the failed modules

are recoverable. To maintain system reliability, the telephone system must

stock some spare modules at every switching center. Yet for reasons of economies

of scale, the system will also have a centralized repair facility and possibly

intermediate buffers of spare inventory.

A key component in the design of multi-echelon inventory systems for

low-demand, recoverable items is the determination of the proper stockage levels

of spare inventory at each echelon. Nahmias [7] provides an excellent review

of the management science efforts at addressing this problem. A common approach

to this problem (e.g. Sherbrooke's METRIC model [11]) has two components. The

first component is to characterize the service performance (e.g. expected
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shortages) of the multi-echelon system for a given specification of the

inventory stockage levels. This may be done with an exact or approximate

steady-statemodel. The second component is to search systematically over

the possible inventory stockage levels to find the best choice with regard to

both inventory costs and service performance.

In this paper we focus on the first component, namely the characteriza-

tion of system performance for a given specification of the inventory stockage

levels. In the next section we present a general framework for determining

the steady-state distributionof net inventory levels. This framework is a

generalization of the model developed by Simon [12]. We also interpret the

METPIC model [11] in the light of the general framework, In Section 3 we

discuss the computational implications of the general framework, in particular

with regard to finding the best stockage levels. We also pose an approxima-

tion to the steady-state distributionfor a particular problem instance. We

compare on a set of test problems this approximation with the approximation

to the steady-state distributionused by METRIC, and with the exact distribu-

tion. Our approximation seems very close to the exact distribution, and

seems to dominate the METRIC approximation on the set of test problems. In

the final section we discuss extensions to the general framework as well

as directions for future research.



-3-

2.0 A General Framework

Consider a two echelon inventory system for a repairable item where the

system consists of a repair depot and N operating sites, as depicted in

Figure 1. To be operable each site requires a number of identical working

items. At each site items fail according to a specified failure process. All

failed items are repairable, but only at the repair depot. Failures are

handled by a one for one ordering system. Upon failure an item is replaced

with a working item from the site's stock, if one is available; otherwise,

there is a shortage at the site that will be filled when stock is available

at the site. The failed item is then sent directly to the depot for

repair. Upon repair the item is placed in stock at the depot or is used to

fill a backorder on the depot. At the same time that the failed item is sent

to the depot, the site requests a replacement item from the depot. If the

depot has available stock, the depot immediately ships a replacement item;

otherwise the request is backordered to be filled when stock is available at

the depot, although not necessarily on a first-come, first-serve basis.

For this setting we require two critical assumptions. First we assume

that at each site the failure process is a compound Poisson process that is

independent of the site status. That is, the failure process for the site

does not depend on the actual number of working items. This assumption is

clearly violated whenever there are shortages at the site such that the number

of working items drops below the normal requirements. Nevertheless, this

assumption is common to the literature in this area (e.g. Sherbrooke [11],

Simon [12], Muckstadt [6], Allen and D'Esopo [1], Simon and D'Esopo [13],

Richards [9]), and seems reasonable provided that the expected number of

shortages at a site is to be small relative to the required number of working

items at that site.

The second assmuption is that the total shipment time from the repair
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depot to each site is deterministic. Simon [12] also makes this assumption,

whereas the METRIC models do not ([ 6 ],[11]). Although we may permit this

shipment time to vary across sites, for convenience we assume that the depot-

to-site shipment time is the same for all sites and given by T1.

We define Qi(t) to be a random variable denoting the outages at site i

at time t. An outage corresponds to a replacement request that has yet to be

filled. The unfilled request could be either intransit from the depot to the

site or backordered at the depot. If si is the number of spare items stocked

at the site, then si-Qi(t) is the net spare inventory on hand at time t,

where negative inventory denotes a shortage level. We define Q(t) to be the

aggregate outages at the sites, i.e.

N
Q(t) = Z Q.(t).

i=l

We note that Qi(t) does not depend on the stockage quantity at the site si,

but does depend on the number of spares stocked at the depot, denoted by s .

For notational convenience we will make this dependence explicit only when

needed.

The primary result is

Q(t+T 1) = B(tlso) + D(t,t+T1) (1)

where B(tls o) is the backorders at time t at the depot assuming the depot

stocks s items, and where D(t,t+T) is the total number of-failures at all

sites over the time interval (t,t+T 1]. Hence, if Di(t,t+T) is the number of

failures at site i, then

N
D(t,t+l1 ) = Z Di(t,t+ 1).

i=l

We note that B(tls ) and D(t,t+T) are independent random variables since

the depot backorders at time t depend only on item failures that occur prior
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to time t and since we assume that the failure process at each site is a

comrpound Poisson process that is independent of the status of the site.

We provide here an intuitive explanation of (1); a more formal proof

is possible, but we believe to be unnecessary and cumbersome. At time t

the aggregate outages at the sites consist of items that are intransit to

the sites and of items that are backordered at the depot. By time t+T1 all items

that had been intransit at time t will have arrived at the sites and will no

longer be outages. However, since the shipping time from depot to site is

exactly T those items that were backordered at time t cannot have arrived

at the sites by time t+Ti. Hence, the depot backorders at time t, B(tls ),

remain as outages at time t+T1. Any failure in the time interval (t,t+T 1]

generates a replacement request by the site that cannot feasibly be filled

by time t+T1 since the required shipping time is T1. Hence all failures over

this interval, D(t,t+T1),must be outages at time t. Furthermore, since

B(tlso) and D(t,t+T) are independent, they do not double-count any outages,

but do sum to give total outages at time t+T. We note that this explanation

is very similar in spirit to that for finding the on-hand inventory in a

continuous review inventory system with a constant lead time (Hadley and

Whitin [15], pp. 181-188). Simon and DEsopo [13] also use this type of

argument to establish the steady-state distribution for on-hand inventory in a

single-site model with both repairable and nonrepairable item failures.

This remarkably simple result requires only the assumptions of an inde-

pendent compound Poisson failure process and deterministic shipment times from

the depot to the sites. No assumptions were required with regard to the ship-

ment times from the sites to the depot, or the repair process. Furthermore

by using the same logic, we can extend the result to distribution networks

with any number of echelons provided that the transit times from each echelon

to its immediate successors are deterministic.

III
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The utility of (1) for characterizing the site outages Qi(t) depends

primarily on the resolution of two issues. First, we need the probability

distribution for depot backorders B(ts ). With this we obtain the distribution

of the aggregated outages Q(t) via a convolution with the distribution for

D(t,t+T) (assumed to be known). The second issue is how to disaggregate Q(t)

into Qi(t) for i=1,2,...,N. Knowledge of this distribution of Qi(t) permits

us to find, for a given depot stockage level so, the best site stockage level

s. that minimizes inventory and shortage costs. Before exploring these

issues we first take a look at the models of Simon [12] and Sherbrooke [11]

in the light of (1).

Interpretation of Simon and METRIC Models

Simon [12] considers a two echelon system with a Poisson failure process

at each site, deterministic transit times, and ample repair capacity (i.e.

there is no queueing, and successive repair times are i.i.d. random variables).

He derives the steady-state distribution for the net inventory level at each

site. In terms of (1), we can interpret Simon's model as follows. The depot

backorders would be written as

B(tiso) = [Qo(t) - s (2)

where Q (t) is the number of outages at the depot at time t and [x] denotes

the nonnegative part of x. A depot outage is analogous to a site outage

and represents a failed item that has not yet completed repair. These

failed items can be either intransit from the sites to the depot or in the

repair cycle at the depot. Whenever an item fails at a site, a request is

made to the depot for a replacement. For this failed item the depot has an

inventory outage until the failed item is repaired. The net inventory level

at the depot is just the difference between the planned stockage level

11___�__��__1_11_111___�__� �____
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and the number of outages, i.e. s - Qo(t). Hence, backorders occur once

depot outages exceed the stockage level.

By assuming ample repair capacity, Q (t) is modelable as the occupancy

level in a M/G/o queue where the service time G includes both the intransit

time to the depot and the repair time at the depot. Since the steady-state

distribution of Q (t) is well known to be Poisson (Palm's theorem [ 8]), we

find the steady-state distribution of B(ts ) to be just the tail of Poisson

distribution. By convolving B(tls )-with D(t,t+T), we obtain the distribution

of aggregate outages Q(t).

Simon assumes that the depot backorders are filled on a first-come,

first-serve basis. This implies that the "disaggregation" of the distribution

of Q(t) is essentially a random disaggregation across the sites. That is,

the likelihood that any aggregate outage is from a particular site i is

directly proportional to that site's failure rate i. Simon determines the

distribution of Qi(t) by conditioning on Q(t) and by using the fact that

the conditional distribution of Qi(t) is a binomial distribution. Specifically,

Simon finds that

Pr[Qi(t)=j] = Z Pr[Qo (t)=k] (3) ) ]j ]k-j
k=j

N
where X = Z Xi is the aggregate failure rate. Simon's original derivation

i=l
also permits repair at the site and item condemnation [both features can be

included in (1), but tend to obscure the simplicity of the result].

Kruse [ 4] provides a similar interpretation of Simon's model to that given

here and shows that it is extendable to more than two echelons. Shanker [10]

shows.that Simon's model can permit compound Poisson demand, which is clear from

this interpretation and the generalization of Palm's theorem by Feeney and

Sherbrooke [14].

Sherbrooke's METRIC model [11] considers a two echelon system with a

III
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compound Poisson failure process at each site, ample repair capacity and general

transit times. METRIC provides an approximate distribution for the net inven-

tory level at each site. In that METRIC permits non-deterministic transit

times, it does not fit exactly into the framework given by (1). However,

for the case of a deterministic transit time to the sites, we can interpret

the METRIC approximation in terms of (1). For ease of presentation assume

that the demand processes at the sites are just Poisson. By modeling the

depot backorders by (2), METRIC uses Palm's theorem to obtain the distribution

of 0 (t), and the expected backorder level at the depot. METRIC then approxi-

mates the distribution of B(tts ) as a Poisson distribution with the given

mean. Since both B(ts ) and D(t,t+T) are assumed Poisson, their convolution

Q(t+T) is also Poisson and completely characterized by its mean. Now METRIC

determines thedistribution of Qi(t) by a random disaggregation (3) of Q(t),

identical to Simon. But for Q(t) being Poisson, this random disaggregation

results in each Qi(t) being Poisson so that only its mean need he computed.

Hence, the one distributional approximation by METRIC yields an enormous

computational simplification over the Simon exact model. The case with compound

Poisson failures is completely analogous.

I
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3.0 Computational Issues

In the previous section we have introduced a general probabilistic

framework for characterizing the performance of a two-echelon inventory

system for a repairable item. We also reexamined two noteworthy models for

such inventory systems within the general framework. In this section we

consider the use of this framework to address the standard design questions

for these inventory systems: how many spare items are needed and where should

they be stocked? In particular we explore both the use of exact and approxi-

mate models suggested by the framework, as well as the computational implica-

tions of these models.

Exact Models

To use our main result (1), we need a means for determining the backorder

level at the depot B(tjs ), and a means for disaggregating aggregate outages

Q(t) into individualsite outages Qi(t). We discuss these issues here.

Throughout this discussion, we focus on steady-state distributions.

The equation (2) defines backorders at the depot in terms of the outages

at the depot and the stockage level s . We note that the outages at the

depot do not depend on the stockage level s . Rather the depot outage level

depends only on the failure processes for the sites (which are independent of

the site status), and the repair cycle where the repair cycle consists of the

shipping time from the site to depot, queueing time at the depot and the

repair time at the depot. This independence property implies that we need only

determine the steady-state probability distribution of the depot outage level

once to obtain the steady-state probability distributions of the depot back-

order level for all values of s .
o

Hence the operationalization of (1) for any value of s requires just

the determination of the probability distribution of (t). In the previous
'O

Ill

I
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section we saw that both Simon and Sherbrooke use Palm's theorem to characterize

Q (t) under the assumption of ample repair capacity and Poisson or compound

Poisson failure processes. For several other common scenarios, we can also

determine the probability distribution of the depot outage level. For

instance, suppose the sites' failure processes are each Poisson, the shipment

time from each site to the depot is a general random variable with finite mean,

and there are k parallel repair lines, each with its repair time being exponen-

tially distributed. A failed item arriving at the depot queues until a

repair line is available. The distribution of the depot outage level is

the convolution of the distribution of the number of items intransit to the

depot with the distribution of the number of items either in repair at the

depot or in the repair queue. The number of items intransit is equivalent

to the occupancy level in an M/G/o system and hence has a Poisson distribution.

Since the output of an M/G/o is a Poisson process that is independent of the

occupancy level (Mirasol [ 5 ]), the number of failed items either in queue

dr in repair is modelable as an M/M/k system that is independent (in steady

state) of the number of items intransit. The steady-state analysis of an

M/M/k system is straightforward and well known. Although there is not a

closed form result for the convolution of the two distributions, it is

trivial to do this with a computer. Furthermore, this convolution need be

done only once for the analysis of stockage levels for a particular scenario.

Extensions to this problem setting that are also tractable would include

Erlang repair times and more complex repair processes that require a series

of repair steps at distinct facilities,

Once we have found for a depot stockage level s the distribution of

the aggregate site outages via (2) and (1), we need to disaggregate this

distribution into the outage distributions for individual sites. The general

form for this disaggregation is
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Pr(Qi=j) = Z Pr(Qo=k) Pr(Qi=j I Q = k )

k=j

where we need specify the conditional distribution Pr(Qi=j I Qo=k) to reflect

the depot priority scheme. If the depot fills item replacement requests on

a first-come, first-serve basis, then we can perform the disaggregation by

(3) where the conditional distribution is a binomial distribution. For

other priority schemes, such as filling the most "urgent" request, the form

of the conditional distribution is less clear, but presumably more complex.

The computations required to obtain the site outage distribution are not

trivial and must be done for every value of s that is investigated. To

limit the amount of computational effort we present an appoximation to the

disaggregation process in the next section.

Approximate Model

For the approximate model we assume that all failure processes are

Poisson and that the depot services requests on a FCFS basis so that (3)

gives the disaggregation of the aggregate outage process. From (3) and

(2) we can easily show that the expected site outage level and its variance

are given by

E{Q} = E{B(so)}+ XiT (4)

VarQ )2 Var{Qi} = ()2 Var{ EB( )}+ T)( (5)

N
where X. is the failure ratefor site i, X = Z Xi is the aggregate failure rate,

i=
and T is the deterministic shipment time from depot to site. The notation B(so)

denotes thesteady-state depot backorder level given s units stocked at the depot.
0

Hence we can express the mean and variance of each site's outage level in terms of

the mean and variance of the depot backorder level. Now from (2) we show in the

appendix that

E{B(s) = E(so-l)} - Pr(Q >s ) (6)
0 0 0 0~~~~~~~~~~~~~~~~6
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Vaar(so-l)} - E{B(so)}E{B(s-l)]- [l-Pr(Q >s)] (7)

That is, we can compute the mean and variance of the depot backorder level

recursively, provided we have knowledge of the distribution of the depot

outage level. We propose to use (4) - (7) to compute the mean and variance

of each site's outage level for all values of s of interest. We then

intend to approximate the distribution of each site's outage level with a

distribution that is fully specified by its first two moments. We illustrate

this approximation strategy next.

We consider the case where all failure processes are Poisson and where

there is ample repair capacity at the depot so that the depot outage level

Qo has a Poisson distribution. An empirical investigation of this case over

a range of parameter sets suggests that the distribution of a site's outage

level, Qi' will be unimodal and will have its variance strictly greater than

its mean. We propose to approximate the distribution of the site's outage

level by a negative binomial distribution; that is

Pr(Qi=j) = (r+j-l) p j for j=,l,2... (8)
i ~j

where r and p are positive parameters (O < p <-1) such that

E{Qi} = r(l-p)/p ,(9)

Var{Q i} = r(l-p)/p2 (10)

The mean and variance of the site's outage level are found from (4) - (7).

To test the effectiveness of this approximation we compared this

approximation with the METRIC approximation and with the exact distribution

on a set of test problems. For all test problems, the shipment time T from

depot to site is exactly 3 days. The expected duration of the repair cycle

(shipment time from site to depot plus repair time at depot) takes on one
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of the following four values: E{T 2} 1, 3, 6, or 9 days. We assume that

there are four sites. The aggregate failure rate for the four sites is one

of the four values: X = .5, 1, 2, or 4 failures/day. The failure rates for

the four sites are such that X 1/ = .1, X2/ = .2, 3/X = .3, and 4/X = .4.

To specify a test problem we need set the depot stockage level s . Since

the depot outage level Q is a Poisson random variable with a mean and variance

equal to XE{T2}, we need set the depot stockage level to be consistent

with this expected depot outage level. To do this, we permit s to range

from kE{T21 - (E{T 2})
1 /2 up to E{T2 } + 2(XE{T2})

1 /2 [i.e. from i- to i+2].

In particular, we let s take on up to six integral values evenly-spaced over

this range. Finally, for each test problem we specify the desired fill

rate a for each site, where a = .84, .87, .90, .93, .96, .99. Hence, for

a given fill rate , the site stockage level si is the minimal quantity

such that

Pr{Qi < si} > ·. (11)

To recap the design of the test problems, we specify a test problem by

setting the expected repair cycle time (4 candidates), by setting the aggre-

gate demand rate (4 candidates), by setting the depot stockage level (up to

6 candidates), and by setting the site fill rate (6 candidates). This gives

a maximum of 576 test problems. For each test problem, each analysis method

(i.e. negative binomial approximation, METRIC approximation, and exact

solution) generates the required stockage level for each of the four sites.

Hence, a maximum of 4 * 576 = 2304 comparisons are possible.

The results from the test problems are summarized in Tables 1 - 4. In

total there are 1968 problem instances. We report the number of instances

that each approximation yields the wrong stockage quantity for a site. Overall

both approximations are extremely effective. The METRIC approximation results
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in a "wrong decision" in 227 problem instances of 11.5% of the cases. In all

of these instances the METRIC approximation recommends less stock than is

actually required. The negative binomial approximation is even better. It

errs in only 18 problem instances or 0.9% of the cases. Furthermore, the

negative binomial approximation virtually dominates the METRIC approximation

over this set of test problems. In all but 2 of the cases where the negative

binomial approximation errs, the METRIC approximation also yields a wrong

decision. In the two exceptional cases the negative binomial approximation

recommends more stock than is actually needed. The computational require-

ments for the negative binomial approximation are comparable to that for the

METRIC approximation. Whereas one requires both the mean and variance of each

site's outage level [i.e. (4) - (5)], the other requires just the mean. The

computation of the negative binomial distribution is the same complexity as the

computation of the Poisson distribution required by METRIC.

XII�_�IYLIX·______1_.____�·�11_�_1_1._
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Table 1: Error Incidents for Approximation Methods for Aggregate Demand
Rate X = .5 failures/day

*

ixy: x = number of problem instances for which METRIC gave incorrect
stockage quantity

y = number of problem instances for which negative binomial
approximation gave incorrect stockage quantity.

For each choice of E{T 2} and Xi, we considered six fill rates and up to
six values for the depot stockage quantity.

Number
or Site Demand Rate

E{T2} problem
instances X1 = .1X X2 = .2X X= .3 X .4X
per cell

1 6 0,0 0,0 0,0 0,0

3 18 0,0 0,0 0,0 0,0

6 36 0,0 2,0 0,0 2,0

9 36 1,1 4,0 4,0 4,0

**
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Table 2: Error Incidents for Approximation Methods for Aggregate Demand
Rate X = 1.0 failures/day

Number
or Site Demand Rate

E{T2} problem
instances A1 = . 2 = .2 A3 = .3X4 = .41
per cell

1 12 0,0 0,0 0,0 1,0

3 36 3,1 1,0 4,0 4,1

6 36 1,0 5,0 4,0 7,0

9 36 3,0 5,0 6,1 12,2

*

rlE : x = number of problem instances for which METRIC gave incorrect
stockage quantity

y = number of problem instances for which negative binomial
approximation gave incorrect stockage quantity.

For each choice of E{T2} and Xi, we considered six fill rates and up to
six values for the depot stockage quantity.

--"--~ -���--1----�ll�i��il---------�---
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Table 3: Error Incidents for Approximation Methods for Aggregate Demand
Rate X = 2.0 failures/day

*

x,y: x = number of problem instances for which METRIC gave incorrect
stockage quantity

y = number of problem instances for which negative binomial
approximation gave incorrect stockage quantity.

For each choice of E{T 2} and i, we considered six fill rates and up to
six values for the depot stockage quantity.

**
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Table 4: Error Incidents for Approximation Methods for Aggregate Demand
Rate X = 4.0 failures/day

Number
or Site Demand Rate

E{T 2} problem
instances X= .12 = .2 X = .3X 4 = .4
per cell 3 4

1 36 2,1* 0,0 0,0 2,0

3 36 2,0 3,1 5,0 8,1

6 36 4,1 5,0 8,0 13,1

9 36 4,1 6,0 13,0 18,2

x,y : x = number of problem instances for which METRIC gave incorrect
stockage quantity

y = number of problem instances for which negative binomial
approximation gave incorrect stockage quantity.

**
For each choice of E{T 2} and Xi, we considered six fill rates and up to
six values for the depot stockage quantity.

-�
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4.0 Discussion

The contribution of this paper is twofold. First, we provide a reasonably

general framework for determining the distribution of net inventory levels in

a multi-echelon system for low-demand, recoverable items. Second, for a

specific problem scenario, namely ample servers at the repair facility, we

propose an approximate model that we show to be very accurate on a set of

test problems. In this section we discuss extensions to the general framework

and directions for future research.

The general model (1) requires a set of assumptions which may or may not

be restrictive. The assumption of a compound Poisson failure process is likely

to be general enough to capture most failure processes. The assumption of a

deterministic shipment time from depot to site is slightly more restrictive.

Shipment times do vary but are reasonably predictable. Indeed, many manufacturers

may ship small, high-valued, electronic modules via an air cargo service that

guarantees overnight service. Finally, the assumption that the failure process

is independent of the site status is the most restrictive assumption. It

clearly does not hold if there is a small population of working items that

generate the item failures. However, even in this case, if there is a very

small probability that an operating site has a shortage, then for modeling

purposes it may be appropriate to assume that the failure process is independent

of site status. Future work need examine the applicability of and extensions

to the general model when its assumptions are not reasonable.

We presented the general model in its most simple context: only two

echelons, all failed items are repairable, all repairs occur at the depot, and

all depot-to-site shipment times are the same. The framework extends directly

to distribution systems with more than two echelons provided we have deter-

ministic shipment times from an echelon to its successors. As an example,

suppose we have three echelons with a single repair depot, multiple intermediate



sites, and multiple operating sites. Then using (1) we determine the aggregate

outages at the intermediate sites, where s is the stockage level at the depot

and T1 is the shipment time from depot to the intermediate sites. The aggre-

gate outages at the intermediate sites then need to be disaggregated, as in

(3). Given a stockage level for each intermediate site, we can determine its

backorder level. We now reapply (1) for each intermediate site and its successor

operating sites to get the aggregate outages at the sites. Again the aggregate

outages for the sites are disaggregated, as in (3). Admittedly, the details

are quite involved, but the calculations are feasible.

The general model is also extendable to include site repair and to include

item condemnation and procurement. In the first case, the model given by (1)

just needs to be augmented to include the random variable for the aggregate

number of items in site repair. In the second case, the determination of the

backorders at the depot must reflect the effect of condemned units. Both

Simon and D'Esopo [13] and Richards [9] illustrate how to determine the depot

backorder level when item failures may or may not be recoverable.

If the depot,-to-site shipment times are not the same, then we need modify

model (1). The model should now be stated as

Qi(t+Ti) = Bi(ts o) + Di(t, t+Ti)

where Bi(tlso) represents the number of depot backorders at time t that are

outages at site i, and Ti is the shipment time from depot to site i. Hence,

the outages at site i at time t+Ti are the sum of the site's outages at time t

that cannot have arrived by time t+Ti, plus the failures over the interval

(t, t+Ti]. We determine Bi(tls o) for each site by disaggregating B(tlso), as

in (3).

We have suggested and tested one approximation scheme for the two echelon

system with ample servers at the repair facility. We have not examined this

YI1_·_____�___�__�_l�·-·I^��
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approximation for cases with limited service channels or with more than two

echelons. We hope that future research will address these cases.
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APPEIDIX

In this appendix, we establish the recursive formulas given by (6), (7)

in the text. We are given that

B(so) = [Q - So]
0 0 0

(Al)

where B(s ) is the depot backorder level, Q is the depot outage level, and

s is the depot stockage level. Define (us 0) to be the moment generating

function for B(s ):
0

S(us ) = Z Pr[B(s)=jlu
j=0

By induction we can show that

l(us ) = u[a(ulso-1) - Pr(Q < s -1)] + Pr(Q < s -1)

(A2)

(A3)

for s = 1,2,..., where
o

S(ul S =0) =
0

(A4)Z Pr(Q o=j)u j.

j=O

By differentiating (A3) and setting u=l, we obtain the result (6) in the text,

namely

E{B(s )} = E{B(s -1) } - Pr(Q >s ). (A5)

By differentiating (A3) twice and setting u = 1, we obtain

E{B2 (s ) - B(s )} = -2E{B(so)} + E{B2 (so-1) - B(s o-1)}. (A6)

From (A5) and (A6) we obtain the desired result (7), namely

Var{B(so)} = Var{B(so-1)} - [E{B(so)} + E{B(so-1)}] [1 - Pr(Qc>so),

(A7)
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