
SYSTEM BALANCE FOR EXTENDED LOGISTIC SYSTEMS*

S. C. Graves
Massachusetts Institute of Technology

Sloan School of Management

and

March 1981

J. Keilson
University of Rochester

Graduate School of Management
WP No. 1253-81

Work supported by Air Force Office of Scientific Research on grant
No. AFOSR-79-0043, and by Air Force Business Management Research Center.

*

_ I·I__���_�_
I

Introduction and Summary

An extended logistic system is a well-defined configuration of complex

equipment, supporting inventory levels of components and modules, supporting

maintenance facilities, supporting transportation system between local and

remote inventory and maintenance sites, and procedures governing the alloca-

tion and shipment of components from remote and local sites. Examples of

extended logistic systems are aircraft programs, radar systems, or networks

of communication satellites. For each of these systems, the basic unit of

interest (an aircraft, a radar unit, or a satellite) is a complex combination

of components which are subject to failure. For each component there are

supporting inventory and/or repair facilities, and specific replacement proce-

dures for such failures. The evaluation of system performance includes system

availability and the logistic costs required to obtain that level of avail-

ability.

This paper reports extensions to our earlier work [2] in which we develop

methods for studying the dynamic behavior of extended logistic systems. In

particular, an optimization model is proposed here for examining system

design and tradeoff decisions. We consider a single-echelon model for a

multiple-component system where components are subject to failure. For the

system to be operable, a prespecified number of each component must be avail-

able. .The optimization model maximizes system availability subject to a

budget constraint on system cost and a dynamic time constraint on system

failure time. The latter constraint is an effort to incorporate our under-

standing of system dynamics into the optimization by restricting the mean

time between failures for the entire system. The use of the optimization

model for system design and tradeoff decisions is illustrated by three

examples using representative data from an Air Force program. Within the

optimization context, the notion of system balance is defined. In essence,

�� �I �I 11_ 111___ �

III

a balanced system is a system for which any change in investment between

any two system levels satisfying system constraints, raises total system

cost.

The paper is organized into four sections. In the first section we

introduce the problem setting and define the problem of interest. In

Section 2, we propose an optimization model for the stated problem which

gives rise to an integer programming problem, and in turn to a linear

programming approximation. Section 3 presents three numerical examples

illustrating the potential utility of the model. Finally Section 4 compares

the proposed approach to alternative approaches and suggests possible

extensions.

I

-3-

1. Problem Definition

The general problem setting-is the logistic system designed to support

some operating system, typically a military operation; for instance, we might

consider the logistic system that supports the operations for a squadron of

aircraft. The logistic system includes the basic operating entities (e.g.

aircraft), spare-parts inventories, repair equipment both on site and at a

central repair depot, epair personnel, operating procedures, operating

objectives, and system constraints; We are concerned with questions and

tradeoffs involved in designing such a logistic support system. In this

paper we examine a single-echelon model, in which only the echelon stocks

spare-parts inventories and there is only one repair facility, either on

site or at a central repair depot. We consider the determination of the.

appropriate inventory stockage levels for repairable modules, and the identi-

fication of possible economic benefits from improved repair capability and/or

improved module reliability. We are not concerned here with detailed operating

procedures or manpower scheduling.

For this problem setting we define three identities: system, entity, and

module. The system is the operating system of concern, such as a squadron of

aircraft. An entity is the basic operating unit in the operating system;

thus an entity could be an aircraft. Hence we could view the system as a

collection of entities: for the system to be operable, a prespecified number

of the entities must be available. A module is a basic repairable unit for

the entity. For an aircraft, a module could be an engine or a component of

the engine, a navigational module, or a communication module. The entity

(e.g. aircraft) is now viewed as a collection of modules; in order for the

entity to be operable, a prespecified subset of the modules must be operable.

The problem of interest is to determine the specifications for the

logistic system which maximizes the performance of the operating system at

Ill

-4-

the least logistic cost. The system specifications of prime concern to us are

the inventory stockage levels for the repairable modules. For logistic

cost we focus upon the procurement and holding costs for the repairable

modules and the maintenance costs associated with the repair of these modules.

For system performance, we consider two measures. The first measure is system

availability, which is defined as the steady-state probability that the

operating system is operable. For instance, for a squadron of aircraft

consisting of 50 aircraft we may say that the system is operable (i.e. conduct

normal operations) at a given time if at least 80% of the aircraft (40) are

available to fly. In this example the desired operational level is 40 aircraft

or 80% of the squadron. The system availability is the probability of being

at or above the desired operational level.

The second measure of system performance is system persistence as measured

by the time until the next system failure. Here, the operating system is said

to fail when the number of entities available to operate drops below a minimum

threshold level. In the above example we might say that the system fails when

less than 25 aircraft (50%) are available to fly. In such instances a state

of emergency would exist, and extreme measures would be.taken to bring the

system back to a minimally-satisfactory level. Clearly, the longer the time

is between such system failures, the longer is the time between "emergencies"

and the better the system is performing.

In [2], four random variables descriling in different ways the persistence

of the system in the satisfactory region (e.g. more than 25 available aircraft),

were examined. We will employ one of these persistence times (called in [2]

the ergodic exit time), selected for its analytical tractability, its simplicity,

and its utility for planning, to use as a measure of system performance. In [2],

we saw that, under reasonable conditions, this persistence time is nearly

exponentially distributed. Consequently, only the mean persistence time (or

mean time between system failures) is needed, since an exponential random

-5-

variable is fully characterized by one parameter, its mean. Technical details

defining both the system availability and system persistence time are given

in the next section.

In view of the above considerations, we pose the following optimization

problem:

(P) Maximize System Availability

Subject to:

Mean Time Between System Failures (MTBSF) > T

Total Logistic System Cost < B

T and B are the preset MTBSF target and budget allocation, respectively. The

primary decision variables in (P) are the stockage levels for the repairable

items that define an entity. An alternative formulation to (P) might minimize

"total logistic system cost" subject to constraints on "system availability"

and on "mean time between system failures"; in Section 3 we illustrate both

formulations with examples. Note that in (P) there is only one cost constraint.

This constraint might represent the initial budget for spares procurement,

or an annual budget allocation for maintaining the logistic system, or an

additional, unexpected budget surplus to be used for an ongoing operating

system to provide a "quick-fix". We will see that (P) may be easily extended

to more than one cost constraint, if the single budget constraint is not suffi-

cient.

In the next section we develop an explicit formulation for (P). Further-

more, we show that, for a set of assumptions, (P) may be modeled as a separable

nonlinear program, which may be closely approximated by a linear program. This

linear program has M+2 linear constraints, where M is the number of distinct

modules needed to define an entity; M of these constraints are generalized upper

bound constraints, which are handled implicitly by most linear programming

III

codes. The number of columns in this linear program may be quite large;

however we propose a column generation scheme which makes the solution

procedure quite tractable.

An important model consideration which is key to the viability of the

model, is the definition of an entity. Earlier, we stated that an entity is

a collection or set of repairable modules. Most entities of interest (e.g.

aircraft) consist of tens of thousands of distinct repairable modules; our

model cannot handle that many modules. Furthermore, even if the model could

handle all repairable modules, we conjectur.e'that the output could easily be

meaningless due to the model assumptions and required level of detail. Hence

we redefine an entity as a small collection of critical modules. By small, we

have in mind 20 to 50 modules. By critical, we mean those modules for which

there are significant economic tradeoffs. A critical module is one which

is costly, unreliable, and essential to the operation of the entity. A

critical module is one which may cause an entity to fail or not be operable.

In this light, a module is not critical if it is cheap since we could stock

sufficient quantities of this module to make a runout of this module quite

rare. If a module is reliable, it is also not critical since it rarely

fails and hence will not cause an entity to fail. Finally a module that is

not essential for the operation of the entity is clearly not critical.

We conjecture that a small set of critical modules can be identified which

%will encompass the major tradeoffs and savings in the design of the logistic

system. We would draw an analogy with the ABC analysis in inventory practice,

in which stock keeping units are classified into three groups. Typically the

items in the "A" class comprise 5 - 20% of all items, yet account for 70 - 90%

of all sales, Consequently the most managerial attention is placed on the

items in this class since that is where significant inventory savings may be

achieved. The "B" and "C" classes receive considerably less attention; the

-7-

control of these classes is highly automated and relatively conservative in

order to not require the time and attention of management. The suggestion made

here for logistic systems is to identify similarly a set of "A" modules to

which major attention is paid. The non-critical modules ("B" and "C" items)

need to be handled separately from the critical modules ("A" items). Further-

more the non-critical modules should be managed in a way such that they are

inconspicuous and cause no "trouble"; that is, the non-critical modules should

very rarely cause an entity to be onoperable. Consequently, the attention

of the system designers and the attention of our model are focused on

the critical modules, those modules for which significant tradeoffs exist and

which we allow to cause failures of an entity.

A valuable by-product of the linear programming model is the shadow price

information from its dual solution. From the formulation given by (P), we

obtain shadow prices (Ts' B) where T will be seen to be the percentage change

in system availability from a marginal change in T, and similarly for B.

From this information, we can determine for each module the maximum value we

would pay for a perfectly reliable version of that module (i.e. never fails).

In addition we can use this information to aid in categorizing modules as

critical versus non-critical. Section 3 illustrates these uses of the model.

Ill

2. Model Development

The key assumptions necessary for the model development are as follows:

(a) There is complete cannibalism of the inventories of the repairable modules.

With this assumption, the requirement that k entities be operable (e.g.

k aircraft ready to fly) is equivalent to requiring k available units of

each repairable module, assuming that each entity requires exactly one

of each repairable module.

(b) System failures are rare, i.e. sufficient resources are allocated to

the logistic system to make the operating system operate with reasonable

reliability. This assumption is necessary to ensure the appropriate-

ness of the exponential approximation for the system MTBSF (see [2]).

Cc) The failure and repair of distinct types of modules are independent.

Consequently, the random variables {Ii(t)}, each of which denotes the

available inventory at time t for repairable module i for i=1,2,...,M,

are independently distributed.

(d) Each random variable Ii(t) is modelable as a birth-death process on the

state space {0,1,...,Ni}, where Ni is the number of units stocked for

module i. We define the vectors Xi = {ij } and pi = {ij} to denote

the transition rates for this birth-death process. That is, ..ij for

J=0,1,...,Ni-1 is the upward trasition rate from state j to j+l while

Vij for J=1,2,...,N i is the downward transition rate from state to

j-1. The optimization requires no explicit functional form for the

transition rates for the birth-death processes.

The above four assumptions do not seem to be very restrictive, but

certainly need to be examined. Assumption (a), which assumes complete canni-

balism, is never valid; however, neither is the assumption of no cannibalism.

Partial cannibalism does go on, and is very difficult, if not impossible, to

model. We choose full cannibalism over no cannibalism primarily for analytic

-9-

convenience. Assumption (b) merely states that we want a reliable system,

which is certainly valid for most important military and commercial systems.

Assumptions (c) and (d) are standard assumptions for reliability models, and

are made not only for their analytic convenience but for the robustness

demonstrated by these models. Furthermore, we note that the optimization

permits more complex stochastic models for the inventories I.(t). We could,

for instance, model such an inventory level with a two-dimensional birth-death

process. This extension would perfmit a wider class of repair time distribu-

tions, such as are encountered when module repair may take place at more than

one location (e.g. base and depot repair); we discuss this extension in

greater detail in Section 4.

We will be interested in the random process

NMt) = min{II(t), 2(t) ..., (t)} .

Since we assume that each entity requires one unit of each module to be operable,

N(t) is the number of operable entities at time t. We define system availability

by

As = lim Pr[N(t) > k1] (2)
t400

where k represents the desired operational level for the system. Since the

module inventories are independent we may write the system availability as

M

As = lim I Pr[Iit) k1]
t-o il

M
= I Ai (3)

i=l

where Ai is the steady-state availability of module i. We note that the module

availability is a function of the parameters (Xi, i' Ni) which define the

birth-death process that governs Ii(t), and is easily computed from the ergodic

�.._____

analysis of the birth-death process.

We characterize system persistence by the random variable TS which denotes

the ergodic system failure time [2]. The ergodic system failure time is the

time until the next system "failure" conditioned on the sole observation that

the system is now. "working". The system "fails" when less than k2 entities are

operable; otherwise the system is in an acceptable or "working" state. The

survival function for the ergodic system failure time is given by

Pr[T S > T] = lim Pr[N(t)>k 2, t1<t<t1+T N(t1)>k2] (4)

where k2 represents the minimum threshold level for the system.

From the independence of the module inventories, we can rewrite the

survival function for the ergodic system failure time as

M

Pr[TS >]= I Pr[T >] (5)
i=l

where TSi is the random variable for the ergodic failure time of module i.

In [2] we found that the distribution of TSi is very nearly exponential for

reliable modules. Hence we can approximate the survival function of TSi by

Pr[Tsi > TI] exp(-viT) (6)

where E{TSi} = l/vi. We note that Vi is a function of the parameters (i,

i', Ni) for module i. In the appendix we show how to compute vi. Substituting

(6) into (5) we have

M

Pr[T > T] X exp(-T Z vi). (7)
i=l1

Using this approximation for the distribution of TS, we may focus on the

expected system failure time, namely

M
i -1E{Tsl c v (8)

III

-11-

Finally we model the annual system cost CS as the sum of the costs for

the individual modules; that is

M
Cs = Ci (9)

i=l

where Ci, the annual cost of module i, is a function of the parameters (-i' pi'

N.) and should include procurements costs, maintenance and repair costs and

inventory holding costs.

We now state problem (P) using (3), (8), and (9) as

M

(P1) Max AS = A. (10)
i=1

Subject to:

M
-1

(z Vi) > T (11)
i=l

M
Z C. < B (12)

i=l

(his, '. N.) X. i=l,2,...,M (13)
-1 -i 1 1

The set Xi defines the optional choices for the parameters (Ai, .i, Ni)

for each module i. Again we note that Ai, vi, and Ci are each functions of

(Ai, i, Ni). The decision problem posed in (P1) is to choose the optimal

parameter set (pi, i Ni) for each module i. We assume each set Xi is finite

with cardinality Ri; hence we may write

i= {(' i' N.); r=1,2,...,R (14)

where , pi, Nr) is the r element in set Xi.

By taking the logarithm of (10) and inverting (11), we can transform

"Optional" is here used in the sense of the system planner's choices
and is unrelated to mathematical feasibility.

-----̂ ----·--I---3a*iil�·-·ll-rr�-li-ras Ir I---_ _.��_i�___

III

-12-

(P1) into a separable, nonlinear program (P2):

M
(P2) Max log AS = Z log Ai

i=1

Subject to:

M
Z V. < l/T

i=l

M
Z C < B

i=1

(i' Pi' Ni) eXi

Now, by defining for each module i

air

ir

Cir

r r= log A i(i, i N)

r r N
= v i(--, i_' N.),

r r r= C. Ji I' N.) for r=1,2,...,Ri,

we can rewrite (P2) as a zero-one integer program (P3):

(P3) Max log AS
M Ri

= air xir
i=1 r=l r ir

Subject to:

M

i-1

"M

i=1

R i

Z Xir
r=l

Z VirXir
r=l

Ri .

r Cirir
r=l

< 1/T

< B

= 1

= 0,1

(15)

(16)

and

(1.7)

(18)

(19)

(20)

(21)

(22)

(23)

(24) ·

i=1,2,...,M (25)

i=1,2,...,M
r=1,2,...,R i (26)

-13-

In (P3) the decision variables are the zero-one variables {xir}, where x.i

equal to one denotes the choice of the r parameter set, i.e. (Xt, pi' N),

for module i. Constraints (23) and (24) correspond directly to constraints

(16) and (17) in (P2), while the constraint set (25) ensures that exactly

one parameter set is chosen for each module.

Problem (P3) is an integer program with a very large number of zero-one

variables. Rather than attempt an optimal solution to (P3), we propose a

heuristic solution procedure in which we solve the linear programming relaxa-

tion to (P3), which we call problem (P3). That is, we solve (P3) but with

(26) replaced by

0 < x. < 1i=l,2,...,
r=1,2,...,Ri. (27)

If the linear programming solution is all integer, we have the optimal solu-

tion to (P3). Otherwise, we have a fractional solution which we round to

get a solution to (P3). We first note that the optimal solution to the linear

program is always nearly integer with at most two modules having fractional

solutions and with at most four fractional decision variables, independent of

the value of M. This is a onsequence of the fact that a basic feasible

solution to the linear program (P3) has at most M+2 positive decision variables

and that (P3) has M generalized upper bound constraints. Second, as a result

of the first observation, there are at most four possible integer solutions

suggested by the linear program solution. Unfortunately, none of these integer

solutions need be feasible in (P3) in that either constraints (23) or (24)

may be violated. However, we expect the integer solutions to at least be

"nearly feasible ', and since constraints (23) and (24) are typically "soft"

constraints, we expect that the'rounded linear program solutions to be accept-

able solutions to the original problem.

The linear program (P3) may still be a very difficult problem to solve

����1�1�

III

-14-

in that it could conceivably have millions of decision variables and thousands

of constraints. We manage the enormity of this problem in two ways. First,

we restrict the value of M (i.e. number of constraints) by only considering

critical modules for the system, as discussed earlier. Second, we solve the

linear program by means of a column generation procedure [7] so that we need

not explicitly compute all of the decision variables (columns) of the linear

program. This solution procedure is an iterative procedure in which we iterate

between solving a master problem and solving a set of subproblems, one for each

module i. We use the subproblems to generate the columns of (P3) as needed.

The master problem is a partial representation of (P3), in which we have

present only the columns of (P3) that have been previously generated; at each

iteration it is solved as a linear program with M generalized upper bound

constraints. The subproblem for each module i is a discrete optimization

problem with the general form

(SPi) Max {a i -TBci - .1i (28)

Subject to:

ai = log Ai(, p, N) (29)

V vi ii, V, N) - (30)

Acs= CiX, ', N) (31)

GX, j, N)E Xi (32)

where the vector 6 = (61,62,... 6), and where (T n B 6) are the optimal

shadow prices from the most recent solution to the master problem. The column

generation procedure terminates once the optimal objective values for all of

the subproblems are nonpositive; the procedure is guaranteed to terminate

within a finite number of iterations [7].

-15-

The computational effectiveness of the column generation procedure depends

on the ease with which we can solve the subproblems (SPi). For general candi-

date sets Xi, the solution of (SPi) may be quite difficult; indeed, conceivably

we would have to evaluate explicitly each element in the set at each iteration.

However, if the set Xi has some inherent structure, the solution of (SPi) may

be reasonably simple. Such a case occurs when there is an underlying class

of birth-death models for each module. In [2] we examine four possible classes

of birth-death processes for modeling a module's inventory level. As an

example, suppose for each module i there is a basic repair rate and failure

rate, say (i) and -p(i), such that the birth-death process governing the

inventory for module i, has the transition rates

Xij = (Ni-j) Xi) (33)

Vij = M (34)ij = j · (i) (34)

where N is the stockage level for module i. That is, the transition rates

for repair and failure are directly proportional to the number of failed units

and the number of operable units, respectively. The set Xi is now fully speci-

fied by (33) - (34), and by the feasible range of values for Ni. The solution

of (SPi) is then a line search over the possible values for Ni. Unfortunately,

the objective function (28) for such a class of birth-death processes need

not be unimodal in Ni. However, our experience suggests that for realistic

birth-death classes, such as examined in [2] and in the next section, this

function is unimodal over the values for Ni of interest. Consequently, we

treat (.28) as if it were unimodal and hence solve the subproblem (SPi) for

a given birth-death class by a standard line-search technique.

In these instances we have always assumed that the cost function,
CI(, , N), is linear in N.

����_I� � I _I���_�

-16-

A more general instance in which the subproblem (SPi) is readily solvable

occurs when there are a limited number of types for module i. For example,

we may have to choose for module i between an inexpensive, unreliable type

and a more expensive, but more reliable type. A module type would be charac-

terized by its basic repair rate and failure rate, by a functional form, such

as (33) - (34), for defining the transition rates for its birth-death process,

and by its cost function. The solution of (SPi) now entails the choice of

module type, as well as the number of units to stock. As above, for each

type for module i, a line search over the values of N. will determine the

number of units to stock. The solution to (SPi) is then given by choosing

that module type which maximizes the objective function (28).

In the optimal solution to (P3) we interpret the optimal dual value B

as the percentage change in system availability from a unit change in B. To

see this, note that for As(B) being the system availability as a function of

B, we may write for small > 0

log AS (B+E) = log AS(B) + Bc . (35)

After rearrangement, we obtain

AS (B+C) - AS (B) 7TB *
= e -

As(B)

B= CB + o(E) .(36)

A similar interpretation can be given for 7 T.

The optimal dual values are also useful for determining the maximum amount

to pay for a hypothetical perfectly reliable module. For a module that never

fails, we would stock exactly Ni = k 1 units giving an availability Ai of 1

so that ai = log A = 0, and a system failure rate vi of zero. We would opt

for the perfectly reliable item only if its reduced cost, as determined by

the objective function in (SPi), is positive; that is, we require

- BCi - i > 0 (37)

where , 5i are optimal dual values from (P3) and c is the total cost asso-

ciated with stocking the perfectly reliable module. If the cost function ci

is linear in the number of units stocked, then from (37) we find that the

maximum value we would pay for a perfectly reliable unit is -i/kir B.

__ 1- - ------ - -_-___ _ _,1___ ~·__~_~ __~

3. Numerical Examples

Three small examples using Air Force data are examined to illustrate

the potential utility of the proposed approach. For the aircraft program

under study, we first selected, with the aid of the program managers, nine

critical modules. Wethendesignated the aircraft (i.e. entity) to be the

collection of these nine modules, withthe operating system being a collection

of these aircraft. We-should reemphasize that this numerical study is purely

illustrative; we make no claim that these nine modulesare the most appropriate

representation of the aircraft. Indeed we would expect an actual application

of the model to include these modules in addition to up to another fifty

critical modules.

Table 1 gives for each module i the unit cost and both the basic repair

rate X(i) and the basic failure rate (i). For this example we assume that

the cost function Ci(i, i' Ni) is a linear function of Ni, with the unit

cost being the slope of this function. The failure rate assumes that each

aircraft flies a fixed number of hours per day. As mentioned in Section 3,

the inventory process {Ii(t)} for eachmodule is modeled as a finite birth-death

process. If Ni is the number of units stocked for module i and if k is the

desired operating level for the system, then the transition rates for the

birth-death process for module i are

2lj = (Ni - j).X(i)

Bij = min(kl, j)'B(i)

where Xij is the repair rate and pij is the failure rate when Ii j. Here

the repair rate depends directly upon the number of units failed, (Ni-j); this

corresponds to assuming an infinite number of servers at the repair depot.

The failure rate depends upon how many aircraft are flying which is the

I

-19-

smaller of the number of aircraft available to fly (j) and the desired number

of aircraft (kl). Note that although we use this specification for the birth-

death model, we could have used any general class of the birth-death process.

We have programmed our approach in FORTRAN on an interactive PRIME 400

minicomputer at M.I.T. All of the examples were solved within seconds in real

time.

Example 1

For the first example we set the desired operational level (kl) to be

25 aircraft and we drop the constraint on system MTBSF. Hence, the optimiza-

tion model is to maximize system availability subject to a constraint on the

total budget; our intent is to focus on the interaction between the budget

and system availability. Table 2 reports the optimal system availability

achieved over a range of budget values. This table also reports B' the

shadow price on the budget constraint; for instance, for B = 4500 a shadow

price of .0008 reflects the percentage change in system availability from an

additional unit of the budget (i.e. B = 4501). Table 3 gives the detailed

solution when B = 4500. Note how the number of units stocked for each. module

varies; if an equal number of units of eachmodule were stocked, then N. would

equal 31 for each module and system availability would be only 70%, as opposed

to the optimal 88%. Table 3 also gives for each module the value of a perfectly

reliable unit; this value is the maximum amount we would be willing to pay per

unit for amodule which never fails. A final bit of analysis that we can do

with this simple example is to ask whether we have properly defined our set

of critical modules. For instance, suppose there is a.module #10 which we

initially classified as non-critical. Suppose this module has a per unit cost

of 1.0 and that to ensure that this module never causes the system to drop below

��iU�II� _____II__I__________________���

.I

ll

-20-

kl we have set its stockage level N10 to be 50. Now we suggest a marginal

analysis to examine whether our initial classification was appropriate.

Suppose we reduce N10 from 50 to 49, with the consequence that Pr[I10 > k1]

drops from 1.0 to .995. Hence there is a percentage drop in system avail-

ability of about 0.5%, ince system availability is given by I Pr[I i > kl].

But reducing N1 0 by one frees up an amount 1.0 which can be applied to the

budget for the critical-modules. However, if B = 4500, from Table 2 we see

that this additional 1.0 in the budget gives at most a 0.08% increase () in

system availability. Since 0.5% > 0.08% we should keep N10 at 50 and module 10

is properly classified as non-critical. In general we can use the shadow

price TB to determine if non-critical modules should be reclassified as critical.

This procedure for classifying modules can be easily extended to incorporate

the MTBSF constraint.

Example 2

For this example we focus on the interaction between the two measures for

system performance: system availability and system MTBSF. To do this, we

restate (P) as

(P) Min {Total Logistic System Cost}

Subject to:

System Availability > A

Mean Time Between System Failures > T

where A is the minimally-acceptable availability level and T is the minimally-

acceptable system MTBSF. The solution procedure for (P) is nearly identical

Ideally, this implies that Pr[Io1 > k = 1.0. Practically, however, we-

need an operational definition such as PrI 10 > k2] .999.

-21-

to that of (P). For this example we assume that the minimum threshold level

(k2) with respect to which system failures are recorded, and the desired

operational level (k1) are both equal to 25 aircraft. We then solve (P) for

varying sets of (A,T) to examine the solution's sensitivity to these constraints.

Table 4 reports these results. Clearly, the two system measures are closely

correlated in this example. If we increase the constraint for one, we naturally

get an increase in the other measure. However, as seen in Table 4 neither

constraint dominates the other, and it is possible to have solutions with both

constraints binding. We would expect that this interaction would be more

pronounced if k # k2, although we have not examined this case in detail.

Example 3

This example examines the utility of the optimization model for consider-

ing improved types of a particular module. As a base case we take the

solution to (P) from Table 4 with A = .90 and T = 50; Table 5 gives the detailed

stockage levels for this solution. First we consider the impact of improved

types of module 1. The original module 1 has per unit cost 40.0, a basic repair

rate X(i) = 0.16 and a basic failure rate (i) = 0.16. We consider substitutes

for item 1 with lower failure rates, but possibly higher per unit costs. Using

these substitutes we recompute the optimal system configuration and cost, and

report these results in Table 6. This exercise is repeated for module 9 and is

reported in Table 7. From these tables, we get a feel for the cost of a module's

unreliability. Formodule l we see that we have to cut the failure rate in half

before we are even willing to pay 5% more (42.0) for each unit; for module 9 we

would pay a premium of slightly over 10% to cut the failure rate in half.

Overall, for these two modules, there is not a great savings from having more

reliable units, assuming that these new units would be at least as expensive

as the current versions.

___·1___1___�11___�1__��___ -·1.·. _____·11__11�·_11�__lil___�.�_�_ _

-22-

TABLE 1: SPECIFICATIONS FOR MODULES

X (i)
(per day)

0.16

0.27

0.10

0.05

0.05'

0.10

0.11

0.04

0.06

p (i) *
(per-100 flying hours)

0.16

0.11

0.22

0.01

0.12

0.24

0.23

0.15

0.25

Total Cost
for all modules

TABLE 2: OPTIMAL SYSTEM AVAILABILITY FOR RANGE OF BUDGET VALUES

Budget
(B) System Shadow

(-000) Availability Price

0.071

0.203'

0.415

0.618

0.777

0.881

0.945

0.974

0.990

0.996

0.999

Cost
(per unit)

(-000)

40.07

1.97

41. 6

1.85

4.06

6.39

5.63

29.96

13.55

144.0

.0152

.0081

.0050

.0026

.0019

.0008

.0008

.0002

.0001

<.0001

<.0001

*
We assume five flying hours per day per aircraft.

Module

1

2

3

4

5

6

7

8

9

4000

4100

4200

4300

4400

4500

4600

4700

4800

4900

5000

TABLE 3: DETAILED SOLUTION FOR B = 4500

Value for
Perfect Unit

46.8

2.3

52.2

2.1

5.6

8.6

7.4

40.6

19.8

TABLE 4: OPTIMAL SOLUTION TO (P)

A

.80

.80

.85

.85

.90

.90

.90

.95

.95

.T
(days)

20

33

33

50

33

50

100

50

100

System
Cost *

4429

4483

4486

4547

4533

4548

4663

4611

4704

FOR RANGE OF (A,T) VALUES

System **
Availability

22

.85

.90

40

.95

67

108

This column reports optimal system cost.found from (P) assuming right-
hand-side values (A,T).

**
These columns.report actual system availability and system MTBF achieved
in the solution to (P) for given values of (A,T). A "dash" indicates
that the respective constraint was binding in the optimal solution.

Unit
CostModule

1

2

3

4

5

6

7

8.

9

28

29

30

28

34

33

32

33

36

40.07

1.97

41.60

1.85

4.06

6.39

5.63

29.96

13.55

System**
MTBSF

- �------------

-24-

TABLE 5: DETAILED SOLUTION TO (P) WITH A = .90, T = 50.

NModule i
Module

1

2

3

4

-5

6

7

8

9

29

29

31

28

33

34

33

32

36

System Cost = 4548

TABLE 6: IMPACT OF ALTERNATE VERSIONS FOR MODULE 1

X(i)
(per day)

(per 100 flying
(per 100 flying

0.16

0.16
0.16
0.16

0.16
0,16
0. 16

0.16
0.16
0.16

TABLE 7: ACT OF ALTERNATE VERSIONS FOR MODULE 9

x (i)
(per day)

1(i)
(per 100 flying

0.06

0.06
0.06
0.06

0.06
0.06
0.06
0.06

0.06
0.06
0.06

Base Case
(Ni = 29) hours)

Item
Cost

0.16

0.12
0.12
0.12

0.08
0.08
0.'08

0.04
0.04
0,04

System
Cost

4548

4523
4580
4665

4494
4549
4632

4454
4508
4589

40.0

40.0
42.0
45.0

40.0
42.0
45.0

40.0
42.0
45.0

Base Case

(N = 36) hours)

0.24

0.18
0.18
0.18

0.12
0.12
0.12
0.12

0.06
0.06
0.06

Item
Cost

13.6

13.6
14.0
15.0

13.6
14.0
15.0
16.0

13.6
15.0
17.0

System
Cost

4548

4519
4535
4569

4490
4505
4536
4567

4455
.4497
4555

m-m i . . . T

III

-25-

4. Discussion and Extensions

In this paper we have proposed and demonstrated an optimization model

for aiding in the evaluation of logistic system design decisions. We should

first note the systems emphasis of this model, in that the optimization is

concerned with system performance, with system objectives and with system

constraints. Second, we note the tractability of the procedure in that the

optimization requires the iterative solution of a series of small linear

programs; indeed, all of the examples reported in Section 3 were done on an

interactive PRIME 400 minicomputer. Finally, we mention the uses of the

proposed model. As demonstrated with the examples, we can use the model

not only for the original specification of a logistic system, but also for

the evaluation both of changes in the operations of an ongoing system and

of improved versions of individual modules. Furthermore, the model gives

information both to aid in the classification of modules as critical versus

non-critical, and to assess the impact of a module's unreliability.

We need to compare and contrast the approach presented here with alter-

native approaches to designing logistic systems. In particular, we consider

the METRIC model proposed by Sherbrooke [8] and extended by Muckstadt [5].

We focus on this approach, since to various degrees, the Air Force has

implemented METRIC. Demmy and Presutti [1] review the use of METRIC-like

systems by the Air Force for determining spares levels for repairable items.

Nahmias [6] has written a very nice survey of the literature for managing

repairable item inventory systems, and gives both a nice overview to METRIC

and a thorough review of other work in logistic systems.

The basic METRIC model considers a two-echelon system in which indepen-

dent bases (lower echelon) are supported by a repair depot (upper echelon).

This approach consists of solving the following problem:

� Y I�_�

-26-

(M) Min {Total Expected Backorders}

Subject to:

{Total Logistic System Cost < B

where a backorder occurs whenever a module's inventory drops below some speci-

fied level. By applying a Lagrange multiplier to the single budget constraint,

the objective function separates into an unconstrained minimization for each

repairable module. The procedure determines both the desired stockage levels

at the independent bases and the stockage level at the repair depot for each

module. The optimization procedure originally proposed by Sherbrooke is a

marginal allocation scheme.

In comparing METRIC with the approach presented in this paper, METRIC

seems to have two distinct advantages. First, METRIC explicitly models two

types of repair (base and depot) with two corresponding inventories. Our

approach, as illustrated here, has only one type of repair; however, as we

will discuss, the framework is extendable to more complex representations of

repair which we are currently exploring. Second, METRIC needs no assumptions

about the repair time distributions other than stationarity and a finite mean.

In our approach, we seem to be restricted to exponential distributions, and

convolutions of exponentials; we intend to examine the consequences of this

restriction when we model more complex repair time distributions.

There are three possible limitations to METRIC, which the current approach

overcomes. First, METRIC has no system focus, other than through the budget

constraint. In particular there is no accounting of system performance accord-

ing to any measure. Total expected backorders are used as a surrogate for

system performance; it is not at all clear how good a surrogate this is.

Second, expected backordersfor a module is a static measure, like availability,

and does not reflect the dynamics of the system. Our approach incorporates

-- ------- ----·---·- ------- ·------------ --- -- ------ -- ·-··- ····--- ··---·-- ··--·-- ·;----- ··r ---··-- ·-·----- · --- --.- ·---·---·--·-··----·--- -- ···--- ··--- ·-- ·-I- ·1-

-27-

a system MTBSF into the optimization model as a dynamic measure for the system.

Third, METRIC need assume there are an infinite number of servers or infinite

capacity at the repair depot; no such assumption is required here.

There are two additional aspects which distinguish our approach from the

METRIC approach. First, there seems to be a difference in modeling philosophy.

Our approach requires the identification of a small set of critical modules as

representative of the basic entity. We then optimize the stockage levels

for these critical modules, subject to system constraints and system criteria.

Non-critical modules are treated separately-and are assumed to be sufficiently

stocked so that they rarely cause a system failure. On the other hand, the

METRIC approach is set up to handle identically all modules, critical or non-

critical, in a monolithic optimization. Clearly, though, METRIC could be

redefined to identify distinct classes of modules, and treat them separately.

The second aspect concerns the computational effort required by each approach.

It is not clear how to make a meaningful comparison of the required computational

effort since the two approaches solve different problems. However, we note

that the basic component of our approach is the solution of a well-structured

linear program, whereas the METRIC approach ultimately requires a multidimensional '

search over a nonlinear surface.

An important extension to the METRIC model is the LMI procurement model

[4]. This model makes the same assumptions as the METRIC model but with a

different criterion: the LMI model maximizes the expected number of operable

aircraft, instead of minimizing expected backorders. Hence, the LMI model J

similar to our approach in that it works with a system criterion. One

difference, though , is that the LMI model assumes no cannibalism, whereas

we have assumed complete cannibalism. Since the LMI model is based on the

METRIC framework, it has the same advantages and disadvantages as METRIC

when compared with our approach.

^�_���_ I�·I____

-28-

The work presented in this paper is by no means complete. As we have

mentioned, there are several areas in need of more investigation. In particular,

we need to better understand the impact of system MTBSF, as related to system

availability and module specifications, within the optimization. We also need

a better understanding, both theoretically and operationally, of how to cate-

gorize modules. Finally, we intend to extend the current model to more realistic

representations of the repair process; this will give not only a broader class

of models, but also the capability to explore the robustness of the simple

birth-death model relative to the more complex representations. In particular,

we note that the approach is extendable to Markovian models for each module's

inventory that are more complex than the birth-death model. For instance,

we might model the repair time distribution as an Erlang random variable.

The only change in the solution procedure would occur with the solution of

the subproblems (SPi). The subproblems could still be solved by a line search

over the values for Ni, but now the evaluation of the functions for a and v.

is more complex. Similarly we could allow for two types of exponential repair,

say a "fast" repair at the base and a "slow" repair at a distant depot, depend-

ing upon the severity of a module failure. In this instance, we would model

the module's inventory as a two-dimensional birth-death process. Again, the

basic solution procedure is valid, but the solution of the subproblems will

be more involved.

-29-

References

1. W. S. Demmy and V. J. Presutti, "Multi-Echelon Inventory Theory in the
Air Force Logistics Command", Working Paper, 1979.

2. S. C. Graves and J. Keilson, "A Methodology for Studying the Dynamics
of Extended Logistic Systems", Naval Research Logistics Quarterly,
Vol. 26, No. 2, June 1979.

3. J. Keilson, "A Review of Transient Behavior in Regular Diffusion and
Birth-Death Processes: Part II", Journal of Applied Probability, Vol. 2,
1965, pp. 405-428.

4. LMI Task 72-3, Measurements of Military Essentiality, Logistics Management
Institute, 4701 Sangamore Road, Washington, D.C. 20016, 78 pages.

5. J. A. Muckstadt, "A Model for a Multi-Item, Multi-Echelon, Multi-
Indenture Inventory System", Management Science, Vol. 20, 1973,
pp. 472-481.

6. S. Nahmias, "Managing Repairable Item Inventory Systems: A Review",
Working Paper, 1979.

7. J. F. Shapiro, Mathematical Programming: Structures and Algorithms, John
Wiley & Sons, New York, 1979, pp. 200-215.

8. C. C. Sherbrooke, "METRIC: A Multi-Echelon Technique for Recoverable
Item Control", Operations Research, Vol. 16, 1968, pp. 122-141.

�·�_II������ ���___�� ___�_11�_�_�_11___________�I_·��__� __

-30-

Appendix: Computation of the Expected Ergodic Failure Time

Consider a birth-death process I(t) defined on the state space

S = {0,1,...,N} with transition rates Xj, j=O,l,...,N-l, for going from

state j to state j+l, and with transition rates pj, j=1,2,...,N, for going

from state j to state j-l. Suppose we split the state space S into a good

set G = {k,k+l,...,N} and a bad set B = S-G = {O,l,...,k-l}, such that the

system is in a working state only if the system is in set G; otherwise the

system is in set B, and the system has failed.. Suppose that all we know

about the system is that it is now working, and has been working for some

time; then we define the ergodic failure time as the first passage time from

set G to set B. In this appendix, we indicate how the mean ergodic failure

time is computed; this derivation was originally given in [3].

Define Tij to be the first passage time from state i to state j and let

TS be the ergodic failure time for the system. If we denote the expected

passage times by Tij and TS, then we have that

N N

TS =(e * eT ,k- 1 (Al)
J=k j=k ,k-

where e is the ergodic probability for being in state j. For j > k, the

expected passage time Tj ,k-1 can be expressed as

Tj,k-l = j,j-l + Tj-l,j-2 Tk,k-1 (A2)

By substituting (A2) into (Al) and simplifying, we obtain

NN N

T = (e) · Ti Zk e.) (A3)
S j-k i= k i,k- j=i
N

By defining Ei = e., we rewrite (A3) as

1 -1 N

Ts = (Ek) T ii1Ei (A4)
i=k ii-l

-31-

To use (A4) we need be able to compute both Ei and Ti,i_1 for i=k,...,N.

The computation of Ei is immediate from the standard computation of the

ergodic probabilities for a birth-death process. In the following we show

how also to compute T ii1 from the ergodic probabilities.

Define aj()-to be the Laplace transform for the probability density

function for T jj It is easy to show for s > 0 that

*.(s) =s+Xjj =
+"s aj (S)j+ (S)A5)(S) s+X +P s+X +P j j+j

and hence

a.(s) (A6)
3 s + ij + .j - Xjaj+l(S)

From the fact that the expected passage time Tjj d (s) we find

that

T (1 + jT+, j) (A7)

where TN+1,N - 0. By multiplying each side of (A7) by ej, and using the

fact that jej = Pj+lej+l, we find

jejTj j-_1 - j+lej+l Tj+l,j = e. . (A8)

By summing (A8) for j=i,i+l,...,N, we obtain

'Pi-iTi,i-l = Ei ()

Now if we substitute (A9) into (A4) we have

T =. Ei (AlO)
iS k 1iei

��_�1_� ___1_11__��________�___

J

