
A SYSTEMATIC APPROACH TO TIE

DESIGN OF COMPLEX SYSTEMS:

APPLICATION TO

DBMS DESIGN AND EVALUATION.

R. C. Andreu
S. E. Madnick

March, 1977

REPORT CISR 32

Sloan WP 920-77

Center for Information Systems Research
Alfred P. Sloan School of Management
Massachusetts Institute of Technology

50 Memorial Drive
Cambridge, Massachusetts, 02139

U �m�_l��__· __�_1__111_1_11_11^___1111_11�.1_1_�^_._

-2-

A SYSTEMATIC APPROACH TO THE DESIGN OF COMPLEX SYSTEMS:

APPLICATION TO DBMS DESIGN AND EVALUATION.

R. C. Andreu

S. E. Madnick

ABSTRACT

Software systems produced to support complex applications
are often found to be costly, unreliable, difficult to repair
or modify, and not particularly responsive to user
requirements. Such problems, although detected in latter phases
of the system development process, reflect the lack of an
appropriate methodology for earlier phases. The need for
structuring these phases around a framework consistent with the
system requirements suggests that the traditional "requirements
analysis" development phase could be extended to infer a system
structure that can be used to guide the design process.
Basically, we propose to investigate the possibility of
isolating groups of requirements whose elements are strongly
interdependent, and infer, from them, design subproblems, thus
decomposing the design of the overall system into those of more
manageable subsystems. The emphasis is on a methodology to
identify such subsystems; in the past, this activity has only
been approached in an ad-hoc manner. Our proposed structuring
framework can also be used as a basis for constructing system
evaluation models.

This report describes some of the current thoughts on a new
on-going research project. This report has been prepared
for purposes of internal discussion and will be superseded
by a more complete report in the near future. This copy is
being made available as a working paper with the understanding
that it will not be cited or reproduced without the permission
of the authors.

_1__�·_ ��-s�--·1�-_-_�--�11�-_I_-

-3-

A SYSTEMATIC APPROACH TO THE DESIGN OF COMPLEX SYSTEMS:

APPLICATION TO DBMS DESIGN AND EVALUATION.

1.- Overview.

The fact that software systems produced to support complex

applications are typically found to be costly, unreliable,

difficult to repair or modify, and not particularly responsive

to user requirements has triggered increasing concern about

what can be done to avoid such inconveniences. The purpose of

this paper is to suggest an approach to complex software

systems design explicitly cognizant of these problems, in an

effort to deal with them effectively.

It is our contention that these problems, typically

detected in latter phases of the system development process,

result from more fundamental flaws at earlier phases, and that

there is a need for a strategy aimed at structuring and

organizing design activities in a well defined way from the

start.

Basically, we suggest that the design of a complex system

in general should be organized in a technology independent

framework (so as to avoid technology biases that often "force

the problem to fit the solution"), in whose context the design

decisions can be conveniently conceptualized. We will argue

that this framework should allow the designer to make explicit

his knowledge about the system of interest, in such a way that

the trade - offs among both system requirements and alternative

-4-

implementation techniques can be easily identified and

resolved. In the realm of complex systems, this framework

should also permit the "decomposition" of the global design

problem --often so large that it becomes intractable-- into

more tractable subproblems of moderate size. This decomposition

idea results in a hierarchically structured framework.

The main thrust of this paper is to emphasize the process

of constructing such a framework in a systematic way. As we

will see, the idea of decomposing a complex system so as to

simplify its design is not new and has been used in the past.

However, since the decompositions employed have been either

intuitively generated or implied by specific implementation

techniques chosen a priori, the resulting decomposition is

often difficult to justify and not always appropriate. In

contrast, we will focus on a methodology to derive a system

framework that facilitates viewing it as a collection of

subsystems whose designs can be approached as independently as

possible of one another.

The methodology that we propose to accomplish this is

centered around the concept of design interdependencies among

system requirements. Its application requires specifying a set

of system requirements (stating how it is to behave) that is

then structured by assessing interdependencies between pairs of

requirements. These interdependencies are meant to make

explicit design trade - offs that could otherwise be

overlooked, because there are so many of them. That set can

then be decomposed into subsets which point out groups of

III

-5-

requirements so interdependent that it makes sense to take care

of them at the same time in a "design subproblem". This

decomposition activity can be performed by way of solving a

graph decomposition problem. The resulting design subproblems"

effectively define a collection of subsystems, organized as

dictated by the interdependencies among requirements belonging

to different subsets, thus pointing out how the several

subsystems' designs should be coordinated in the design of the

complete system.

We also propose to explore the possibility of constructing

a performance evaluation model for each subsystem, then to be

combined into a performance evaluation model for the entire

system.

For concreteness and practical reasons, we propose to

investigate the appropriateness of this strategy for a specific

case. Since an increasing number of data processing

applications require the manipulation (i.e., storage,

retrieval, processing) of large amounts of related data items,

and Data Base Management Systems (DBMSs) have evolved as a

response to such requirements, we have chosen DBMSs as an

instance of complex software systems characterized by many of

the inconveniences outlined above.

Although several DBMSs have been developed and effectively

used in recent years, thus generating alternative approaches to

system organization and identifying a number of implementation

techniques, those DBMSs have, by and large, resulted from ad -

hoc solutions to specific data manipulation problems. As is the

-6-

case with other software systems, little attention has been

paid to the identification of a systematic approach to DBMS

design in general.

We believe that it is precisely tle lack of such an

approach what is responsible for many of the typical drawbacks

found in existing DBMSs. In particular:

- There is no agreed upon framework in whose context thle

design decisions can be coordinated.

- System adaptiveness to changes in operational needs is

made very difficult and time consuming by the fact that such

changes often impact the entire system.

- The incorporation of new, potentially appropriate

technology (both hardware and software technology) into an

existing system is cumbersome, because there is no systematic

way of analyzing how that new technology would affect thle

system operation if adopted.

- System performance evaluation may require an enormous

model to represent the entire system, so that problems

regarding adequate modeling methodology often arise.

In the latter sections of this paper we exemplify how the

strategy in this proposal can contribute to easing these

problems.

The paper is organized as follows:

Section 2 analyzes the complex system design problem from

a general standpoint and attempts to identify its roots. The

need for a simplifying scheme is discussed and the

decomposition idea motivated. A set of properties that a system

III

-7-

decomposition strategy should possess is then introduced, and

the advantages that are likely to result from this strategy are

outlined.

Section 3 is a brief literature review showing that the

decomposition characteristics motivated in section 2 have in

fact been explored in the past, but never concurrently.

Section 4 is intended to introduce a proposed methodology

for system decomposition whose output is to be a system

framework in which the design process can be structured. It

gives rise to several research activities that should be

undertaken in order to make that methodology operational.

The remaining sections are devoted to exemplify how the

proposed methodology can be applied to the DBMS case:

Section 5 contains background information about the nature

of DBMSs, presents a series of typical DBMS drawbacks that

motivate the need for a better design strategy, and describes

an example in which the methodology is actually applied,

resulting in a DBMS framework useful for design.

Section 6, finally, discusses how design activities can be

organized in the context of this framework, and illustrates a

possible coordination of design subproblems.

-8-

2.- The need for a design framework.

Software systems produced to support complex applications

are often found to be costly, unreliable, difficult to repair

or modify, and not particularly responsive to user

requirements. These problems have been explicitly recognized in

recent years. Software development costs are on the increase,

and frequently there are additional costs derived from software

development delays. As pointed out in [Brooks 75], increasing

manpower to solve these problems is not always appropriate, and

often it is even counterproductive.

Focussing on the software development process, we believe

that those problems can be alleviated if this process is

organized around a meaningful framework, in whose context the

design activities can be coordinated from the early phases on.

Our contention is that problems appearing during later phases

in that process (e.g., implementation or maintenance) are often

due to more fundamental flaws at earlier phases, particularly

requirements analysis and the so called "preliminary design".

In this section we examine the need for such a framework,

make an attempt to identify the properties it should possess,

and discuss how it can help to avoid the problems mentioned

above.

-9-

2.1.- The complex system design problem.

From a general standpoint, the process of system design is

concerned with meeting a series of system requirements (i.e.,

specifications stating how the system is supposed to behave),

by means of appropriately combining available technology. This

implies resolving the trade - offs that exist among system

requirements (e.g., a low priority requirement may be sacrified

in order to meet a higher priority one to a satisfactory

extent), as well as those among alternative implementation

techniques (i.e., alternative technologies; for example, a

given storage device can provide such a quick access that the

software needed to achieve the desired response time can be

simplified --but using such a device can mean higher cost).

When the system under consideration is not complex

(meaning that there are not too many requirements, and only a

few, well defined technology alternatives for its

implementation), the associated design problem is of moderate

size, so that formulating and solving it in its entirety, at

once, may be possible.

When system complexity increases, however, such a global

design approach is no longer appropriate. System requirements

and alternative implementation techniques become very numerous,

and, consequently, trade - offs among them are difficult to

formulate and consider in their entirety. In a sense, the

designer is faced with a cognitive, or perception, problem: it

is very hard to keep all relationships or trade - offs among

-10-

design variables in mind, at once, in order to conceptualize

the structural characteristics of the design problem at hand.

Some kind of "problem formulation framework" is needed to

explicitly lay out the designer's perception of the problem. In

addition, a "solving procedure" is also needed because the

problem can be so large that available "computational"

techniques may prove to be insufficient. As an analogy, the

situation is not dissimilar from that arising with large scale

mathematical programming problems: formulating them in an

optimization framework is an important step, but the

limitations of available computing facilities often require

having to "be clever" about the solving procedures, for a

straightforward application of traditional techniques may

result in a hopelessly time consuming process. Exploiting what

is often called the "problem structure" results in a series of

decomposition techniques that improve the efficiency of

available computational facilities considerably. This analogy

points out an important feature with which we will be concerned

later, namely, the fact that effective solving procedures have

been devised by means of exploiting the problem structure, as

opposed to adapting traditional solutions to the problem at

hand.

At the root of the complex system design problem, thus,

there is a need for simplification, in the form of a

formulation framework and a solving procedure. Problem

simplification in this sense has been employed, explicitly or

implicitly, in the design of any complex system, for otherwise

-11-

it couldn't possibly have been designed. The issue becomes more

one of identifying a satisfactory simplification scheme. Little

attention has been paid to the explicit consideration of this

issue: it is often taken care of in an ad - hoc fashion. For

instance, it is not uncommon to take a given, predefined

implementation technique for granted and organize the design

around it, so that, to some extent, the problem is forced to

fit the solution. A more systematic approach is needed to avoid

this kind of unjustified, ad - hoc design strategy.

III

2.2.- A simplification scheme: The decomposition concept.

Since, in order to identify a "formulation framework", we

need to focus on a simplification approach allowing the

exploitation of any special structure found in the design

problem, the decomposition concept comes to mind. Briefly

stated, this concept involves the following idea: Is there a

way of breaking the system of interesz down into parts or

subsystems such that they can be attacked almost independently

of one another for design purposes and which, once designed,

can be combined in a well defined manner to form the overall

system? In other words, is there a way of decomposing the

design problem into smaller, more tractable subproblems whose

solutions can then be put back together to generate the

solution to the overall problem? This decomposition idea should

be carefully considered in its own right, for not any arbitrary

system break - down will work. In particular, the

decomposition process should end up with a framework consisting

of a collection of subsystems such that they:

(a) Are "loosely coupled" among themselves,

(b) Are internally coherent,

(c) Display the intrinsic overall system structure as

perceived by the designer, and

(d) Are independent of any specific technology or

implementation technique.

Condition (a) must be met if we wish to be able of

attacking the design of each subsystem as independently as

possible of others. Condition (b) is important in order to

obtain "self contained" design problems for each subsystem.

Condition (c) is needed to achieve meaningful coordination

among the designs of the different subsystems. Condition (d),

finally, is central to avoid technology biases, to avoid

overlooking potentially relevant technologies, and to be

capable of considering the incorporation of new technologies.

Section 4 focuses on this decomposition concept and

proposes a methodology cognizant of the conditions just

outlined. These conditions will determine not only the "shape"

of such a methodology, but also the basic rules for its

application; in particular, condition (d) is determinant of the

point in time, in the design process, in which it should be

applied -- in sharp contrast with traditional approaches.

A decomposition strategy usually results in a hierarchical

framework for the system under consideration, derived from the

way in which system parts are combined to form the overall

system (Fig. 1). It is not clear whether hierarchical structure

is intrinsic to most complex systems or it is just a convenient

scheme that helps our cognitive abilities in order to

understand them better; this philosophical question is not of

concern to us here. More pragmatically, it is interesting to

note that hierarchical structure has been employed effectively

to cope with the complexity problem in a variety of settings

(see [Pattee 73], [Simon 67], [Mesarovic et al. 70]); more

importantly, it has proven effective with several software

systems (see [Madnick and Alsop 69], [Dijkstra 68], [Madnick

-14-

D

B

D

B C

Fig. 1

and Donovan 74], [Madnick 76]). However, the nature of the

hierarchy has not always been explicitly recognized ([Parnas

74]).-

A

-

I

"I1

I/1r1-

-15-

2.3.- Advantages of a hierarchical decomposition scheme.

Organizing the software system development process around

a hierarchical framework with the characteristics discussed

above can be an effective strategy to cope with the type of

problems noted in section 2. In particular, software

development costs can be more effectively controlled if good

coordination is achieved among the design decisions that must

be made, so that they can be approached as independently of one

another as possible and only the truly critical

interdependencies considered in the overall design; the

difficulties found in system repair or modification can be

decreased if the impact of such activities are confined to well

defined parts of the system; being more responsive to user

requirements is facilitated if the system can be made really

compatible with others that might meet specific requirements

well. These ideas are discussed in some detail below.

(1) The goal of achieving good coordination among different

design decisions is facilitated when such a framework is

available. Currently, achieving this goal is made difficult by

the fact that although several in - depth analyses of, say,

alternative implementation techniques may exist (see Cardenas

75], [Lum et al. 71], [Rothnie 72], [Severance 75], for

examples in the DBMS field), they tend to focus only on parts

of the design problem, so that some way of putting them

together in the context of the overall design is needed. Of

course, a possible strategy to do so is to analyze all the

-16-

relevant design decisions at the same time in a unique

analysis. Unfortunately, this is not practical with complex

systems, both for the reasons discussed above and because

available analysis methodologies often pose constraints to the

scope of the problems that can be attacked: if an analytical

method is used, a single model including all the relevant

system "parameters" is likely to be mathematically intractable

(see [Sekino 72]); if a simulation approach is taken,

attempting to simulate operations with very different time

scales becomes prohibitively expensive (see [Blum 661).

Alternatively, a hierarchy of models has proven to be a sound

solution to this problem ([Sekino 72], [Hax 75]). Typically,

each hierarchy level is analyzed separately and the different

analyses coordinated by using the results of one of them as

input to the next one down the hierarchy. A hierarchical

framework should allow the coordination of different design

subproblems in a similar fashion.

(2) If the selection of the framework's hierarchical levels

allows the isolation of design and operating problems into

specific subsystems, their impact in the entire system will be

avoided: The affected subsystems can be identified, so that

only those need to be reconsidered in order to respond to

shifts in operational needs and/or study the impact of adopting

new technology. Since the strategy proposed in section 4 below

is centered around decomposing a set of system requirements

which reflects the operational and design needs, we have

reasons to believe that it will generate a framework with those

III

-17-

properties.

(3) Designing systems compatible with one another is usually

a matter of concern, too. When systems are organized as a

hierarchical arrangement of subsystems, a "family" of

compatible systems can be defined (Parnas 76], [Madnick

76-bl). Different "members" of such a family are easily

conceptualized: While the basic structure is the same for all

of them (i.e., that dictated by the framework), the specific

subsystems that are combined to form a particular member can

vary from one member to another. In general, they may vary in

terms of(i) functionality, (ii) performance, or (iii)

existence. In the DBMS field, for example, a number of

alternative schemes can be employed to organize the physical

files' layout on a storage device (sequential, indexed, hashed,

etc.). For any given organization (e.g., indexed), there are a

variety of possible algorithms (e.g., ISAM, B-trees) that may

be used and which vary in terms of performance (e.g., execution

speed, amount of extra storage required, etc.). Also, it may

be the case that particular subsystems are not needed at all:

the corresponding family member is then made smaller and

simpler.

-18-

3.- Previous related work.

The system decomposition concept sketched above is not new

and has, in fact, been used rather extensively in software

engineering (see, for instance, [Myers 75]). The modularity'

characteristic of most large scale software systems is really a

version of the same concept at the implementation stage.

However, the decomposition strategies employed have failed, in

general, to formally consider the conditions outlined in

section 2.2.

Myers (Myers 751) has been cognizant of these conditions,

but only at the implementation stage: he has suggested the

terms "module strength" and "module coupling" to characterize,

respectively, conditions (b) and (a), and has proposed

qualitative measures to evaluate them while devising software

modules. Delaying the explicit consideration of those two

conditions until the system implementation phase, however,

leaves condition (d) unsatisfied, as the extent to which the

former are met depends strongly upon the kind of technology

employed: indeed, the techniques suggested by Myers to achieve

"loose coupling" and internal module strength" take the form

of implementation strategies.

Condition (d), technology independence, has been

emphasized in the early phases of system design by means of

focusing on system requirements, postponing the consideration

of any implementation techniques. This is consistent with our

goals, but it has been employed only to ensure that the set of

-19-

requirements specified for the system at hand is "complete"

(i.e., to avoid overlooking requirements) and "consistent"

(i.e., to detect apparent contradictions in the requirements'

set): The so called "Problem statement languages" (see

(Teichroew 70]) are used precisely for these purposes. Our view

is that something else should be done with such sets of

requirements, namely, inferring from them a system structure

upon which a system decomposition can be identified.

Decomposition for design has also been employed in the

past. It is not uncommon to describe the system under analysis

as a collection of different parts. Such parts, however, are

ususally identified by way of superimposing a preconceived

structure on the system. Typically, this structure has to do

with the physical organization of the system (e.g., programs,

files, etc. -- see [Rhodes 72]--), or with existing

implementation techniques. No attempt is made to justify the

superimposed structure in any way. Consequently, the result is

often an "artificial" system decomposition, where the intrinsic

system structure is distorted to match that of the predefined,

arbitrary and superimposed structure.

Arranging and coordinating design decisions or performance

analyses in a hierarchical framework has also been suggested

(see [Nunamaker 71], [Sekino 72]), but, again, the hierarchy

employed has been arbitrarely chosen. The same basic idea has

been used in the design of non - software systems (see [Hax

75], [Gabbay 75]), the hierarchical framework being identified

more or less intuitively, so as to reflect traditional" or

-20-

"natural" system structure. Such approaches are not

particularly well suited to our problem: traditional software

systems' structure has the drawback of being typically biased

around specific implementation techniques, while "natural"

system structure, that can be a strong guideline for well

established systems (e.g., production planning systems) is

weaker in our case because most software systems are so new

that they have not generated a "classical" system organization

of that nature yet.

It is apparent, thus, that several of the conditions for

decomposition set forth in section 2.2 above have been employed

at some point in the past. They have not been used

concurrently, though, but rather on a one at a time basis. This

probably reflects a traditional view of the software system

development process, in which three main steps are identified

([Young and Kent 74]): "analysis', "programming" and "coding".

Analysis is concerned with determining "what is to be done"

(i.e., identifying requirements); programming is concerned with

"how to do it" (i.e., algorithm design, thus bringing

technology into play); coding with "translating the programming

output into machine language". The direct passage from analysis

to programming in the above sense causes implementation

techniques to be brought into play prior to making any attempt

to infer, at the analysis stage, the intrinsic structure of the

system at hand: the result is that the eventual system

structure is determined to a large extent by the implementation

techniques employed.

III

-21-

In a sense, the strategy proposed in section 4 suggests

postponing the programming step -- as defined above-- by

introducing an intermediate one aimed at inferring system

structure from the set of system requirements; i.e., at

explicitly organizing the design problem in a form consistent

with the designer's perception of the system requirements and

trade - offs.

��)��ill_��_�� __

-22-

4.- A strategy for system decomposition.

As discussed in section 2.2, our goal is to devise a

methodology for system decomposition meeting the conditions

specified there.

Condition (d), technology independence, calls for

postponing any consideration regarding possible implementation

techniques, in order to avoid technology biases. A way of

attaining this goal is to restrict that methodology to the

exclusive consideration of system requirements (i.e.,

specifications stating how the system is to behave, but

independently of how this behavior is to be achieved).

Alexander ([Alexander 64]) has proposed an approach whose

main emphasis is consistent with that goal. The idea is to

work with a set of system requirements, which is given

structure by means of assessing interdependencies among its

elements. These interdependencies aim at reflecting the

designer's perception of requirements' trade - offs, in the

following sense: two requirements are said to be related when

the designer can think of any way in which (i) the two can be

met simultaneously, or (ii) doing something to meet one is

likely to jeopardize the extent to which the other can be met,

or vice versa. More intuitively, such interdependencies make

explicit the designer's "view" of the system of interest: they

show what requirements ought to be considered at the same time

for design purposes, if we are to avoid unbalanced designs.

Once this kind of structure is given to the requirements'

set, a system framework can be derived by decomposing that set

into subsets whose elements are strongly related within a given

subset, while the interdependencies among the elements of

different subsets are kept to a minimum, thus satisfying

conditions (b) and (a) of section 2.2: The requirements in each

one of these subsets will define a subsystem; the

interdependencies among subsets will point out how these

subsystems interact in order to perform the desired system

functions.

Partitioning the requirements' set in this way can be

formulated as a graph decomposition problem, where nodes

correspond to requirements and links to interdependencies In

the graph decomposition problem, conditions (a) and (b) of

section 2.2 can be explicitly formalized, so that the resulting

subgraphs(corresponding to subsets of requirements) are both

loosely coupled and internally coherent. If no explicit

assumptions regarding technology are made while establishing

requirements nor while assessing interdependencies, condition

(d) will also be met. Meeting condition (c) becomes a matter

of interpreting the eventual partition (i.e., of giving

intuitive meaning to each of the subsets). This may imply a

reformulation of the initial graph in the case that the

obtained partition points out any inconsistency which can be

corrected: in this sense, the process will become iterative in

nature and will allow interaction on the part of the designer,

so that his intuition and/or previous experience can play an

important role.

-24-

4.1.- Research activities.

In order to make operational the decomposition strategy

outlined above, several research activities must be undertaken:

(1) Identify a set of technology independent requirements

that faithfully represent what is expected from the system

under study.

(2) Investigate a systematic way of assessing

interdependencies among pairs of requirements in that set.

(3) Formulate the decomposition problem as a graph

decomposition one. Identify appropriate graph decomposition

techniques allowing the explicit formalization of conditions

(a) and (b) described insection 2.2, with emphasis on robust'

techniques that avoid drastically different decompositions when

applied to slightly different graphs.

(4) Solve the graph decomposition problem. Analyze the

solution in the context of the original requirements' set;

i.e., give an interpretation to the obtained subgraphs, whose

nodes will represent subsets of requirements defining

subsystems and associated design subproblems. The output of

this activity will be the required system framework.

(5) Analyze the design of each subsystem identified in (4)

and investigate solving procedures for the associated design

subproblems; study the coordination of these subproblems in the

context of the overall framework.

An additional step may be taken or at least explored:

(6) Analyze each subsystem from a performance evaluation

III

-25-

viewpoint. Propose models for each of them and study their

combination into a global performance evaluation model.

These activities are discussed in more detail below.

4.1.1.- Set of DBMS requirements.

The decomposition methodology must be robust regarding

changes in the basic requirements' set and interdependencies.

Thus, it s not necessary, at the outset, to define a unique

set of requirements: different sets may be decomposed and the

results compared in order to draw conclusions regarding both

the "best" (i.e., complete and consistent) set and the most

appropriate decomposition technique.

For a particular system, sets of requirements can be found

in the literature. These can be taken as a starting point for

our purposes.

4.1.2.- Interdependencies' assessment.

The interdependencies' assessment activity, as originally

proposed by Alexander, was to be a purely subjective one, on

the designer's part. We plan to devote a considerable amount of

effort to identifying a less subjective, more structured

assessment procedure. One possibility is to view requirements

as design specifications involving a number of system

"attributes" or "characteristics" (for example, "storage cost"

and "processing cost" could be attributes, while the

�_��_�__

-26-

requirement "minimize system cost" would involve those two

attributes, and possibly some others): a measure of the

interdependency between two requirements can then be put in

terms of the number of common attributes. This would represent

a significant improvement over the approach proposed by

Alexander, on two counts: (i) the assessment process is more

structured, and (ii) different interdepenc-ncies can have

different importance, i.e., different links can have different

"strength" in the graph formulation. Alexander's graph link

structure was such that all links had the same strength, which

is not realistic.

4.1.3.- Graph decomposition techniques.

The graph decomposition technique eventually used must

allow us to explicitly formalize conditions (a) and (b) of

section 2.2. Alexander proposed one such decomposition

technique; however, it requires making a series of assumptions

regarding the basic nature of the graph. It is not always easy

to show that a given graph possesses the properties implied by

these assumptions. Furthermore, the technique is only

appropriate for graphs with one type of links (i.e., all links

must have the same strength). We plan to work on the

identification of a more general decomposition technique that

can be applied to graphs with more than one link strength and

which doesn't require making such strong assumptions.

Note that although we may have an intuitive feeling for

-27-

what conditions (a) and (b) of section 2.2 mean in the context

of a graph (for example, the graph of Fig. 2-a should probably

be partitioned as indicated in Fig. 2-b, assuming that all the

Fig. 2-a Fig. 2-b

links have the same strength), intuition is not enough when the

graph is more complicated, as it will be exemplified in section

5.3.3.

4.1.4.- Identification of a DBMS framework for design purposes.

Once a graph decomposition technique of the

characteristics suggested above is available, its application

to a representative set of system requirements will result in a

decomposition of that set into subsets that will define a

system framework: The identified subsets will specify the main

components of the system under analysis, while the

relationships among them (in terms of links joining the

subgraphs) will provide insight as to how the different

subsystems interact. It is apparent that this activity, which

is responsible for an intuitive interpretation" of the

1_1 �11^��11�11�__11

-28-

decomposition obtained, may involve interaction with previous

ones, particularly with those in 4.1.1 and 4.1.2: The partition

can point out inconsistencies in the initial requirements' set

that may have to be corrected, so that the process (activities

(1), (2) and (4) of section 4.1) will be repeated.

4.1.5.- Design subproblems; definition and coordination.

The overall design problem can at this point be analyzed

in the context of the framework. The design of each subsystem

will generate a design subproblem. These subproblems should be

analyzed, and solving procedures investigated and coordinated

as dictated by the framework. Interaction with preceding

activities may also be required: it is conceivable that the

available analysis techniques can suggest minor modifications

on the framework, in order to facilitate their use.

4.1.6.- Performance evaluation.

System performance evaluation can conceivably be

approached also in the context of the framework identified as

discussed above. The idea is to investigate the possibility of

coordinating performance evaluation models for the different

subsystems in order to obtain an overall performance evaluation

model. The outcome would be a hierarchy of models, each

focusing on a specific subsystem. This has the advantage that

the most appropriate modeling technique can be chosen for each

-29-

subsystem (e.g., simulation can be very convenient for some of

them, while an analytical approach can be more adequate for

others). For reasons similar to those in the preceding point,

this activity can also involve interactions with the preceding

ones.

* * *

It is the presence of interactions among these activities

what makes our approach iterative and interactive on the

designer's part. The basic nature of these interactions among

research activities is summarized in Fig. 3.

-30-

Fig. 3

. Decomposition for design

- Assessment methodology

- Graph decomposition techniques

. DBMS framework

- Apply methodology

- Hierarchical framework

. Analysis & Evaluation

- Models for subsystem

design (evaluation)

- Coordination in
context of framework

J

r

5.- The DBMS case.

We now illustrate how the system decomposition strategy

proposed above can be applied to a specific case. Since Data

Base Management Systems (DBMSs) are currently becoming

increasingly important for most data processing applications,

we choose them as a representative example of complex systems

for which such a strategy can be very beneficial. Illustrative

in nature, the discussion below does not pretend to be a

definitive analysis; rather, its purpose is merely to show that

the proposed approach is feasible and very promising.

5.1.- The nature of DBMSs.

To bring the subject into focuss, we devote this section

to the discussion of the basic nature of DBMSs.

A DBMS can be defined as the software facility that plays

the role of intermediary between a computer system and its

users, with the goal of providing convenient and efficient data

manipulation capabilities. The situation is schematically

depicted in Fig. 4.

The term "computer system", here, is intended to mean the

combination of hardware and basic software (such as Operating

Systems) typically found in a computer installation. "Users"

are people who use the computer system only as a tool in their

problem solving activities; in particular, they are not

interested in the specific techniques required in order to make

-31-

- m

-32-

USER (S)

I ,.

tt)
OE .

Fig. 4

III

-33-

the computer system perform the operations they need. Yet,

they are concerned about efficiency (e.g., obtaining results

within a reasonable time interval). In this sense, the words

"convenient" and "efficient" in the definition above are both

relevant. Although Fig. 4 depicts clear separations between

the DBMS and either users or the computer system, it should be

understood that such boundaries are a function of the specific

users, whose degree of sophistication varies across

applications, as well as of the capabilities of the specific

computer system, different Operating Systems may be available,

for instance.

For concreteness, we present a simple example. Assume

that a bank operates a computer system where information about

accounts and clients is stored as follows: Accounts'

information (e.g., account number, type, balance) is stored in

one file while clients' information (client name, address,

associated accounts' numbers) is stored in a separate file

(e.g., as shown in Fig. 5).

If a DBMS is not available, if a user wanted to determine

the balance in, say, John Doe's savings account, it would be

necessary to interact directly with the computer system.

However, this may not be particularly convenient. For example,

he may need to write a program that would (see Fig. 5): (a)

search the clients' file for the client of interest, (b)

retrieve te associated accounts' numbers, (c) search the

accounts' file for these accounts, (d) select the savings

account, and (e) retrieve the associated balance. This implies

-34-

TYPR RA T.A AIC'E

1100 Checking 203

2100 Savings 1500

* I i

2305 Savings 3400

ACCOUNTS FILE

ACCOUNTS FILE

CLIENTS FILE

Fig. 5

ACCOUNT#

Jim Adams Weston 1100

Sue Black Newton 2100

John Doe Boston 2305

· ·~~~~~~~~~~~~~~~~~~~~~~~~~~

III

.- .

-35-

that the user must employ techniques and procedures which have

nothing at all to do with his original problem. Moreover, his

solution may not be particularly efficient: For example, he

may overlook the fact that the clients' records are stored in

alphabetical order in the clients' file, so that a binary

search algorithm would speed up processing. Also, another user

may have a similar problem and devise his own program, thus

incurring duplication of effort.

A DBMS makes the user's task much easier. A typical DBMS

would allow him to issue the following "non procedural"

command, describing the information he needs, as opposed to

writing a program:

SELECT BALANCE FROM ACCOUNTS
WHERE ACCOUNT NUMBER =

SELECT ACCOUNT NUMBER FROM CLIENTS
WHERE CLIENT NE = 'JOHN DOE'
AND ACCOUNT TYPE = 'SAVINGS'

A schematic comparison of the two procedures is depicted

in Fig. 6:.

When a DBMS is not available (left hand side in Fig. 6),

the programs written by the user(s) may become inadequate if

the files are changed (broken line boxes in Fig. 6), thus

requiring appropriate user action.

A DBMS is very convenient: it allows the user to deal

exclusively with entities and operations akin to his problem

(accounts, balances, clients), instead of with computer

oriented ones (files, records, algorithms). Further, the DBMS

is made responsible for efficiency: the command above, for

instance, specifies only what is to be done; the system will

���X�I� I��_�_���

-36-

What is the balance in
John Doe's savings account?

I
I

SearchSearch I

What is
John Doe's

the balance in
savings account?

I
I

SELECT BALANCE FROM ACCOUNTS
WHERE ACCOUNT NUMBER =

SELECT ACCOUNT NUMBER FROM CLIENTS
WHERE CLIENT NAME = 'JOHN DOE'
AND ACCOUNT TYPE = 'SAVINGS'

I

I

I .'

Fig. 6

I

-37-

decide how to do it. It is possible to make a DBMS take full

advantage of any available technique that can improve

efficiency (although it is not always trivial to decide which

this technique is). Finally, a DBMS can be made available to

several users: processing is centralized and thus duplication

of effort avoided.

Additional advantages are less apparent: For example,

consider what happens if, for whatever reasons (e.g., an

increase in the number of clients), the file organization is

changed (e.g., binary search is no longer sufficient and the

files are indexed). If a DBMS is not used, the users must be

informed of the change, and take appropriate action regarding

their programs. What is worse, they may have to learn new

techniques (e.g., how to process indexed files). On the other

hand, if a DBMS exists only it has to be changed to reflect the

new file organization (and, under certain circumstances, only

parts of it); the users need not even know that the files were

reorganized, so that they can continue issuing the same problem

oriented queries illustrated above.

This example was extremely simple, but it highlighted why

DBMSs have been found to be so useful. In more complex data

processing situations, DBMSs are also more complex, but they

result in still more advantages. Currently, a number (ranging

in the hundreds, see [Palmer 75]) of DBMSs are commercially

available and extensively used. However, the fact that they

have been developed with specific data manipulation problems in

mind and ii a rather ad-hoc manner (without any underlying

-38-

systematic methodology) often results in deficiencies in actual

performance and/or user convenience. In the next section we

discuss a few representative instances where this problem is

apparent.

--- 1----:___.--,.-,--.- ------- --l- 11- -1.1-11,�..-,.-�,�..-,�--l'.1--l---I � I... 1-1-1.. I"...-"-"-.,..'�,'�-1-1�l-.,- 11 � - 1-1- - -111- -- - - I - � I

-39-

5.2.- Some typical DBMS drawbacks.

While many successful DBMS applications have been reported

(see, for instance, [Palmer 75], [Nolan 73], [Donovan 75]),

there are also several inconveniences that typically

characterize DBMS operations. The purpose of this section is to

illustrate their basic nature.

Most early DBMSs were ad-hoc, special purpose solutions to

specific data manipulation problems found in specific

situations. Since such systems proved effective, their

application to other settings was encouraged, and in this sense

made "general purpose". (For example, the original work that

led to the DBTG approach to DBMSs [Bachman 69] was motivated by

a bill of materials type of application). More recently, some

effort has been devoted to the consideration of DBMSs from a

broader perspective (see [Astrahan et al. 76], [Stonebraker et

al. 76], [Senko et al. 73], for instance). However, even these

broader efforts strongly rely upon the direct application of

implementation techniques and/or system organizations whose

origin is to be found in those same early ad-hoc DBMSs. In

other words, it is often the case that a specific technique is

used for its own sake. The result is very likely to be either

an over-powered DBMS (with unnecessary overhead that can

jeopardize performance significantly), or a DBMS which falls

short of the required capabilities (with the consequent user

inconvenience). Also, the peculiarities of specific

implementation techniques become determinant of the eventual

-40-

system structure and functional capabilities, in such a way

that apparently unrelated DBMS functions become strongly

interdependent. Furthermore, alternative techniques are

overlooked. These characteristics are typical of most complex

software systems.

Several real life situations in which such characteristics

are apparent are described in the DBMS literature. For

example:

- The currently operational SEQUEL system ([Chamberlin et

al. 74]) was designed to function "on top" of the previously

developed systems RM and XRM (see [Lorie 74], [IBM 73], [Andreu

76-a,b]), whose original motivation was not general purpose

DBMS processing, and which incorporate several techniques that

were intended for a different purpose. As it turns out, the

DBMS application makes no use of some of these techniques.

Nevertheless, the system incurs the overhead derived from

maintaining unneeded control structures.

- IMS ([IBM-al), an IBM DBMS, incorporates alternative

secondary storage access methods. It is up to the user to

choose among them. Since there are no specific guidelines to

support such a decision, it often becomes a matter of trial and

error. It has been reported ([Palmer 75]) that in a specific

setting performance improved three-fold by switching from one

access method to another. The point here is that while the

alternative method was available (and paid for), there was no

systematic way of deciding when to use it.

- SEQUEL ([Chamberlin et al. 741) also incorporates

III

-41-

alternative access methods. However, using one or another

affects the functional capabilities of the system (e.g., the

range of representable values varies with the access method

employed: the maximum representable value is either 2**32 or

2**21). This is a direct consequence of its design being

centered around implementation techniques originally developed

for other purposes (see Andreu 76-a,b]).

- IDMS ([IDMS], Palmer 75]) has been found to perform in a

way drastically dependent upon the query "mix" at any point in

time. This is probably unavoidable, but it should be properly

anticipated (i.e., what if the low performance query mix is the

typical mix?).

- In general, different DBMSs are largely incompatible. This

becomes an issue, for instance, when two departments in the

same organization have been using different DBMSs and wish to

integrate their data management applications (there can be

significant organizational benefits derived from such a move).

As it turns out, switching from one DBMS to another is a very

time consuming task. As a consequence, DBMS users are often

"locked in" to a specific system that may become inadequate

because of shifting operational needs.

These types of problems are precisely what the methodology

in this proposal attempts to solve: The availability of an

implementation independent DBMS framework, in whose context the

design process can be meaningfully organized and performance

evaluation models coordinated, contributes significantly to

their solution. The following sections illustrate this in some

depth.

rii-�-__l·--XIII-__lX__�_. _..�·�___��.

-42-

5.3.- Methodology application.

We now discuss how the methodology proposed in section 4

can be applied to the DBMS case in order to alleviate the

typical problems summarized above. In particular, we exemplify

the character of the research activities enumerated in section

4 as applied to the design of DBMSs, with emphasis in the

identification of the needed DBMS framework. In order to obtain

a specific framework that we can use to illustrate its

usefulness in the design process, we actually carry out these

activities in reduced scale, by means of a simple example.

5.3.1.- Set of DBMS requirements.

Several sets of DBMS requirements have been proposed in

the literature (see, for instance, [Patterson 71], [Joyce et

al. 74]). They are technology independent because they reflect

user requirements (i.e., what is to be achieved is specified,

not how). In our actual research, we plan to work with these

sets as a starting point. For our purposes here, however, we

have chosen a small set of requirements that is listed in

Appendix A. To keep its size between reasonable limits, the

requirements in this set are very general in scope, but still

representative.

-43-

5.3.2.- Interdependencies among requirements.

As discussed in 4.1.2 above, we will investigate an

assessment procedure at soame depth in the future. For our

illustrative purposes here, we intuitively assessed

interdependencies among pairs of requirements belonging to the

set in Appendix A. Pairs of requirements were seen as either

related or unrelated, so that in the resulting graph all the

links have the same strength. A brief justification for each of

the assessments is presented in Appendix B.

5.33.- Graph decomposition techniques.

The graph corresponding to the data in Appendices A and B

is depicted in Fig. 7. Although it corresponds to a relatively

small set of requirements (a more detailed set can easily

result in a considerably larger graph, maybe 10 or 20 times

larger), there is no obvious best' partition (as there was in

the graph of Fig. 2-a in section 4.1.3). Therefore, a more

formal technique is needed. A possibility is summarized in Fig.

8: Thinking in terms of the links that give structure to the

requirements' set, a partition of this set can be evaluated by

means of the measures called subset strength' and "subset

coupling". Basically, subset strength is a measure of how

tightly coupled are the requirements in a given subset, while

subset coupling attempts to measure the extent to which two

subsets are related to one another. For the former, we can use

___a�_____�_s__l___l___1__·(_1__1111___1

-44-

Fig .

III

7

-45-

* Define a ghraph as a pair (X, L), where:

- X:{xlx = 1, 2, . ., n}, the set of (n) nodes, and

- L:{lij lij exists iff a link joints i , i c X, i < j}, the set of links.

* Define:

- A:{aij. .a..ij = 1 iff ij exists; 0 otherwise}.

- Strength S. of a subset X of X, Xi c X:
1 1 1

_ k,l £E.
1i

xi
akl - (IxI - 1)

xil (lx.l - 1)

2

. (*)

- Coupling C.. between two subsets X. and X. of X:
1) 1 J

C.. --

1J

k X.

3 E '

'kl

Ix1l IXI13

* Define a partition of X, P as:

P:{x, X2 ,. .. , X }, with:
1 2 ~p

p

U X. =X
i=l 1

p
and 1 x. , X. =

1=1
j=l

isj

A partition of X, P can then be evaluated with a measure M:

P
M = Z S. -

i=l

p
7 C..

i=- 13

j=l

iyj

to be maximized over all possible P's.

(*) IXI means the dimension of set X.

Fig. 8

-46-

the number of links joining elements of the same subset, minus

n-l (n being the number of elements in the subset, since n-l is

then the minimum number of links that can form a completely

linked subgraph with n nodes), normalized by the factor

n(n-l)/2 (i.e., by the maximum number of links that may exist

in a subset of dimension n) in order to obtain comparable

measures for subsets of different dimension. A similar measure

can be used to evaluate subset coupling between a pair of

subsets: the number of links actually joining elements of two

different subsets, normalized by the factor n*m (where n and m

are the dimensions of the two subsets; i.e., normalized by the

maximum number of links that may exist among elements of two

subsets whose dimensions are n and m). Although these measures

apply to graphs with only one type of link strength, they can

be easily generalized to the case of links with different

strengths. In addition, they don't require us to make any

specific assumption regarding the graph itself.

Four possible partitions of the graph in Fig. 7 are

illustrated in Figs. 9-a, 9-b, 9-c and 9-d. Although they all

seem to be intuitively appropriate (i.e., apparent "clusters"

of nodes are put in the same subgraph, and care taken not to

leave too many links joining different subgraphs), the

associated measures differ significantly, thus reinforcing the

need for a formal evaluation approach such as that of Fig. 8.

It should be pointed out, at this point, that alternative

approaches exist to evaluate graph partitions. In particular,

there are several cluster analysis" techniques ([Hartigan 751)

-47-

Strength: 1.211 Strength: 1.666

Coupling: 0.250 Coupling: 0.569
Measure : 0.961 Measure : 1.097

Fig. 9-bFig. 9-a

_________ ___�_�__�_ _._

-48-

Strength: 1.138
Coupling: 0.236
Measure : 0.902

Fig. 9-c

Strength: 1.090
Coupling: 0. 242
Measure : 0.864

Fig. 9-d

11

-49-

that may prove appropriate in cases where the graph links don't

have all the same strength, and that should thus be

investigated in conjunction with the link assessment procedure

suggested in 4.1.2 above. For example, the so called leader

algorithm' identifies clusters of elements of a given set such

that the 'distances' from all the elements belonging to a

specific cluster to a cluster member known as the leader' are

less than some threshold value T; this algorithm views T as a

parameter, that in our case can be used to study the

sensitivity of the method to changes in the initial graph, so

as to determine its robustness in the sense of section 4.1.1.

5.3.4.- Best graph decomposition. A DBMS framework.

The best partition of the graph in Fig. 7 according to the

measures in Fig. 8 turns out to be that in Fig. 9-b. Looking

back at Appendix A for the meaning of the requirements that

ended up in each subgraph, each of these is seen to be

associated with a main DBMS component; the subgraphs have been

accordingly labelled in Fig. 10, that thus suggests a first

DBMS framework.

In order to discuss this framework in some detail and to

show its appropriateness, it is useful to redraw it as in Fig.

11, where its hierarchical structure is made apparent.

In what follows, we analyze the hierarchical levels of

Fig. 11 from the point of view of the DBMS designer; in

particular, we discuss: (a) the function of each level, (b) the

I __I� · Ill��a��--��tll�l_ �-_1�1 --_ I�_�_ ___

III

HIGH LEVEL LANGUAGE

Fig. 10

pfill - 1UPO()

'm - m - m -

HIGH LEVEL LANGUAGE

.LOG CAL OPERATORS

LOGI CAL OPERATORS

LOGICAL / PHYSICAL MAPPING

ACCESS METHODS

-_ - _ IW

(5)

(4)

(3)

(2)

(1)

- -II_ -

COMPUTER SYSTEM

Fig. 11

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I

c)

X:

STORAGE MANAGEMENT & ASSIGNMENT

.... JII j ~i I . I II

i ii iiiiiii ii iiiiii iii i il/i ii

IIII I Illl I IIII - .

- -- ,,,, ,, ill I

.

III I IIII II I II I i ii ii ii i iiii i

I I II I II II~~~~~~~~~~~~~~~~~~~~~~ I I II

--- - - ----

LAW I V-,L II.- (

mm mw

m



-52-

interaction between functions, and (c) possible implementation

techniques for each function, which need to be brought into

play when designing the subsystems corresponding to each

function. (An operational view of the framework is briefly

presented in the next subsection, where the processing of a

simple DBMS command through a system with the structure in Fig.

11 is described).

(1) The lowest hierarchy level is concerned with storage

management and assignment (data representation in storage

media). Since there are only a few alternative ways of

representing real world entities in a computer, the most

fundamental function performed by a DBMS is that of "encoding"

those entities in some computer tractable form. In particular,

the function at this level must take care of assigning storage

space to the entities' representations. Once this is done, the

location - oriented computer operations (e.g., read, write,

etc.) can be used to manipulate such representations. For

example, the real world entity "John Doe" (a person) might be

represented as the character string 'JOHN DOE', and stored away

as a string of bytes. Such a simple implementation scheme,

however, may require a great amount of storage space if that

entity is to appear many times in the data base. To cope with

this kind of problems, several techniques have been developed.

As an example, it is possible to store the character string

only once, assign an internal "identifier" to it which requires

less storage space, e.g., an integer, and represent the

III



-53-

remaining instances of that entity by means of this identifier

(often called an "id"). Of course, this complicates this

level's function since some mechanism to maintain the

correspondence between an id and its associated character

string must be provided (e.g., a function to transform the id

into the address in storage where the character string is

kept): in terms of implementation, thus, there is a trade -

off, at this level, between required storage and processing

speed.

This level must also take care of grouping entities'

representations into storage areas (e.g., files), since the

basic data manipulation operations provided by a typical

computer system deal with such physical storage areas. There

are also several techniques to implement such groupings: for

example, entities' representations can be assigned consecutive

locations in a storage area (Fig. 12-a), or they may be

organized as a linked list within that area (Fig. 12-b).

Alternative implementations of this kind achieve different

degrees of efficiency for this grouping activity: For instance,

if we are to delete entities from the sequential arrangement of

Fig. 12-a, holes will begin to form in it, thus jeopardizing

the contiguous property of both "free" and "used" storage space

and so complicating their management; this problem is avoided

with the linked list approach. However, the latter requires

more storage space. Also, different storage areas may allow

different accessing speeds (e.g., they may belong to different

types of storage devices).

���___111_11_�_______.l__l___�.·��._�. .



-54-

Storage

area

Fig. 12-a.

Fig. 12-b.

Da ta
Representations

Da
Represez

Pointers area

- -

1-1

I IIII III IIII IIIII I I I II I I I I I II I

---- ------_-_ __.___

III

rage



-55-

(2) Level 1, as described above, permits the manipulation of

entities' representations by means of storage location -

oriented operations (e.g., the physical address' of the

storage location containing a given entity must be specified in

order to access that entity). The function at this level is

concerned with providing more convenient accessing mechanisms.

Since users tend to refer to entities by specifying some of

their attributes (i.e., their values), this kind of entity

references must be transformed by the function at this level

(that we generically call "access methods') into storage

location - oriented ones that can then be resolved by using the

functions available at level 1.

There are a number of techniques to implement such a

translation. Perhaps the simplest is an algorithm that

sequentially scans the stored instances of a given entity

(e.g., accounts) and selects those whose attributes match the

specified values. Obviously, this algorithm can be very time

consuming in a large data base. An alternative is to build an

'index", as shown in Fig. 13. The index can then be scanned for

matching attribute values, and information obtained about the

storage location(s) containing the corresponding entities.

Execution time is improved with this approach, but a penalty

paid in terms of the storage space needed to keep the index,

and also in updating time (i.e., each time an entity is changed

the index must be updated accordingly).

In summary, the function at level 2 is responsible for

transforming attribute - oriented references to entities into



FILE

Fig. 13

storage location - oriented ones. Trade - offs among possible

implementation techniques must be resolved for each DBMS. The

algorithm eventually employed for this function will be

transparent to any upper level functions; which means that it

can be changed without disrupting the functions in upper

levels.

(3) While level 2 allows attribute - oriented references to

entities, the storage area in which the entities of interest

are stored must still be specified (e.g., an index is built on

a specific file). Level 3 removes any physical connotation from

-56-



-57-

entities' references. It allows to see" entities.as the user

best conceptualizes them. In other words, this level focuses on

"mapping" the "logical" entities' structure into their physical

structure. For example, consider the entity "account" of

section 2. A user may logically view this entity as depicted in

Fig. 14-a (i.e., each account has a set of attributes). In

storage, however, accounts' representations need not correspond

to that same view. For instance, a subset of their attributes

can be kept in a storage area, and the rest in a separate one

(Fig. 14-b), in order to improve accessing speed to the most

often referenced attributes. Of course, this means that the

correspondence between the two areas must be maintained and

that references to specific attributes have to be directed to

the appropriate area. Level 3 is responsible for this. In the

case that a unique logical entity view is adequate for all

users and it can be directly represented in storage, the

mapping function of this level is greatly simplified; level 3

can be even ommitted in such a case, and the resulting DBMS

made simpler (see section 2.3).

(4) With the support of level 3, entities are made to

"appear" as the users perceive them, regardless of any

particular storage representation. However, the users need to

manipulate these logical entities in certain ways. For

example, a set union may be required to group the entities

obtained in several retrieval operations, or an attribute

selection needed to get just the attributes of interest. These

operations are algorithmic in nature: a set of "standard"

i�.�ll_..�_____���____srra��*-xr_ ..��_�_____



-58-

Fig. 14-a

Storage
areas

Fig. 14-b

BALANCE

___

�__I_ ____ I__��____

ACCT#



-59-

algorithms may be provided to perform them, thus freeing the

user from having to explicitly program' them. Level 4 is made

responsible for these algorithms. At the top of level 4, it is

thus possible to issue DBMS commands that perform logical'

operations upon logical entities' structures. The particular

algorithms employed to implement such functions need not be

known at all by the users: In particular, they may be improved,

by incorporating a new, more efficient algorithmic scheme, for

instance, without changing the way in which users interact with

the DBMS.

(5) The top level allows system interactions to be in the

form of 'property descriptions' (as opposed to sequences of

logical operations), expressed as English - like statements

such as that illustrated in section 2. Level 5 is responsible

for the appropriate translation.

5.3.5.- The coordination of DBMS subsystems.

At this point, it is useful to consider a simple

operational example in the context of the framework in Fig. 11.

We use the same example discussed in section 5.1, and explain

how the DBMS command:

SELECT BALANCE FROM ACCOUNTS
WHERE ACCOUNT NUMBER =

SELECT ACCOUNT NUMBER FROM CLIENTS
WHERE CLIENT M = ' JOHN DOE 
AND ACCOUNT YPE 'SAVINGS'

can be processed through the hierarchically organized

subsystems of Fig. 11. The command is issued to the highest



III

-60-

hierarchy level, that translates it into a semantically

equivalent sequence of steps involving logical operators (such

as set definition or attribute selection), available at level

4. For example, the following sequence might be used:

1.- Compute set A:

A:(a/a CLIENTS, NAME(a)='JOHN DOE',

ACCOUNT TYPE(a)-,'SAVINGS' )

2.- Compute set B:

B: (b/b = ACCOUNT NUMBER(a), a -A)

3.- Compute set C:

C: (c/c s ACCOUNTS, ACCOUNT NUMBER(c) £ B), and

4.- Compute set D (the answer set):

D:(d/d = BALANCE(c), c C).

Once this sequence has been identified, the lower level

subsystems can be employed to actually perform the

computations. For example, the following level 3 command may be

issued to compute set A:

RETRIEVE CLIENTS RECORDS WHERE NAME = 'JOHN DOE'
AND ACCOUNT TYPE 'SAVINGS'

Level 3 is then responsible for mapping the logical set

"CLIENTS' into its physical representation. Assume, for the

purpose of illustration, that this logical set is stored

physically in, say, file number 3 as shown in Fig. 15 (i.e., a

sequential file where records' fields correspond to clients'

attributes). If this is the case, level 3 will translate the

command above into a level 2 command, such as:

RETRIEVE FILE 3 RECORDS WITH FIELD1 = 'JOHN DOE'
AND FIELD4 ' SAVINGS' ,



-61-

FILE

(NAME)

FIELDI

#3 (CLIENTS)

(ADDRESS)

FIELD2

(ACCT#)

FIELD3

(TYPE)

FIELD4

Fig. 15

and pass such command along to level 2.

By using the available access methods, level 2 would then

transform the specification

FIELD1 - 'JOHN DOE' AND FIELD4 - SAVINGS'

into a collection of file 3's record numbers whose contents

satisfy that condition. These record numbers can then be used

to issue level 1 commands to retrieve the corresponding

records. The result of this retrieval operation would

subsequently be passed back to the top level for further

processing.

-

S

JOHN DOE BOSTON, MA. 1102 Savings

e

I II I]1 i iii ii i

-

;��_�� ���._�_



-62-

6.- The design process in the context of the framework.

Once a framework such as that in Fig. 11 has been

identified, the remaining design activities can be organized

and coordinated in its context, thus bringing more structure

into the design process. Fig. 16, discussed below, depicts how

this can be done.

Consider again Fig. 11. In a top - down approach to DBMS

design, the first problem is to identify a "data model" in

which the users' data manipulation problems can be conveniently

formulated, and to select a "data manipulation language'

associated with it.

By data model" we mean (see [Date 74]) a well defined

logical structure capable of accurately representing the

relationships among data items relevant to a specific

situation. Several such models have been proposed (for example,

the relational [Codd 70], network [Bachman 691, entity-set

[Senko et al. 73], entity - relationship [Chen 76] data

models). Selecting the appropriate data model is.an activity

that can hardly be modeled, one of its objectives being to

match what has been called intrinsic information structure"

([Lefkowitz 691) which is something very difficult to

formalize. This activity thus becomes, at least for the time

being, a matter of the users' personal preferences (although it

can be effected by practical reasons such as model

availability). Once a data model has been selected, a set of

logical operators (designed to manipulate the data structures

III



-63-

supported by the model) is effectively selected as well, since

they are strongly model - dependent. Typically, however,

the users don't interact with the DBMS directly through these

operators -- instead, an English - like query language is

provided that allows them to specify their queries in a more

"natural' way. Such languages attempt to match the users'

cognitive characteristics and sophistication, and thus more

than one can be associated to a given data model (for the

relational model, for instance, the languages SEQUEL

[Chamberlin et al. 74], SQUARE [Boyce et al. 73], QBX [Zloof

75], QUEL [Stonebraker et al. 76] have been proposed). Some

effort has been devoted to support the language selection

process ([Thomas et al. 75], [Reisner et al. 75]), but it still

remains largely a matter of personal preference, too.

This first DBMS design problem, therefore, falls well

outside the capabilities of any formal analysis. Its solution,

however, determines the next design problem (see Fig. 16).

The second design problem focuses on how to translate

English - like query expressions into semantically equivalent

sequences of logical operations. This problem is better defined

than the preceding one. Although it has not been the subject of

extensive mathematical analysis, several heuristics have been

proposed for its solution (see [thnie 74], [Wong et al. 76]).

The main thrust of such heuristics is to avoid combinatorial

growth in the resulting sequences of logical operations.

Central to our discussion here is that these heuristics tend to

be independent of lower level issues, since they are derived



-64-
.. j . O.... ..

Fig.

ERS

,RAGE
ICES'
TERISTICS

III

INFOiMATION

16



-65-

from intrinsic properties of the logical operations of interest

(e.g., whether they are commutative, etc.). By means of these

heuristics, a strategy for the translation problem can be

identified. Once this is done, the remaining design problems

become more structured.

At the next level down in Figs. 11 and 16, the design

problem is to decide how logical entities are going to be

grouped physically for storage purposes, and to identify the

resulting logical / physical mapping. The techniques proposed

for solving this problem typically require information

regarding data base usage statistics or forecasts (see

Severance et al. 75], [Schmid et al. 75]), as well as some

aggregate information about typical storage devices'

performance. The former can be generated if the solution to the

two preceding problems is known, and forecasts made of the

overall data volume and the typical query mix at the user

level. The solution to this problem takes the form of a mapping

from logical entities onto physiscal files, and specifies the

contents of the latter.

The next problem is that of access methods selection.

Several approaches proposed to solve it ([Cardenas 75], [Lum

71], [Severance et al. 74]) take as input information the

contents of physical files, which is the output of the

preceding analysis, plus their usage statistics (that can be

obtained from the frequency of queries against logical entities

by means of the mapping identified above). The generated result

takes the form of recommendations regarding which access method

���aarwaa�^�·�I----------------



seems appropriate for the items in each file.

Lastly, the problem of data representation in stored form

must be solved. This is basically a trade - off problem between

required storage space and encoding/decoding time. For example,

a data item may be not stored at all, if it can be computed

from other stored data items (see [Folinus et al. 743), but

this means that time will be spent in computing it when needed.

Most aspects of this problem may be formulated as a

mathematical programming problem, with constraints generated by

the solution to the preceding problem (for instance, if an

index is to be maintained over a given data item, it must be

stored explicitly).



6.1.- An example.

For concreteness, a specific example of the coordination

of design activities as described above is presented in this

section. The discussion focuses on the last three (from top to

bottom) design problems depicted in Fig. 16:

(1) One of the techniques proposed to solve the problem of

choosing a logical / physical mapping is described in

[Severance et al. 76]. The problem can be described as follows:

Given a logical group of data items (e.g., the attributes

of certain entities, as seen by the users):

and a set of retrieval operations (users):

U: {u(l),...,u(j),... ,u(n)}

that manipulate the data items in D, decompose D into two

subsets, say D1 and D2, to be assigned to different storage

areas, so that the need for expensive" storage space is

minimized and user convenience' is "maximized".

The rationale behind this formulation is as follows:

Storage space is seen as divided into two areas or segments,

one of which allows quicker references to data items than the

other, but is also more expensive (for example, the two

segements could reside in separate storage devices with

different speeds and costs, or they could reside in the same

one but have different associated access methods, etc.; at this

level it is not specified how the two areas actually differ, it

is only known that one of them provides better "service").

_��__ ______



-68-

Storing all the data items in the superior segment is very

efficient but expensive. Doing the opposite is cheap but may

result in unacceptable performance for critical queries. To

formalize this trade - off, the following is assumed:

- Associated with each d(i) D, there is a measure, w(i) >

0, of the storage space needed to represent it (since no

decision has yet been made as to how, specifically, each data

item is to be encoded, w(i) can be a reasonable upper bound).

- Associated with each u(j) U, there is a set, S(j) C D of

data items manipulated by user u(j), and a measure, v(j) > O of

the importance' of user u(j) relative to the rest of the users

in U.

The meaning of w(i) and S(j) is clear. As for v(j), a

surrogate may be the relative frequency in which u(j)'s

operations occur; this can be derived from the frequency

distribution of forecasted users' queries.

The problem can then be stated as:

Min k w(i) - v(j)
i:d(i) Dl j:u (J) U-Ul

D1 D , wheres

- U1 = {u(j)/u(j) e U and S(j)C D1} ,

- k is a conversion factor.

The specific methodology employed to solve this problem is

of no particular concern to us here. We will only say that an

alternative objective function (in terms of query frequencies

and processing costs) that avoids the need for the conversion



-69-

factor k has been also proposed and used in [Severance et al.

76], thus making the input data more realistic. What is

important to notice is that the formulation above makes no

detailed assumptions about lower level parameters (in the

context of Fig. 16). In particular:

- No specific access speeds for the two storage segments are

considered.

- No assumption is made as to how many instances of each

d(i) in D are going to be present in the data base.

- User convenience is taken into account explicitly.

When this problem is solved, it is known that the data

items in D1 must be stored in a segment whose accessing speed

is greater than that for the segment containing the items in

D2. Some lower bounds for these speeds can be assumed. Also,

the procedure just described can be applied to different D

sets, thus obtaining a collection of data items' subsets to go

to quick storage areas and another to slower areas, maybe with

different speed lower bounds.

(2) The problem in (1) above decides what data items are to

be stored together, basically. Now the issue becomes how to

provide the access speed needed for each collection of data

items. Approaches to attack this problem have been proposed by

[Rothnie 721 and many others. Since there are many access

methods available from which we can choose, it is.difficult to

analyze them all at once; their implementations differ so

drastically that parameters describing one method are

completely irrelevant for others. his is another reason for

___1___1_____41__1_1I__^_. _·^



III

-70-

decomposing the design problem in a form as that of Fig. 16:

For each design, the most appropriate access methods' analysis

can be selected, at the corresponding level. Assume we choose

Rothnie's approach. He proposes a methodology for choosing

between the access methods called Multiple Key Hashing' (MKH)

and "Inversion .

Let:

- D: {d(l),...,d(i),... d(m)} be the set of data items that

we decided to store together (i.e., a generic record" in a

'file", in the traditional sense),

- N be the number of D instances to be stored (i.e., the

number of records in the file),

- NV(i) (i=l,...,m) be the number of different values taken

by d(i), NV(i) < N V i,

- P(i) (i=l,...,m) be the probability that d(i) e D wil be

used as "key" (i.e., the frequency in which d(i) is involved in

an "attribute specification" statement of the form d(i) =

value) ,

- A(i) (ivl,...,m) be a set of binary decision variables, =1

if d(i) is accessed via MKH, 0 if via inversion,

- H(i) be the hashing function applied to d(i) if MKH is

used for it, and

- NH(i) (i=l, .. ,m) be the range of function H(i), if it

exists.

The problem can then be stated as a minimization problem,

for the expected number of I/O operations (between secondary

storage and core memory), as follows:



-71-

m m
Min iE A(i)*P(i){ II NH(j) + A +

j#i

m
+ i (l-A(i) ) *P(i)*(B + N/NV(i))

1=1

s. ..

NH() A(i) > 0 , i = 1, ... , m

A(i) 1 , i = 1, ... , m , where

A and B are known overhead constants for the two access

methods.

Again, the particular procedure employed to solve this

problem is not central to our discussion here. What is

important is to realize that the information needed in order to

formulate the problem can be obtained from higher levels:

- D is part of the solution for the problem in (1),

- The distribution of d(i)'s values can be obtained from the

users,

- The probabilities P(i) are similar to the values v(j) in

the previous problem, but somewhat more concrete: they specify

not only what d(i)'s are used, but also how are so (i.e., as

keys).

When a solution for this problem is identified, D has been

decomposed into three subsets:

D = D U D2 U D3, DIi n D = ,i,j-1,2,3, i f j,

such that:

- The items in D1 are to be accessed via MKH,

- The items in D2 are to be accessed via inversion, and

- The items in D3 are never accessed directly (i.e., the

·r � __���



corresponding P(i)'s are zero).

(3) The next problem focuses on deciding upon stored

representations for the items in sets D. This can be formulated

as a linear programming problem to choose among available

encoding techniques.

For example, let:

- D: {d(1),...,d(i),. .. ,d(m)} be the set of data items for

which encodings have to be identified,

- X() C D, j=l,...,n (n m) be subsets of data items, of
n

dimensions DIM(j) (l DIM(j) = m), in each of which K(j)

elements (K(j) < DIM(j)) can be algorithmically derived from

the remaining DIM(j) - XK(J) (i.e., K(j) elements in each subset

can be virtually maintained),

- A(i), B(i) be the costs of maintainig data item d(i) in

stored frm or virtual form, respectively,

- E(i) = 1 if an access method is to be implemented over

item d(i), =0 otherwise (i.e., the solution of the problem in

(2) above), and

- H(i) be a set of binary decision variables, set to 1 if

data item d(i) is explicitly stored, to 0 if it is virtually

kept.

Then the problem becomes:

m m
Min i H(i)*A(i) + i (1-H(i))*B(i)

s.t.:

H(i) i E(i), i = 1, *. .,I m

- H(i) } DIM(j) - K(j), j = 1, * .. n
d:d (i) X(j)



-73-

1 _ H (i) 0O, H(i) integers, i = 1, ... , m.

As in the two problems above, we see that this problem

requires information that has been identified in higher levels.

This example illustrates the kind of coordination of

analysis techniques that we had in mind in the discussion of

section 6.

At this point, it is apparent that a single top - down

pass for the design process may not always suffice. For

example, we assumed bounds in the variables employed in high

level design problems; exact values for these variables are

determined in lower level analyses. The possibility of being

able to improve a first pass design significantly by

reconsidering some of the high level problems once better

bounds for the relevant variables are available should be

investigated (i.e., the identification of possible feedback

loops in the design process schematized in Fig. 16).

7



-74-

CONCLUS IONS

The need for a new, more structured approach to complex

software systems design is a subject of increasing concern due

to several problems in the software development process. We

believe that a technology independent system framework is

needed to organize and coordinate the design activities in such

a way that: (a) designs biased by existing technology are

avoided, (b) design subproblems that have been analyzed and

solved can be meaningfully coordinated, (c) the impact of

shifts in operational needs and/or the appearance of new

technology is reduced to affecting only well defined

subsystems, (d) compatible systems are naturally obtained, and

(e) modelling activities for performance evaluation purposes

are simplified.

A methodology aimed at the synthesis of such a framework

was proposed and its potential investigated in the context of a

representative instance of complex software systems: DBMSs.

A number of research activities must be undertaken in

order to make that methodology operational. They constitute the

core of our present research activities.



-75-

APPENDIX A

SET OF DBMS REQUIREMENTS

1.- The collection of data items that is to be supported is
perceived as logically organized in more that one way.

2.- In these logical organizations, data items. are seen as
forming logical groups, of special meaning to the user(s).

3.- Relationships exist among data items, meaningful to the
user(s).

4.- Some of the relationships among data items are
algorithmic in nature.

5.- There is a collection of logical operations involving
groups and relationships that must be supported, since they
define the types of data manipulations required.

6.- Data items are to be organized physically in a unique
way.

7.- There are a number of specific queries to be supported.

8.- Query frequency is not uniform (there are "critical"
queries).

In a query, references to data items are by:

9.- Logical group membership, and

10.- Value (i.e., their value is specified).

11.- The expected time spent in locating the data items
appearing in a given query should be minimized.

12.- The distribution of data items accross queries (i.e.,
data items appearing in a query) is far from uniform, in
general.

13.- Queries are to be expressed in an English - like
language.

14.- The query language should be unambiguous.

15.- Query expressions should be non - procedural
(descriptive).

16.- Different types of data items must be supported (e.g.,
integers, character strings).

;~~·c-?l~arsasmurrr~------~-r~·i~·- IIXI-lll~~. -- ...... - --



-76-

17.- Data items of the same type can be combined by means of
well defined operations (e.g., addition for integers;
concatenation for character strings).

18.- Alternative data types may be employed, if necessary, for
certain data items.

19.- Each data item takes values in a specific range of its
data type.

20.- Data items do not necessarily take all values in their
value range.

21.- Data redundancy should be avoided.

22.- Storage cost should be minimized.



-77-

APPENDIX B

ASSESSMENT OF INTERDEPENDENCIES BETWEEN PAIRS OF REQUIREMENTS

*Requirement 1 is related to:
- 2.- Logical views defined in terms of logical groups.
- 3.- Logical views defined in terms of logical relationships.
- 5.- Logical operations possible in context of logical view.
- 6.- Different logical views derivable from unique physical

organization.
-21.- A data item in more than a logical view could be

redundantly represented.

*Requirement 2 is related to:
- 1.- See requirement 1.
- 3.- Relationships among groups possible.
- 5.- Logical operations possible with groups.

*Requirement 3 is related to:
- 1.- See requirement 1.
- 2.- See requirement 2.
- 5.- Logical operations possible with relationships.

*Requirement 4 is related to:
-17.- Algorithmic relationships consistent with operations

defined on associated data types.
-18.- As above.
-21.- Algorithmic relationships can help to avoid redundancy.
-22.- Algorithmic relationships can help to reduce storage

cost.

*Requirement 5 is related to:
- 1.- See requirement 1.
- 2.- See requirement 2.
- 3.- See requirement 3.
- 7.- Queries to be supported must be computable through

logical operations.
-15.- Non procedural expressions should correspond to (at

least one) combination(s) of logical operations.

*Requirement 6 is related to:
- 1.- See requirement 1.
- 9.- Logical group membership should unambiguously correspond

to membership in some part of the unique physical organization.
-21.- A unique physical organization favors non - redundancy.

*Requirement 7 is related to:
- 5.- See requirement 5.
-13.- All queries should be expressable.
-14.- Expressions for all queries should be unambiguous.
-15.- No procedural expression should be allowed in the

statement of: any query.



-78-.

*Requirement 8 is related to:
-11.- Frequency must be taken into account for expected

response time.
-12.- Frequency of queries and frequency of data items in

queries determine frequency of data items' references:
possibility of getting very bad response time for some
unfrequent queries should be avoided.

*Requirement 9 is related to:
- 6.- See requirement 6.
-11.- Efficiency of mechanism for locating a data item given

its membership in a specific group.
-12.- Take into account the overall importance of each group

as indicated by the frequency in which their data items appear
in queries, to decide upon the mechanism above.
-21.- Representing every logical group physically is an
alternative that goes against avoiding redundancy.

*Requirement 10 is related to:
-11.- Efficiency of mechanism for locating a data item given

its value.
-12.- Take into account overall importance of each data item
(in terms of queries where it appears) when choosing the
mechanism above.
-19.- If it is known that a specific value is not taken by a

given data item, a reference specifying that value can be
easily resolved.
-20.- Similar to above.

*Requirement 11 is related to:
- 8.- See requirement 8.
- 9.- See requirement 9.
-10.- See requirement 10.
-19.- See relationship between requirements 10 and 19.
-20.- See relationship between requirements 10 and 20.
-22.- General trade - off response time - storage space.

*Requirement 12 is related to:
- 8.- See requirement 8.
- 9.- See requirement 9.
-10.- See requirement 10.

*Requirement 13 is related to:
- 7.- See requirement 7.
-14.- English - like goes against unambiguousity.

*Requirement 14 is related to:
- 7.- See requirement 7.
-13.- See requirement 13.
-15.- Non procedurality can bias the language towards being

ambiguous.

*Requirement 15 is related to:

III



-79-

- 5.- See requirement 5.
- 7.- See requirement 7.
-14.- See requirement 14.

*Requirement 16 is related to:
-17.- Operations consistent with data item using corresponding

data type.
-18.- Similar to above.
-22.- Certain data types may be stored more efficiently than

others.

*Requirement 17 is related to;
- 4.- See requirement 4.
-16.- See requirement 16.
-18.- If a data type is changed, how about operations
associated with corresponding data item?

*Requirement 18 is related to:
- 4.- See requirement 4.
-16.- See requirement 16.
-17.- See requirement 17.
-22.- An alternative data type may be convenient to reduce
storage.

*Requirement 19 is related tot
-10.- See requirement 10.
-11.- See requirement 11.

*Requirement 20 is related tot
-10.- See requirement 10.
-11.- See requirement 11.

*Requirement 21 is related to;
- 1.- See requirement 1.
- 4.- See requirement 4.
- 6.- See requirement 6.
- 9.- See requirement 9.
-22.- Avoiding redundancy agrees with reducing storage.

*Requirement 22 is related to:
- 4.- See requirement 4.
-11.- See requirement 11.
-16.- See requirement 16.
-18.- See requirement 18.
-21.- See requirement 21.



-80-

REFERENCES

Key to abbreviations employed:

ACM - Association for Computing Machinery.
AFIPS - American Federation of Information Processing

Societies.
CACM - Communications of the ACM.
CVLDB - Conference on Very Large Data Bases.
IEEE - Institute of Electrical and Electronic Engineers.
IFIP - International Federation of Information Processors.
SJCC - Spring Joint Computer Conference.
TODS - Transactions on Data Base Systems.

[Alexander 64 ]:
Alexander, C.: "Notes on the synthesis of form", Harvard U.

Press, 1964.

[Andreu 76-al]:
Andreu R.: "The XRM interface as used by SEQUEL", Internal

report,M.I.T. Sloan School, September 1976.

[Andreu 76-b]:
Andreu, R.: "The implementation of XRM on top of RM",

internal report, M.I.T. Sloan School, September, 1976.

[Astrahan et al. 76]:
Astrahan, M.M. and others: "System R: Relational approach to

Database Management", TODS, vol 1 no. 2, January, 1976.

[Bachman 69]:
Bachman,C.: "Data Structure Diagrams", Procs.,, File 68

Conference, IFIP occasional publication no. 3, Administrative
Data Processing Group (IAG), Swets and Zeitlinger N.V., 1969.

[Blum 66]:
Blum, J.: "Modeling, Simulation and Information System

Design", Information Science and Technology, Nov. 1966.

[Boyce et al. 73]:
Boyce,R.F. and others: "Specifying queries as relational

expression3: SQUARE", IBM Tech. Report RJ 1291, IBM Res. Lab.,
San Jose, Ca, October 1973.

[Brooks 75]:
Brooks, F. P.: "The Mythical Man - Month: Essays on Software

Engineering", Addison - Wesley, Reading, Mass., 1975.

[Cardenas 75]:
Cardenas, A.: "Analysis and performance of inverted data

base structures", CACM, 18 - 5, May 1975.



-81-

[Chamberlin et al. 74]:
Chamberlin, D.D. and others: "SEQUEL: A Structured English

Query Language, Procs. from the ACM workshop on data
description, access and control, May 1974.

[Chen 76]:
Chen, P.: "The entity - relationship model -- Towards a

unified view of data", TODS, 1 - 1, March 1976.

[Codd 70]:
Codd, E.F.: "A relational model of data for large shared

data banks", CACM, 13 - 6, June 1970.

[Date 74]:
Date, J.: "An introduction to Data Base Systems", Addison

Wesley, 1974.

[Dijkstra 68]:
Dijkstra, E.W.: The structure of T.H.E. multiprogramming

system", CACM, 11 - 5, May, 1968.

[Donovan 75] :
Donovan, J.J.: An application of a Generalized Management

Information System to Energy Policy and Decision Making",
Procs., AFIPS, 1975.

[Folinus et al. 74]:
Folinus, J.J. and others: "Virtual information in data base

systems", M.I.T. Sloan School working paper 723 - 74, 1974.

[Gabbay 75]:
Gabbay,H.: "A hierarchical approach to production

planning", M.I.T. O.R. Center TR No. 120, December 1975.

[Hartigan 751:
Hartigan, J.: "Clustering algorithms", Wiley Interscience,

1975.

[Hax' 75]:
Hax,A.C.: "The design of large scale logistics systems: A

survey and an approach", in Logistics Research Conference", W.
Marlow, ed.,M.I.T. Press, 1975.

[IDMS]: -
"Integrated Data Management System", Cullinane Corp.,

Boston, Ma.

[IBM 73]:
"Guide for the users of RM - PL/I version", June, 1973.

[IBM-a]:
"Information Management System/360 Version 2. General

Information Manual", IBM form No. GH20-0765.



-82-

[Joyce et al. 74]:
Joyce, J.D. and others: "Data Management System

Requirements", in "Data Base Management Systems", D.A. Jardine,
Editor, North Holland, 1974.

[Lefkowitz 69]:
Lefkowitz, D.: Data management for on - line systems",

Hayden Book Co., 1969.

[Lorie 74]:
Lorie,R.A.: "XRM- An extended (n - ary) relational memory",

IBM Cambridge Scientific Center Technical Report No. 320-2096,
January 1974.

[Lum 71] :
Lum, V.Y. and others: "Key-to-address Transform Techniques:

A Fundamental Performance Study on Large Existing Formatted
Files", CACM, 14 - 4, April, 1971.

[Madnick and Alsop 69]:
Madnick, S.E. and Alsop, J.W.: "A modular approach to file

systems design", Procs. of the Spring Joint Computer
Conference, 1969.

[Madnick and Donovan 74]:
Madnick, S.E. and Donovan, J.J.: "Operating Systems", McGraw

Hill, 1974.

[Madnick 76-a]:
Madnick S.E.: "Concepts and Facilities", Report FOS-22,

Research Report prepared for the U.S. Navy Electronics
Laboratory Center, San Diego, Ca.

[Madnick 76-b]:
Madnick,S.E.: Proposal for Research on the Design of a

Family of Database Systems", preliminary draft, July 1976.

[Mesarovic et al. 70]:
Mesarovic,M.D. and others: "Theory of multilevel,

hierarchical systems", Academic Press, N.Y., 1970.

[Myers 75]:
Myers, G.J.: "Reliable software through composite design",

Petrocelli / Charter, N.Y., 1975.

[Nolan 73] :
Nolan, R.L.:- "Computer Data Bases - The Future is Now",

Harvard Business Review, 51 - 5, September - October 1973.

[Nunamaker 71]:
Nunamaker, J.F.: "A Methodology for the Design and

Optimization of Information Processing Systems", AFIPS
Conference Procs., SJCC, 1971.

III



-83-

(Palmer 75]:
Palmer. I: "Database Systems: A practical reference", Q.E.D.

Information Sciences, Wellesley, Ma, 1975.

[Parnas 741]:
Parnas, D.L.: "On a buzzword: Hierarchical structure",

Information Processing 74 - IFIP vol. 2, North Holland, 1974.

[Parnas 76]:
Parnas,D.L.: "On the design and development of Program

Families", IEEE Transactions on Software Engineering, SE-2-1,
March 1976.

[Pattee 73]:
Pattee, H.H.: "Hierarchy theory: The challenge of complex

systems", George Brazillier, N.Y., 1973.

[Patterson 71]:
Patterson, A.C.: Requirements for a generalized data base

management system", Procs, FJCC, AFIPS, 1971.

[Reisner et al. 75]:
Reisner, P. and others: "Human factors evaluation of two

data base query languages: SQUARE and SEQUEL", Procs., AFIPS,
1975.

[Rhodes 72]:
Rhodes,J.: "Beyond Programmings Practical Steps Towards the

Automation of DP System Creation", in System Analysis
Techniques", J.D. Couger and R.W. Knapp, Eds , John Wiley,
1974.

[Rothnie 72]:
Rothnie, J.B.: "The design of generalized Data Management

Systems", Ph. D. dissertation, Dept. of Civil Engineering,
M.I.T., September, 1972.

[Rothnie 75]:
Rothnie, J.B.: Evaluating inter - entry retrieval

expressions in a relational data base management system",
Procs., AFIPS, 1975.

[Schmid et al. 75]:
Schmid, .A. and others: "A multi - level architecture for

relational data base systems", Procs., CVLDB, Framingham, Ma,
September 1975.

[Senko 75]:
Senko,M.E.: "Information systems: records, relations, sets,

entities and things", Information Systems, 1 - 1, Pergamon
Press, 1975.

[Senko et al. 73]:

_1___111_________1_1_1_·__11_1_11_^_1_·1 1_1_1���·._



-84-

Senko,M.E. and others: "Data structures and accessing in
data base systems": I, II, III", IBM Systems Journal, 12 - 1,
1973.

[Sekino 72]:
Sekinc,A.: "Performance evaluation of multiprogrammed time

shared computer systems", Project M.A.C. report TR - 103,
M.I.T., September, 1972.

[Severance et al. 74]:
Severance, D.G. and others: " A practitioner's guide to

addressing algorithms: a collection of reference tables and
rules of thumb", T.R. No. 240, O.R. Dept., Cornell U., November
1974.

[Severance 75]:
Severance, D.G. and others: "The use of cluster analysis in

physical data base design", Procs, CVLDB, Framingham, Ma,
September, 1975.

[Severance et al. 76]:
Severance, D.G. and others: "Mathematical techniques for

efficient record segmentation in large shared databases",
Journal of the ACM, 23 - 4, October 1976.

[Simon 671]
Simon, H.A: "The architecture of complexity", in "Sciences

of the artificial, the M.I.T. Press, Cambridge, Mass, 1967.

[Stonebraker 74]:
Stonebraker, M.: "A functional view of data independence",

Procs., ACM workshop on data description, acess and control,
May 1974.

[Stonebraker et al. 76]
Stonebraker, M. and others: The design and implementation

of INGRES", TODS, 1 - 3 September, 1976.

[Teichroew 70]:
Teichroew, D.: "Problem Statement Languages in MIS", Procs.,

International Symposioum of BIFOA, July 1970.

[Thomas et al. 75]:
Thomas, J.C. and others: "A psychological study of query by

example", Procs., AFIPS, 1975.

[Wong et al. 76]:
Wong, E. and others: "Decomposition - An strategy for query

processing", TODS, 1- 3, September 1976.

[Young and Kent 741]
Young, J.W. and Kent, H.K.: "Abstract Formulation of Data

Processing Problems",' in System Analysis Techniques", J.D.
Couger andR.W. Knapp, Eds., John Wiley, 1974.



-85-

(Zloof 75]:
Zloof, M.M.: "Query by example", Procs., AFIPS, 1975.

�sX�� � I^ _XI__I�_��_�_�__I_ _�Y III �11_ �__1�1_�1__�_


