
INFOPLEX -- Hierarchical Decomposition
of a Large Information Management System

Using a Microprocessor Complex

Stuart E. Madnick

REPORT CISR-7
SLOAN WP-770-75
March 3, 1975

· 411^_11____·___·____LIII�-ll�-.---·�-�- �

2/25/75

INFOPLEX -- Hierarchical Decomposition

of a Large Information Management System

Using a Microprocessor Complex

Professor Stuart E. Madnick
Center for Information Systems Research
Alfred P. Sloan School of Management
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

ABSTRACT

By using the concept of hierarchical decomposition, both of the

logical functions and physical storage management, it is possible to

develop a highly parallel information management system architecture.

Such a system design, based upon a complex of microprocessors, i under

study at M.I.T. and has been named INFOPLEX. Besides providing very

high performance, the INFOPLEX structure is shown to provide a basis

for exceptionally high reliability and availability.

I I

INFOPLEX -- Hierarchical Decomposition

of a Large Information Management System

Using a Microprocessor Complex

Professor Stuart E. Madnick
Center for Information Systems Research
Alfred P. Sloan School of Management
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

INTRODUCTIOI:

The effective use of computer systems for large-scale information

management rather than numerical computation is still a largely unsolved

problem. In this paper important concepts and theories regarding computer

architectures for information management are introduced. The underlying

concept, hierarchical decomposition, is presented in the next section.

Several ongoing developments in computer technology have mad a

radical change in system architecture both necessary and feasible2 1. New

memory technologies, some recently announced and others under development

fcr the near future, make very large capacity memories possible. But, the

physical organization of such memories and their logical information handling

functionalities are yet to be determined. As an example, consider the

objective of designing an information system with total storage capacity in

excess of 1015 bits processing up to 106 logical interactions (e.g., queries,

updates) per second and capable of physical input/output rates of at least

109 to 1010 bits per second. No present computer architecture or theoretical

structure has explicitly addressed the design of such a system.

�ll^~�---�~l-XII---.----111_1__��---�-�-

- 2 -

In order to attain very high performance and functionality, as indicated above,

it is necessary to take advantage of extensive parellelism in the system.

With the advent of microprocessor technology such a strategy is quite

feasible. Whereas highly parallel computer systems of the past, such as

ILLIAC IV and CDC STAR-100, were designed to solve numerical problems,

totally new pproaches are needed for information management problems.

By using hierarchical decomposition, both functional and physical, a

highly parallel information management system architecture can be implemented

by means of a processor complex. Such a system, called the INFOPLEX, is

presently under study at the Center for Information Systems Research in the

MIT Sloan School of Management.

HIERARCHICAL DECOMPOSITION

There are two major types of parallelism that can be exploited in an

information system: functional and physical.

Function Decomposition

In almost all cases, the interactions with an information system are

in terms of very high level concepts whether originating from a human at

a terminal or another computer system. These requests must be converted

irto the more basic operations appropriate to the particulars of the phys-

ical hardware and information structures. There are many ways that this

conversion can be accomplished but in our research7 we have found the

technique of hierarchical function decomposition to be very effective for

tdvaltod itrrmation mnagement systems (similar techniques have been used

successfully in operating systems13 and basic file systemsl).

111

..,' ,..

Request IRequest Sources
L I

1�����

-
CI ^ I

----L ~~~~~~I

Lll
Query
Languages

Application - dependent
Packages

High-level Language Interfaces
(e. g., hierarchical , network,
relational).

Computational Operators

n-ary Relations

Binary Reloations

Virtual Storage

n_ - _ _

I Physical
L._ , -

___ _ m 1

Storage Devices I
_ _ _ _ _mra _ J

H ierarchical Function Decomposition

rI

. . .

!

Figure I

- 4 "

Figure 1 outlines the hierarchical function decomposition used in our

Generalized anagement Information System (GMIS) effort. This hierarchical

concept has been usd ginheip plamenttiQr Af the..New England Energy

Management Information System (NEEMIS)7. Note that each functional level

of the hierarchy is implemented in terms of the functions provided by the

next lower l'evl. This strictly hierarchical approach has resulted in an

extremely powerful, flexible, and modular information management system --

a primary requirement for the NEEMIS application. In addition, the con-

ciseness of the structuring greatly reduces the complexity of the system

making optimization and debugging much more effective.

Physical Decomposition

To date, the technologies that lend themselves to low cost per byte

storage devices (and, thereby, economical large capacity storage) result

in relatively slow access times. If it were possible to produce ultra-fast

limitless-capacity storage devices for miniscule cost, there would be little

need for a physical decomposition of the storage. Lacking such a wonderous

device, the requirements of high-performance yet low-cost are best satisfied

by a mixture of technologies combining expensive higqh-performance devices

with inexpensive lower-performance devices.

Figure 2 indicates the range of performance and cost for typical current-

day storage technologies divided.into 6 cost-performance levels. New storage

technologies will undoubtedly make improvements at all levels, possibly

III

- 5 -

Storage Level
Randon
Access
Time

Transfer
Rate
(bytes/second)

Cost
per
Byte

Technology

1. Cache

2. Main

50 ns

1 .Ps

3. Block

4. Backing

5. Secondary

6. Mass

50 s

1 ms

50 ms

1 sec

loo100M 100¢

16M

8M

2M

1M

10¢

Semiconductor RAM

Semiconductor RAM,
Ferrite core

Semiconductor
shift registers, Bulk
ferrite core, Charged-
coupled devices, magnetic
bubbles

Fixed-head disks and
drunms, harge-coupled
devices, magnetic bubbles

.01¢

.0005¢1M

Moving-head disks

Automated tape-handlers,
Laser devices

Figure 2

Spectrum of Storage Device Technologies

------------------------------·I---

- 6 -

even collapsing some. In any case, it does appear that multiple levels of

cost-performan-e storage devices will continue to exist for many years to

comeL5,22 . Note in particular that the current spectrum of devices represented

in Figure 2 span over 6 orders of magnitude in both cost and performance.

If all references to information in the system were random and unpre-

dictable, tnere would be little utility for the intermediate levels of

storage technologies. Most practical applications result in clustered

references such that during any interval of time only a subset of the

information is actually used, especially when you consider the use of indexes

and other control information. This phenomenon is known as locality of

reference6. Under such circumstances, the intermediate levels of storage

technologies can be used as paging devices or staging devices that hold

these information clusters. This approach has been used in contemporary

systems on the microscopic level5 (e.g., IBM System/370 Model 158 and 168

-ache systems), intermediate level2' 3 '8 ' 9 '1 6 ' 1 7 ' 18 (e.g., Honeywell 68/80

Multics paging system), and macroscopic level4'1 0 (e.g., IBM 3850 Mass

Store System).

There are many ways that such an ensemble of storage devices may be

structured but in our researchl2, 1 4 we have found the technique of

hierarchical physical decomposition to be very effective. A detai.le(d

explanation of this approach is presented in reference 14. Briefly, infor-

mation is moved between storage levels automatically depending upon actual

or anticipated usage such that the information most likely to be referenced

in the future is kept at the highest (fastest access) levels. Figure 3

depicts the general structure of a hierarchical storage system.

III

I II.. or

le

Storage Reference

Level I

. C ache I

I

2. Main I
I

3. Block I

4. Backing

5Secondary I

I

I
6.Mass I

I• ~ -. I

Figure 3. H ierarch;al Physical Decomposition

a a

I L
I

I -"

"

F ,,
I
I

I

I
I

I

I

I

I
I

I
I

I

I

I
I

- 8 -

PARALLELISM IN HIERARCHICAL STRUCTURE

The original research in hierarchical function decomposition was

mcivated by the desire for more structured implementation; the research

in hierarchical physical decomposition was motivated by the desire for

improved system performance. In addition to these original benefits, the

hierarchical structure also lends itself to considerable parallelism.

Asynchronous Function Decomposition

As noted earlier, each level of function decomposition is implemented

in terms of the primatives of the next lower level (refer to Figure 1).

Furthermore, usually several lower level primatives must be used to implement

each higher level primative. By using separate sets of processors for each

functional level, it is possible to take advantage of parallel execution of

lower level primatives, specialize processor functionality, simplify

implementation, and enhance modularity. Thus, a request for a lower level

ftnction is accomplished by an inter-processor signal to one of the pro-

cessors that implement that level. The hierarchical structure of the

function decomposition makes such inter-processor communication relatively

simple and efficient.

By incorporating queueing facilities and internal multiprogramming

ithin each of the processors, a high performance "pipeline" can be attained.

This makes it possible to maintain high rates of throughput. Futhermore, the

simplicity of the structure makes relatively unlimited modularity possible

thereby making it possible to assemble systems of enormous performance

capacity.

III

- 9 -

The multiple processor implementation of the hierarchical function

decomposition - depicted in Figure 4. Although such extensive use of

processors has been quite expensive in the past, the advent of low-cost

microprocessors makes such a system economically feasible. Furthermore,

since each level implements only a limited amount of the total system's

functionality, 'tery simple processors can be used.

By taking advantage of the particular structure of the system and the

somewhat specialized functions that are performed, highly reliable operation

can be attained using techniques such as those used in the PLURIBUS system1 9

One of the key properties of the hierarchical function decomposition implemen-

tation is that all processors are anonymous and act as interchangeable

resources (within a function level). Thus, if a processor malfunctions or

must be removed from service, the system can continue to function without

interruption. After a reasonable amount of time has elapsed, the higher

level processors that had generated requests that were being performed by

the defective processor merely need to reissue the same requests. Alterna-

tively, the reissuing of requests could be accomplished automatically by

the inter-level request queue mechanism.

Although the details are not elaborated in this paper, it should be

clear that extensive parallelism, throughput, and reliability can be

attained by means of a multiple processor implementation of the hierarchical

function decomposition.

��_� �.._1 I .--- a3� IDl�aZ�D��

· · · Level i +

Inter-- processor
Level Request
Queue .

evel i

evel i- I

Figure 4. KH iroarchical I
Microprocessor

Function
Comple

Decomposition Using a
x

4.

III

I -

I

I -

I

I -

t

- 11 -

Asynchronous Physical Decomposition

As this au.!.or has noted in reference 14, it is possible to generalize

the current-day specialized hierarchical storage systems (e.g., cache

systems, paging systems, file archiving systems). In such a generalized

system, the storage system is physically decomposed into a hierarchy of

storage levels s-:,-ting under local controls (i.e., decentralized control)

with limited coordination necessary between levels.

Various physical storage management and movement techniques, such as

page splitting, read through, and store behind, can be distributed into

the hierarchy of levels. This facilitates parallel and asychronous opera-

tion in the hierarchy. Furthermore, these approaches can lead to greatly

increased reliability of operation. For example, under the read through

strategy, when data currently stored at level i (and all .ower performance

levels k > i) is referenced, it is automatically and simulataneously

copied and stored into all storage levels j i (i.e., all higher performance

ltevels). The data itself is moved butween lvols n standard transfr _ullit,

also called pages, whose size N(i-l,i), dpendti upon thu storage level

from which it is being moved. (See Figure 5 for an illustration of this process.)

Since all upper storage levels receive this information simultaneously, if a

storage level must be removed from the system, there are no changes needed.

n this case, the information is "read through" the level as if it didn't exist.

rn Ilpail�l-----�-�-·�-�`-�-�--� --��

/
. #-

0

,I J N(OI)L . N (, I)

.L(I)

r -- 1 N
I i N (1,2)
L- _ -- _ _ j

-Prcessor

"L ' N (2,3)
L- J

IL(3)
AThJ

m

L II I| II ·III N
. -_ _ -_ _ - - J

0

Example of Read Through with Page Splitting

m

a.

C
0

0

(2,3)

z

I 1~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I,

01

111

r~~~~~~~~

- I M.
I

. , .

d _

L;l

Figure 5

- 13 -

Since all data available at level i is also available at level i+l (and all levels

j > i), there s no information lost. Thus, no changes are needed to

any of the other storage levels or the storage management algorithms

although we would expect the performance to decrease as a result of the

missing storage level. A limited form of this reliability strategy is

employed in aG t current-day cache memory systems5

In a store behind strategy, all modified information is initially

stored in L(1), the highest performance storage level. This information

is marked "changed" and is copied into L(2) as soon as possible, usually

during a time when there is no activity between L(1) and L(2). At a

later time, the information is copied from L(2) to L(3), etc. A variation

on this strategy is used in the Multics Multilevel Paging Hierarchy 8.

The store behind strategy can be used to provide high reliability in

the storage system. Ordinarily, a changed page is not allowed to be

p rged from a storage level until the next lower level has been updated.

Thi.s can be extended to require two levels of acknowledgement. For example,

a changed page can not be removed from L(1) until the corresponding pages

in both L(2) and L(3) have been updated. In this way, there will be at

least two copies of each changed piece of information at levels L(i) and

IL(i+l) in the hierarchy. Other than delaying the time at which a page may

be purged from a level, this approach should not adversely affect system

� � 1 ___1__1__1_________·_____11__1_1_11__�__ -

- 14 -

performance. As a result of this technique, if any level malfunctions or

must be serviced, it can be removed from the hierarchy without causing any

information to be lost. There are two exceptions to this process, L(1)

and L(n). To completely safeguard the reliability of the system, it may

be necessary to store duplicate copies of information at these levels only.

Figure 6 ili>srcates the two-level store behind algorithm.

A considerable amount of work is required to manage the storage hier-

archy. This work can be distributed by means of multiple processors servicing

separate physical storage levels. In this manner, these processors may

operate asynchronously and in parallel. A simplified example of this technique

can be found in the IBM 3850 Mass Storage Systemll 0.

e 4'-'

fK

(a) A processor stores into L (I), corresponding
page Is marked "changed ".

L(2)

L(3)

J~~~~~~~_ 1X _ I ~ ~ ~ ~ ~ ~ ~ ~~ ~~~~~ ~~~~~~~ _111_ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~ _ I~~~~~~~_ ____~~~~--

--

(b) At a later time,
in L(2) is updated

the corresponding page
and marked " c ha ng ed ".

Request
Source

L(3)

IIII I

III

7' 4.

L(I)

)

0
0

(c) At a later time, the corresponding page in L(3)
is updated and marked "changed"' Since copies
of the changed Information exists In both L (2)
and L(3),the"changed" indicator can be reset
In L(I) and that page may be replaced if necessary.

Figure 6. Example of the Two-level Store-Behind Process

__

_ _V

- 18 -

Decentralized Control

In ordcri o develop information systems capable of managing extremely

lar - memories and processing a tremendous number of requests, a design

based upon decentralized control is essential. It is unlikely that

a single processor would be capable of maintaining a centralized control

over the lai ,e .umber of high-speed asynchronous operations needed.

Furthermoru, a centralized control could be seriously impared if there

were a reliability failure. The hierarchical decomposition theory represents

a straight-forward basis for a decentralized control design.

FURTHER RESEARCH

There are many areas of further research under investigation, such as:

Optimal function and physical decomposition. It is necessary to

define a measure of performance and be able to prove that a particular

decomposition is optimal.

Equivalence between functions. All information system functionalities

mu t be mapped onto a standard set of functions. It is necessary to prove

that the decomposed functionality is equivalent to the desired functionality.

Performance of physical implementation. There are various possible

physical implementations of the optimal function and physical decomposition.

It is necessary to provide measures for the performance of each such

inplementation and determine optimality.

- 19 -

Reliability. Although examples of reliability techniques have been

described in this paper, a detailed reliability plan that encompasses all

o=r-ntualities must be found.

Interlocks. Various interlock mechanisms must be used in an infor-

mation system to coordinate various independent update operations. It is

necessary to develop interlock techniques that lend themselves to a highly

decentralized implementation without adversely effecting performance or

reliability.

CONCLUDING COMMENTS

By using hierarchical physical decomposition (as depicted in Figure 3)

to provide the virtual storage needed for the hierarchical function

decomposition (as shown in Figure 1), a complete hierarchical decomposition

of a large information management system can be attained. Furthermore,

i3ing the techniques illustrated in Figures 4 and 5, the hierarchical

decomposition can be implemented by means of a microprocessor complex

(i.e., the INFOPLEX).

Although such an INFOPLEX has not yet been completely implemented,

portions are under development and investigation 20. The overall theory

f hierarchical decomposition remains an important research area.

I" � ��--�------

- 20 -

REFERENCES

1. Ahearn, G. R., Y. Dishon, and R. N. Snively, "Design Innovations of

the IBM 3830 and 2835 Storage Control Units," IBM Journal of Research

and Development, Vol. 16, No. 1, pp. 11-18, January 1972.

2. Bensoussan, A., C. T. Clingen, and R. C. Daley, "The Multics Virtual

Memory," Second ACM Symposium on Operating Systems Principles,

Princeton Unviersity, pp. 30-42, October 1969.

3. Chu, W. W. and H. Opderbeck, "Performance of Replacement Algorithms

with Different Page Sizes," Computer, Vol. 7, No. 11, pp. 14-21,

November 1974.

4. Considine, J. P. and A. H. Weis, "Establishment and Maintenance of a

Storage Hierarchy for an On-line Data Base Under TSS/360," FJCC, Vol. 35,

pp. 433-440, 1969.

5. Conti, C. J., "Concepts for Buffer Storage," IEEE Computer Group News,

pp. 6-13, March 1969.

6. Denning, P. J., "Virtual Memory," ACM Computing Surveys, Vol. 2, No. 3,

pp. 153-190, September 1970.

III

- 21 -

7. Donovan, J. J. and H. Jacoby, "A Hierarchical Approach to Information

System roesign," MIT Sloan School of Management Report CISR-5 and

WP 762-75, January 1975.

8. Greenberg, Bernard S. and Steven H. Webber, "Multius Multilevel

Paging Hierarchy," IEEE INTERCON, 1975.

9. Hatfield, D. J., "Experiements on Page Size, Program Access Patterns,

and Virtual Memory Performance," IBM Journal of Research and Development,

Vol. 16, No. 1, pp. 58-66, January 1972.

10. Johnson, Clay, "IBM 3850 -- Mass Storage System," IEEE INTERCON, 1975.

11. Madnick, S. E., "Design Strategies for File Systems," MIT Project

MAC Report TR-78, October 1970.

12. Madnick, S. E., "Storage Hierarchy Systems," MIT Project MAC Report

TR-105, Cambridge, Massachusetts, 1973.

13. Madnick, S. E., and J. J. Donovan, operating Systems, McGraw-Hill,

New York, 1974.

- --- ��-��-�----��

- 22 -

14. Ma4nick, . ., "Defgn of a General Hierarchical Storage ytitem,"

ItEE INTERCON, 1975.

15, Martin, R. R., and H. D. Frankel, "Electronic Disks in the 1980's,"

Computer, Vol. 8, No. 2, pp. 24-30, February 1975.

16. Mattson, R., et al., "Evaluation TechniqUes for Storage Hierarchies,"

IBM Systems Journal, Vol. 9, No. 2, pp. 78-117, 1970.

17. Meade, R. M., "On Memory System Design," FJCC, Vol. 37, pp. 33-44,

1970.

18. Ohnigian, Suran, "Random File Processing in a Storage Hierarchy,"

IEEE INTERCON, 1975.

19. Ornstein, S. M., et al., "PLURIBUS -- A Reliable Multiprocessor,"

NCC, 1975.

20. Toong, H. D., "Microprocessor-based Multiprocessor Ring Structured

Network," NCC, 1975.

21. Wensley, J. H., "The Impact of Electronic Disks on System Architecture,"

Computer, Vol. 8, No. 2, pp. 24-30, February 1975.

22. Withington, F. G., "Beyond 1984: A Technology Forecast," Datamation

Vol. 21, No. 1, pp 54-73, January 1975.

