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Abstract 

This paper explores the performance of coupled development tasks subject to a deadline constraint 

by proposing a performance generation model (PGM). The goal of the PGM is to develop insights 

about optimal strategies (i.e. sequential, concurrent, or overlapped) to manage coupled design tasks 

that share fixed amount of engineering resources subject to performance and deadline constraints. 

Model analysis characterizes the solution space for the coupled development problem. The solution 

space is used to explore the generation of product performance and the associated dynamic forces 

affecting concurrent development practices. We use these forces to explain conditions under which 

concurrency is a desirable strategy.  

 

(Product Development, Performance Generation, Design Process Modeling, Concurrent/ Sequential/ 

Overlapping Development, Component / System Performance, Software Engineering) 

 

1. Introduction 

Product development (PD) is the process of transforming customer needs into an 

economically viable product that satisfies these needs. PD research spans many different disciplines 

ranging from organizational science (Brown and Eisenhardt 1995), marketing (Wind and Mahajan 

1997), engineering (Finger and Dixon 1989) to operations management (Smith and Morrow 1999; 

Krishnan and Ulrich 2001). Recent management science PD research has focused on approaches to 

reduce lead time, cut costs, and improve product quality. Concurrent engineering (CE) is one such 

approach (Wheelwright and Clark 1992; Griffin 1996; Terwiesch and Loch 1999). However, the 

risks associated with CE such as increased communication overhead (Ha and Porteus 1995; Loch 

and Terwiesch 1998) or excessive iterations (Krishnan et al. 1997; Smith and Eppinger 1997a,b) 
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can result in increased development lead time and cost (AitSahlia et al. 1995). Consequently, a 

growing body of CE management models is built to provide insights into the management of 

information, communication, and dependencies among development activities.                                                                                                                                       

CE can be used to either (a) reduce the development time, without explicit consideration of 

product quality/performance issues, or (b) increase the product quality/performance for fixed 

development time. In this paper, we propose a model for improving the understanding of the latter; 

namely, concurrent product development with fixed development times. The goal of this paper is to 

provide insights about optimal strategies to manage coupled tasks that share a fixed amount of 

engineering resources subject to performance and deadline constraints. Tasks are defined as coupled 

when they depend on each other for input information.  

The model developed in this paper is called the performance generation model (PGM) and is 

shown in Figure 1. It represents a hypothetical PD project consisting of two, possibly overlapped, 

design tasks. These tasks (A and B) involve upstream and downstream development in a design 

cycle respectively. The model tracks the degree to which each task adds to the overall performance 

in response to the effort devoted to it. Within the context of our model, performance is defined as a 

measure of the product’s fidelity with respect to its requirements. Two examples of fidelity can be 

the clockspeed of a microprocessor and the number of bugs eliminated from a new software release. 

We assume a simple production function for generating performance: the more time spent working 

on a task, the higher the level of performance that can be achieved; however, a deadline for the 

project has to be met. We assume that each task contributes to the overall performance at a different 

rate and at the same time deteriorates the performance of the other coupled task. Then, the core 

tradeoff is to improve the overall performance by ensuring that neither task creates an unacceptable 

level of performance penalty for the other task. PGM is a tool for strategic assessment of 

concurrency early during the development process. That is, armed with an early assessment of 

performance generation rates, a manager can gain insights into the appropriate execution structure 

in terms of degree of concurrency.  
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The PGM extends prior concurrent engineering models in general and overlapping models 

in particular in two ways. First, we address the problem of improving PD performance subject to an 

imposed deadline. By explicitly accounting for deadlines, the model facilitates a better 

representation of many real development processes where the team is not only challenged with the 

task of developing a new product, but also with meeting the deadline. The deadline can be the 

launch date of a new automobile model (2001 Ford Explorer), the announced software release (MS 

Office 2000) or an intermediate milestone in a stage-gate review process (Cooper 1993).  

A second contribution of the PGM is explicit segregation of PD performance into 

component and system generation (Hoedemaker et al. 1999). Component performance refers to the 

contribution of individual tasks, without regard to the coupling effects. System performance 

measurements allude to the overall performance including the coupling effects. The model yields 

two main results:  

1. We determine the optimal execution strategy for the coupled development tasks that will 

maximize the overall product performance. 

2.  We characterize the solution space for coupled development projects. The coupling is 

manifested by differing rates of component and system performance accrual. These rates are 

used to explore the solution space in terms of dynamic forces affecting concurrent engineering 

practices and to derive conditions when concurrency is a desirable strategy. 

The rest of the paper proceeds as follows. In the next section, we provide taxonomy for CE 

decision problems. Then, we discuss major management science CE models and contrast them 

against our proposed model. In sections 3 and 4, we introduce the PGM assumptions and 

formulation, and derive theorems governing the model behavior. In section 5, we characterize the 

optimal policies for product development management in a deadline environment. In section 6, we 

provide an example from a software development program to illustrate how the performance 

generation parameters are assessed. Managerial insights gained by studying this model are 

presented in section 7. Finally, section 8 presents our conclusion and sets the stage for future 

extensions to the base PGM.  
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2. Related Literature  

 In this section, we propose taxonomy for CE product development decisions based on 

information dependencies and development strategies as shown in Table 1. The information 

dependencies between development tasks constitute the information processing view of the 

development process (Clark and Fujimoto1991). Development activities are classified into three 

types (Eppinger et al. 1994): dependent, interdependent, and coupled. Two tasks are said to be 

dependent if one task depends on the other for input information. On the other hand, if both tasks 

depend on each other for input information, then the two tasks are coupled. Finally, if there is no 

information dependency between both tasks, then they are independent. The execution strategy 

view of the development process determines the development process schedule. Regardless of the 

information structure, two development tasks can be executed sequentially, overlapped, or 

concurrently (Yassine et al. 1999). The sequential execution of two development tasks requires the 

upstream task to be completely finished before the downstream task can be started. In the 

overlapped execution strategy, the upstream task is scheduled to start first and the downstream task 

starts before the completion of the upstream task. Finally, the simultaneous start and finish of both 

tasks characterize the concurrent execution strategy. Each box within this taxonomy can 

accommodate models that either aim to minimize the overall development time or maximize the 

performance subject to a fixed dead line. In the rest of this section, we discuss some of the models 

in this taxonomy that are relevant to our approach. 

 Smith and Eppinger (1997a, 1997b) present two analytical extensions to the design structure 

matrix method (Eppinger et al. 1994). In the first model, they use linear systems theory to identify 

controlling features of iteration in a coupled development process. In the second model, the 

ordering of tasks is manipulated and an expected duration for each task sequence is calculated. 

While both of these models are useful in characterizing the two extreme cases of product 

development (i.e. parallel and sequential iteration) for any number of tasks, they do not model 

intermediate scenarios where overlapping might be more appropriate. The PGM, on the other hand, 
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considers the whole range of execution strategies for the development process (parallel, sequential, 

and overlapping) and provides the optimal execution configuration. 

Krishnan et al. (1997) construct a model for overlapping nominally sequential activities in 

order to reduce development lead time. In their model, the downstream activity begins with 

preliminary upstream information and incorporates subsequent upstream design changes in future 

iterations. They present a framework to determine how to disaggregate design information and 

overlap consecutive stages based on the evolution and sensitivity properties of the information 

exchanged. In contrast, our model assumes a continuous (i.e. without interruption) execution of 

each task, while Krishnan et al. allow for interruptions of the downstream task. In addition, while 

we seek to maximize product performance, Krishnan et al. utilize an objective function to minimize 

lead time. 

Carrascosa et al. (1998) build a Markovian model that explores varying degrees of overlap 

between development tasks while attempting to minimize the development time.  PGM differs from 

their formulation in two ways: it models performance maximization under a deadline constraint and 

it segregates component and system performance generation.     

Ha and Porteus (1995) determine the optimal number of design reviews within a coupled 

development process that minimizes the total lead time. Following this line of work, Loch and 

Terwiesch (1998) argue that the gain from overlapping activities must be weighed against the delay 

from downstream rework to determine the optimal overlapping magnitude and communication 

policy. In addition to the issue of deadline constraint, both of these models differ from ours in 

another important respect. They are concerned with the frequency of information transfer within a 

coupled development process that will minimize lead time, while our model assumes perfect 

communication and is concerned with the choice of the execution strategy which maximizes 

product performance.  

Ahmadi and Wang (1999) develop a model that optimally places design reviews along the 

development process in order to minimize development risk. In addition, the model provides 

optimal resource allocation policies for each design stage. The PGM is similar to Ahmadi et al. in 
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the way they set the development speed in each stage in order to minimize stage risk. Also, they 

address the question of allocating resources for each of the development stages. However, they 

neither allow for overlapping nor consider deadlines in their formulation, both of which are 

included in our model.   

 Cohen et al. (1996) examine the tradeoff between product performance and profit as a 

function of a fixed sales window. More time spent on improving product development performance 

results in lost sales due to fixed sales window. On the other hand, if the product is released 

immaturely, then profit is lost due to unsatisfied customers. The model analysis yields an optimal 

development time that maximizes profit. The Cohen et al. model is similar to the PGM in two 

respects. First, they include the concept of deadlines; however, their focus is on a deadline imposed 

by a marketing window and not a fixed launch date. Second, they utilize a similar production 

function for performance generation. However, their model ignores coupling and overlapping 

between development tasks.  

 There are very few analytical models that explore sequencing strategies for tasks that have 

an independent information structure. Overlapping leads to interesting problems, if one assumes 

that resources are fungible and shared between independent tasks. Repenning (1999) has developed 

a System Dynamics simulation model to address resource allocation between two separate projects, 

while assuming a concurrent execution strategy.    

 

3. Performance Generation Model (PGM) Formulation 

Consider a hypothetical PD project comprising two coupled tasks1 as shown in Figure 1. 

There are two decision variables: SA and SB, the amount of time spent by task A and task B working 

independently, respectively. The development project deadline is assumed to be time T. Thus, the 

amount of time spent while both tasks work concurrently is (T – SA – SB). The goal of the model is 

to maximize the sum of the performance accumulated by both tasks at time T. 

The performance contribution per activity is analogous to a Cobb-Douglas production 

function (Varian 1992). The formulation assumes that the performance of each task improves only 
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by conducting work on it. The coupling or interdependency is modeled by performance 

deterioration in one task due to the rework generated by the other task. For instance, as task A 

conducts some work to improve its own performance, it will generate a fraction (RA) of that work as 

rework for task B, deteriorating B’s performance. Similarly, work on task B degrades task A’s 

performance by a fraction RB. We assume that working on a task improves its own performance and 

it cannot produce more damage to other tasks (by deteriorating their performance) than the amount 

gained in its own performance. Then, the performance deterioration is a fraction less than unity (0 < 

RA, RB < 1). This assumption is analogous to the rework fractions described in the WTM model 

(Smith and Eppinger 1997a). 

The relationship between work and its contribution to performance, assuming linear return 

on labor, is described in Equations 1 and 2.2  

jXRLX BjBAjAj ∀−=
••

,φα                                                      (1) 

jXRLX AjABjBj ∀−−=
••

,)1( αφ                                                   (2) 
Where:                                                                                                                                                                
 A and B denote the tasks 

j denotes the region number/index, j = 1,2,3. Regions are described as follows: 
  j = 1 means that task A is working only 
  j = 2 means that both tasks A and B are working concurrently 
  j = 3 means that task B is working only                                                  

 RA (0 ≤ RA < 1) is the penalty of task A on task B. 
RB (0 ≤ RB < 1) is the penalty of task B on task A. 
L is the maximum amount of available labor resources for the development project3. The 
unit for L is dollars ($)/time. 
 

)(tX Aj and )(tX Bj are the performance achieved by tasks A and B in region j at time t. 
•

AjX and 
•

BjX represent the rate of performance improvement for tasks A and B respectively. 

That is, 
dt

dX
X Aj

Aj =
•

 and 
dt

dX
X Bj

Bj =
•

. 

φ is the fraction of L used for working on task A4. 
for j =1,       φ = 1 
for j = 2,  0< φ <1 
for j =3,       φ = 0 

αAj  and αBj are defined as performance generation rates. Unit for α is performance/$. In 
other words, α is a measure of the productivity for the labor resources devoted to the task. 
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Notice that since φ = 1 in region 1 and φ = 0 in region 3, then the performance contribution 

from αB1 and αA3 is irrelevant to the solution of the problem. Hence, there are only 7 input 

parameters; namely, αA1, αA2, αB2, αB3, φ, RA, and RB. The following table summarizes the 

performance generation contribution of upstream and downstream tasks at system level. 

The overall product performance for a given region j is:  

j

finaljt

initialjt

dttBjXtAjX ∀












 •
+

•

∫ ,

)(

)(

)()(

                                                      (3) 

Where (tj)initial and (tj)final are the start and finish times for region j.  

Rewriting Equation (3) over the whole development process (i.e. from time 0 to T) results in: 

    AjBjBAjAj ctRLtX +−−= ])1([)( αφφα                                               (4) 

    BjAjABjBj ctRLtX +−−= ])1[()( αφαφ                                                (5) 

The constants ijc are determined by the boundary conditions of the three different regions (j=1,2,3)5. 

This yields the following expressions for XA3(T) and XB3(T), the performance of tasks A and B by 

time T: 

XA3(T) = L{αA1SA + [φαA2 - (1-φ)RBαB2] (T-SA-SB) + (-RBαB3)SB}               (6) 
XB3(T) = L{-RAαA1SA + [(1-φ)αB2 – φRAαA2](T-SA-SB) + αB3 SB}                 (7) 

 
The objective function Max.{XA3(T) + XB3(T)} becomes: 

BA SS
Max

,
L{αA1(1-RA) SA + [φαA2(1-RA)+(1-φ)αB2(1-RB)] (T-SA-SB) + αB3(1-RB) SB}      (8) 

       s.t.        XA1(0) = 0                                                                 (8a) 
     XB1(0) = 0                                                                (8b) 
     XA3(T) ≥ 0                                                                (8c) 
     XB3(T) ≥ 0                                                                (8d) 
     SA+SB≤ T                                                                (8e) 

 

The objective function (8) maximizes the overall project performance. Constraints (8a) and 

(8b) are the initial starting conditions of the development process where no performance has been 

accumulated by either task. The non-negativity constraints (8c) and (8d) guarantee that an optimal 
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solution by the deadline (T) will only include situations where both tasks complete all required 

rework. If either constraint is binding at the optimal solution, then the task has performed just 

enough work to raise its performance to the minimum acceptable level of zero6. Finally, constraint 

(8e) reflects the project deadline. 

 

4. Analysis of the Optimal Policies 

Instead of exploring the gradients of the objective function, we choose to present a sequence 

of arguments that exploit the properties of the 7-tuple input parameters (αA1, αA2, αB2, αB3, φ, RA, 

and RB). In doing so, we derive the expressions for the optimal values of the decision variables, SA 

and SB, in terms of the 7-tuple input parameters. The proof proceeds in the following sequence. We 

first derive the optimal values for SA and SB for all possible execution strategies. Then we derive 

conditions under which each of these strategies is optimal. We complete our proof by showing that 

these conditions cover an exhaustive map of all the values that the input parameters can assume. 

These optimal choices map into a solution space representing the selection of sequential, 

overlapping or concurrent development strategies, as shown in the legend of Figure 3. 

In the rest of this section, we will state all the lemmas, theorems, and corollaries. All proofs 

are provided in the Appendix. 

Lemma 1: If RA,RB <1, then overall project performance is a non-decreasing function in time. 

Theorem 1: When one schedules two coupled tasks with respect to a non-decreasing performance 

measure, it is not necessary to consider schedules which involve idle time. 

Lemma 27: (the See-Saw rule): Given a pair of adjusted performance generation rates [φαAj(1-RA)] 

and [(1-φ)αBj(1-RB)], it is always optimal to perform work on the task with the largest adjusted 

performance generation rate, if constraint (8c and 8d) are not violated. 

Theorem 2: If the sequential strategy is optimal, the corresponding solution for S*
A is bounded by: 

   T

R B
B

A
B

3
1

3

α
α

α

+
 ≤ S*

A ≤ T
R BAA

B

31

3
αα

α
+

                                             (9) 
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Corollary 2.1: If αA1 < αB3, then S*
A takes the lower bound in (9). 

Corollary 2.2: If αA1 > αB3, then S*
A takes the upper bound in (9). 

Corollary 2.3: If αA1 = αB3, then S*
A takes any value between the bounds in (9). 

Theorem 3: If the overlap strategy is optimal and S*
A = 0, then the corresponding solution for S*

B is 

bounded by: T
R

R

BAAB

BAA

223

22

)1(
)1(

αφφαα
αφφα

−−+
−−

 ≤ S*
B ≤ T

RR
R

BBABB

BBA

223

22

)1(
)1(

αφφαα
αφφα

−−+
−−

                   (10) 

Theorem 4: If the overlap strategy is optimal and S*
B =0, then the corresponding solution for S*

A is 

bounded by:     T
R

R

ABBA

ABB

221

22

)1(
)1(

φααφα
φααφ
−−+

−−
 ≤ S*

A ≤ T
RR

R

AABAA

AAB

221

22

)1(
)1(

φααφα
φααφ
−−+

−−
                (11) 

In order to explore the optimality conditions, we rewrite Equations (6) and (7) combined 

with constraints (8c) and (8d) while collecting terms for the decision variables SA and SB: 
F1 SA – F2 SB + B1 T   ≥  0                                                (12) 
F3 SB – F4 SA + B2 T  ≥  0                                                (13) 

 
Where: F1 = αA1 - φαA2 + (1-φ)RBαB2 
 F2 = φαA2 - (1-φ)RBαB2 + RBαB3 
 F3 = αB3 - (1-φ)αB2 + φRAαA2 
 F4 = RAαA1 + (1-φ)αB2 - φRAαA2 
 B1 = φαA2 – (1-φ)RBαB2 
 B2 = (1-φ)αB2 - φRAαA2 
 

In effect, we transform the 7-tuple input parameters into another set of four composite 

parameters (F1, F2, F3, and F4) which account for interactions between the original input 

parameters8. In the rest of the paper we will exclusively deal with these transformed parameters in 

order to characterize the optimal solution space. The transformed parameters are called performance 

generation coefficients and are interpreted in Section 5.4. 

Lemma 3a: While maximizing the performance of task A, with F1 > 0 and F3 ≤ 0, a comparison of 

the generation coefficients F1 and F4 determines whether task A should overlap with task B.  

Lemma 3b: While maximizing the performance of task B, with F1 > 0 and F3 ≤ 0, a comparison of 

the generation coefficients F2 and F3 determines whether task A should overlap with task B.  
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Theorem 5: Tree shown in Figures 2 provide an exhaustive mapping of conditions for optimal 

solution based on all possible values of the transformed input parameters: F1, F2, F3, and F4. 

Corollary 5.1: Policies outside the region ABCODA (in Figure 4) are either infeasible or result in 

sub-optimal performance. 

 

5. Discussion 

  The discussion is structured in four parts. First, we provide a characterization of the optimal 

decision space as it appears in Figure 3. Next, we discuss the sensitivity of the optimal solution to 

resource allocation policy. Then, we discuss the dynamics of concurrency in the context of our 

model. Finally, we provide an intuitive interpretation for the generation coefficients and the role 

they play in determining the optimal solution. 

 

5.1 Characterization of the Optimal Decision Space 

We start by mapping the solutions for every possible value of the 7-tuple inputs into a 

decision space for optimal SA and SB as shown in Figure 3. The perimeter of polygon ABCODA 

provides a graphical representation for the set of all optimal solutions as a function of the decision 

variables SA and SB. The area above line AB represents a space where the schedules involve idle 

time. Theorem 1 shows that the optimal solution need not consider schedules with idle time. 

Consequently, optimal solutions lie on or below line AB. Furthermore, line AB represents the locus 

of points where the choice of SA and SB result in a sequential strategy according to Theorem 5.  

Coordinates for points A and B are derived in Theorem 2 and its corollaries. Theorem 3 and its 

corollaries provide the coordinates for Point C. Existence of a concurrent strategy, as represented by 

point O, is provided by Theorem 5. The condition for existence of optimal overlapping policy, as 

shown along line CO is given by Theorem 5. Similarly, Theorem 5 together with Theorem 4 shows 

the existence of point D as another optimal overlapping strategy. Finally, the tree analysis given in 

Figure 2 confirms that no optimal solution exists in the interior of the region ABCODA. Using the 

See-Saw Lemma, the optimal solution will lie at one of the corner points of the polygon ABCODA 
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as long as the adjusted performance generation coefficients [φαAj(1-RA) and (1- φ) αBj(1-RB)] are 

not equal. If these coefficients are equal, and the sequential strategy is optimal, then any policy that 

lies along the edge AB will lead to maximum performance. Similarly, if they are equal and partial 

overlapping is optimal, then any policy that lies along the edge COD will lead to maximum 

performance. 

Starting at point A and moving around ABCODA clockwise, the reader may follow the duration of 

task A (represented by the shaded rectangle in the icon next to each point). Notice that task A’s 

duration increases as the solution moves towards point B along line AB, and consequently the 

duration of task B is reduced by an equal amount. If the solution moves beyond point B (i.e. 

towards point C’) to increase task A’s duration further, then this violate the non-negativity 

constraint (Equation 9d). Therefore, no feasible solutions fall on line BC’. In order to increase the 

duration of task A further beyond point B, we need to compensate for that by simultaneously 

increasing the duration of task B. Thus, the solution moves from point B to point C along line BC. 

Point C represents the “Late Overlapping” strategy. The solutions along line CO are characterized 

by working on task A all the time (i.e. from time 0 until the deadline). However, the duration of task 

B increases as the solution moves from point C towards point O. When point O is reached, both 

tasks work concurrently. The reverse explanation holds when the solution moves from point O to 

point A along edge ODA. 

 

5.2 Sensitivity of the Optimal Solution Space to Resource Allocation Policy  

Assuming that labor resources are fungible in region 2, we can look at the impact of 

changing the resource allocation (φ) during overlap of tasks A and B by further exploring the delta 

wing shaped polygon (ABCODA), as shown in Figure 3. Note that φ is irrelevant on line AB. 

Furthermore, edge AD of the delta wing represents the locus of all optimal solutions when XA3(T) 

=0. Similarly, edge BC represents the locus of all optimal solutions when XB3(T) =0. Reducing φ 

collapses the delta wing by shifting the location of lines BC and AD towards the origin O while 

changing their original slopes as they move inward9. Finally, the leading edge of the delta wing 
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(DOC) represents the line of constant product performance derived by changing φ, such that the 

optimal solution moves from XA3(T) = 0 (at point D) to XB3(T) = 0 (at point C). 

5.3 Dynamics of Concurrency 

The generation coefficients, Fi, may also be used to describe composite forces10 that drive 

the solution within the optimal decision space as shown in Figure 4. Notice that a positive force in 

the direction A to B moves the optimal solution towards a larger SA and smaller SB . Similarly, for a 

fixed ratio (SA/SB), a positive force in the direction O to O’ moves the optimal point towards 

sequential strategy, and a negative force moves the optimal solution towards concurrency.   

Examining the tree logic given in Figure 2, we observe that the interaction between the four 

composite forces determines the location of the optimal solution. These forces are: F1, F3, (F1 – F4),  

and (F3 – F2). For instance, the bold arrows in Figure 4 depict the resultant force leading towards a 

concurrent scenario when  [F1> 0 ,  F3 > 0, (F1 – F4)  < 0  and (F3 – F2) < 0] .  It is sufficient to know 

the direction in which the resultant points, because based on the discussion in the previous section 

we have established that the optimal solution will lie on the corner point of the polygon ABCODA. 

These forces can be used to visualize the dynamics of concurrency in the following sense:  if one or 

more of the 7-tupple input parameters are changed from a base setting, then one can compute the 

new generation coefficients, Fi, and use the new composite forces to establish the direction in which 

the optimal solution will shift. 

 

5.4 Component and System Performance Generation 

In this section, we discuss performance generation in terms of the generation coefficients. 

Recall that we have defined performance generation as the rate at which performance is improved 

by conducting work. Our performance generation construct is analogous to the definition of PD 

evolution in the literature (Krishnan et al. 1997). However, we distinguish between two different 

types of performance generations: component and system. Recall that component performance 

refers to the contribution of individual tasks without regard to the coupling effects. The system 
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performance is a result of combining component performance and associated rework while 

accounting for the degree of overlap between upstream and downstream tasks. Thus, managers need 

to distinguish between upstream and down stream component and system performance generation. 

Component performance generation: For the upstream task, component performance generation is 

labeled as fast if a higher rate of performance accumulation is attained in region 1 as compared to 

region 2. Alternatively, if the upstream task has a higher rate in region 2, then we refer to it as slow. 

According to this definition, F1 > 0 represents fast upstream component performance generation11. 

Similarly, F1 < 0 represents slow upstream component performance generation.  

For the downstream task, slow generation is characterized by a slower performance 

accumulation rate in region 2 (compared to region 3) and fast generation occurs when the 

performance accumulation rate in region 2 is bigger than that of region 3. The performance 

generation of the downstream task is also determined by inspecting F3. If F3 > 0, then the 

downstream component has a slow rate of performance generation12. Conversely, a downstream 

component has a fast rate of performance generation when F3 < 0. 

System performance generation: At the system level, the upstream performance generation is 

labeled as slow if the overall (i.e. project or system) performance accumulation rate in region 1 is 

smaller than that of region 2. The overall performance is measured not only by how much the 

upstream task gains through conducting work (i.e. component performance generation), but also by 

how much the downstream task loses in this process. Slow system performance generation for the 

upstream task is characterized by (F1 –F4) < 0. Alternatively, the upstream task exhibits fast system 

performance generation when (F1 –F4) > 0.  

 Downstream system performance generation is labeled as slow when the overall 

performance gain in region 2 is smaller than that of region 3. It is labeled as fast when the reverse is 

true. The condition for a slow downstream system performance generation is (F3 –F2) > 0 and for 

fast system performance generation is (F3 –F2) < 0. 
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6. Assessment of Component and System Performance Generation 

The following section describes a subjective assessment of the component and system 

performance generation. Component generation coefficients are assessed by interviewing domain 

experts. Generally, component expertise resides locally within an engineering team. System 

generation coefficients are assessed by interviewing system experts. Generally, system expertise 

resides with system architects, managers overlooking the overall development, and /or system 

integration and test teams.  Recent literature on subjective interviews of product development 

projects suggests that different generation rates have been ascribed to tasks by different experts, 

based on their vantage point within the development process (Ford and Sterman 1998). 

We illustrate the assessment process using an example from a software development project. 

Relevant data are gathered by circulating a survey instrument (see Figure 5) to individuals 

responsible for coding, system architecture, and program management. 

Our subject Softex (a fictitious company name) is in the business of developing e-commerce 

solutions that integrate legacy systems and processes across multiple companies into a unified 

digital marketplace. Their development process involves the integration of off-the-shelf e-

commerce system with custom-developed software components. The example does not reflect the 

specific details of the project, but represents a ‘typical and plausible’ representation of the actual 

performance generation rates.  

The product specification involves about 10,000 function points, representing a moderate to 

high degree of development complexity, and requires task coordination among more than 25 

developers. Developers are quite sophisticated in process management. They hold a level V rating 

based on the Systems Engineering Capability Maturity Model®. It is a standard practice at Softex to 

build a system level behavioral model of the product at the very beginning of the project using the 

Unified Modeling Language. This modeling exercise yields preferred data models, use models, and 

interaction diagrams. These artifacts provide a clear sense of the level of coupling, and performance 

penalties among various local team tasks and their contribution to system performance. These data 

are the basis for the subject’s response to the assessment questionnaire. 
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For instance, in a segment of the project that deals with the integration of the web front-end 

with the legacy back end, teams establish relative shapes for the generation functions as depicted by 

Figure 5.  Code developers within individual teams, in this case team A (Web Front-End) and team 

B (Legacy Back-End), are asked to assess performance generation. The context in which teams 

assess performance generation relates to their own performance when they are working by 

themselves or in conjunction with the other team. Individual teams know if the joint work actually 

speeds up or slows down their own progress. However, teams do not know how much rework they 

create for each other. Interviews with system managers reveal the impact of rework on the relative 

progress. For instance, slow or fast shapes for component performance generation are captured by 

asking team A to pick either shape A1 or shape A2 as shown in Figure 5(a).  Team B is asked to 

select either B1 or B2 in Figure 5(b).  

If these teams pick the combinations A1-B1 or A2-B2, then there is no ambiguity in terms of 

the preferred execution strategy i.e. they both wish to either work together or work separately. 

However, if the component teams select combinations A1-B2 or A2-B1, then there exists a conflict 

between team A and B’s desired development sequence. In these situations, the system architect 

answers the question: what is the rate of system performance accrual for the upstream and the 

downstream component respectively, while accounting for the coupling effects. Figure 5 (c and d) 

captures the choices available to system architect: SU1 (Upstream is fast) or SU2 (Upstream is 

slow) and  SD1 (Downstream is fast) or SD2 (Downstream is slow). In the case, data indicated that 

the A1-B1 scenario governed the development process.  

The example shows that an assessment of the performance generation rates is possible for 

the purpose of applying the PGM. Field observations at Softex confirm that measurement of 

performance generation coefficients, especially early in the development process, are imprecise. 

These observations are consistent with the fuzzy nature of the front end during product development 

(Khurana and Rosenthal 1997). Given the nature of these data, a strategic model to provide early 

insights about the structure of the process is managerially more relevant than a tactical/operational 

model. A framework for informing managerial decisions based on the rates of performance 
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generation is presented in the next section. We will utilize the assessments described here to 

illustrate the use of the framework. 

 

7. Managerial Implications  

In order to facilitate managerial utility of the PGM, we have transformed the optimal 

decision trees into a conceptual framework as shown in Figure 6. This framework is built around the 

concept of performance generation, both at the component and at the system level. Managers can 

utilize the generation coefficients within the framework to structure the development process (i.e. 

choice of a sequential, concurrent, or overlapped process). 

The subjective assessment of the generation coefficients described in the previous section is 

needed for utilizing this framework. Comparison of component and system performance 

generations yields the following four cases: 

Case 1: When the component performance generation for task A is slow (F1 ≤ 0), and 

component performance generation for task B is fast (F3 ≤ 0), a concurrent strategy is optimal. The 

rationale underlying this strategy can be explained as follows: the upstream task contributes less in 

region 1 than it does in region 2, and the downstream task contributes more in region 2 than in 

region 3, therefore it is optimal to conduct all the work in region 2. 

Case 2: When the component performance generation for task A is fast (F1 > 0), and 

component performance generation for task B is slow (F3 > 0), a sequential strategy is optimal. The 

rationale underlying this strategy is exactly the reverse of case 1. Both activities accumulate more 

performance independently than when they are concurrent; therefore, it is optimal not to conduct 

any work in region 2.  

Case 3: When the component performance generation for task A is fast (F1 > 0) and 

component performance generation for task B is also fast (F3 < 0), then we need to check the system 

performance generations for these tasks. If the system performance generation for the upstream task 

(A) is slow (i.e. F1 – F4 < 0) and the system performance generation for the downstream task (B) is 

fast (i.e. F3 – F2 < 0), then the concurrent strategy is optimal. In this case, the feedback during 
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overlapping increases the performance of both tasks relative to the situation where they work 

independently. If the situation is reversed (i.e. upstream system performance generation is fast and 

downstream system performance generation is slow), then conducting work in parallel decreases the 

rate of performance generation for both tasks, compared to working independently, and the 

sequential strategy becomes optimal. Finally, if only one task benefits from the feedback during 

overlapping (i.e. does better by conducting work in parallel with the other task as compared to when 

working independently), then either early or late overlapping results in the optimal strategy. Late 

overlapping is optimal when both system performance generations are fast, while early overlapping 

is optimal when both system performance generations are slow.  

 Case 4: Follows precisely the same rationale described in case 3. 

          Drawing on the stylistic assessments from the previous section to illustrate the use of the 

framework, recall that the two teams from Softex picked scenario A1 and B1. This implies that the 

upstream component generation is fast, and the downstream component generation is slow. Thus, it 

is best that the teams work in a sequential manner. This development structure is possible because 

the product architecture (i.e. work flow and data structure) for the web interface and the legacy 

system has minimized the impact of the coupling effect.   

We asked the project architect at Softex about the use of the framework in more general 

settings.  In the architect’s view, the process of ex-ante performance generation assessments allows 

the development team to compare and contrast assumptions about the relative rates of performance 

accrual and coupling penalties. In some instances when the developers pick either A1-B2 or B2-A1 

as their scenario, there is a conflict between the upstream and downstream team preferences. The 

architect is then called upon to review the interaction diagrams and decide on the overall sequence 

based on the system performance requirements.  

 

8. Conclusion 

The tradeoff captured in this model allows for the optimization of development resources (as 

represented by the choice of SA and SB), with the goal of maximizing project performance.  The 
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PGM enriches PD literature by a new model that does not limit itself with time minimization 

concerns. It models resource constraints more realistically than the literature that postulates that 

more concurrency is better without considering resources. Moreover, our observations in an 

industrial setting show that the model provides process management insights and helps managers 

structure the PD process even with imprecise inputs, especially early in the development process. 

We have kept the model sparse to gain clear managerial insights using a small number of 

parameters and assumptions. Our core assumptions, namely fixed dead lines, interactions through a 

two-way information exchange, rework, and minimal performance thresholds for individual 

components, are valid in a vast majority of product development projects. It is also instructive to 

point out that some of the managerial insights from PGM (e.g. the need for concurrency under 

certain settings) duplicate results generated by fundamentally different models aimed at minimizing 

development time (Loch and Terwiesch 1998; Carrascosa et al. 1998; Ahmadi and Wang 1999; and 

Hoedemaker et al. 1999).  

Discussions with the architect at Softex exposed some limitations of the PGM model. 

Product development teams have multiple tasks within a single project and have to run multiple 

projects simultaneously. While the generic results shown by the PGM framework are viewed to be 

logical, management is concerned with applying these insights in settings where resource levels 

might not be fixed. Management at Softex has expressed interest in further exploration of the 

resource allocation issue in such settings. 
The PGM can be extended in several ways. One might view task A as the amount of product 

performance that is being provided by a supplier  and task B as the amount of work being done by a 

principal. Thus, the PGM model provides a platform for optimal information exchange between the 

principal and the supplier such that the product performance is maximized. It is also possible to 

extend the results through the lens of game theory with respect to two divisions of a firms that are 

responsible for components A and B (Lewis and Mistree 1998). In another extension, A and B can 

be viewed as two consecutive product development processes whose completions are subject to a 
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periodic deadline (Repenning 1999), as shown in the taxonomy of Table 1. In this scenario φ, the 

resource allocation fraction, will be an explicit decision variable. Then, resource constraints in the 

PGM can be re-interpreted while associating different costs to tasks and the problem can be 

examined as a margin maximization exercise.  

In summary, the key managerial insight from this model is that concurrent engineering need 

not be the optimal work strategy in many settings. Managers must consider the information 

exchanges, rework issues, performance thresholds, and resource restrictions while structuring their 

development projects. This result is contrary to the conventional wisdom that recommends use of 

task concurrency (Lawson and Karandikar 1994). The genesis of this counter-intuitive result lies in 

the tradeoff between the gain in project performance due to working on a task weighed against 

performance deterioration caused by the other coupled task. Further, we have developed a decision 

space for executing two coupled development tasks and established the dynamics of the sequential / 

concurrent / overlapping strategies. On one hand, our decision space allows an explanation of the 

forces that play a leading role in driving the optimal strategy towards full concurrent engineering. 

On the other hand, we show what forces prevent the system to drift towards that point of full 

concurrency. In doing so, we provide managers with a tool to control the degree of concurrency in 

the process by examining the rates of performance generation.13  

Appendix - Proofs 

Lemma 1: If RA ,RB <1, then overall project performance is a non-decreasing function in time. 

Proof:  The overall performance of the project in the 3 regions is given in table 2. Looking at the 

overall performance, it is evident that if RA and RB <1, then all the terms are positive. Therefore the 

overall performance of the project is non-decreasing. � 

Theorem 1: When one schedules two coupled tasks with respect to a non-decreasing performance 

measure, it is not necessary to consider schedules which involve idle time. 
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Proof: Consider a schedule S without idle time. Assume that we have inserted idle time within the 

interval [0,T] of S; namely, from time t1 to t2 (0 ≤ t1 < t2 ≤ T). Call this schedule S’. S’ can take 3 

different forms based on the values of t1 and t2. 

Case 1 (t1 = 0): If we transform the time axis from 0 to t2, then by Lemma 1 the performance level 

achieved at time t (in S’) is less than the performance level achieved at time t < T (in S). 

Case 2 (t2 = T): Assume we have an optimal schedule for 0 ≤ t ≤ t1. This schedule can be stretched 

by multiplying each segment of S’ by factor (T-t1)/t1. This new schedule will result in greater 

performance level using Lemma 1. 

Case 3 (0 < t1 < t2 < T): Under any of the three execution strategies, it is clear that the performance 

of S is more than or equal to the performance of S’ due to Lemma 1. Therefore, it is sufficient to 

only consider schedules similar to S in that they do not contain any period of inserted idle time. �                              

Lemma 2: (the See-Saw rule): Given a pair of adjusted performance generation rate [φαAj(1-RA)] 

and [(1-φ)αBj(1-RB)], it is always optimal to perform work on the task with the largest adjusted 

performance generation rate, if constraint (8c and 8d) are not violated. 

Proof: Since φαAj(1-RA)  > 0 and (1-φ)αBj(1-RB)  > 0 and the objective function (Equation 8) is a 

linear combination of αij(1-Ri), it is always better to work on the task associated with the largest 

adjusted performance generation efficient for every j (j = 1, 2, 3). � 

Theorem 2: If the sequential strategy is optimal, the corresponding solution for S*
A is bounded by: 

   T
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31
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αα

α
+

                                        (9) 

Proof:  Lower bound: XA3(T) ≥ 0 ⇒ αA1 SA  ≥ RB αB3 (T- SA) 

 Upper bound: XB3(T) ≥ 0 ⇒ RA αA1 SA ≤ αB3 (T- SA) � 

Corollary 2.1: If αA1 < αB3, then S*
A takes the lower bound in (9) 

Corollary 2.2: If αA1 > αB3, then S*
A takes the upper bound in (9) 
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Corollary 2.3: If αA1 = αB3, then S*
A takes any value between the bounds in (9) 

Proof: All above corollaries are true using Lemma 2. � 

Theorem 3: If the overlap strategy is optimal and S*
A = 0, then the corresponding solution for S*

B is 

bounded by: T
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Proof:  Lower bound: XA3(T) ≥ 0 ⇒{φαA2 -(1-φ) RB αB2}(T-SB) ≥ RB αB3 SB 

 Upper bound: XB3(T) ≥ 0  ⇒{(1-φ)αB2 -φ RA αA2}(T-SB) ≥ αB3 SB � 

Theorem 4: If the overlap strategy is optimal and S*
B =0, then the corresponding solution for S*

A is 

bounded by: T
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Proof: Similar to the proof for Theorem 3. 

Lemma 3a: While maximizing the performance of task A, with F1 > 0 and F3 ≤ 0, a comparison of 

the generation coefficients F1 and F4 determines whether task A should overlap with task B. 

Proof:  Assume that (F1 > 0) and (F3 ≤ 0). This means that task A prefers to work independently 

and task B prefers to work concurrently. Therefore, in order to decide the choice of region for 

accumulating the performance of A, a comparison between the performance gain while working 

independently and the performance gain while working concurrently is necessary. Table 3 describes 

the performance contribution of Tasks A & B in regions 1 and 2.  

Region (j) 1 2 
Perf. (task A) αA1 [φαA2-(1-φ)αB2RB]  
Perf. (task B) -αA1 RA  [(1-φ)αB2-φαA2RA]  

Table 3: Performance Contribution of Tasks A and B in Regions 1 and 2 

F1= [αA1 - φαA2 + (1-φ)RBαB2] and F4= [RAαA1 + (1-φ)αB2 - φRAαA2] describe the performance gain 

of task A (working independently) and task B (working concurrently) respectively. Therefore, if 
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(F1-F4 > 0), then task A in the independent mode contributes more to the overall project 

performance than task B in the concurrent mode. �                                                              

Lemma 3b: While maximizing the performance of task B, With F1 > 0 and F3 ≤ 0, a comparison of 

the generation coefficients F2 and F3 determines whether task A should overlap with task B. 

Proof:  Follows an argument similar to Lemma 3a. 

Theorem 5: Tree shown in Figures 2 provide an exhaustive mapping of conditions for optimal 

solution based on all possible values of the transformed input parameters: F1, F2, F3, and F4.  

Proof: If F1 > 0, then task A when working independently creates more performance than when it is 

working concurrently with task B. In addition, if F3 > 0, then task B also produces more 

performance when working independently as to when it is working concurrently with task A.  

Thus, when F1 > 0 and F3 > 0, a “Sequential” strategy depicted by the extreme left branches of the 

tree in Figure 2 is optimal.  

The scenario F1 > 0 and F3 ≤ 0, refers to instances where task A produces more performance when 

working independently and task B produces more performance when working concurrently with A. 

We invoke Lemma 3 to point out that: 

(i) When F2 ≤ F3, regions 1, 2, and 3 are all required to maximize performance. Hence an 

overlapping strategy is optimal.  

(ii) When F1 > F4 and F2 > F3, region 2 will generate more performance than either region 1 or 

region 2, and hence a concurrent strategy is optimal. 

(iii) When F1 ≤ F4 and F2 > F3, region 2 will generate less performance than either region 1 or 

region 2, a sequential strategy is optimal. 
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Existence of optimal choices in Figure 2, when F3 > 0, follows similar arguments.� 

Corollary 5.1: Policies outside the region ABCODA (in Figure 3) are either infeasible or sub-

optimal performance. 

Proof: The tree shown in Figure 2 provides an exhaustive mapping of the solutions bounded by the 

space ABCODA in figure 3. According to theorem 1, the regions above line AB will lead to sub-

optimal performance. The Triangular regions CBC’ and DAD’ lead to infeasible solutions, because 

the non-negativity constraints (8c) and (8d) are violated in those regions. � 

References 

Ahmadi, R., R. H. Wang. 1999. Managing Development Risk in Product Design Processes. 

Operations Research 47(2) 235-246. 

AitSahlia, F., E. Johnson, P. Will. 1995. Is Concurrent Engineering Always a Sensible Proposition? 

IEEE Trans. on Engineering Management 42(2) 166-170. 

Brown, S., K. Eisenhardt. 1995. Product Development: Past Research, Present Findings, and Future 

Directions. Academy of Management Review 20(2) 343-378. 

Carrascosa, M., S.D. Eppinger, D.E. Whitney. 1998. Using the Design Structure Matrix to Estimate 

Time to Market in a Product Development Process. ASME Design Automation Conference, 

Atlanta 98-6013. 

Clark, K., T. Fujimoto. 1991. Product Development Performance: Strategy, Organization, and 

Management in the World Auto Industry. Harvard Business School Press, Boston. 

Cohen, M. A., J. Eliashberg, T. Ho. 1996. New Product Development: The Performance and Time-

to-Market Tradeoff. Management Science 42(2), 173-186. 

Eppinger, S. D., D.E. Whitney, R.P. Smith, D. Gebala. 1994. A Model-Based Method for 

Organizing Tasks in Product Development. Res. Eng. Design  6(1), 1-13. 

Ford, D. N., J. D. Sterman. 1998. Expert Knowledge Elicitation to Improve Formal and Mental 

Models. System Dynamics Review 14 (4) 309-340. 



 25

Finger, S., J. Dixon. 1989. A Review of Research in Mechanical Engineering Design: Part I: 

Descriptive, Prescriptive, and Computer-Based Models of Design Processes. Res. Eng. Design 

1(1) 51-67. 

Griffin, A. 1996. The Impact of Engineering Design tools on new Product Development Efficiency 

and Effectiveness. Proceedings of the Third EIASM International Product Development 

Conference Fontainebleau, France, 363-380.  

Ha, A.Y., E. L. Porteus. 1995. Optimal Timing of Reviews in Concurrent Design for 

Manufacturability. Management Science 41(9) 1431-1447. 

Hoedemaker, G., J. Blackburn,  L. Van Wassenhove, 1999,  Limits to Concurrency, Decision 

Sciences 30(1) 1-18. 

Khurana, A., S. R. Rosenthal. 1997. Integrating the Fuzzy Front End of New Product Development. 

Sloan Management Review 38(2). 

Krishnan, V., K. Ulrich. 2001. Product Development Decisions: A Review of the Literature. 

Management Science 47(1) 1-21. 

Krishnan, V., S.D. Eppinger, D.E. Whitney. 1997.  Model-Based Framework to Overlap Product 

Development Activities, Management Science 43(4), 437-451. 

Lawson, M., H. Karandikar. 1994. A Survey of Concurrent Engineering. Concurrent Engineering: 

Research and Applications 2 1-6. 

Lewis, K., F. Mistree, 1998. Collaborative, Sequential, and Isolated Decisions in Design. ASME 

Journal of Mechanical Design, 120 (Dec). 

Loch, C., C. Terwiesch. 1998. Communication and Uncertainty in Concurrent Engineering. 

Management Science 44(8) 1032-1048. 

Repenning, N.P. 1999. A Dynamic Model of Resource Allocation in Multi-Project Research and 

Development Systems. MIT Sloan School working paper. 

Smith, R.P., S.D. Eppinger. 1997a. Identifying Controlling Features of Engineering Design 

Iteration. Management Science 43(3) 276-293. 



 26

Smith, R.P., S.D. Eppinger. 1997b. A Predictive Model of Sequential Iteration in Engineering 

Design. Management Science 43(8) 1104-1120. 

Smith, R.P., J. Morrow. 1999. Product Development Process Modeling," Des. Studies 20 237-261. 

Terwiesch, C., C. H. Loch. 1999. Measuring the Effectiveness of Overlapping Development 

Activities. Management Science 45(4) 455-465. 

Varian, H.R. 1992 Microeconomic Analysis W. W. Norton & Company, New York. 

Wheelwright, S.C., K.B. Clark. 1992. Revolutionizing Product Development. Free Press, New York. 

Wind, J., V. Mahajan. 1997. Issues and Opportunities in New Product Development: An 

Introduction to the Special Issue. Journal of Marketing Research 34 (Feb) 1-12. 

Yassine, A., K. Chelst, D. Falkenburg. 1999. A Decision Analytic Framework for Evaluating 

Concurrent Engineering," IEEE Transactions on Engineering Management 46 (2) 144-157. 
 

 
Table 1: Taxonomy of PD execution related decision problems  

 
 
 
 
 
 
 
 

Dependent Independent Coupled

Krishnan et al. (1997)        
Loch & Terwiesch (1997) *

Smith & Eppinger (1997a)       
Loch & Terwiesch; Ha & Porteus

Cohen et al (1996)     
Ahmadi & Wang (1999)  * PGM

Krishnan et al (1997)        
Loch & Terwiesch (1997) * Loch & Terwiesch (1997)

* PGM

Carrascosa et al. (1998) * Smith & Eppinger (1997b)

Repenning 
(1999)

PGM

Legend

Minimize Lead Time
Maximize Performance

*  Irrelevant, unless resource constraints are considered

Information Structure

Sequential

Overlap

Concurrent
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Region (j) 1 2 3 
Bounds on time t 0 ≤ t < SA SA ≤ t < (T-SB) (T-SB) ≤ t ≤ T 
Performance of A  αA1 t [φαA2-(1-φ)αB2RB]t -αB3RB t 
Performance of  B  -αA1 RA t [(1-φ)αB2-φαA2RA]t αB3 t 

Overall System 
Performance 

αA1(1-RA) t [φαA2(1-RA)+ αB2(1-φ )(1-RB)]t αB3 (1-RB) t 

Table 2: Summary of performance generation functions by region 
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Figure 1: PGM showing component and system performance generation 
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(a) Upstream (Team A) View of Component Performance Accrual (Select One):                   
           

 
(A1) A Works Alone     Both A&B Work     (A2) A Works Alone    Both A&B Work 
 
(b) Downstream (Team B) View of Component Performance Accrual (Select One): 
 

 
 (B1) Both A&B Work  B Works Alone        (B2) Both A&B Work     B Works Alone  
 
(c) Architect’s View of Upstream System Performance accrual*  (Select one): 
 

           
(SU1) A Works Alone     Both A&B Work    (SU2) A Works Alone  Both A&B Work 
 
(d) Architect’s View of Downstream System Performance Accrual* (Select one): 
 
 

 
(SD1) Both A&B Work  B Works Alone       (SD2) Both A&B Work  B Works Alone 

Figure 5: Assessment of performance generation  
(In each box, the x-axis depicts elapsed time and y-axis is performance)  
*Architect’s View required only if the teams have picked either A1–B1 or A2-B2 

Figure 6: Optimal strategies based on the generation coefficients
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End Notes 
                                                                 
1 We define the upstream task to be task A and the downstream task to be task B, without loss of 

generality.  

2 We have presented the formulation with β  =1 (where β  is the return to scale on labor), for ease of 

exposition. The core formulation remains the same for a generic Cobb-Douglas function expect for 

substituting L by Lβ, φ by φβ and (1-φ) by (1-φ)β. These substitutions do not affect any of the results 

in section 4 in terms of the existence of optimal decision space. The model insights are valid for any 

value of β . 

3 Since 
•
ijX is strictly increasing in L, we will always use all of the available resources at any time 

during the development process. 

4 We will assume that φ is constant. This implies that the labor resource allocation during 

overlapping (i.e. region 2) is not fungible between tasks A and B. Later, we will explore the 

sensitivity of the optimal solution to alternate resource allocation policies.  

5 0)0(1 =AX , 0)0(1 =BX  

)0()( 21 AAA XSX = , )0()( 21 BAB XSX =  

)0()( 32 ABA XSTX =− , )0()( 32 BBB XSTX =−  

6 The model will work for any threshold.  Zero was selected as an arbitrary value. 

7 Lemma 2 is equivalent to taking the partial derivative of Equation (8) with respect to SA and SB.   

8 T is taken out of the discussion by expressing the final results in SA/T and SB/T respectively. 

Consequently, B1 and B2 are irrelevant because they are interactions associated with T.  

9 It is worth noting that a similar shift would also happen if constraints (8c) and (8d) require a non-

zero threshold value. In a limiting case, line BC will eventually coincide with line OO’, the bisector 
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of the orthogonal axes, and line AD will coincide with OO’. In this limiting scenario, it is obvious 

that SA = SB. However, the performance contribution of each task is not necessarily equal unless the 

problem parameters for task A and task B are symmetrical. 

10 The evolution coefficients can be thought as forces for studying the dynamics of concurrency. 

Caveat: these coefficients are not analogous to any physical force. 

11 F1 is always positive when αA1 > αA2, for all RA and RB < 1. The reverse statement is also true. 

12 F3 is always positive when αB3 > αB2, for all RA and RB < 1. The reverse statement is also true. 

13 The authors thank Thomas Roemer, Durward Sobek and two anonymous referees for helpful 

comments on an earlier version of this paper. We are grateful to the development team at Softex for 

access and for answering question about their PD process. 


