Inventory Reduction and Productivity Growth: Linkages in the Japanese Automotive Industry

Marvin B. Lieberman
Anderson Graduate School of Management
UCLA
Los Angeles, CA 90024-1481
Tel.: (310) 206-7665
E-mail: marvin.lieberman@anderson.ucla.edu
and
\section*{Lieven Demeester}
Price Waterhouse LLP
575 Anton Boulevard, Suite 1100
Post Office Box 5041
Costa Mesa, CA 92628-5041

August 28, 1997

We are grateful for financial support from the International Motor Vehicle Program, the Institute for International Economic Studies, and the UCLA Center for International Business Education and Research. The Daiwa Securities Corporation and the Japan Development Bank kindly provided access to data.

Inventory Reduction and Productivity Growth: Linkages in the Japanese Automotive Industry

Abstract

The literature on JIT production suggests a causal link between work-in-process inventory and manufacturing productivity. Such a connection has been described in numerous case studies but never tested statistically. This paper uses historical data for 52 Japanese automotive companies to evaluate the inventory-productivity relationship. We find that firms increased their productivity rank during periods of substantial inventory reduction. More detailed tests suggest that inventory reductions stimulated gains in productivity: on average, each 10% reduction in inventory led to about a 1% gain in labor productivity, with a lag of about one year. Such effects were more immediate for Toyota affiliates but undetectable for close suppliers of Nissan. These findings imply that inventory reduction served as an important driver of process improvement for many Japanese automotive companies, although some firms emphasized other methods.

Keywords:
Inventory
Productivity
Just-In-Time Manufacturing
Auto Industry
Japan
Empirical Study

I. Introduction

In the past decade manufacturing managers and academic researchers have dramatically changed their view of work-in-process (WIP) inventories. These inventories, held as a buffer between processing steps in manufacturing plants, were once considered essential for maintaining a steady production flow. But the wide acceptance of "just-in-time" (JIT) production has led to the contrary view that these inventories prevent the discovery of problems on the shop floor and can thus be detrimental to productivity. According to this new perspective, inventory reductions expose defects in the manufacturing process, forcing managers and workers to eliminate (rather than accommodate) sources of process variability.

Various authors have described the causal mechanisms linking inventory reduction to productivity growth (e.g., Schonberger, 1982; Hall, 1983). Nevertheless, many questions remain unanswered. Does inventory reduction lead to productivity gains, or does it merely serve as an indicator that process variability has been reduced, so that less buffer stock is required? And if inventory reductions do stimulate productivity gains, how quickly do the gains appear, and what is the magnitude of effect?

Details of JT implementation have been addressed in numerous case studies. ${ }^{1}$ Nevertheless, there have been few statistical analyses of the connection between work-inprocess inventory and manufacturing productivity. ${ }^{2}$ In this paper we investigate this connection using data for 52 Japanese automotive assemblers and parts suppliers over the period from 1965 to 1991.

[^0]We employ three different statistical approaches to evaluate the nature and magnitude of linkage between WIP inventory and productivity. First, we apply an algorithm to the inventory data to identify periods of substantial WIP reduction. During these periods, firms are found to have (1) increased their productivity rank, and (2) exhibited significantly higher rates of productivity growth. Second, we use regression analysis to examine the correlation between inventory levels and labor productivity. Third, we perform more elaborate tests of the time structure of inventory-productivity relationships. These tests show that WIP reductions were followed on average by significant productivity gains, with a typical lag of about one year. Significant differences are observed, however, between "keiretsu" company groups. In general, the findings point to a statistically significant link between WIP reduction and productivity growth for most companies in our sample.

II. Theoretical Framework

The connections between work in process inventory and plant productivity can be represented in a causal link diagram, as shown in Figure 1. This diagram illustrates the links between (a) the productivity of a factory, (b) its "actual" and "required" work in process inventory, and (c) the detection, analysis and resolution of specific types of production problems.

The diagram shows five important links, which can be briefly characterized as follows. If the gap between actual and required WIP inventory is made small, the types of production problems that create the need for buffer inventories become visible (link 1). Once visible, these problems can be solved, which will have a positive effect on productivity (link 2). The removal of these problems also feeds back to reduce the need for WIP inventory (link 3); and actual WIP can be adjusted accordingly (link 4). Finally

[^1]the diagram shows that the reduction of actual WIP lowers the costs of inventory holding and related activities, making an additional contribution to productivity (link 5).

It is useful to explore the mechanisms behind these links a bit deeper. We start with the distinction between actual and required WIP inventory. In any production line, WIP is used to protect the production flow from the variability and discontinuities of production. In general, as variability rises and as discontinuities become more pronounced, more WIP will be necessary to achieve a certain level of output. Also, as the desired level of output approaches the effective capacity, more WIP will be necessary. The minimum amount of WIP needed to guarantee the desired level of output for a production line is what is called "required WIP inventory" in the diagram. Depending on how the line is managed, actual WIP inventory will fall behind, equal or exceed the required level.

When the gap between actual and required WIP inventory is made small (or negative), problems will arise, constraining or disrupting the production flow (link 1). Workers or machines will become idle, either because they lack parts as a result of an upstream problem or, in a pull system, because they lack production authorization (e.g. kanban cards) as a result of a downstream problem. The types of "problems" that may surface include machine failures, defective production, time-consuming machine setups, long transportation distances, unbalanced lines, and lack of coordination. Because workers and supervisors are often rewarded on the basis of the output of a particular machine or production stage, they will automatically direct their attention to the cause of idleness. It is this mechanism that is often referred to by the "rocks in the water" metaphor for JIT: the "rocks" on the bottom of the riverbed (the production problems) are exposed by lowering the "water" in the river (the amount of WIP inventory).

The diagram also shows a link that indicates that once the rocks are exposed, they will be removed from the river; in other words, detected problems will be solved. How, if, and when this will happen depends on the problem solving capabilities present in the factory. Sakakibara, et. al (1997) capture these problem solving capabilities by what they

call JIT infrastructure. They find that more than inventory reduction itself, it is the presence of JIT infrastructure that leads to improvements in performance. Essentially, once a problem surfaces, workers or teams of workers need to organize themselves to determine the root cause of the problem and design, test and implement a solution. Some solutions are quick, but others may take months or years to implement, as in the case of quality control mechanisms, machine maintenance procedures, or setup time reduction.

Link 2 in the diagram indicates that as a result of solving the problems that cause the need for WIP inventory, productivity will increase. The problems that cause the need for WIP inventory typically involve some type of production waste. When this waste is removed, whether it is waste of materials, waste of worker time or waste of machine time, productivity rises. In addition, if this problem solving causes the quality of the final product to be improved, the company may command a higher price for its product and reduce its costs for warranty programs, causing productivity to improve further. ${ }^{3}$

Problem solving may also lead to a reduction of the 'required' WIP inventory as indicated by link 3 in the diagram. For example, increased machine reliability will decrease the need for buffer inventories, and reduced setup times will make smaller lot sizes economical.

Link 4 reflects management's recognition that inventory requirements have fallen, so actual inventory can be reduced. In a production line that is controlled by kanban cards for example, cards must be removed from the system to achieve such a reduction. In MRP-type systems, inventories remain unchanged until the lead time estimates and lotsizes that are used as parameters in these systems are reset to lower values. The lag between the reduction in 'required' WIP and the reduction in actual WIP will depend on how tightly this link is managed.

[^2]Finally, link 5 of the diagram indicates that the reduction of actual WIP inventory can lead directly to increased productivity. This can happen in several ways. The costs of inventory carrying and material management may fall. Also, as manufacturing lead times shorten, faster feedback will reduce the amount of scrap and rework as well as the need for safety stock in the finished goods inventory. Externally, these inventory reductions may allow quicker response to the market. In markets where this is important, product prices might be positively affected and so might productivity, measured appropriately.

The causal link diagram in figure 1 provides a framework for understanding the statistical models and for interpreting the results presented later in this paper. It also allows us to state the theoretical questions more clearly. Unfortunately, it is not possible to estimate the model implied by Figure 1 directly, as we lack data on the problem solving processes that occur within firms. Rather, it is necessary to infer the linkages from time series observations of (actual) inventory and labor productivity across the sample of automotive companies.

Our primary tests are designed to detect evidence of links 1 and 2. Does inventory reduction play a role in stimulating (unobserved) problem solving and subsequent productivity growth? Or does inventory reduction simply arise in response to successful problem solving and improvements in productivity (links 3 and 4)? What is the typical magnitude of these effects, and how long are the lags?

The strength of these links and the speed of response may vary greatly across plants and firms. Note in particular that effective problem solving activity can occur without the existence of link 1 . For example, implementation of quality control methods may enable the detection, analysis, and resolution of production problems, without any initial reduction in inventory. Moreover, long delays may arise in links 3 and 4 (reduction in WIP following process improvement) without jeopardizing the improvement process. Indeed, we hypothesize that some firms rely on inventory reduction as a driver for process improvement, while others utilize different approaches and methods. Cusumano (1985) contrasts the inventory-driven production system developed by Toyota with the
more conventional MRP system implemented at Nissan. ${ }^{4}$ In our analysis we test whether the inventory-productivity linkages represented in Figure 1 are different, on average, between the Toyota and Nissan affiliates in our sample.

III. Data

The data sample includes a total of 52 Japanese automotive companies, covering nearly all of the Japanese assemblers and most of the largest parts producers. Findings are therefore likely to be representative of the Japanese automotive industry. The historical time series is sufficient to allow observation of the adoption of JIT methods, which were introduced in Japan mostly from the late 1960s to the early 1980s.

Firms in the sample can be subdivided as follows. Eight are "core" assemblers that design, build and sell finished automobiles under their own name. Three are "contract assemblers," companies that assemble automobiles as subcontractors for the core assemblers." The remaining 41 companies are "first-tier" parts suppliers, i.e., firms that supply parts directly to the assemblers.

Table 1 lists the parts suppliers in the sample. About half maintain tight links with either Toyota or Nissan. We assigned suppliers to three groups based their sales percentage to Toyota and Nissan and their membership in "supplier associations" (Sako, 1996). ${ }^{6}$ The firms at the top of Table 1, which are all members of Toyota's regional "Tokai Kyohokai" association, were assigned to the Toyota group; those at the bottom of the Table, which all belonged to Nissan's "Takarakai" association, were assigned to the

[^3]Nissan group. These assignments are similar to other group definitions in the literature (e.g., Dodwell, 1983; Saxonhouse, 1980; Toyo Keizai, 1991). Three firms are closely affiliated with Isuzu. We classified these three and all remaining suppliers as "others.""

The data are from Japanese annual financial reports covering the period from 1965 to 1991. The specific data items used in this study are: total company sales, valueadded, total employment, fixed investment, and work-in-process inventories. These data are reported on a consistent basis by all publicly-traded manufacturing firms in Japan. ${ }^{8}$ The data on sales and value added correspond to flows over the fiscal year, while employment, investment, and inventories are measured as stocks at the end of the year.

Productivity Measure

Labor productivity, defined as real value-added per employee, is the productivity measure used in this study. (Value added equals the firm's sales during the fiscal year, minus the costs of purchased materials and services.) For each firm and year, the productivity measure was computed by first converting the firm's reported value-added into constant yen (based on the Japanese wholesale price index for transport equipment), and then dividing by the average of beginning- and end-of-year employment. This yields real value-added per employee, a standard measure of labor productivity.

Since the 1960s, Japanese automotive firms have scored impressive gains in labor productivity. Nevertheless, the rate of productivity growth has been diminishing over time. ${ }^{9}$ Table 2 gives summary measures of labor productivity for assemblers and suppliers over the period from 1970 to 1990. Toyota's performance, in particular, stands out; Toyota suppliers have also performed better than average, although by a much

[^4]smaller margin. Within the ranks of both assemblers and suppliers, productivity variation has been substantial.

WIP Inventory

Our analysis of JT focuses on reductions in each firm's work-in-process inventory. Japanese corporate reports give the value of the WIP inventory at the end of the fiscal year. Table 3 documents the substantial inventory reductions that have occurred in the Japanese automotive sector since the 1960s. Most companies in the sample cut their WIP/sales ratio by more than 50% during a period of intense activity from the late 1960s to the early 1980s. Table 3 shows that Toyota has operated with very lean inventories, and key suppliers to Toyota have held much less WIP than the "other" suppliers. However, the Nissan suppliers in the sample have maintained even lower average levels of WIP and a superior rate of inventory reduction.

Fixed Capital Investment

Labor productivity normally increases with the amount of fixed investment per worker. Differences in capital intensity reflect basic differences in production processes, as well as managerial choices about the degree of process automation. Much of the productivity growth in Japanese manufacturing since World War II can be attributed to rising investment per worker (Norsworthy and Malmquist, 1981; Jorgenson and Kuroda, 1992; van Ark and Pilat, 1993).

To control for the effect of capital investment on labor productivity, we include a measure of tangible fixed assets per employee in our regression tests. Tangible fixed assets equals the depreciated value of the firm's property, plant and equipment at the end of each fiscal year. This accounting measure was adjusted for inflation and divided by the firm's total number of employees to give an estimate of total investment per employee.

IV. Periods of Substantial Inventory Reduction

Our first approach to characterizing the connection between WIP reduction and productivity growth is based on the observation that for most companies in the sample, there was a well-defined period when major inventory reductions occurred. To identify these periods objectively, we applied a simple algorithm to the inventory data. We then tested whether the periods of inventory reduction coincided with changes in firms' relative productivity growth and productivity rank. This analysis was limited to parts suppliers to avoid confounding the effects of inventory reduction with other productivity differentials related to firm type.

The algorithm for identifying periods of substantial WIP reduction was implemented as follows. For each firm we prepared the time series on the ratio of WIP inventory to sales. We then found the earliest year, if any, where the WIP/sales ratio for each of the next six years fell below a trajectory involving 4% annual reduction, or more stringently, 8% annual reduction. To establish the end of the period, we identified the earliest year for which the WIP/sales ratio fell within 20% of the average ratio of the remaining years of data. ${ }^{10}$ While these standards are arbitrary, the results proved robust to alternative identification procedures. ${ }^{\text {I }}$

Figure 2 shows the periods of substantial inventory reduction that were identified by the algorithm. The supplier companies are grouped to reflect their links with the major assemblers. Within each group, the earlier adopters are listed first. Among the core assemblers, Toyota, Honda and Nissan began cutting in-process inventories during the 1960s or earlier; the smaller assemblers followed in the 1970s. Among the supplier companies, those allied with Toyota tended to start cutting inventories several years earlier than most others. For six of the 52 companies, the algorithm was not able to find a

[^5]meaningful period and it was clear on inspection that those companies did not display a period of substantial WIP reduction.

For the parts suppliers, we used two methods to test for differential productivity growth during the inventory reduction periods. The first method utilizes annual productivity rankings of the companies. The second method involves analysis of relative productivity growth.

In the first method, we ranked all of the parts suppliers in decreasing order of their labor productivity within each observation year. For the suppliers that satisfied the criterion for significant inventory reduction, we recorded their percentile productivity rank in the year prior to the start of substantial WIP reduction and one year after the end of this period. ${ }^{12}$

Table 3 reports the results. Of the 41 suppliers in the sample, 35 met the " 4% criterion" for substantial inventory reduction. Of these, 25 increased in productivity rank during their WIP reduction period, and 10 decreased in rank (significant at the .01 level). Results are stronger using the more stringent criterion of 8% WIP reduction per annum. This criterion was met by 33 suppliers, of which 26 increased in rank and 7 decreased (significant at the .001 level).

Table 3 also reports the analysis of relative productivity growth during periods of substantial inventory reduction. In each observation year, we computed a relative productivity growth rate for each firm by subtracting the average productivity growth rate of suppliers from the value shown for the company. During periods of substantial inventory reduction, firms exceeded the sample average by about 1.5% to 2.0%

[^6]depending on the criterion used. These productivity growth differentials are highly significant statistically.

V. Correlation Between Productivity and Inventory Levels

Our second approach to assessing the inventory-productivity link was to use regression analysis to examine the correlation between labor productivity and the level of WIP inventory. Given that we have annual data for a cross section of companies (i.e., panel data) there are several ways that such a correlation might be observed.

We first investigated whether a negative relation between labor productivity and the WIP/sales ratio could be identified when companies are compared annually in crosssection, as demonstrated for the major assemblers in Lieberman (1990). We found strong correlations of this type for the core assemblers in many observation years. For the parts suppliers, however, the correlation was significant only in the mid-1970s, when inventory levels varied dramatically across the companies.

One explanation for these results is that the suppliers are heterogeneous in their manufacturing processes, so their "required" levels of WIP inventory differ. This masks the inventory-productivity relationship when viewed in simple cross-section across firms. To control for heterogeneous WIP requirements, we estimated a "fixed effects" regression model where the dependent variable is labor productivity, and each firm has a separate constant term which captures the differences in firm-specific factors. We also included time dummies in the regression to allow for annual changes in average industry productivity. The remaining explanatory variables are the WIP/sales ratio and the level of capital investment per worker, where the latter serves primarily as a control measure. ${ }^{13}$

[^7]The estimates are shown in Table 5. The error terms in this regression model are serially correlated; to correct, we used a first-order autoregressive adjustment. The WIP/sales coefficient appears highly significant and its magnitude (approximately -.07) implies that a 10% reduction in WIP was associated with nearly a 1% increase in productivity, other things equal. Tests showed that the coefficient was consistent across time periods and did not differ significantly between assemblers and suppliers or among the keiretsu company groups. ${ }^{14}$

The estimates in Table 5 show that higher capital investment per worker had a significant effect on labor productivity, as expected. The coefficients suggest that each 10% increase in per capita investment led to about a 1% to 2% gain in labor productivity.

One concern in this regression model is the potential for spurious correlation or simultaneity bias in the WIP/sales coefficients. For example, an unanticipated decline in sales could lead to a rise in the WIP/sales ratio as well as a decline in productivity. To check the possibility of bias, we estimated the equation using instrumental variables. This led to no change in the resulting coefficient estimates, although the standard errors increased slightly due to the reduced efficiency of the estimator.

VI. "Causality" Tests

While the findings of the previous sections reveal an association between WIP and productivity, they give little information on the causal relations outlined in Figure 1. A deeper assessment requires the application of methods that can shed light on the time structure of the of the inventory-productivity interaction. In this section we report tests of "Granger causality," an approach commonly used in the econometrics literature to explore the nature of causation between two time-series variables (Granger, 1969; Pierce

[^8]and Haugh, 1977; Bishop, 1979; Geweke, Meese and Dent, 1983; Berndt, 1991). Such tests determine whether lagged information on a variable, X , has any role in explaining Y_{t}, after controlling for lagged Y and other factors. While these tests can establish precedence relations among variables that interact over time, they cannot demonstrate that these effects are causal in the conventional sense.

The theoretical model represented by Figure 1 implies that reductions in WIP may stimulate productivity gains (links 1, 2 and 5); and conversely, problem solving activities which lead to productivity improvement may feed back to reduce the level of WIP inventory (links 2, 3 and 4). Given that the anticipated relations between WIP and productivity go in both directions, we estimate two related regression models.

Effects of WIP Reduction on Labor Productivity

We first examined whether lagged and contemporaneous changes in WIP inventory have any ability to explain changes in labor productivity, after controlling for lagged productivity and changes in sales. The regression equation is:

$$
\begin{equation*}
\Delta \mathrm{V}_{\mathrm{t}}=\alpha+\sum_{\mathrm{i}=1}^{4} \beta_{\mathrm{i}} \Delta \mathrm{~V}_{\mathrm{t}-\mathrm{i}}+\sum_{\mathrm{i}=0}^{4} \gamma_{\mathrm{i}} \Delta \mathrm{~S}_{\mathrm{t}-\mathrm{i}}+\sum_{\mathrm{i}=0}^{4} \eta_{\mathrm{i}} \Delta \mathrm{~W}_{\mathrm{t}-\mathrm{i}}+\sum_{\mathrm{i}=0}^{4} \lambda_{\mathrm{i}} \Delta \mathrm{~K}_{\mathrm{t}-\mathrm{i}}+\varepsilon_{\mathrm{t}} \tag{1}
\end{equation*}
$$

where
ΔV_{t} is value-added per employee in year t, divided by value-added per employee in year $\mathrm{t}-1$;
ΔS_{t} is sales in year t, divided by sales in year $t-1$;
ΔW_{t} is WIP inventory at the end of year t, divided by WIP at the end of year $t-1$;
$\Delta \mathrm{K}_{\mathrm{t}}$ is fixed investment per employee at the end of year t , divided by investment per employee at the end of year $\mathrm{t}-1$;
and ε_{t} is a random error term.

All variables were measured in logarithms, which allows the coefficients to be interpreted in terms of growth rates. We include lags through year $t-4$, given that all coefficients became insignificant by the fourth year. To accommodate this lag structure, the dependent variable starts in 1970 for most firms.

Equation 1 can be viewed as a forecasting equation. Changes in labor productivity for a given firm can be predicted given information on the firm's historical productivity trend and the current and lagged growth of sales. The question posed by the "causality" test is whether this forecast can be significantly improved using additional information on changes in WIP inventory.

More formally, one would expect a firm's current productivity growth, $\Delta \mathrm{V}_{\mathrm{t}}$, to be largely determined by its lagged productivity $\left(\Delta \mathrm{V}_{\mathrm{t}-\mathrm{i}}\right)$ and by short-term fluctuations in sales $\left(\Delta \mathrm{S}_{\mathrm{t}-\mathrm{i}}\right)$, the latter being typically beyond the control of the firm. The main hypothesis to be tested is whether, after inclusion of these two series in the regression equation, changes in WIP inventory ($\Delta \mathrm{W}_{\mathrm{t}-\mathrm{i}}$) have a detectable impact on productivity (i.e., the η_{i} terms in Equation 1 are jointly significant). Moreover, one would expect the coefficients for η_{i} to be negative, assuming that reductions in inventory contribute to an increase in labor productivity.

Equation 1 also incorporates a test for the productivity effects of increasing capital investment per worker $\left(\Delta \mathrm{K}_{\mathrm{t}-\mathrm{i}}\right)$. The λ_{i} coefficients should be positive, assuming that investment leads to higher labor productivity. These coefficients may also reveal a gestation lag for new investment to become effective, as documented previously by Chew et al. (1990, 1991).

Determinants of Changes in WIP Inventory

Our second regression equation tests for the potential feedback of successful problem solving on the level of inventory holdings (i.e., links 2, 3 and 4 in Figure 1):

$$
\begin{equation*}
\Delta \mathrm{W}_{\mathrm{t}}=\alpha+\sum_{\mathrm{i}=1}^{4} \beta_{\mathrm{i}} \Delta \mathrm{~W}_{\mathrm{t}-\mathrm{i}}+\sum_{\mathrm{i}=0}^{4} \gamma_{\mathrm{i}} \Delta \mathrm{~S}_{\mathrm{t}-\mathrm{i}}+\sum_{\mathrm{i}=0}^{4} \eta_{\mathrm{i}} \Delta \mathrm{~V}_{\mathrm{t}-\mathrm{i}}+\sum_{\mathrm{i}=0}^{4} \lambda_{\mathrm{i}} \Delta \mathrm{~K}_{\mathrm{t}-\mathrm{i}}+\varepsilon_{\mathrm{t}} \tag{2}
\end{equation*}
$$

where the variables are defined as above. In this equation, changes in WIP inventory $\left(\Delta \mathrm{W}_{\mathrm{t}}\right)$ are assumed to be determined by lagged inventory changes $\left(\Delta \mathrm{W}_{\mathrm{t}-\mathrm{i}}\right)$ and changes in sales $\left(\Delta \mathrm{S}_{\mathrm{t}-\mathrm{i}}\right)$. The primary test of interest is whether reductions in WIP are preceded by productivity gains (i.e., the η_{i} terms in Equation 2 are negative and significant). ${ }^{15}$ Moreover, it is possible that new investment may disrupt the manufacturing process in the short term, leading to some increase in the need for WIP (i.e., positive coefficients for $\left.\lambda_{i}\right)$.

Given the system of simultaneous relationships represented by equations 1 and 2 , estimation by ordinary least squares may lead to biased estimates of the coefficients. In particular, ΔW_{t} and ΔV_{t} are endogenous. To avoid erroneous estimates, the potential simultaneity bias must be tested, and if necessary, corrected.

Regression Analysis of Annual Changes in Labor Productivity

Estimates of equation 1 are reported in Tables $6 a$ and $6 b$. The first three regressions cover the full sample of 52 companies; all remaining regressions are for groups of firms as indicated. The OLS estimates were found to be free of simultaneity bias, based on a Hausman test. ${ }^{16}$ However, the error terms were found to be heteroskedastic; as a correction, we report t-statistics based on heteroskedastic-consistent (robust) standard errors.

The regressions in Table 6a show that as expected, productivity was strongly influenced by contemporaneous changes in sales, $\Delta \mathrm{S}_{\mathrm{t}}$. Moreover, they show that after controlling for sales and productivity trends, changes in WIP inventory preceded changes in productivity. ${ }^{17}$ In the regressions for the full sample (6.2 and 6.3) the $\Delta \mathrm{W}_{\mathrm{t}-1}$

[^9]17 The ΔW coefficients are jointly significant at the .001 level based on an F test or Wald test.
coefficients are negative and highly significant, implying that inventory reductions were followed by productivity gains, with a lag of about one year. The ΔW_{t} and ΔW_{t-2} coefficients are negative but smaller in magnitude, denoting some productivity gains in the year of inventory reduction and two years after. The $\Delta \mathrm{W}_{\mathrm{t}-3}$ and $\Delta \mathrm{W}_{\mathrm{t}-4}$ coefficients are insignificant, indicating the absence of further impact after two years. The total effect is given by the sum of the ΔW_{t} coefficients, which is about -0.10 . This implies that a 10% reduction in WIP inventory contributed to about a 1% increase in productivity on average across the sample.

Regression 6.3 includes the ΔK terms, which capture the productivity effects of changes in investment per worker. The $\Delta \mathrm{K}$ coefficients, which are jointly significant, suggest a gestation lag of one or two years for new investment to become effective. The coefficients sum to about 0.20 , which implies that a 10% increase in capital per worker led ultimately to about a 2% increase in labor productivity. The addition of these controls for capital investment has no appreciable effect on the WIP coefficients.

We performed tests to determine whether the effects of WIP reduction were consistent across the company groupings. In Table 6a the sample is broken down into assemblers and suppliers; in Table 6b the sample is divided into three groups: (1) Toyota affiliates, (2) Nissan affiliates, and (3) "Others."

Some minor differences between assemblers and suppliers are shown in Table 6a. There is evidence that the assemblers had a slightly longer gestation lag between inventory reduction and productivity gains. Their ΔW coefficients remain significant into the second year, with further possible effects in the third year. Moreover, the total magnitude of effect (sum of the coefficients) is larger on average for the assemblers than for the suppliers. These differences were confirmed by tests (shown in Table 7) to determine whether sets of coefficients differed significantly between groups. ${ }^{18}$ The test

[^10]that compares the set of $\Delta \mathrm{W}_{\mathrm{t}-\mathrm{i}}$ coefficients between assemblers and suppliers has a p value of 0.036 , indicating that the hypothesis of identical coefficients can be rejected at the 5% level.

Table 6b shows larger differences between groups defined on the basis of company affiliation. Regressions 6.8 and 6.9 suggest that the lag between WIP reduction and productivity gain was about six months shorter for the Toyota group than for other companies. Moreover, Regressions 6.10 and 6.11 , which are limited to the Nissan affiliates, reveals that these firms had no significant productivity gains following reductions in WIP. These differences among company groups are confirmed by the test statistics in Table 7. ${ }^{19}$ The contrast between Toyota and Nissan groups is consistent with differences in the operations practices of the two assemblers, as discussed by Cusumano (1985).

A graphic illustration of these results is provided in Figure 3, which plots the impact of WIP reduction on productivity (obtained by summing the ΔW coefficients in Table 6b). The Toyota and "other" company groupings display similar cumulative productivity effects, although the impact of WIP reduction is more immediate and perhaps more persistent for the Toyota companies. By comparison, the absence of such effects for the Nissan affiliates is striking.

Regression Analysis of Annual Changes in WIP

Tables 8 a and 8 b give the regression estimates of equation 2 on the determinants of inventory changes. ${ }^{20}$ While these regressions explain only a small proportion of the

[^11]
annual fluctuation in WIP, a number of significant patterns are indicated. The $\Delta \mathrm{W}_{\mathrm{t}-\mathrm{i}}$ coefficients are generally negative, revealing a tendency for deviations from trend to return to the trend level. This pattern is especially strong for the Toyota group, where most of the inventory adjustment occurred in the first year, much faster than what is shown for the other companies. There was also a strong tendency, particularly in the case of part suppliers, for changes in WIP to track recent changes in sales, as would be expected. The $\Delta \mathrm{S}_{\mathrm{t}-\mathrm{i}}$ coefficients in regressions 8.2 and 8.3 sum to approximately unity, implying that increases in sales were ultimately met by roughly proportionate increases in WIP. ${ }^{21}$ Most of this adjustment occurred in the year that sales increased.

The conceptual framework outlined in Section II implies that WIP reductions should follow improvements in productivity, although the lag time for adjustment may vary. The regressions in Table 8 provide mixed evidence of such effects. While the $\Delta \mathrm{V}_{\mathrm{t}-\mathrm{i}}$ coefficients are generally negative, as expected, none of the individual terms are statistically significant except in the regressions for the Toyota group. (The tests in Table 7 confirm that the Toyota group coefficients are significantly different from the rest of the sample.) Compared with other companies, the Toyota affiliates made faster and more consistent reductions in inventory following improvements in the manufacturing process. Figure 4 illustrates this finding. For the Toyota companies on average, a 1% productivity gain was followed within about a year by a 1.7% reduction in WIP. Other firms also cut their inventories over time (as indicated by the summary ratios presented earlier in Table 2), but without such a tight coupling.

The ΔK_{t-i} coefficients in Table 8 provide additional information on the determinants of WIP. The coefficient for capital investments made during the observation year is strongly positive, implying that WIP inventories rose in response to new investment. This may reflect intentional steps to increase inventory buffers, or alternatively, unanticipated disruption on the factory floor. For the Toyota and Nissan-

[^12]affiliated companies, this post-investment build up seems to have dissipated fairly quickly, as indicated by the negative coefficients for $\Delta \mathrm{K}_{\mathrm{t}-1}$ and $\Delta \mathrm{K}_{\mathrm{t}-2}$.

VII. Discussion and Perspective

The preceding sections of this paper present various tests for a connection between WIP inventory and productivity, based on historical data for the Japanese automotive sector. In this section we consider the findings in broader perspective.

All the tests show a strong and statistically significant connection between inventory and productivity. None, however, can fully distinguish among the causal links shown in Figure 1. As illustrated in the Figure, an association between inventory and productivity can arise in several ways. One chain of causality begins with successful problem solving, which leads to productivity gains (link 2) and subsequent inventory reduction (links 3 and 4). In this case WIP reduction plays no role in stimulating productivity, but is purely a response to successful problem solving. Could this be the dominant chain of causality underlying the empirical results? The tests in Sections IV and V are silent on this issue, but the analysis in Section VI is informative. One piece of evidence is the finding of a relatively weak connection between productivity gains and subsequent inventory reductions, except within the Toyota group. By comparison, the links in the opposite direction (WIP reductions preceding productivity gains) appear larger and more pervasive. These precedence relations suggest that the dominant path leads from WIP reduction to productivity growth, rather than vice versa.

Ambiguity nevertheless remains with respect to the exact mechanisms linking inventory reduction to productivity gains. To what extent does it occur via links 1 and 2 (embodying the "rocks in the river" metaphor for JT), as opposed to link 5 (inventory reduction economizes on working capital and other inputs)? We expect the former to be more important, for a number of reasons. Schonberger (1982) and others have argued that the benefits associated with link 5 , which are primarily savings in inventory holding costs, are comparatively small. In the Japanese automotive industry we estimate that
these holding cost economies amounted to at most one-third of the average productivity gain. ${ }^{22}$ Moreover, most of the holding cost savings would be immediate, whereas we typically observe the productivity gain with a lag.

These assessments are based on the assumption that the WIP-productivity connection reflects the outcome of successful problem solving activity. To some extent, though, the observed correlations could stem from factory setbacks. Unanticipated problems may cause a temporary drop in productivity (link 2) and a build-up of WIP inventory (links 3 and 4). While such effects may be present in our data, they are likely to be comparatively small. One reason is that such setbacks should have an immediate impact on both productivity and inventory, whereas the analysis shows significant lags. Moreover, in the Japanese automotive industry the strong prevailing trend was toward WIP reduction and productivity growth, rather than vice versa.

One issue that warrants greater discussion is the precise interpretation of the time structure associated with the coefficients in the Granger causality tests. Given that some variables are end-of-year stocks while others are annual flows, a shift of one-half year is appropriate in some cases. ${ }^{23}$ In Table 6, for example, the lag between WIP reduction and productivity gain was likely to have been about six months shorter than what would otherwise be implied by the regression coefficients. Suitable adjustment suggests that productivity gains were almost immediate for the Toyota companies, as compared with a lag of about one-half year for non-Toyota suppliers, and one year for assemblers. In Table 8, the flow variables such as $\Delta \mathrm{V}$ are shifted by six months in the opposite direction.

[^13]Here, the coefficients for $\Delta \mathrm{V}_{\mathrm{t}}$ and $\Delta \mathrm{V}_{\mathrm{t}-1}$, which are statistically significant for the Toyota group, should be interpreted as reflecting lags of 0.5 and 1.5 years between productivity gains and subsequent inventory reductions. ${ }^{24}$

To put the findings in perspective, it is helpful to compare the magnitude of productivity gains attributable to inventory reduction with the gains attributable more broadly to other factors. The WIP coefficients in Tables 5 and 6 suggest that as a rough approximation, each 10% reduction in WIP contributed to an average increase of about 1% in labor productivity. Producers that made substantial inventory reductions (as identified by our algorithm) cut their WIP/sales ratio by about two-thirds, on average. Combining these estimates leads to the conclusion that for such firms, the aggregate productivity gain attributable to inventory reductions was typically about 10%. In other words, labor productivity was 10% higher at the end of the sample period, as compared with the hypothetical case where the firm would have made no inventory reductions at all. ${ }^{25}$

While a 10% productivity differential is appreciable, it is important to recognize that from 1970 to 1980, when most of the inventory reductions were occurring, labor productivity for the sample companies grew at an average annual rate of 9%. Thus, the estimated effects of inventory reduction correspond to less than one-tenth of the total productivity gains recorded during the 1970s.

The cumulative impact of WIP reduction on labor productivity can also be compared with the effects of increased capital investment. From 1970 to 1980, real fixed capital per worker rose by 5.1% per year on average across the sample. Using an elasticity of 0.15 , which is suggested by the regression coefficients in Tables 5 and 6, this

[^14]increase in capital intensity translates into a labor productivity gain of about 10% over the course of the decade. Thus, the productivity gain that can be linked to inventory reduction during the 1970s may have been roughly the same magnitude as the gain from increased capital investment. Taken together, these estimates imply that most of the rapid growth in Japanese automotive productivity during the 1970s was derived from manufacturing process improvements not directly related to capital investment or inventory reduction. ${ }^{26}$

VIII. Conclusions

The findings of this study shed light on the linkages between WIP inventory and productivity. We have considered alternate paths of causality and have derived quantitative estimates of effects. The results are complementary with the large body of case study evidence on the implementation of JIT manufacturing. Indeed, our work demonstrates that quantitative analysis of public company data can provide insights for researchers and practitioners in operations management, a field with little tradition of statistical data analysis.

Our findings suggest that for most companies in our sample, inventory reductions were followed by productivity gains. We find more limited evidence of effects in the opposite direction. In quantitative terms, each 10% reduction in inventory led to an average gain of about 1% in labor productivity, with a lag of about one year. Firms that made substantial inventory reductions enjoyed a period of annual productivity growth significantly higher than that of other companies on average. Typically, these firms also saw an increase in their productivity rank.

While these effects were widespread in the Japanese auto industry, inter-firm differences are apparent, particularly between the Toyota and Nissan groups. For the

[^15]firms affiliated with Toyota the inventory-productivity linkage appears very tight: productivity gains followed quickly after inventory reductions, and inventories were cut soon after the achievement of productivity gains. For the Nissan affiliates, however, neither of these effects was observed. "Other" companies in our sample showed a significant link in one direction only (from inventory to productivity), and with a longer lag than that detected for the Toyota group. Despite these differences in estimated effects, over the two decades of sample coverage most of the companies in the sample achieved major inventory reductions, and all attained substantial productivity growth. Taken jointly, these observations support our hypothesis that many Japanese firms relied on inventory reduction as a driver for process improvement, although some utilized other approaches and methods.

While broadly consistent with prior research, these findings offer new and quantitative insights regarding the effects of JIT implementation. Nevertheless, important caveats apply. The findings presented here are aggregate estimates, far removed from details of the shop floor where JIT implementation actually takes place. Such details undoubtedly matter, and the estimates obtained in this study are averages that mask heterogeneity across individual firms, plants and processes.

Most importantly, it is well known that inventory reduction is only one component of JTT; related activities (such as setup time reduction and statistical process control) are essential. It may be impossible, and perhaps not meaningful, to distinguish the impact of WIP reduction from that of these other activities. Indeed, the WIP reductions observed in this study may serve in part as a proxy for these other activities, with which they are correlated. Thus, the quantitative findings of this study should be kept in perspective and regarded as rough benchmarks only.

REFERENCES

Berndt, E. R., 1991, The Practice of Econometrics: Classic and Contemporary, AddisonWesley, Reading, Mass.

Bishop, R. V., 1979, "The Construction and Use of Causality Tests," Agricultural Economics Research, 31, pp. 1-6.

Chew, W. B., T. F. Bresnahan and K.B. Clark, 1990, "Measurement, Coordination and Learning in a Multiplant Network," in R. S. Kaplan, ed., Measures for Manufacturing Excellence, Harvard Business School Press, Boston.

Chew, W. B., D. Leonard-Barton and R. E. Bohn, 1991, "Beating Murphy's Law," Sloan Management Review, Spring, pp. 5-16.

Cusumano, M. A., 1985, The Japanese Automobile Industry: Technology \& Management at Nissan and Toyota, Harvard University Press, Cambridge.

Daiwa Securities Research Institute, annual issues, Analyst's Guide. Tokyo, Japan.
Fujimoto, T., and A. Takeishi, 1994, "An International Comparison of Productivity and Product Development Performance in the Automotive Industry," in R. Minami et al., Acquisition, Adaptation and Development of Technologies, Macmillan.

Geweke, J., R. Meese and W. Dent, 1983, "Comparing Alternative Tests of Causality in Temporal Systems," Journal of Econometrics, (21), pp. 161-194.

Granger, C. W. J., 1969, "Investigating Causal Relations by Econometric Methods and Cross-Spectral Methods," Econometrica, 34(4), July, pp. 424-438.

Hall, R. W., 1983, Zero Inventories. Homewood, IL: Dow Jones-Irwin.
Im, J. H., and S. M. Lee, 1989, "Implementation of Just-in-Time Systems in U.S. Manufacturing Firms," International Journal of Operations and Production Management, 9(1), pp. 5-14.

Jorgenson, D. W. and M. Kuroda, 1992, "Productivity and International Competitiveness in Japan and the United States, 1960-1985," Economic Studies Quarterly, 43, December, pp. 313-325.

Lieberman, M. B., 1990, "Inventory Reduction and Productivity Growth: A Study of Japanese Automobile Producers." In Manufacturing Strategy, J. E. Ettlie, M. C. Burstein and A. Feigenbaum, eds., Kluwer Academic Publishers, Boston.

Lieberman, M. B., and S. Asaba, 1997, "Inventory Reduction and Productivity Growth: A Comparison of Japanese and US Automotive Sectors." Managerial and Decision Economics 18, pp.73-85.

Lieberman, M. B., Demeester, L, and R. Rivas, 1995, "Inventory Reduction in the Japanese Automotive Sector, 1965-1991," mimeo.

Monden, Y., 1981, "What Makes the Toyota Production System Really Tick?," Industrial Engineering, (January), pp. 36-46.

Monden, Y., 1983, Toyota Production System: Practical Approach to Production Management, Institute of Industrial Engineers, Norcross, GA.

Norsworthy, J. R. and D. H. Malmquist, 1981, "Input Measurement and Productivity Growth in Japanese and U.S. Manufacturing," American Economic Review, 73(5), December, pp. 947-967.

Pierce, D. A., and L. D. Haugh, 1977, "Causality in Temporal Systems: Characterizations and a Survey," Journal of Econometrics, 5(3), May, pp. 265-293.

Sako, M., 1996, "Suppliers Associations in the Japanese Auto Industry: Collective Action for Technology Diffusion," Cambridge Journal of Economics, forthcoming.

Sakakibara, S., B. B. Flynn, and R. G. Schroeder, 1993, "A Framework and Measurement Instrument for Just-in-Time Manufacturing," Production and Operations Management, 2(3), pp. 177-194.

Sakakibara, S., B. B. Flynn, and R. G. Schroeder, and Morris, 1997, "The Impact of Just-in-Time Manufacturing and its Infrastructure on Manufacturing Performance, Management Science, forthcoming.

Schonberger, R. J., 1982, Japanese Manufacturing Techniques: Nine Hidden Lessons in Simplicity. New York: Free Press.
van Ark, B. and D. Pilat, 1993,"Productivity Levels in Germany, Japan, and the United States: Differences and Causes," Brooking Papers on Economic Activity (Microeconomics), pp. 1-69.

Voss, C. A., and S. J. Robinson, 1987, "Application of Just-in-Time Manufacturing Techniques in the United Kingdom," International Journal of Operations and Production Management, 7(4), pp. 46-52.

(1) Exposing the "rocks" by lowering the "water:"

- If actual WIP inventory is cut to near or below "required" WIP, problems in the manufacturing process (leading to variability, discontinuity or waste) will be detected.
- When WIP is low, the delays between the occurrence of a problem and the detection of a problem become shorter.
(3) Solution of problems leads to reduction of required WIP inventory:
- Reduced setup times and costs allow smaller lot sizes.
- Improved machine maintenance decreases the need for buffer inventories.
- Reduced rework and scrap decreases the need for buffer inventories.
(4) Reduction of required WIP may lead to reduction of actual WIP:
- When actual work in process inventory is higher than what is required to achieve the desired throughput, some action must be taken to cause a reduction in actual work in process, e.g. remove Kanban or adjust MRP lead times \& lot sizes.
(2) Solution of problems leads to productivity gains:
- Reduced rework \& scrap (less material \& labor cost).
- Reduced setup times (higher machine utilization and less labor cost).
- Reduced machine failures (less worker and equipment idleness and hence higher utilization).
(5) Inventory reduction may raise productivity directly:
- Reduced inventory carrying costs.
- Reduced costs for materials management, warehouse management, inventory obsolescense.
- Improved customer response time and responsiveness to demand changes --> higher prices.

Figure 1.

FIGURE 2. Periods of Substantial Reduction in Work in Process Inventory'.
$\begin{array}{lllllllllllllllllllllllllllll}65 & 66 & 67 & 68 & 69 & 70 & 71 & 72 & 73 & 74 & 75 & 76 & 77 & 78 & 79 & 80 & 81 & 82 & 83 & 84 & 85 & 86 & 87 & 88 & 89 & 90 & 91\end{array}$

TOYOTA Suppliers

NISSAN Suppliers

OTHER Suppliers

Years during which the inventory reduction satisfied the criteria of the algorithm for 4% annual reduction. but not those of the more stringent algorithm.
Years during which the inventory reduction satisfied the criteria of both algorithms (annual reduction $>\mathbf{8 \%}$).
${ }^{1}$ As identified by algorithms described in text.

- Contract assembler
${ }^{x}$ Data not available for this year.

Figure 3. Productivity Change Following WIP Reduction*

*Based on ΔW coefficients in Regressions 6.9, 6.11, and 6.13.

Figure 4. Change in WIP Following Productivity Gain**

**Based on ΔV coefficients in Regressions 8.9, 8.11, and 8.13.

Parts Suppliers in Sample

Supplier Name	1990 Sales Distribution-		Supplier Association			Typical Products	
	\% Toyota	\% Nissan	TT	TK	NT		
Aisin Seiki	66.5	0	X			Transmissions	Brake cylinders
Futaba Industrial	54.6	0	x			Mufflers	Canisters
Nippondenso	53.4	0	x			Pistons\&Piston pins	Hydraulic tappets
Tokai Rika	63	0	X			Switches	Seat Belts
Aisan Industry	73.7	0	x			Fuel injector	Throttle body
Toyoda Gosei	60	0	x			Hydraulic hoses	Rubber mountings
Shiroki	57.3	2.6	x			Window frames	Window regulators
Chuo Spring	44	0	x			Valve springs	Control cables
Pacific Industrial	44.2	0	x			Tire valves	Valve cores
Koito	38	15	X			Automotive lighting	
Owari Precise Products	19.4	0	x			Air compressors	Bolts\&nuts
Stanley Electric	15	0		x		Head lamps	Sealed beam units
Toyo Radiator	13.8	0		X		Radiators	Oil Coolers
Nippon Cable System	12.5	5.7		x		Control cables	
Akebono Brake	12.2	14.9		x		Disc brake ass'y	Drum brake ass'y
Kayaba Industry	15	15		x		Shock absorbers	Hydraulic jacks
NHK Spring	15	15		x		Leaf springs	Coil springs
NOK	15	15		x		Oil seals	Mechanical seals
Tokico	7	23		x		Shock absorbers	Drum brake
Riken	3.8	8.4		x		Pistons	Piston rings
Nippon Piston Ring	NA	NA		x		Piston rings	Cylinder liners
Topy Industries	NA	NA		X		Wheels-steel	Wheels-light alloy
Showa	0	0				Shock absorbers	Suspension struts
Jidosha Buhin Kogyo	0	0				Front\&rear axles	Propeller shafts
Keihin Seiki	0	0				Carburetors	Fuel pumps
Mikuni	0	0			z	Carburetors	Oil pumps
Tokyo Radiator	0	0				Radiators	Oil coolers
Press Kogyo	0	1.4				Frame	Axle casing
Topre	0	21	z		z	Miscelaneous Fuel iniection system	Air-condition system
Zexel	0	21.8				Fuel injection system	Air-condition system
Daikin Manufacturing	${ }_{1}^{0}$	10.8			x		Clutch covers
Ichikoh	17.2	57.7		x	x	Lamps	Rear view mirrors
Tochigi Fuji Sangyo	0	44.4			X	Propeller shafts	Oil pumps
Jidosha Denki Kogyo	0	73.1			x	Wiper motor	Wiper arms \& blades
Calsonic	0	79.4			x	Radiators	Catalytic converters
Fuji Univance	0	70.3			x	Transmissions	Timing gears
Fuji Kiko	0	69.6			x	Steering column	Seat belt
Ikeda Bussan	0	79			X	Seats	Interior trim parts
Kansei	0	82.2			X	Digital displays	Instruments
Kasai Kogyo	0	74.2			X	Door trim	Rear quarter trim
Atsugi Unisia	0	78.2			x	Pistons\&Piston pins	Hydraulic tappets

$x=$ Joined association prior to 1975
z = Joined association after 1975.
TT=Tokai Kyohokai, TK=Kanto Kyohokai (Toyota Associations)
NT=Takarakai (Nissan Assocation)

Table 2.
Historical Data on Labor Productivity*

	Value Added per Employee (Millions of 1980 yen)		Average Annual Percent Change		
	1970		1980	1990	$1970-80$
Core Assemblers	3.7	7.9	12.0	7.9%	4.3%
All Core Assemblers (8)	5.5	11.0	20.0	7.3%	6.1%
Toyota	4.5	9.3	12.7	7.6%	3.1%
Nissan	3.5	7.0	11.8	7.2%	5.4%
Contract Assemblers (3)					
Suppliers	2.9	6.6	10.8	8.6%	5.1%
Toyota Suppliers (11)	2.7	6.0	9.7	8.6%	4.9%
Nissan Suppliers (11)	2.8	6.7	10.3	9.2%	4.4%
Other Suppliers (19)					

Table 3
Historical Data on WIP/Sales*

	WIP as \% of Sales		Percent Change		
	1970	1980	1990	$1970-80$	$1980-90$
Core Assemblers	3.5%	1.5%	1.4%	-55.3%	-11.8%
All Core Assemblers (8)	0.9%	0.4%	0.5%	-58.9%	39.9%
Toyota	1.9%	1.1%	1.4%	-43.0%	25.4%
Nissan	1.2%	0.9%	1.1%	-27.2%	23.7%
Contract Assemblers (3)					
Suppliers	3.5%	1.7%	2.0%	-51.7%	17.4%
Toyota Suppliers (11)	3.3%	1.6%	1.3%	-52.9%	-19.5%
Nissan Suppliers (11)	6.4%	3.4%	2.6%	-47.2%	-21.3%
Other Suppliers (19)					

*Data are simple averages across sample companies within each of the groups shown (Number of firms in group listed in parentheses.)

Table 4.
Tests for Productivity Changes During Periods of Substantial Inventory Reduction
Total number of suppliers in sample 41 41
Minimum requirement for "substantial inventory reduction" 4\% 8\%
(per annum reduction over 6 year period)
Number of suppliers exhibiting "substantial inventory reduction" 35 33
Number whose productivity rank increased 25 26
Number whose productivity rank decreased 10 7
P-value (binomial test) 01 001
Differential productivity growth rate 1.51\% 1.98\%(average, per annum, during inventory reduction period)
P-value (t-test) . 01 . 001

Table 5.
Regression Analysis of Labor Productivity

Dependent Variable: Value-added per Employee

Estimation method*	4.1	4.2	4.3	4.4	4.5
OLS	AR1	AR1	AR1	IV	
Time dummies	yes	yes	yes	yes	yes
Firm dummies	yes	yes	yes	no	yes
Investment per Employee	0.290	0.139	0.148	0.132	0.250
	(16.4)	(5.9)	(6.3)	(5.8)	(13.4)
WIP/Sales ratio	-0.068	-0.068		-0.061	-0.071
	(-6.3)	(-5.8)		(-5.6)	(-3.7)
R-squared	0.968	--	--	--	0.960
SSR	16.11	9.00	9.26	9.76	11.74
D.W.	0.65	1.9	1.88	2.05	0.72
Rho	--	0.721	0.719	0.887	--
Nr. of obs.	1265	1265	1265	1265	1265

* Estimation methods are: Ordinary Least Squares (OLS), Maximum Likelihood First-Order Autoregressive (AR1), and Instrumental Variables (IV).
For IV, the instruments include all the explanatory variables except for WIPISales, plus lagged values of investment per employee, number of employees, and WIP/Sales. (Latter measure lagged two years or more.)

Numbers in parentheses are t-statistics.

Table 6a.
Regression Analysis of Annual Productivity Changes
Dependent variable: $\Delta \mathrm{V}(\mathrm{t})=$ growth in labor productivity

	All firms			All Assembiers		All Suppliers	
	6.1	6.2	6.3	6.4	6.5	6.6	6.7
α	$\begin{aligned} & 0.02 \\ & (3.88) \end{aligned}$	$\begin{gathered} 0.02 \\ (3.70) \end{gathered}$	$\begin{gathered} 0.01 \\ (1.29) \end{gathered}$	$\begin{gathered} 0.02 \\ (0.98) \end{gathered}$	$\begin{gathered} 0.01 \\ (0.54) \end{gathered}$	$\begin{gathered} 0.02 \\ (3.98) \end{gathered}$	$\begin{gathered} 0.01 \\ (1.45) \end{gathered}$
$\Delta V(-1)$	$\begin{gathered} 0.02 \\ (0.39) \end{gathered}$	$\begin{gathered} 0.01 \\ (0.17) \end{gathered}$	$\begin{gathered} -0.02 \\ (-0.37) \end{gathered}$	$\begin{gathered} -0.10 \\ (-0.73) \end{gathered}$	$\begin{gathered} -0.11 \\ (-0.79) \end{gathered}$	$\begin{gathered} 0.04 \\ (0.67) \end{gathered}$	$\begin{gathered} 0.00 \\ (0.01) \end{gathered}$
$\Delta V(-2)$	$\begin{aligned} & -0.18 \\ & (-4.21) \end{aligned}$	$\begin{gathered} -0.17 \\ (-4.12) \end{gathered}$	$\begin{aligned} & -0.19 \text { ** } \\ & (-4.38) \end{aligned}$	$\begin{gathered} -0.24 \\ (-2.24) \end{gathered}$	$\begin{aligned} & -0.23 \text { * } \\ & (-2.05) \end{aligned}$	$\begin{aligned} & -0.15 \\ & (-3.25) \end{aligned}$	$\begin{gathered} -0.17 \\ (-3.75) \end{gathered}$
$\Delta V(-3)$	$\begin{gathered} 0.04 \\ (1.16) \end{gathered}$	$\begin{gathered} 0.04 \\ (1.11) \end{gathered}$	$\begin{gathered} 0.01 \\ (0.41) \end{gathered}$	$\begin{gathered} -0.02 \\ (-0.26) \end{gathered}$	$\begin{gathered} -0.05 \\ (-0.69) \end{gathered}$	$\begin{gathered} 0.05 \\ (1.48) \end{gathered}$	$\begin{gathered} 0.03 \\ (0.90) \end{gathered}$
$\Delta V(-4)$	$\begin{gathered} -0.01 \\ (-0.35) \end{gathered}$	$\begin{gathered} -0.01 \\ (-0.37) \end{gathered}$	$\begin{gathered} -0.01 \\ (-0.69) \end{gathered}$	$\begin{gathered} -0.02 \\ (-0.74) \end{gathered}$	$\begin{gathered} -0.03 \\ (-1.09) \end{gathered}$	$\begin{gathered} -0.02 \\ (-0.67) \end{gathered}$	$\begin{gathered} -0.02 \\ (-0.84) \end{gathered}$
ΔS	$\begin{aligned} & 0.67 \text { ** } \\ & (21.03) \end{aligned}$	$\begin{aligned} & 0.68 \\ & (20.09) \end{aligned}$	$\begin{gathered} 0.69 \text { ** } \\ (20.41) \end{gathered}$	$\begin{gathered} 0.92 \\ (12.41) \end{gathered}$	$\begin{aligned} & 0.94 \\ & (12.45) \end{aligned}$	$\begin{gathered} 0.62 \\ (16.35) \end{gathered}$	$\begin{gathered} 0.63 \text { ** } \\ (16.72) \end{gathered}$
$\Delta S(-1)$	$\begin{aligned} & -0.14 \\ & (-2.68) \end{aligned}$	$\begin{gathered} -0.09 \\ (-1.59) \end{gathered}$	$\begin{gathered} -0.07 \\ (-1.34) \end{gathered}$	$\begin{gathered} -0.05 \\ (-0.40) \end{gathered}$	$\begin{gathered} -0.02 \\ (-0.19) \end{gathered}$	$\begin{gathered} -0.09 \\ (-1.42) \end{gathered}$	$\begin{gathered} -0.07 \\ (-1.26) \end{gathered}$
$\Delta S(-2)$	$\begin{gathered} 0.09 \\ (2.41) \end{gathered}$	$\underbrace{0}_{(2.28)}$	$\begin{gathered} 0.08 \\ (2.04) \end{gathered} \text { * }$	$\begin{gathered} 0.08 \\ (0.80) \end{gathered}$	$\begin{gathered} 0.06 \\ (0.57) \end{gathered}$	$\begin{gathered} 0.08 \\ (1.69) \end{gathered}$	$\begin{gathered} 0.07 \\ (1.51) \end{gathered}$
$\Delta S(-3)$	$\begin{gathered} -0.04 \\ (-1.16) \end{gathered}$	$\begin{gathered} -0.04 \\ (-1.20) \end{gathered}$	$\begin{gathered} -0.04 \\ (-1.10) \end{gathered}$	$\begin{gathered} -0.06 \\ (-0.77) \end{gathered}$	$\begin{gathered} -0.05 \\ (-0.64) \end{gathered}$	$\begin{gathered} -0.03 \\ (-0.92) \end{gathered}$	$\begin{gathered} -0.03 \\ (-0.86) \end{gathered}$
$\Delta S(-4)$	$\begin{gathered} 0.00 \\ (0.11) \end{gathered}$	$\begin{gathered} 0.01 \\ (0.50) \end{gathered}$	$\begin{gathered} 0.01 \\ (0.44) \end{gathered}$	$\begin{gathered} 0.04 \\ (0.58) \end{gathered}$	$\begin{gathered} 0.05 \\ (0.74) \end{gathered}$	$\begin{gathered} 0.01 \\ (0.27) \end{gathered}$	$\begin{gathered} 0.01 \\ (0.20) \end{gathered}$
ΔW		$\begin{gathered} -0.02 \\ (-1.60) \end{gathered}$	$\begin{gathered} -0.02 \\ (-1.78) \end{gathered}$	$\begin{gathered} 0.00 \\ (-0.01) \end{gathered}$	$\begin{gathered} 0.00 \\ (0.22) \end{gathered}$	$\begin{gathered} -0.02 \\ (-1.31) \end{gathered}$	$\begin{gathered} -0.02 \\ (-1.62) \end{gathered}$
$\Delta W(-1)$		$\begin{aligned} & -0.06{ }^{* *} \\ & (-4.68) \end{aligned}$	$\begin{aligned} & -0.07 \text { ** } \\ & (-5.26) \end{aligned}$	$\begin{aligned} & -0.06 \\ & (-3.28) \end{aligned}$	$\begin{aligned} & -0.07 \quad \text { ** } \\ & (-3.53) \end{aligned}$	$\begin{aligned} & -0.06 \\ & (-3.70) \end{aligned}$	$\begin{aligned} & -0.07 \\ & (-4.18) \end{aligned}$
$\Delta W(-2)$		$\begin{gathered} -0.01 \\ (-0.88) \end{gathered}$	$\begin{gathered} -0.01 \\ (-1.31) \end{gathered}$	$\begin{aligned} & -0.06 \quad * * \\ & (-2.93) \end{aligned}$	$\begin{aligned} & -0.06 \text { ** } \\ & (-3.27) \end{aligned}$	$\begin{gathered} 0.00 \\ (0.25) \end{gathered}$	$\begin{gathered} 0.00 \\ (-0.08) \end{gathered}$
$\Delta W(-3)$		$\begin{gathered} 0.01 \\ (0.52) \end{gathered}$	$\begin{gathered} 0.00 \\ (0.42) \end{gathered}$	$\begin{gathered} -0.04 \\ (-1.72) \end{gathered}$	$\begin{gathered} -0.03 \\ (-1.56) \end{gathered}$	$\begin{gathered} 0.01 \\ (0.92) \end{gathered}$	$\begin{gathered} 0.01 \\ (0.81) \end{gathered}$
$\Delta W(-4)$		$\begin{gathered} 0.00 \\ (0.00) \end{gathered}$	$\begin{gathered} 0.00 \\ (0.22) \end{gathered}$	$\begin{gathered} 0.00 \\ (0.00) \end{gathered}$	$\begin{gathered} -0.03 \\ (-1.34) \end{gathered}$	$\begin{gathered} 0.00 \\ (0.00) \end{gathered}$	$\begin{gathered} 0.01 \\ (1.11) \end{gathered}$
ΔK			$\begin{gathered} 0.03 \\ (1.15) \end{gathered}$		$\begin{gathered} -0.01 \\ (-0.15) \end{gathered}$		$\begin{gathered} 0.04 \\ (1.52) \end{gathered}$
$\Delta K(-1)$			$\begin{aligned} & 0.11 \text { ** } \\ & (3.91) \end{aligned}$		$\begin{gathered} 0.15 \\ (2.46) \end{gathered}$		$\begin{aligned} & 0.10 \\ & (3.37) \end{aligned}$
$\Delta K(-2)$			$\begin{aligned} & 0.06 \text { ** } \\ & (2.85) \end{aligned}$		$\begin{gathered} -0.01 \\ (-0.08) \end{gathered}$		$\begin{aligned} & 0.06 \\ & (2.80) \end{aligned}$
$\Delta K(-3)$			$\begin{gathered} 0.02 \\ (1.10) \end{gathered}$		$\begin{gathered} -0.03 \\ (-0.50) \end{gathered}$		$\begin{gathered} 0.03 \\ (1.32) \end{gathered}$
$\Delta \mathrm{K}(-4)$			$\begin{gathered} 0.00 \\ (-0.20) \end{gathered}$		$\begin{gathered} -0.03 \\ (-0.44) \\ \hline \end{gathered}$		$\begin{gathered} -0.01 \\ (-0.34) \end{gathered}$
R-squared	0.437	0.458	0.476	0.520	0.534	0.466	0.488
SSR	5.907	5.685	5.498	1.628	1.581	3.786	3.630
$\log \mathrm{L}$	1326	1347	1366	259	262	1125	1144
Durbin-Watson	2.00	2.00	1.97	1.99	1.99	2.00	1.97
nr . of obs.	1107	1107	1107	240	240	867	867

*Signficant at the 5% level, two-tailed test.
**Signficant at the 1% level, two-tailed test.

Table 6b.
Regression Analysis of Annual Productivity Changes

	Dependent variable: $\Delta V(t)=$ growth in labor productivity					
	Toyota Group		Nissan Group		Others	
	6.8	6.9	6.10	6.11	6.12	6.13
α	$\begin{gathered} 0.03 \\ (3.16) \end{gathered}$		$\begin{gathered} 0.03 \\ (2.68) \end{gathered}$	$\begin{gathered} 0.02 \\ (1.99) \end{gathered}$	$\begin{gathered} 0.02 \\ (2.47) \end{gathered}$	$\begin{gathered} 0.00 \\ (0.46) \end{gathered}$
$\Delta V(-1)$	$\begin{gathered} -0.05 \\ (-0.81) \end{gathered}$	$\begin{gathered} -0.08 \\ (-1.14) \end{gathered}$	$\begin{gathered} 0.09 \\ (1.19) \end{gathered}$	$\begin{gathered} 0.06 \\ (0.85) \end{gathered}$	$\begin{gathered} -0.01 \\ (-0.08) \end{gathered}$	$\begin{gathered} -0.04 \\ (-0.46) \end{gathered}$
$\Delta V(-2)$	$\begin{gathered} -0.14 \\ (-2.05) \end{gathered}$	$\begin{gathered} -0.15 \\ (-2.38) \end{gathered}$	$\begin{gathered} -0.21 \\ (-2.61) \end{gathered}$	$\begin{gathered} -0.20 \\ (-2.50) \end{gathered}$	$\begin{gathered} -0.16 \\ (-2.51) \end{gathered}$	${ }_{(-2.71)}^{-0.18}$
$\Delta V(-3)$	$\begin{gathered} 0.00 \\ (0.04) \end{gathered}$	$\begin{gathered} -0.02 \\ (-0.28) \end{gathered}$	$\begin{gathered} 0.04 \\ (0.61) \end{gathered}$	$\begin{gathered} 0.03 \\ (0.36) \end{gathered}$	$\begin{gathered} 0.04 \\ 0.80) \end{gathered}$	$\begin{gathered} 0.00 \\ (0.09) \end{gathered}$
$\Delta V(-4)$	$\begin{gathered} 0.02 \\ (0.92) \end{gathered}$	$\begin{gathered} 0.01 \\ (0.56) \end{gathered}$	$\begin{gathered} -0.01 \\ (-0.46) \end{gathered}$	$\begin{gathered} -0.01 \\ (-0.50) \end{gathered}$	$\begin{gathered} -0.01 \\ (-0.18) \end{gathered}$	$\begin{gathered} -0.01 \\ (-0.26) \end{gathered}$
ΔS	$\begin{gathered} 0.62 \\ (8.75) \end{gathered}$	$\begin{aligned} & 0.62 \\ & (8.55) \end{aligned}$	$\begin{gathered} 0.61 \\ (10.75) \end{gathered}$	${ }_{(10.43)}^{0.6}$	$\begin{gathered} 0.70 \\ (14.50) \end{gathered}$	$\begin{gathered} 0.72 \\ (15.40)^{* *} \end{gathered}$
$\Delta S(-1)$	$\begin{gathered} -0.15 \\ (-2.39) \end{gathered}$	$\begin{gathered} -0.12 \\ (-1.78) \end{gathered}$	$\begin{aligned} & -0.26 \\ & (-3.95) \end{aligned}$	$\begin{gathered} -0.25 \\ (-3.92) \end{gathered}$	$\begin{gathered} 0.01 \\ (0.17) \end{gathered}$	$\begin{gathered} 0.02 \\ (0.32) \end{gathered}$
$\Delta S(-2)$	$\begin{gathered} 0.12 \\ (2.00) \end{gathered}$	$\begin{gathered} 0.10 \\ (1.66) \end{gathered}$	$\begin{gathered} 0.14 \\ (1.80) \end{gathered}$	$\begin{gathered} 0.11 \\ (1.47) \end{gathered}$	$\begin{gathered} 0.04 \\ (0.63) \end{gathered}$	$\begin{aligned} & 0.04 \\ & (0.63) \end{aligned}$
$\Delta \mathrm{S}(-3)$	$\begin{gathered} -0.07 \\ (-1.19) \end{gathered}$	$\begin{gathered} -0.08 \\ (-1.22) \end{gathered}$	$\begin{gathered} 0.03 \\ (0.56) \end{gathered}$	$\begin{gathered} 0.02 \\ (0.36) \end{gathered}$	$\begin{gathered} -0.07 \\ (-1.33) \end{gathered}$	$\begin{gathered} -0.05 \\ (-0.89) \end{gathered}$
$\Delta S(-4)$	$\begin{gathered} 0.05 \\ (1.06) \end{gathered}$	$\begin{gathered} 0.04 \\ (0.89) \end{gathered}$	$\begin{gathered} 0.00 \\ (-0.07) \end{gathered}$	$\begin{gathered} 0.00 \\ (0.07) \end{gathered}$	$\begin{gathered} -0.01 \\ (-0.33) \end{gathered}$	$\begin{gathered} -0.02 \\ (-0.45) \end{gathered}$
ΔW	${ }_{c}^{-0.05}(-3.56)$	$\underset{(-3.63)}{-0.06}($	$\begin{gathered} -0.01 \\ (-0.71) \end{gathered}$	$\begin{gathered} -0.01 \\ (-0.25) \end{gathered}$	$\begin{gathered} 0.00 \\ (0.08) \end{gathered}$	$\begin{gathered} 0.00 \\ (-0.24) \end{gathered}$
$\Delta W(-1)$	$\overbrace{(-0.063)}^{(-3.63)}$	$\stackrel{-0.06}{(-3.75)}$	$\begin{gathered} 0.00 \\ (-0.12) \end{gathered}$	$\begin{gathered} 0.00 \\ (0.00) \end{gathered}$	$\begin{gathered} -0.09 \\ (-4.24) \end{gathered}$	$\begin{gathered} -0.10 * * \\ (-4.66) \end{gathered}$
$\Delta \mathrm{W}(-2)$	$\begin{gathered} -0.02 \\ (-1.19) \end{gathered}$	$\begin{gathered} -0.03 \\ (-1.48) \end{gathered}$	$\begin{gathered} 0.04 \\ (2.08) \end{gathered}$	$\begin{gathered} 0.02 \\ (1.15) \end{gathered}$	$\begin{gathered} -0.03 \\ (-1.35) \end{gathered}$	$\begin{gathered} -0.03 \\ (-1.54) \end{gathered}$
$\Delta W(-3)$	$\begin{gathered} 0.00 \\ (-0.17) \end{gathered}$	$\begin{gathered} 000 \\ (-0.10) \end{gathered}$	$\begin{gathered} -0.01 \\ (-0.43) \end{gathered}$	$\begin{gathered} -0.02 \\ (-0.84) \end{gathered}$	$\begin{gathered} 0.02 \\ (1.22) \end{gathered}$	$\begin{gathered} 0.02 \\ (1.09) \end{gathered}$
$\Delta W(-4)$	$\begin{gathered} 0.00 \\ (0.00) \end{gathered}$	$\begin{gathered} 0.00 \\ (0.22) \end{gathered}$	$\begin{gathered} 0.00 \\ (0.00) \end{gathered}$	$\begin{gathered} 0.01 \\ (0.69) \end{gathered}$	$\begin{gathered} 0.00 \\ (0.00) \end{gathered}$	$\begin{gathered} 0.00 \\ (0.19) \end{gathered}$
ΔK		$\begin{gathered} -0.02 \\ (-0.41) \end{gathered}$		$\begin{gathered} -0.03 \\ (-0.54) \end{gathered}$		${ }_{(2.09}^{0.32)} \text { * }$
$\Delta K(-1)$		$\begin{gathered} 0.06 \\ (1.06) \end{gathered}$		$\begin{gathered} 0.05 \\ (0.93) \end{gathered}$		$\begin{aligned} & 0.12 \\ & (3.40) \end{aligned}$
$\Delta \mathrm{K}(-2)$		$\begin{gathered} 0.09 \\ (2.22) \end{gathered}$		$\begin{aligned} & 0.11 \\ & (2.60) \end{aligned}$		$\begin{gathered} 0.02 \\ (0.58) \end{gathered}$
$\Delta \mathrm{K}(-3)$		$\begin{gathered} 0.04 \\ (1.17) \end{gathered}$		$\begin{gathered} 0.03 \\ (0.64) \end{gathered}$		$\begin{gathered} 0.02 \\ (0.70) \end{gathered}$
$\Delta \mathrm{K}(-4)$		$\begin{array}{r} 0.02 \\ (0.37) \\ \hline \end{array}$		$\begin{array}{r} -0.03 \\ (-0.86) \\ \hline \end{array}$		$\begin{gathered} -0.02 \\ (-0.50) \\ \hline \end{gathered}$
R-squared	0.422	0.446	0.501	0.523	0.504	0.527
SSR	0.983	0.943	1.080	1.032	3.287	3.132
logL	419	425	346	352	632	646
Durbin-Watson	2.00	1.99	1.95	1.93	1.97	1.96
nr . of obs.	293	293	261	261	553	553

*Signficant at the 5% level, two-tailed test.
**Signficant at the 1% level, two-tailed test.

Table 7.
Tests of Equality Between Groups*

	Assemblers versus Suppliers	Toyota Group versus Nissan group	Toyota Group versus "Other" Group	Nissan Group versus "Other" Group
Productivity change following change in WIP $(\Delta W$ coefficients in Table 6)	.036	.013	.027	.001
Change in WIP following change in Productivity $(\Delta V$ coefficients in Table 8)	.259	.001	.000	.113

*Tests were performed by constraining the coefficients indicated (for years t through $t-3$) to be identical between groups, with all other coefficients allowed to differ. Table gives the p-level by which the null hypothesis of coefficient equality can be rejected, based on a Wald test. (F-test results were very similar.)

Table 8a.

Regression Analysis of Annual Changes in WIP

Dependent variable: $\Delta W(t)=$ change in WIP inventory

	All firms			All Assemblers		All suppliers	
	8.1	8.2	8.3	8.4	8.5	8.6	8.7
α	$\begin{gathered} -0.02 \\ (-1.46) \end{gathered}$	$\begin{gathered} -0.01 \\ (-0.93) \end{gathered}$	$\begin{gathered} -0.03 \\ (-1.77) \end{gathered}$	$\begin{gathered} 0.04 \\ (0.94) \end{gathered}$	$\begin{gathered} 0.04 \\ (0.74) \end{gathered}$	$\begin{gathered} -0.03 \\ (-1.62) \end{gathered}$	$\begin{aligned} & -0.05 \text { ** } \\ & (-2.53) \end{aligned}$
$\Delta W(-1)$	$\begin{aligned} & -0.15 \text { *** } \\ & (-3.92) \end{aligned}$	$\begin{aligned} & -0.166^{* *} \\ & (-4.20) \end{aligned}$	$\begin{aligned} & -0.155^{* *} \\ & (-4.00) \end{aligned}$	$\begin{aligned} & -0.22 \text { ** } \\ & (-2.91) \end{aligned}$	$\begin{aligned} & -0.21^{* *} \\ & (-2.63) \end{aligned}$	$\begin{gathered} -0.11 \\ (-2.44) \end{gathered}$	$\begin{gathered} -0.10 \\ (-2.32) \end{gathered}$
$\Delta W(-2)$	$\begin{aligned} & -0.10^{* *} \\ & (-2.61) \end{aligned}$	$\begin{aligned} & -0.11^{* *} \\ & (-2.69) \end{aligned}$	$\begin{gathered} -0.10 \\ (-2.41) \end{gathered}$	$\begin{gathered} -0.05 \\ (-0.51) \end{gathered}$	$\begin{gathered} -0.03 \\ (-0.28) \end{gathered}$	$\begin{aligned} & -0.144^{* *} \\ & (-3.59) \end{aligned}$	$\begin{aligned} & -0.13 \text { ** } \\ & (-3.51) \end{aligned}$
$\Delta W(-3)$	$\begin{gathered} -0.04 \\ (-1.09) \end{gathered}$	$\begin{gathered} -0.04 \\ (-1.00) \end{gathered}$	$\begin{gathered} -0.06 \\ (-1.52) \end{gathered}$	$\begin{gathered} -0.04 \\ (-0.44) \end{gathered}$	$\begin{gathered} -0.05 \\ (-0.58) \end{gathered}$	$\begin{gathered} -0.01 \\ (-0.17) \end{gathered}$	$\begin{gathered} -0.03 \\ (-0.66) \end{gathered}$
$\Delta W(-4)$	$\begin{gathered} 0.03 \\ (0.89) \end{gathered}$	$\begin{gathered} 0.03 \\ (0.77) \end{gathered}$	$\begin{gathered} 0.03 \\ (0.96) \end{gathered}$	$\begin{gathered} 0.14 \\ (1.98) \end{gathered}$	$\begin{gathered} 0.15 \\ (2.05) \end{gathered}$	$\begin{gathered} -0.02 \\ (-0.53) \end{gathered}$	$\begin{gathered} -0.01 \\ (-0.37) \end{gathered}$
ΔS	$\begin{gathered} 0.69 \\ (8.84) \end{gathered}$	$\begin{gathered} 0.82 \\ (6.72) \end{gathered}$	$\begin{gathered} 0.81 \\ (6.86) \end{gathered}$	$\begin{gathered} 0.37 \\ (1.34) \end{gathered}$	$\begin{gathered} 0.36 \\ (1.28) \end{gathered}$	$\begin{gathered} 0.91 \\ (6.49) \end{gathered}$	$\begin{gathered} 0.91 \\ (6.67) \end{gathered}$
$\Delta S(-1)$	$\begin{gathered} 0.04 \\ (0.56) \end{gathered}$	$\begin{gathered} 0.09 \\ (0.80) \end{gathered}$	$\begin{gathered} 0.06 \\ (0.48) \end{gathered}$	$\begin{gathered} 0.08 \\ (0.32) \end{gathered}$	$\begin{gathered} -0.02 \\ (-0.06) \end{gathered}$	$\begin{gathered} 0.08 \\ (0.60) \end{gathered}$	$\begin{gathered} 0.05 \\ (0.36) \end{gathered}$
$\Delta \mathrm{S}(-2)$	$\begin{gathered} -0.01 \\ (-0.11) \end{gathered}$	$\begin{gathered} -0.03 \\ (-0.22) \end{gathered}$	$\begin{gathered} 0.03 \\ (0.25) \end{gathered}$	$\begin{gathered} -0.52 \\ (-1.51) \end{gathered}$	$\begin{gathered} -0.41 \\ (-1.18) \end{gathered}$	$\begin{gathered} 0.08 \\ (0.62) \end{gathered}$	$\begin{gathered} 0.13 \\ (1.03) \end{gathered}$
$\Delta S(-3)$	$\begin{gathered} 0.17 \\ (2.15) \end{gathered}$	$\begin{gathered} 0.23 \\ (2.07) \end{gathered}$	$\begin{gathered} 0.22 \\ (1.98) \end{gathered}$	$\begin{gathered} 0.07 \\ (0.24) \end{gathered}$	$\begin{gathered} 0.05 \\ (0.16) \end{gathered}$	$\begin{gathered} 0.26 \\ (2.17) \end{gathered}$	$\begin{gathered} 0.26 \\ (2.11) \end{gathered}$
$\Delta \mathrm{S}(-4)$	$\begin{gathered} 0.06 \\ (0.79) \end{gathered}$	$\begin{gathered} 0.05 \\ (0.54) \end{gathered}$	$\begin{gathered} 0.04 \\ (0.43) \end{gathered}$	$\begin{gathered} -0.08 \\ (-0.41) \end{gathered}$	$\begin{gathered} -0.06 \\ (-0.29) \end{gathered}$	$\begin{gathered} 0.12 \\ (1.23) \end{gathered}$	$\begin{gathered} 0.10 \\ (1.05) \end{gathered}$
ΔV		$\begin{gathered} -0.19 \\ (-1.59) \end{gathered}$	$\begin{gathered} -0.20 \\ (-1.75) \end{gathered}$	$\begin{gathered} 0.00 \\ (-0.01) \end{gathered}$	$\begin{gathered} 0.04 \\ (0.22) \end{gathered}$	$\begin{gathered} -0.21 \\ (-1.30) \end{gathered}$	$\begin{gathered} -0.24 \\ (-1.59) \end{gathered}$
$\Delta \mathrm{V}(-1)$		$\begin{gathered} -0.09 \\ (-0.89) \end{gathered}$	$\begin{gathered} -0.12 \\ (-1.10) \end{gathered}$	$\begin{gathered} 0.08 \\ (0.42) \end{gathered}$	$\begin{gathered} 0.08 \\ (0.41) \end{gathered}$	$\begin{gathered} -0.16 \\ (-1.27) \end{gathered}$	$\begin{gathered} -0.20 \\ (-1.49) \end{gathered}$
$\Delta V(-2)$		$\begin{gathered} 0.01 \\ (0.05) \end{gathered}$	$\begin{gathered} -0.05 \\ (-0.46) \end{gathered}$	$\begin{gathered} 0.23 \\ (1.02) \end{gathered}$	$\begin{gathered} 0.15 \\ (0.62) \end{gathered}$	$\begin{gathered} 0.02 \\ (0.13) \end{gathered}$	$\begin{gathered} -0.04 \\ (-0.30) \end{gathered}$
$\Delta \mathrm{V}(-3)$		$\begin{gathered} -0.09 \\ (-0.91) \end{gathered}$	$\begin{gathered} -0.08 \\ (-0.86) \end{gathered}$	$\begin{gathered} 0.17 \\ (0.80) \end{gathered}$	$\begin{gathered} 0.22 \\ (1.01) \end{gathered}$	$\begin{gathered} -0.19 \\ (-1.66) \end{gathered}$	$\begin{gathered} -0.20 \\ (-1.77) \end{gathered}$
$\Delta V(-4)$		$\begin{gathered} 0.00 \\ (0.00) \end{gathered}$	$\begin{gathered} -0.01 \\ (-0.14) \end{gathered}$	$\begin{gathered} 0.00 \\ (0.00) \end{gathered}$	$\begin{gathered} 0.23 \\ (1.83) \end{gathered}$	$\begin{gathered} 0.00 \\ (0.00) \end{gathered}$	$\begin{gathered} -0.06 \\ (-0.88) \end{gathered}$
ΔK			$\begin{aligned} & 0.32 \text { ** } \\ & (4.42) \end{aligned}$		$\begin{gathered} 0.39 \\ (1.63) \end{gathered}$		$\begin{aligned} & 0.30 \text { ** } \\ & (4.23) \end{aligned}$
$\Delta K(-1)$			$\begin{gathered} -0.06 \\ (-0.87) \end{gathered}$		$\begin{gathered} -0.25 \\ (-1.32) \end{gathered}$		$\begin{gathered} -0.04 \\ (-0.53) \end{gathered}$
$\Delta \mathrm{K}(-2)$			$\begin{gathered} -0.01 \\ (-0.05) \end{gathered}$		$\begin{gathered} -0.14 \\ (-0.71) \end{gathered}$		$\begin{gathered} 0.02 \\ (0.14) \end{gathered}$
$\Delta \mathrm{K}(-3)$			$\begin{gathered} 0.15 \text { * } \\ (2.14) \end{gathered}$		$\begin{gathered} 0.13 \\ (0.64) \end{gathered}$		$\begin{gathered} 0.14 \\ (2.13) \end{gathered}$
$\Delta K(-4)$			$\begin{array}{r} -0.10 \\ (-1.54) \\ \hline \end{array}$		$\begin{gathered} -0.18 \\ (-0.91) \\ \hline \end{gathered}$		$\begin{gathered} -0.05 \\ (-0.80) \\ \hline \end{gathered}$
R-squared	0.123	0.128	0.152	0.147	0.175	0.157	0.182
SSR	56.13	55.82	54.22	14.75	14.26	39.32	38.16
$\log L$	79.7	82.7	98.7	-5.8	-1.7	110.7	123.7
Durbin Watson	1.99	1.99	2.00	2.07	2.10	1.99	2.00
nr. of obs.	1107	1107	1107	240	240	867	867

*Signficant at the 5% level, two-tailed test.
**Signficant at the 1% level, two-tailed test.

Table 8b.
Regression Analysis of Annual Changes in WIP
Dependent variable: $\Delta W(t)=$ change in WP inventory

	Toyota group		Nissan Group		Others	
	8.8	8.9	8.10	8.11	8.12	8.13
α	$\begin{gathered} 0.08 \\ (2.11) \end{gathered}$	$\begin{gathered} 0.04 \\ (0.98) \end{gathered}$	$\begin{gathered} -0.03 \\ (-1.09) \end{gathered}$	$\begin{gathered} -0.04 \\ (-1.32) \end{gathered}$	$\begin{gathered} -0.04 \\ (-1.83) \end{gathered}$	$\begin{gathered} -0.05 \\ (-1.91) \end{gathered}$
$\Delta W(-1)$	$\begin{aligned} & -0.27^{* *} \\ & (-3.58) \end{aligned}$	$\begin{aligned} & -0.25 \text { ** } \\ & (-3.58) \end{aligned}$	$\begin{gathered} -0.08 \\ (-1.13) \end{gathered}$	$\begin{gathered} -0.05 \\ (-0.70) \end{gathered}$	$\begin{gathered} -0.13 \text { * } \\ (-2.42) \end{gathered}$	$\begin{gathered} -0.13 \\ (-2.47) \end{gathered}$
$\Delta W(-2)$	$\begin{gathered} -0.11 \\ (-1.43) \end{gathered}$	$\begin{gathered} -0.10 \\ (-1.29) \end{gathered}$	$\begin{gathered} -0.05 \\ (-0.64) \end{gathered}$	$\begin{gathered} 0.01 \\ (0.13) \end{gathered}$	$\begin{aligned} & -0.17^{* *} \\ & (-3.36) \end{aligned}$	$\begin{aligned} & -0.177^{* *} \\ & (-3.37) \end{aligned}$
$\Delta W(-3)$	$\begin{gathered} 0.01 \\ (0.08) \end{gathered}$	$\begin{gathered} -0.04 \\ (-0.65) \end{gathered}$	$\begin{gathered} -0.10 \\ (-1.24) \end{gathered}$	$\begin{gathered} -0.11 \\ (-1.47) \end{gathered}$	$\begin{gathered} -0.06 \\ (-1.34) \end{gathered}$	$\begin{gathered} -0.07 \\ (-1.36) \end{gathered}$
$\Delta W(-4)$	$\begin{gathered} 0.11 \\ (1.83) \end{gathered}$	$\begin{gathered} 0.14 \\ (2.26) \end{gathered}$	$\begin{gathered} 0.04 \\ (0.56) \end{gathered}$	$\begin{gathered} 0.06 \\ (0.89) \end{gathered}$	$\begin{gathered} -0.06 \\ (-1.24) \end{gathered}$	$\begin{gathered} -0.06 \\ (-1.27) \end{gathered}$
ΔS	$\begin{aligned} & 1.03 \text { ** } \\ & (4.04) \end{aligned}$	$\begin{aligned} & 0.95 \text { ** } \\ & (3.86) \end{aligned}$	$\begin{aligned} & 0.90 \\ & (3.80) \end{aligned}$	$\begin{aligned} & 0.70 \text { ** } \\ & (3.30) \end{aligned}$	$\begin{aligned} & 0.63 \\ & (4.01) \end{aligned}$	$\begin{aligned} & 0.67 \\ & (4.39) \end{aligned}$
$\Delta \mathrm{S}(-1)$	$\begin{gathered} 0.44 \\ (1.48) \end{gathered}$	$\begin{gathered} 0.49 \\ (1.54) \end{gathered}$	$\begin{gathered} -0.29 \\ (-1.35) \end{gathered}$	$\begin{gathered} -0.24 \\ (-1.20) \end{gathered}$	$\begin{gathered} 0.10 \\ (0.70) \end{gathered}$	$\begin{gathered} 0.09 \\ (0.60) \end{gathered}$
$\Delta \mathrm{S}(-2)$	$\begin{gathered} -0.56 \\ (-1.59) \end{gathered}$	$\begin{gathered} -0.47 \\ (-1.38) \end{gathered}$	$\begin{gathered} 0.12 \\ (0.60) \end{gathered}$	$\begin{gathered} 0.20 \\ (0.95) \end{gathered}$	$\begin{gathered} 0.09 \\ (0.53) \end{gathered}$	$\begin{gathered} 0.11 \\ (0.59) \end{gathered}$
$\Delta S(-3)$	$\begin{gathered} 0.05 \\ (0.18) \end{gathered}$	$\begin{gathered} -0.03 \\ (-0.11) \end{gathered}$	$\begin{gathered} 0.23 \\ (1.27) \end{gathered}$	$\begin{gathered} 0.19 \\ (1.02) \end{gathered}$	$\begin{gathered} 0.41 \\ (2.30) \end{gathered}$	$\underbrace{0}_{(2.37)} \text { * }$
$\Delta \mathrm{S}(-4)$	$\begin{gathered} 0.08 \\ (0.39) \end{gathered}$	$\begin{gathered} 0.05 \\ (0.29) \end{gathered}$	$\begin{gathered} -0.02 \\ (-0.11) \end{gathered}$	$\begin{gathered} 0.00 \\ (0.02) \end{gathered}$	$\begin{gathered} 0.07 \\ (0.60) \end{gathered}$	$\begin{gathered} 0.07 \\ (0.56) \end{gathered}$
ΔV	$\begin{aligned} & -0.844^{* *} \\ & (-3.50) \end{aligned}$	$\begin{aligned} & -0.84^{* *} \\ & (-3.31) \end{aligned}$	$\begin{gathered} -0.18 \\ (-0.74) \end{gathered}$	$\begin{gathered} -0.06 \\ (-0.25) \end{gathered}$	$\begin{gathered} 0.01 \\ (0.08) \end{gathered}$	$\begin{gathered} -0.04 \\ (-0.24) \end{gathered}$
$\Delta V(-1)$	$\begin{aligned} & -0.68 \text { * } \\ & (-2.46) \end{aligned}$	$\begin{aligned} & -0.888^{* *} \\ & (-3.08) \end{aligned}$	$\begin{gathered} 0.28 \\ (1.19) \end{gathered}$	$\begin{gathered} 0.17 \\ (0.82) \end{gathered}$	$\begin{gathered} -0.03 \\ (-0.21) \end{gathered}$	$\begin{gathered} -0.04 \\ (-0.29) \end{gathered}$
$\Delta V(-2)$	$\begin{gathered} 0.14 \\ (0.62) \end{gathered}$	$\begin{gathered} 0.11 \\ (0.47) \end{gathered}$	$\begin{gathered} 0.15 \\ (0.71) \end{gathered}$	$\begin{gathered} 0.09 \\ (0.41) \end{gathered}$	$\begin{gathered} -0.12 \\ (-0.78) \end{gathered}$	$\begin{gathered} -0.14 \\ (-0.93) \end{gathered}$
$\Delta V(-3)$	$\begin{gathered} -0.03 \\ (-0.16) \end{gathered}$	$\begin{gathered} -0.10 \\ (-0.47) \end{gathered}$	$\begin{gathered} -0.29 \\ (-1.30) \end{gathered}$	$\begin{gathered} -0.22 \\ (-1.04) \end{gathered}$	$\begin{gathered} -0.08 \\ (-0.59) \end{gathered}$	$\begin{gathered} -0.10 \\ (-0.71) \end{gathered}$
$\Delta V(-4)$	$\begin{gathered} 0.00 \\ (0.00) \end{gathered}$	$\begin{gathered} 0.01 \\ (0.07) \end{gathered}$	$\begin{gathered} 0.00 \\ (0.00) \end{gathered}$	$\begin{gathered} 0.07 \\ (0.95) \end{gathered}$	$\begin{gathered} 0.00 \\ (0.00) \end{gathered}$	$\begin{gathered} -0.06 \\ (-0.66) \end{gathered}$
ΔK		$\begin{aligned} & 0.36 \text { ** } \\ & (2.64) \end{aligned}$		$\begin{aligned} & 0.53 \\ & (3.40) \end{aligned}$		$\begin{gathered} 0.17 \\ (1.68) \end{gathered}$
$\Delta K(-1)$		$\begin{aligned} & -0.27 \text { * } \\ & (-2.10) \end{aligned}$		$\begin{gathered} -0.12 \\ (-0.99) \end{gathered}$		$\begin{gathered} 0.06 \\ (0.55) \end{gathered}$
$\Delta K(-2)$		$\begin{gathered} 0.45 \\ (1.34) \end{gathered}$		$\begin{aligned} & -0.31 \\ & (-2.36) \end{aligned}$		$\begin{gathered} 0.00 \\ (-0.04) \end{gathered}$
$\Delta K(-3)$		$\begin{gathered} 0.26 \\ (1.56) \end{gathered}$		$\begin{gathered} 0.34 \\ (2.49) \end{gathered}$		$\begin{gathered} 0.01 \\ (0.10) \end{gathered}$
$\Delta K(-4)$		$\begin{gathered} 0.04 \\ (0.30) \\ \hline \end{gathered}$		$\begin{gathered} -0.22 \\ (-1.50) \end{gathered}$		$\begin{gathered} -0.05 \\ (-0.57) \\ \hline \end{gathered}$
R-squared	0.198	0.266	0.180	0.277	0.156	0.164
SSR	15.18	13.90	12.90	11.37	24.50	24.28
$\log \mathrm{L}$	17.9	30.8	22.1	38.5	77.1	79.5
Durbin Watson	1.95	1.97	1.97	1.99	2.04	2.04
nr . of obs.	293	293	261	261	553	553

*Signficant at the 5% level, two-tailed test.
**Signficant at the 1% level, two-tailed test.

[^0]: 1 See, for example, Monden (1981, 1983) and the studies cited in surveys by Im and Lee (1989) and Voss and Robinson (1987).

[^1]: 2 Lieberman (1990) documents a negative correlation between WIP inventory and labor productivity for Japanese automotive assemblers in the mid-1970s. A comparative assessment of inventory and productivity trends in the Japanese and US automotive industries is provided in Lieberman and Asaba (1997).

[^2]: ${ }^{3}$ A key assumption is that the costs of problem solving are small compared to the benefits; i.e., problems that create a need for WIP inventory are usually not hard to solve but often fail to get attention. Most examples from the descriptive literature (e.g., Shonberger (1982), Monden (1983)) seem to satisfy this requirement

[^3]: 4 Cusumano (1985, pp. 307-319) compares the Nissan production system with the one developed by Toyota. While Nissan adopted some features of JIT manufacturing, "even in the early 1980s, Nissan differed from Toyota in several areas. It did not employ a 'pull' system, ... it produced in relatively large lots, ... (and it) chose to rely more on automation and computers to raise productivity than production-management techniques such as a complete kanban system or the job-cycle rationalization measures and rapid line speeds that Toyota employed." (p. 307).

 5 Two of these firms (Toyota Auto Body and Kanto Auto Works) are Toyota subcontractors; the third (Nissan Shatai) is a Nissan subcontractor.

 6 These associations, which are organized by the assemblers, serve as mechanisms for information exchange and technology diffusion.

[^4]: 7 Many of these "others" participate in Toyota's "Kanto Kyohokai" and Nissan's "Shohokai" supplier associations, which have broad membership (Sako, 1994). We classified one company (Topre) as independent, given its late entry into the associations of both Toyota and Nissan.

 8 The specific data used in this study are from the Analysts' Guide published annually by the Daiwa Securities Corporation, with supplementary detail for the 1965-1976 period obtained directly from Daiwa Securities Corporation.
 9 Fujimoto and Takeishi (1994) discuss some of the reasons for declining productivity growth in the Japanese automotive sector.

[^5]: 10 One firm, Riken, did not begin making substantial inventory reductions until the mid-1980s. These reductions continued until the end of sample coverage, so we manually extended Riken's period through 1991.

[^6]: 11 There are no standard procedures for identifying the periods, so we experimented with several algorithms, which gave similar results. The procedure described here is the simplest of those tested. The tests reported in Table 4 are robust to changes in the algorithm.
 12 We used the percentile rather than the numerical rank, as the number of suppliers in the sample increases slightly in the early years.

[^7]: 13 We used the inventory ratio for the end of the observation year. The level of fixed investment is for the beginning of the year, reflecting plant and equipment which was in place for the full year. All variables were taken in logarithms, which allows the regression coefficients to be interpreted as elasticities.

[^8]: 14 The coefficient for the Nissan companies was about half the magnitude shown for the full sample, but the difference was not statistically significant. When the sample was limited to the period after 1970, as in the regressions reported in the next section, the coefficient for the contract assemblers fell significantly below that of other firms. One likely explanation is that the contract assemblers made most of their inventory reductions prior to 1970, as indicated in Figure 2.

[^9]: 15 Our implicit assumption is that the lags associated with link 2 in Figure 1 are very short.
 16 We applied the following Hausman test for simultaneity bias (Berndt, 1991, pp. 379-380): Fitted values of ΔW_{t} were obtained from reduced form regressions on the exogenous and predetermined variables, and these values were added as explanatory variables in equations 6.2 and 6.3. The fitted values were not significant in these regressions, indicating that the hypothesis of simultaneity bias in the ΔW_{t} coefficients can be rejected.

[^10]: 18 We implemented these tests by constraining the coefficients of interest to be identical between the two groups being compared, while allowing all other coefficients to differ between the groups. The sum of squared residuals in these constrained regressions, relative to the unconstrained values shown in Table 6, provides the basis for the tests.

[^11]: Table 7 gives significance levels obtained using the Wald test recommended by Geweke, Meese and Dent (1983). Results of F-tests were very similar.

 19 Differences between the Toyota and Nissan groups are significant at the 5% level, as are the differences between the Toyota group and "Others." Differences between the Nissan group and "Others" are significant at the 1% level.

 20 We tested these OLS regressions for simultaneity bias in the ΔV coefficients, using a Hausman test analogous to the one described in footnote 18. Results indicated that the OLS estimates were unbiased. Although tests showed the absence of significant heteroskedasticity, we report t-statistics based on heteroskedastic-consistent standard errors, as in Table 6.

[^12]: 21 While sales declines occasionally occurred, the predominant trend was of increasing sales over the sample period.

[^13]: 22 In our sample, the WIP/value-added ratio peaked at 16.3% in 1967, falling below 10% from 1977 onward. Assuming a 15% ratio and a 15% annual holding cost, a 10% reduction in WIP amounts to a holding cost savings equal to 0.225% of value-added. This is less than one-third of the estimated productivity gain.
 23 Assume for purposes of illustration that a reduction in WIP inventory leads to an immediate gain in productivity. The dependent variable in Table $6, \Delta V_{t}$, is the change in value-added per worker (a flow measure) between year $t-1$ and year t. The explanatory variable, ΔW_{t}, is the change in the stock of WIP inventory, measured from the end of year $t-1$ to the end of year t. A reduction in WIP made at the midpoint of year t would be followed by an immediate rise in the firm's value-added, but the increase in productivity, as recorded by ΔV_{t}, would appear half in year t and half in the next year. In the regression analysis of ΔV_{t} one would observe coefficients of equal magnitude for ΔW_{t} and ΔW_{t-1}, with coefficients of zero for the additional lagged terms. This is approximately what is shown for the Toyota group (regressions 6.8 and 6.9).

[^14]: 24 This raises the possibility that $\Delta \mathrm{V}_{\mathrm{t}+1}$ should be included as an explanatory variable in Table 8. When tested, this measure had a negative coefficient that was weakly significant but comparatively small.

 25 A similar computation can be made using the estimates of relative labor productivity growth in Table 4. Firms that made substantial inventory reductions (based on the 4% criterion) experienced productivity growth during this period that was, on average, about 1.5% above the growth rate of other firms. Multiplying this figure by an average reduction period of about 6-7 years (consistent with Figure 2) yields a total differential productivity gain of about 10%.

[^15]: 26 During the 1970s various manufacturing practices, such as quality circles and total quality control, became widely adopted in the Japanese automotive sector.

