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ABSTRACT

An approach to the steady state minimization of travel

time on a freeway corridor system by the assignment of traffic

to routes and the control of signal settings is presented. A

model of traffic behavior is developed from which the total

travel time, or cost, on any part of the system can be esti-

mated. It is demonstrated that a general optimization pro-

ceedure for the solution of the problem is inefficient, and

an alternative one is suggested.
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CHAPTER I. INTRODUCTION

1.1 General Introduction--the Freeway Corridor System

A freeway corridor system is a network of roads consist-

ing of one or more limited access highways, the other highways

and major streets which parallel them, and the associated con-

necting roads. A typical example of such a system is a road

network connecting the major business center of a metropolitan

area with its suburbs. The demand on such systems, in terms of

traffic which must be carried, has been continually increasing

and will do so for the forseeable future. Further, in many areas

it is either impossible or economically unfeasible to make a sig-

nificant increase in the capacity of a system of roads by build-

ing additional roads. Thus, there is a strong need to determine

ways of more effectively utilizing existing road systems.

1.2 Survey of Related Publications and Research

Since the publication of a fundamental paper by Wardrop [13

in 1952, considerable attention has been paid to various math-

ematical and engineering aspects of traffic problems. Among

other issues, Wardrop addressed the problem of determining the

most preferable assignment of traffic to routes on a system of

roads (assuming that there would be a choice of several routes

for the traveler to take to his destination) according to two
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principles, or decision rules: first, the 'system-optimizing'

rule, i.e., the total cost (usually travel time) of all-vehicles

on all routes of the system is to be minimized; and second, the

user-optimizing' rule, according to which traffic is assigned to

routes so that no traveler will be able to reduce his own cost

by taking a different route. It is assumed that the cost in-

curred by any assignment of traffic to routes can be determined.

The existence of user- and system-optimizing solutions, and the

relation between them, has been extensively studied by Dafermos

and Sparrow [2], [3]. The user-optimizing problem for networks

containing freeways was considered by Payne and Thompson [4].

Lighthill and Whitham [5] and later Greenberg [6] and

Preparta [7] observed correspondences between traffic flow and

the flow of a compressible, continuous fluid and developed a

model of freely flowing highway traffic which was experimentally

observed to be plausible except at low traffic density. Effects

of disturbances, or interruptions of the traffic flow, are also

considered in C[5 and [7]. Numerous efforts have been made to

understand the behavior of traffic at intersections and in other

circumstances where queues develop and a fluid model is inapplic-

able or incomplete, particularly in regard to the probabilistic

nature of traffic behavior is such situations. In particular,

signalized intersections are considered by Wormleighton [8) and

de Smit [9]. Delays at intersections due to vehicles turning

left are studied by Hellinger [10]. Grafton and Newell [11],,

Sako and Zutidlevich [12], and Allsop [13) address tne problem
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of determining traffic signal settings so as to minimize total

delay to all vehicles. Queueing at unsignalized intersections

is studied oy Hawkes [143. Freeway entrance ramps and the

optimal control of queues that develop on them is the suoject

of Shaw's article C153. Gaps between venicles and the eftects

ot vehicles moving at different speeds in nighway traffic flows

are considered oy Ashton [163 and Daganzo [17].

Attention has been giveii to the control of traffic on

networks, particularly dynamic control involving real-time data

collection and the use of a central controlling computer; for

example, by Miller [183, Rosdolsky [193, and Gartner, Little,

and Gabbay [20], and also by Nguyen [21].

A comprehensive review of the theory of traffic modeling

and control has been made by Gazis C22], including an extensive

survey of the literature.

Each of the control studies mentioned above, except for

that of Nguyen, emphasizes the control of traffic signals. How-

ever, in most urban areas of the United States today, a major

portion of the traffic is carried by limited access highways,

which are not generally controlled directly by traffic lights.

Instead, the amount of traffic already on a freeway determines

the maximum rate at which additional traffic may enter it.

Furthermore, as previously noted, a typical urban road network

will consist of one or more freeways and a number of additional

streets and highways. Control of such a network requires some

means of determining an optimal routing policy and a means of
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assigning traffic to routes.

Ways of developing a control system for urban road net-

works are presently being studied at the M.I.T. Electronic

Systems Laboratory, under contract from the U.S. Department of

Transportation C23]. Information about traffic flow is gathered

by sensors L243 and processed by an estimation/detection scheme

[25]. Dynamic control is facilitated by a feedback system C26].

The assignment of traffic to routes is performed by a static

optimization program C273, which is called periodically and

receives information about the current state of the network

from the estimation/detection system. The static optimization

program also determines traffic signal settings on the network.

One method of performing this static, or steady state, optimiza-

tion by attempting to minimize the total travel time for all

vehicles, is considered by Gershwin in [273.

I.3 Objectives and Summary

The goal of this paper, which is part of ongoing research

at the Electronic Systems Laboratory, is to point out some pos-

sible methods for determining an assignment of traffic to routes

in a freeway corridor system so as to minimize total travel time

for all travelers, as opposed to travel time for vehicles, since

different vehicles may carry different numbers of travelers. It

is assumed that there will generally be more than one route for

a vehicle to take from its origin to its destination. It is

further assumed that there will be some means of directing



vehicles to the proper routes.

A model of traffic flow and associated travel times on a

freeway corridor system is presented in Chapter II. This model

considers only the steady state, or stationary, distribution of

flow on the network; that is, traffic flow is assumed to be

essentially constant over some (sufficiently long) interval of

time. This is not a highly detailed model, but is a sufficient

approximation for the purpose of simulating some of the most

important types of vehicle behavior on a freeway corridor sys-

tem. In particular, the effects of traffic density on average

velocity of vehicles, and the delays incurred on freeway entrance

ramps and at traffic signals, are considered. A cost func-

tion, representing the total travel time for all travelers on

the network, is - developed.

Two optimization techniques for minimizing the cost by

adjusting the traffic flows and signals, are presented in Chap-

ter III. The first of these is a general optimization algorithm,

called accelerated gradient projection C283, which does not take

any special properties of the traffic problem into account. The

second algorithm, a decomposition method, was developed for use

on communications networks [293, where problems similar to those

encountered in traffic systems arise. It is shown how both

methods can be adapted for use on vehicular traffic problems,

and their respective computational efficiencies are compared.

Some preliminary numerical results achieved by the use of

a computer are presented in Chapter IV. The applicability of



both the model and the optimization methods to real-time Solu-,

tion of the problem on a freeway corridor system are discussed.

in Chapter V.
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CHAPTER II. STEADY STATE TRAFFIC MODEL

II.1 Introduction

In this chapter, a model of traffic behavior on a road

network will be presented. The model will not describe all

aspects of traffic behavior in detail, but will represent some

of the phenomena that are most important in the freeway corridor

system problem.

Elementary graph theory will be used to give a precise

definition of a road network. The flow of moving traffic will

be considered by analogy to the flow of a continuous compress-

ible fluid, and the effects of traffic signals and freeway

entrance ramps will modeled as single server queues. In all

cases, it will be a steady state model that is used. Finally,

a cost function, representing the travel timge in accordance

with the model presented, will be developed.

II.2 Networks and System Parameters

A road network is defined to be a directed graph,; that is,

a finite set ?2 of nodes, and a set C , whose members are ordered

pairs of nodes, called links. Nodes will be numbered 1, 2, 3,

etc. If n i , nj are nodes, then (ni,nj) is the link connecting

i to nj, and is distinct from (nj,ni), which connects nj to nio

In general, there will not be a link connecting every pair of

nodes.
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(Links may also be numbered 1, 2, 3, etc., and referred to by

number as long as it is clear which ordered pair of nodes is

implied.) The link(ni,nj)is understood to represent a roadway

on which traffic may flow from n i to nj. Some nodes may have

the flow entering (leaving) them specified, such nodes are called

destination (origin) nodes. A chain is an ordered set of links

which traffic may take from one node to another. Figure 1 shows

a sample network, of four nodes and five links.

Nodes Links

1 (1,2)

2 (1,4)

.j'a)~~ ~3 (2,4)

4 (4,2)

(4,3)

Figure 1. Sample Network

On the network a distance function, or metric, i, is de-

fined, which assigns a positive number to every link. That is,

if(nj,nk)is a link, then A (nj,nk) is the distance from nj to nk

along that link; or the length of the link. If (njnk) is re-

ferred to as link i, then 4 is the length of link i.

The following quantities will be of concern in the model

presented here: the traffic flow .1 , the traffic density P , the

average velocity v of a vehicle intraffic stream, the distance

that a vehicle travels, and the travel time Z . Table 1 summa-

rizes the symbols used and their units.
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Symbol Meaninq Units

traffic flow vehicles/hour

on link i

traffic density vehicles/mile

on link i

average velocity miles/hour

of vehicles on

link i

~.; length of link i miles

average travel hours

~t' time for vehicles

on link i

Table 1. Symbols and Units

II.3 System Equations and Inequalities

There are two basic principles of flow on a network:

I) all -flcas are nonnegative, and 2) flow is conserved. That is,

at all nodes that are neither origins (sources) nor destinations

(sinks), the flow entering is equal to the flow leaving the node,

and the total flow which enters at origins is equal to the total

flow leaving the network at destinations.

In addition it is required that the flow on each link be

less than a fixed maximum, called the capacity of the link.

(Different links may have different capacities.) The capacity

of link i is denoted by ~imax'

Finally, the demands, or traffic entering and leaving the

network at origins and destinations, are specified.
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This leads to the following set of equations and inequal-

ities, called constraints:

7· aS-t - £j - o (1)

where the first sum is taken over all links i that enter a given

node which is not an origin or destination, and the second sum

is over all links j which leave the node.

i,. = Di (2)

where D i is the specified demand on link i; i.e., the traffic

which enters or leaves the network via link i.

08 2 ° (3)

for all links i.

A < ir' sa (4)

for all links i.

11.4 Traffic Flow, Density, and Velocity--A Fluid Model

Several authors have applied fluid mechanics principles

to the problem of moving traffic; in particular, Lighthill and

Whitham Cl] and Greenberg [6). The following approach, due to

Greenberg, assumes that traffic behaves as if it were a contin-

uous fluid. Data taken by Greenberg indicates that such a model

is a good representation of the macroscopic behavior of traffic

above a minimum density.

The equation of motion of a one-dimensional fluid of

density p and moving with velocity v is assumed:

_ - -_ c g2 (5)
dt P adr

where x is the distance variable in the direction of motion, an&

_ -- ---------- ~~----- -A -



where c is a constant which depends on the fluid. This states

that the acceleration of an average driver in the traffic stream

is proportional to the concentration (density) gradient 9'/band

inversely proportional to the traffic density. If the velocity

is a function of location and time, then the equation of motion

is

Lf + *. 0 { - (6)

By continuity, or conservation of flow,.

4+ -. O. (7)

It is further assumed that

- --§ p~r (8)

and that the average velocity at a point is a function only

of the density at the point, giving

i.Y ct AN.~i azr _ ctv i (9)

Solving the equations of motion and continuity using (9) gives

4/_. _ C (10)

Integrating, and setting v = 0 when f = max' the maximum

density, gives

vr e log ( ,',, 1,e) (11)

and

'- is '/°-.. ""/">



These are Greenberg's equations for velocity and flow as a

function of density. Equation (12) leads to a graph of the

form shown in Figure 2.

Figure 2. Flow vs. Density for One-dimensional Continuous Fluid

Differentiating (12) yields

dSolving for max the maximum value for , by setting (13) equ

Solving for fmax' the maximum value for F, by setting (13) equal

to zero gives

P= po·· /C (14)

That is, #is maximum when Pis given by (14).

Equation (11) clearly does not correspond to real traffic

flow at low density, since v increases without bound as the

density p goes to zero. We wish to modify this so that v is

always less than some maximum velocity, Vmax Then (11) is valid

for



c °9 (fnn~/Jp) ' EMI (15)

or

_'~~ eOr,,,. / c (16)

Assuming that v = Vma x for 1?l1 values of e below that given by

(16), we can replace (11) by a linear function for small P and

obtain a graph of the form shown in Figure 3.

4e "fK PtSIe P4^j

C 4

Figure 3. Flow vs. Density, with Velocity Bounded

In real traffic problems, it is flow, not density, which

must be considered as the independent variable from the stand-

point of the assignment of traffic to routes, since the demand

will be in terms of moving some number of vehicles per hour.

Thus, an expression for o in terms of # is needed.

Consideration of a graph of the form shown in Figure 3

indicates that, for every flow # < fmax' there are two corre-

sponding values for the density p . Clearly, the smaller value

for p is more desirable, as it corresponds to a higher average
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velocity and thus reduced travel time. The larger value for p

indicates congestion. In fact, consideration of the quantity

i/~ (the wave velocity, or rate at which a disturbance is erop-

agated), indicates that the right hand side of the graph is un-

stable in the sense that an increase in the density at some

point will propagate backward, since 'p is negative, resulting

in further congestion; whereas at the lower density (left hand

side of the graph) an increase in the density propagates forward,

so that if the increase is not too large, the density returns to

its former level, and hence the situation is stable. Wave effects

in traffic flow are extensively considered by Lighthill and

Whithamtj], and also by Preparta [CJ.

Assuming that the velocity at maximum flow given by (11)

is less than vmax, we have, at # max' by substituting in (12),

I~Z -C( z I al + Ptx )(17)

or

c2 we( f ' (18)

To be compatible with work done by other members of the M.I.T.

Electronic Systems Laboratory freeway corridor research team,

omax was chosen to be 2000 vehicles/hour/lane, and Pmax to be

225 vehicles/mile/lane [Z7J. This gives for the fluid constant

c _ 24.16 miles/hour (19)

We also chose Vmax = 55 miles/hour, the present maximum legal

speed.



Using (16), the minimum value ofp such that v=vmax is

e-V Cmax .
maxe m/C = 23.10 vehicles/mile (20)

Thus a graph of velocity vs. density has the form shown in Figure

4.

Figure 4. Velocity vs. Density for Traffic Flow

The travel time ti for an average vehicle on link i,

where traffic is flowing as described above, is

"; Ir 2/ = ' TI (21)

where .i is the length of link i.

Thus we need an expression for p in terms of ~ . The

requirement that max, as given in section 11.3, together with

(12), gives I as a (single-valued) function of p . Given ,

one method of determining p would be to invert (12) numerically.

However, this would be time-consuming and inefficient since it

must be done many times in the process of solving a problem of

finding an optimal traffic assignment. Hence a polynomial
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approximation P(J) is used to obtain P in terms of v . P(0)

has the form

P()= = /s- ' X v7 (22)

This polynomial is an approximation to the inverse of (12), con-

strained by v £ vmax Note that

lim = lim = Vmax = 55 (23)

The travel time function given by (21) is taken to

represent the average time spent by a vehicle on a link where

traffic is always flowing (there are no additional delays due to

stopped traffic.) For this model, such links will generally rep-

resent sections of a freeway. Links on which traffic may stop

and vehicles be subject to queueing delays are considered in the

next section.

II.5 Queueing at Merqes and Intersections

There are two general classes of delays which occur in

real traffic situations:

(1) delays which are a function only of distance to be

traveled and the amount of traffic on the road, where traffic

is actually moving at all times.

(2) delays which occur in situations where a vehicle must

stop and wait for some event before proceeding (e.9., for a

traffic light to change.)

As indicated in section II.4, the travel time when only
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type (1) delays are encountered is given by

r. :, i/v :~P~) v(24)

In general, subjecting vehicles to delays of type (2) will

result in the formation of queues on the roadway. Thus, delays

of type (2) will be referred to as queueing delays, and the time

a vehicle spends in such a situation as the queueing time.

Queueing due to congestion is eliminated in this model by

the requirement that all flows be less than capacity, as noted

in section II.4. Two types of queueing will be considered: de-

lays at traffic lights, or signalized intersections, and delays

on freeway entrance ramps, also known as on-ramps or merges,

where vehicles may have to wait in order to enter the freeway.

in both cases, it is assumed that the amount of space occupied

by the queue is negligible compared to the length of the link on

which it occurs.

A simple queueing model, the single server queue, with a

Poisson arrival process and an exponential server (also known as

M/M/1 queue C30]), will be used to represent both the signalized

intersection and the on-ramp. It is assumed that customers

arrive in accordance with a Poisson process and wish to be

served. If the server is already busy serving someone else, the

arriving customer must go to the end of the line, or queue.

Service is first-come, first-served. For a Poisson process,

the density function for interarrival times is given by

f(t) = ie -t (25)
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where Ais the parameter of the process. It is further assumed

that the service time also has a negative exponential distribu-

tion, where the density function for interdeparture times (given

that there is at least one customer to be served) is

f(t) ='e Yt (26)

That is, in time rO,t] the expected number of customers to

arrive is At, and each has an expected service time S = 

Clearly A must be less than ¥ (customers can be served at least

as fast as they are expected to arrive) if the queue is to

remain finite. Since it is a steady state model under con-

sideration, we seek the steady state, or stationary, solution

to the queueing problem; i.e., the behavior of the queue after

sufficiently long time. (If AMY, such a solution exists C30o.)

Let W be the expected time a customer spends waiting

in the queue for service, and let W be the expected total time

he spends in the queue system; i.e., his waiting time plus his

service time. Then C313

A
W y (27)

and

W = , - ? (28)

Note that W = Wq + = Wq + W . We may compare the expected

service and waiting times as follows: if the wait time is

greater than the service time, then ¢Y. ?, or XA1-A, implying

x > (29)
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In £27], Gershwin uses (27) rather than (28) to represent the

total time lost due to queueing delays at merges and intersec-

tions. The significance of the difference between the two will

depend on the arrival and service parameters and the proportion

of the total travel time which is spent in the queues. In any

event, it must be realized that the model is only a rough ap-

proximation, and that actual data must eventually decide the

best model to be used for this particular problem.

By (28), the total queueing time becomes infinite as the

arrival rate A approaches Y , the service rate. Thus Y may be

identified as the effective capacity of a link with queueing

delay; i.e., the maximum possible flow on the link when the

queueing delay is considered. The effective capacity is always

less than or equal to f max, the maximum flow without queueing,

and is not necessarily a fixed parameter but may depend on the

flow on other links.

In the models presented here of traffic behavior at in-

tersections and on entrance ramps, vehicles will be assumed to

arrive in accordance with a Poisson process with A=-, the flow

on the link. For a traffic signal, it is assumed that the ser-

vice rate is proportional to the green split, or fraction of

time that the light is green, and that the service rate approach-

es max' the maximum flow, as the green split approaches one.

A signalized intersection is shown in Figure 5. We let gi be

the green split for link i, and require that

i + j =1 (30)

-23-



Figure 5. Signalized Intersection

We also assume that the service rate approaches zero as the

green split gi approaches zero. For simplicity, the linear

relationship given below is used:

= = imax 9i (31)

Clearly, this is not a complete representation of a

traffic light, since a signalized intersection is not really

a single server queue. Also no account is made of cycle time

(the time for the traffic light to complete one cycle). Further,

if there is a sequence of traffic lights on a street that are

sufficiently close together, the traffic stream may be broken

up so that the Poisson process is no longer applicable. More

detailed models have been proposed (see t8l thru L143 ); how-

ever, they result in much more complicated expressions for the

delay and are not suitable for use in this problem.

The additional time spent by a vehicle on link i due to

the presence of a traffic signal is thus

(32)



and the total travel time, or time when the vehicle is moving

plus the queueing time, is

-i I (33)

Note that this is an estimate of the average time for all

vehicles, including those that arrive when the light is green

as well as those that have to stop.

On freeway entrance ramps, the applicability of the

single server queue is more intuitive. Again, vehicles arrive

with rate i= ~. The service rate now depends essentially on

the volume of traffic on the freeway. Specifically, it depends

most strongly on the traffic on the link fed by the on-ramp. In

Figure 6, links k and j represent freeway sections, while link

i is the entrance ramp.

K :

Figure 6. Freeway and Entrance Ramp

Even if there is no traffic on link k, traffic on link j which

has already arrived via link i may be sufficiently heavy to

cause delays to following traffic on link i.

If there is no traffic on link J (fj=O) we set the ser-

vice rate, or effective capacity Yi of link i to max, the



maximum flow on link i. If, however, =j = !jmax' no more

traffic from link i can enter the freeway. In this case, the

flow capacity of link i is effectively zero. A linear equa-

tion which covers both of these cases is

-1.~ -qZ L ~Max) (34)

Then the queueing time on an entrance ramp is

The total travel time on a link which includes an entrance35)

The total travel time on a link which includes an entrance

ramp is therfore

rs - (x(i-{2/ 4> fft)--( , , (36)

This model is most applicable if there is sufficiently

heavy traffic to actually generate a queue. However, it is

also during peak traffic periods that an optimization scheme

of the type described in Chapter I would most likely be re-

quired. A more detailed model of the entrance ramp might

consider, in addition, the problem of the waiting time for a

gap of acceptable length in the freeway traffic for a vehicle

on the ramp to enter the freeway. Gaps in road traffic are

considered by Ashton C163, among others. Unfortunately, such

models lead to much more complicated delay functions than

could be handled adequately here.
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II.6 Cost Function

The vehicle cost function CV for link i is defined by

C i = (37)

that is, the cost on link i is the travel time per vehicle times

the total flow on the link in vehicles per hour. Cost has the

units of vehicle-hours per hour, or simply vehicles.

For a freeway link,

Cv= i, (it) (38)

or

Ci= ' iPi (39)

On any link on which qusueing delays occur, the cost

due to queueing is

Cv (queueing) = ( _ (40)

with 1i given by (31) for signalized links and by (34) for on-

ramps. Thus the total cost on a link with queueing delay is

ACv~ }, t $ . ( < )(41)

The total system vehicle cost Cv is

Cv = (42)

where the sum is taken over all links i of the network. This

function represents the total cost in vehicles on the network.
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The equations (37)-(42) represent cost in terms of vehicles.

Consider, however, a real transportation problem, in which the

go9081 is to move people, not vehicles. On any actual urban road

network, there will be single-passenger cars, cars with several

passengers, and buses, probably carrying between t~noand forty

passengers each.

The passenger cost function, to be defined below, will be

in terms of total passenger-hours per hour on the network, rather

thani vehicle -hours per nour. However, the delay function will

still be determined in terms of vehicles. A Pehicle type will

be uetermined by the number of passengers ±t is assumed to be

carrying (e.g., one-passenger car, three-passenger car, twenty-

passenger bus, etc.) Types of vehicles will be referred to by

number (1, 2, 3, etc.) No distinction will be made in terms of

contribution or sensitivity to delay according to vehicle type.

That is, we assume that 1) all vehicles on a given link brew

subject to the same delays and hence the same average travel

time on that link, and 2) the travel time does not depend on

the vehicle mix on a given link, but only on the total flow.

In order to consider cost in terms of passengers, we

require new parameters to represent passenger flow, the number

of passengers carried by vehicles of different types, and the

flow of vehicles of different types. The.symbols for these

new parameters are listed in Table 2.
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Symbol Meaning Units

Pi passenger flow passengers/hour

on link i

>i j
flow of vehicles vehicles/hour

of type j on link i

wjg passengers carried passengers/vehicle

by vehicles of type j

Table 2. Additional Symbols and Units

There are two basic relations:

0 B ~i - It ~ (~pi~ ~(43)
J

and.

=p z q' Wi j(44)

That is,.the total number of vehicles on link i is the sum of

vehicles of all types on the link, and the total number of

passengers on link i is the sum of all passengers carried by

vehicles of different types.

The passenger cost function is now defined by

i = Piti (45)

Thus for a freeway link

Cp 3r (46)

or



Ci (47)

For a link with queusing delay, the cost is the cost of un-

interrupted travel plus the queueing cost. The queueing cost

is now

pC . (queueing) = (48)

or

Pw l
Cpi (queueing) 5 J (49)

The total passenger cost for the system is

CP (total) = piri (50)
i 1 1

or

CP (total) = 5 ( Pij wJ)i (51)
i j

The total cost now has the units of passenger-hours per

hour, or simply passengers. This is the objective function to

be minimized by adjusting the flows 'PiJ and the green splits

9i on the various links of the network.

We would expect the effect of considering passenger cost,

as opposed to vehicle cost, to give preference to carpools and

buses in the sense that the optimum solution would be one which

put the most passengers on the lowest cost links. The wJ's may

be thought of as 'priority ratings' which indicate how much

preference a vehicle should be given: the more passengers, the

higher the priority assigned to that vehicle type.
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CHAPTER III. OPTIMIZATION ALGORITHMS

III.1 Introduction

In general, a constrained optimization problem has the

form: minimize (maximize) the scalar function F of k scalar

variables 1, ., Xk subject to the condition that a given

set of equations and inequalities involving the xi, called

constraints, must be satisfied. The set of all X=(x, . . ., x k)

that satisfy the constraints is called the feasible region.

Two methods for performing constrained optimization are:.

presented, both of which can be used for traffic problems. The

first of these is a general method called accelerated gradient

projection. The second is a decomposition method which has been

used on communications networks to solve a similar routing

problem.

II11.2 Accelerated Gradient Projection

A general optimization algorithm, known as accelerated

gradient projection, was adapted for this problem. The method

was developed by Kelley and Speyer [28] for use in constrained

optimization problems, using methods ofi.Davidon [321 and Fletcher

and Powell D33, which they invented for use in unconstrained

optimization. The accelerated technique is an improvement



to the usual gradient projection method for solving constrained

optimization problems [34) , by using information about the first

derivative of the objective function F to estimate its second

derivative for the purpose of choosing a search direction.

The algorithm proceeds in two phases: first, given a

guess for the solution vector X, a point in R , the algorithm

checks to see if any constraints are violated. If any are, X

is moved back inside the feasible region. The second phase

picks a search direction, and performs a one-dimensional search

for the minimum in that direction. The search direction chosen

is the projection of the negative of the gradient of F(X) (the

downhill direction, since the minimum is desired) on the feas-

ible region.

Some stopping criterion is then checked, and if it is

not satisfied, the algorithm returns to phase one and proceeds

to take another step.

For this problem, the objective function F is the

passenger cost function defined in section 11.6. The vector

of variables over which F is to be minimized are the vehicle

flows (i j and the green splits gi. As given in section 11.3,

there are equality constraints

G 1(X) = 0

Gh(X) = 0 (52)

where h is the number of nodes times the number of vehicle types.
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That is, flow of each type is conserved at each node. There

are also constraints

9i + j = 1 (5)

where gi and gj are complementary traffic signals (section 11.5).

The inequality constraints are

x 1 - 0

Xk > 0 (54)

That is, all flows and green splits are positive. Additionally,

it is required that all flows be less than the fixed maximum

for the link to which they are assigned (section 11.3). Thus

we have

X1 1max

Xh S nmax (55)

where n is the number of links.

The steps of the algorithm are:

Step 0. Initialize X to X0 (the initial guess). Initialize

H to I, the identity matrix. H will later be used

to approximate the second derivative of F.

Constraint Restoration:

Step 1. Evaluate all constraints at X. If no constraints are

violated, go to Step 7.
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Step 2. Form a vector function G(X), where G consists of the

functions G i that are equality constraints (52,53)

plus any of the inequality constraints (54,55) that

were found to have been violated by Step 1. The matrix

G will, in general, be different at each iteration

since different inequality constraints may be violated.

Step 3. Calculate the matrix 2G the Jacobian of G, denoted by

G .
Gx

9FStep 4. Calculate F-, the gradient of F, denoted by VF.

Step 5. X+- X - HGx (GxHGT)- 1G - H( v F)T + HGT(GxHGT)-GxH(VF)Tx X X X X Xx

In this problem, the constraints are linear, so the

feasible region is a convex polyhedron [35], and Gx

is a constant matrix.

The matrix H, which will be modified later, is a

symmetric positive definite matrix which defines a

metric on Rk. The usual step taken here in accelerated

gradient algorithms [28] is to move toward the feasible

region along the shortest path according to the metric

H. Step 5 is a modification by Gershwin [27] to take

into account more information regarding the objective

function F.

Step 6. Go to Step 1.

Minimization:

Step 7. Calculate F, G, and-VF at X.

Step 8. Find the direction D of the negative F gradient, pro-

jected on the feasible region, given by
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- -H(F)T - HG (G HGT ) ' G H(VF)T

Step 9. Approximate the Lagrange multiplier vector by

A -- (G HGT) 1 G xH( F)T

Step 10. Perform a one-dimensional search to minimize

F (a) = F(X + AD) + ATG(X + D)

On the plane of active constraints (equality constraints

plus inequality constraints imposed in Step 1), where

G = O F = F.

Fletcher and Powell [33] recommend cubic fit ps a means

of performing the minimization in Step 10. In our

problem, we use an algorithm of Johnson and Myers [361

which combines cubic fit with golden section as a means

of minimizing F as a function of o'. Let 4* be the minimum.

Step 11. X -- X + AX,

where

AX = D

Step 12. H-H + A - B

where

and

H H(VF ) (VF* ) TH

A(VF *)TH (VF*)

where A(VF*) is the change in V F , the gradient of F ,

given by the change AX in X.

Step 12 is Fletcher and Powell's form of Davidon's [32]

update for H. IF X is a vector such that GxX = 0, then
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successive iterations should move XTH '1 close to

XTFxxX, where Fxx is the second derivative (Hessian)

matrix iF.

Step 13. Test stopping rule. If satisfied, quit; otherwise

go to Step 1, with X as the current guess.

Fletcher and Powell recommend a number of possible

stopping criteria for use in computer applications,

one of which may be interpreted for this problem as

to perform as many iterations as there are degrees

of freedom in the system (variables minus equality

constraints). Other possible rules we considered

in the computational problem include a minimum change

AX, and the ratio of the derivative along the search

direction at X to the derivative at XO, the initial

guess.

For purposes of simplicity in calculating the first

derivativesset:the cost function (the gradient of F), the

total flows wi were considered as independent variables, as

well as the aj n, and additional equality constraints of the

form of (43), section II.6, were imposed.
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III.3 Decomposition Method

Considerable improvement can be achieved over a general

method for an optimization problem if special characteristics of

the problem are taken into account. A decomposition method was

used by Cantor and Gerla (293for optimizing the assignment of

routes for the transmission of information on the ARPA computer

network.

The largest amount of time in the execution of the accel-

erated gradient projection (AGP) algorithm was apparently spent

in inversion of the matrix GxHGx in steps 5, 8, and 9, as de-

scribed in section III.2. Greater efficiency is achieved in the

Cantor-Gerla algorithm by replacing a large part of the non-lin-

ear optimization problem with a series of linear programming

problems. The linear programming steps handle all of the system

constraints (52-55). When the master (nonlinear) routine is

called, optimization will be performed over only a smallit subset

of the feasible region at a time. It is the task of the linear

program to control this subregion by generating and removing

corner points; i.e., corners, or boundary intersections, of the

subregion. The corner points are generated in such a way that

the system constraints are satisfied, and also so that the sub-

region is moved toward, and eventually includes, the global

minimum. The nonlinear program finds a minimum in the subregion

as a convex combination of the corner points. This can be

performed by the gradient projection algorithm; however, it
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will generally have to handle considerably fewer constraints than

if it is used directly, as described in section 111.2. The

computation time for inverting an mxm matrix increases at least

as fast as m2 , so, since the size of the matrix to be inverted

depends on the number of constraints, a considerable savings of

time can be achieved. The linear program uses information gen-

erated by the master optimization step to generate new corner

points. When no new corner points can be generated, the sub-

region includes the global minimum (assuming that the objective

function is convex) which can then be found. This method is

called decomposition because it decomposes the main problem into.

a series of smaller ones.

Any feasible solution X = (X1, . . ., xn ) to the routing

problem, where xi is the flow on link i, can be written as the

convex combination of the corner points of the feasible region

i ihri i i
, where =1 (y' ' ., y), as follows:

1 r

x + S S · · .+ '(56)n nQ1 r (56)

where there are r corner points, and the Qi are scalars such

that

Q .i =1 (57)

and

Qi O; i=1, . .. , r
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In fact, since there are n+1 equations, the system (56-58)

has a solution such that at-'.ost n+1 of the Qi are nonzero. Thus

at most n+1 feasible points determine a subregion over which

optimization can be performed. In the Cantor-Gerla algorithm,

the master optimization is performed over a set with n+2 corner

points, so that one of them can be eliminated and a new one

generated by the linear program.

Decomposition Algorithm:

Step 0. Choose an initial set ofV i to be corner points.

The number b of corner points initially used should

be less than or equal to n+1. Cantor and Gerla use

n+1 initial corner points; however, Deefenderfer C37]

has been successful in using only one initial corner

point, also working on a communication network

problem.

Choose ian'initial basic solution Q = (Q.' ' ' '' Qb ) ;

for example, by setting Q1 =1 and all Q : i+1 to zero.

Let X be the initial feasible solution determined by

the Vi and Q.

Mastes, (noh.1neatrhD0tirization:

Step 1. Minimizesthebobjective function F over the subregion

determined by the corner points 1i

Step 2. Q4-the optimal solution (ql, ·.. Qb ) determined by

Step 1.

Step 3. Xethe new feasible solution determined by Hi and

the new Q.
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Step 4. Compute the vector VF = '-.

:Linear Subproblem:

Step 5. If b S n+1, go to Step 6. Otherwise eliminate one of

the corner points i. The corner point to which the

smallest Qi determined by the master program (step 1)

correspondsis the one cbosen to be eliminated.

Step 6. Use a linear programming method to find the solution

to the problem of assigning traffic to the links of

the network so that the shortest possible distance,

according to the metric F, is traveled by the total

traffic on the network. That is, assign a length

, to link i, and minimize the total distance

traveled by all traffic. Note that this is a constrained

optimization problem with a linear objective function.

Step 7. Let V = (f1 .. . In) be the solution obtained

by Step 6.

Step 8. Let = (VF)J(x. -ey). If G", stop. Otherwise
j=1 J 

go to Step 9. (f is some predetermined tolerance).

Step 9. Add f to the set of corner points. If b c n+1 then

b - b+1.

Go to Step 1.

Note that steps 5 and ~ control the subregion over

which the master optimization is performed.

Cantor and Gerla prove that this algorithm does converge

to the optimal solution if the cost function is convex, has

continuous, nonnegative first derivative, and depends only on
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the total flow on the links. Further, the algorithm can be mod-

ified to include different classes of traffic, essentially by

performing the decomposition steps in parallel for each class.

For our problem, assuming that there are m vehicle types', there

will be m sets of scalars Q, m sets of corner points I, and

m linear programming problems must be solved and m optimality

(stopping rule) tests performed at each iteration. The master

step performs the nonlinear optimization over the subregion

generated by the several linear programs. A further modifica-

tion of the algorithm is necessary for the determination of

optimum traffic signal settings. One possible solution is

to simply perform the algorithm with various assigned traffic

signal settings (green splits) and thereby arrive at an ad hoc

solution.



CHAPTER IV. COMPUTATIONAL RESULTS

The passenger cost function of section II.6 was used for

the network shown in Figure 7. Although this network does not

represent any particular freeway corridor system, or part of one,

it does include some of the most important features that would

appear in an actual traffic assignment problem for such systems,

as described in Chapter II. The link types, capacities, and

lengths are given in Table 3.

Link Type Flow Capacity Length

(1,2) Freeway 6000 .5 miles

(2,3) Freeway 6000 .5

(2,5) On-ramp 2000 .1
(2, 8) Street 2000 .15

(3,6) On-ramp 2000 .1

(3,12) Freeway 6000 .5

(4,5) Freeway 2000 .5

(5,2) On-ramp 2000 .1

(5,6) Freeway 2000 .5
(6,3) On-ramp 2000 .1
(6,12) Freeway 2000 .5

(7,8) Street 4000 .5

(8,9) Street 4000 .5

(9,10) Freeway 4000 .5

(9,11) Freeway 2000 .05

(10,9) Street 2000 .05

Table 3. Link Types, Capacities, and Lengths
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The AGP method by itself, as described in section III.2,

proved to be highly inefficient for this problem; in fact, so

inefficient that it was impracticable to obtain converged optimal

solutions to the problem by this method. Some examples of the

results of attempting to use this method are summarized in Table

4.

Case Problem Variables and Execution Time

Constraints Per Iteration

1 1 vehicle type 36 variables 7.41 sec

29 equality;

51 total constraints

2 2 vehicle types 52 variables 25.59 sec

1 passenger/car 40 equality;

1 passenger/bus 72 total constraints

3 2 vehicle types same as case (2) 30.66 sec

1.5 passengers/car

30 passengers /bus

4 same as case 3, 24.46 sec

with improved initial guess

Although the computation time was somewhat dependent on

the initial guess, for a small number of iterations, it was not

possible to make much improvement by using the output from one

run as the initial guess for the next, as was done in (3) and

(4). Due to the expense of computer time, no more than five

iterations of this method were performed on any run.

It seemed clear that the general AGP method was completely
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unsuitable for this problem, and it was decided that a decom-

position algorithm of the type described in section III.3 should

be used. Unfortunately, it was not possible to code such an

algorithm in time for this writing. However, Deefenderfer [373

has obtained the following results on a network of 11 nodes and

44 links, although with a different cost function, using a

decomposition algorithm: convergence in thirty iterations, with

a total computation time of .063 seconds.



CHAPTER V. CONCLUSIONS

As indicated in the Introduction, it is hoped that the

approach to the freeway corridor system traffic assignment

problem presented here will eventually find applicability as

part of a control system which runs dynamically on an actual

urban road network. The usefulness of the model presented in

Chaptee II will have to be determined by the collection of

data, but will also depend on the controllability of the traffic

flows and the accuracy with which data can be collected and

processed in real-time. In particular, a means for distinguish-

ing vehicle types will be necessary if passenger-cost minimiza-

tion is implemented. Recent research at the Electronic Systems

Laboratory indicates that it is possible to build electronic

detectors that can, for example, distinguish between cars and

buses. It is also possible that the model may have to be ex-

tended or modified to include areas not covered by the simpli-

fying assumptions, as discussed in Chapter II.

Finally, it is concluded that if this method, or some

similar approach involving a nonlinear cost function, is to

be used as part of a real-time system, a decomposition algo-

rithm similar to that of section III.3 be implemented for the

purpose of determining an optimal traffic assignment.
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