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PREFACE

This volume is one of a series of four reports containing contri-

butions from the speakers at the fourth MIT/ONR Workshop on Distributed

Information and Decision Systems Motivated by Command-Control-Communication

(C3 ) Problems. Held from June 15 through June 26, 1981 in San Diego,

California, the Workshop was supported by the Office of Naval Research

under contract ONR/N00014-77-C-0532 with MIT.

The purpose of this annual Workshop is to encourage informal inter-

actions between university, government, and industry researchers on basic

issues in future military command and control problems. It is felt that

the inherent complexity of the C3 system requires novel and imaginative

thinking, theoretical advances and the development of new basic methodol-

ogies in order to arrive at realistic, reliable and cost-effective de-

signs for future C3 systems. Toward these objectives, the speakers, in

presenting current and future needs and work in progress, addressed the

following broad topics:

1) Surveillance and Target Tracking

2) Systems Architecture and Evaluation

3) Communication, Data Bases & Decision Support

4) C3 Theory

In addition to the Workshop speakers and participants, we would

like to thank Dr. Stuart Brodsky of the Office of Naval Research, and

Ms. Barbara Peacock-Coady and Ms. Lisa Babine of the MIT Laboratory for

Information and Decision Systems for their help in making the Workshop

a success.

Cambridge, Massachusetts MichaeZ Athans

October 1981 Wilbur B. Davenport, Jr.
EZlizabeth R. Ducot
Robert R. Tenney
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SURVEILLANCE AND TARGET TRACKING

FOREWORD

Almost three full days of this year's Workshop were devoted to

surveillance and related issues. The discussion sessions on each day

were lively and provocative. Two major themes characterized the re-

marks of the participants: 1) the design of surveillance systems

and algorithms are critically dependent on the other parts of the

C3 system to which they must interface, and 2) there remains a great

deal of work to be done before surveillance of a complex environment

is well understood.

The objective of a surveillance system is to provide an accurate

picture of the environment to the other parts of a C3 systems. There

are many users of the surveillance information; the only general state-

ment that can be made is that different users will require information

of different types, of different levels of aggregation, and with dif-

ferent priorities. There is no unique point at which the performance

of a surveillance system can be measured; it must be evaluated in the

context of the other C3 elements and the overall command objectives.

On the technical side, there was general agreement that many open

questions remain. Single sensor, single target, high signal-to-noise

ratio problems are relatively well understood (from a theoretical point

of view). Even the addition of either multiple sensors, multiple targets,

or low signal-to-noise ratios one at a time produces problems which can

usually be addressed with current theory. Taken in pairs or all together,

however, particularly when limited, unreliable communications are present,

brings one to a theoretical void.

In fact, in our opinion, it is not clear that general surveillance

issues involving multiple sensors, multiple targets, and fusion centers

can be formulated reasonably in a relevant context unless data communica-

tions constraints are explicitly included in the very problem formulation,
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The surveillance papers included here are not in the order of presen-

tation. Atkinson's paper first provides an overview of surveillance issues

and nomenclature. The remaining papers are roughly sequenced along the

physical to abstract dimension. Psaraftis, Perakis, and Mikhahelvsky

present a normative model on the ocean environment suitable for use in

a long range detection problems. The next four papers Fortmann et. al.,

Bowman, Moore, and Kovacich all address one of the currently popular

topics in surveillance, multi-object tracking. Pattipati et. al., then

presents a problem formulation which will allow some current adhoc ap-

proaches to this problem to be placed in a more rigorous framework.

The subsequent papers move to a larger set of issues. Tenney surveys

work at M.I.T. on surveillance, communication, and control; Liu and

Bongiovanni look at a sensor placement problem. The next pair of papers

discuss surveillance systems architectures; Bugenhagen et. al., in an

oceanic context, Land Kramer and Sandell in an early air warning setting.

We conclude with two papers on the potential role of artificial intel-

ligence techniques in surveillance systems; Gross et. al., in a general

sense and Dillard based on a specific production rule system.
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DATA DEPENDENT ISSUES IN
SURVEILLANCE PRODUCT INTEGRATION

D.A. Atkinson
CTEC, Inc.

SUMMARY

This analysis is focused on the design problems encountered in the integration
of ocean surveillance data that arise from the particular nature of the
information delivered to and required from the system. The starting point is
a definition of the ocean surveillance product, its uses, and the requirements
specified for it. The general nature of the input data is covered in an
overview of the characteristics of sensors and sources. Problems associated
with the distribution of processing, in particular the target classification
analysis, in a surveillance network are described. The important issue of
multi-source integration (correlation) is covered by raising specific
outstanding problems. Finally, the impact of these problems on surveillance
system design approaches is discussed.

1. THE OCEAN SURVEILLANCE PRODUCT (OSP)

The six basic elements present in the OSP are listed in Viewgraph 2,
together with a general characterization of the intelligence and operational
uses of this product. These two general categories of use are clearly
interdependent, and the seventh element listed as a part of the evaluated OSP
indicates one form of this relationship. The basic elements and uses are
those identified in the Navy's Ocean Surveillance Master Plan [1]. Different
representations of the basic OSP information appear to be best suited to the
needs of specific users. A tabulation of the track representations and
classification levels that would support the needs of specific consumers of
the OSP is presented in Viewgraph 3. Operational commanders with their
attention focused on developments in the immediate future can make do with
current position and velocity estimates, while intelligence analysts may
require historical information. The lower level of geographic resolution for
national users is dictated by the volume of information, although they may
also require occasional high-resolution inputs. The classification levels
indicated are presented to stimulate further debate, rather than as definitive
specifications.

Quantitative performance requirements for location accuracy and
timeliness may be specified by using the radius of uncertainty (ROU) defined
in Viewgraph 4, and illustrated graphically in Viewgraph 5. A significant
feature of this parameter is its dependence on the sum of the interval
required for processing and transmitting OSP data and the interval between
successive observations. The name adopted in the OSMP [El is somewhat
inappropriate: "radius of containment" describes this parameter more
accurately. The measures of classification performance are rather obvious
ones; however, they are quite difficult to determine in practice.



The area of data association (correlation) is one in which definitive
measures of performance are very difficult to develop, as is illustrated in a
number of Navy studies [2], [3], and [4] of this problem. The gate areas and
probabilities of correct choice for specified decision rules, presented in
Viewgraph 6, may be used to estimate performance. An interesting feature of
these measures is the fact that signature descrimination capability
(PSD 1) lowers the effective target density by a simple factor. A formal
proof of this intuitive result is presented in the Appendix of a report on an
analytic correlation performance model [5].

2. SENSORS AND SOURCES

The large number of sensors that can contribute the basic data used to
create the OSP precludes a detailed analysis of the characteristics of
individual systems in this report. The overview presented here attempts to
identify characteristics that significantly influence system design.
Viewgraph 7 presents sensors grouped into three general categories: active;
passive (monitoring) involuntary (signals); and passive (monitoring) voluntary
(signals). The passive voluntary category includes the sensors vulnerable to
the use of emissions control (EMCON) policies by hostile forces.

The basic classification data provided by sensors may be characterized as
either image data or signature data (Viewgraph 8). The principles used to
arrive at classification using such data are presented in Viewgraph 9. The
comparison of images is essentially an interpretive process. In view of the
very significant problems associated with automatic image recognition, the
processing rate problem arising from the requirement for interactive analysis
is likely to persist for some time. Signature comparison is normally made
using tolerance intervals or a statistical distance functional defined in the
abstract "emissions" parameter space.

The sensor position data we refer to here is the information provided by
the primitive signal measurements as opposed to information that may be
inferred from subsequent processing. Examples such as the fix, line of
bearing (LOB), and the hyperbolic line of position arising from a time
difference measurement are illustrated in Viewgraph 10. The primitive classes
of position and velocity information are tabulated in Viewgraph 11, with an
indication of the processing approach required to incorporate such
observations into an updated state estimate. Time and Doppler shift
differences differ from the others in the sense that a correlation of observed
signals at two sites is required to extract the location information. In
addition, curvilinear lines of position can yield ambiguous intersections.
Statistical filters, such as the extended Kalman filter, can be used for
updates when the interval between observations is comparable to or less than
the typical interval between target maneuvers. The use of this approach in a
system delivering time and Doppler difference data is described by Fortmann
and Baron [6]. Some systems, in particular mosaic IR detectors, generate
track segment observations as a part of their signal detection logic. These
measurements may easily be converted into a complete (position + velocity)
observation of the state vector. A major problem arises when the revisit
interval becomes much longer than the interval between maneuvers. This is
particularly severe for surface traffic in littoral areas where the constraint
that "ships cannot walk" causes frequent maneuvers. In these situations the
resulting state estimates may not support the operational user's requirements
for position projection.
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The characteristic classification and location information provided by a
number of sensors that could contribute to the OSP is tabulated in Viewgraph
12. The sensitive nature of information on the accuracy of the data provided
by such sources precludes a realistic discussion at this conference.
Obviously, accuracy is a very important consideration in arriving at an
evaluation of the potential contribution of a source to the OSP.

A number of factors associated with the operating principles and design
of sensors have a significant impact on the timeliness of the data delivered
by the sensor systems. Some of these factors are indicated in Viewgraph 13.
Propagation delays are significant for acoustic systems detecting signals at
long range. The time required for signal integration in order to suppress
noise and achieve the desired frequency resolution must also be considered,
since it can restrict coverage rate potential in large area surveillance
systems. Processing to achieve a position fix and/or to classify the target
detected also produce delays in delivery. Data transmission delays are a
potential problem in multisite sensor systems that require network
coordination and data exchange.

3. SURVEILLANCE NETWORKS

A surveillance system is an interconnected network leading from the
basic sensing devices through various intermediate processing stages to
delivery of an integrated product to the users. The processing stages are
distributed in both space and time. The determination of the most effective
configuration for an ocean surveillance network involves a vast number of
issues, and our limits of time and competence require a focus on a specific
example of a network configuration problem.

An abstract outline of data flow from source to user is presented in
Viewgraph 14. The sensor/source segment encompasses reception of the basic
signal, processing to detect (extract from the noise background) and integrate
(convert to the desired form and resolution) this signal, and subsequent
processing to refine the OSP elements delivered by the source. This stage is
normally followed by processing at a regional or national center that serves
to integrate the outputs of multiple sources (MSI), and to append
prepositioned information on the target in certain cases. Preprocessing
consists of data conversion and analysis employing only the data supplied by
the source and prepositioned intelligence data (eg. a hull to emitter
correlation (HULTEC) analysis). The user may be national command, a fleet or
regional command, or a battle group or individual unit. The network
configuration issue considered is the location of classification/signature
processing in the network.

The diagram of the assumed source segment in Viewgraph 15 illustrates two
of the options. The source network consists of detectors connected to initial
processing facilities that extract the signature and location (assumed to be a
LOB) data from the basic signal. One option is to place the classification
processing at these initial processing facilities. Each of the initial
facilities reports to a central source evaluation center. At this center,
reports with matching signatures may be processed to obtain a position fix. In
addition, the classification processing that matches these signatures with a
signature fingerprint file could take place at the evaluation center. The
third option is deferral of classification processing until the data are
delivered to a regional MSI processor.

4



The distribution options and some of the factors that must influence the
choice are presented in Viewgraph 16. The classification processing, as well
as the association analysis that yields a position fix, clearly enhances the
utility of the OSP delivered downstream. Processing centers represent
potentially vulnerable elements of the system. Thus, early classification
will provide the option of delivery of useful information in the event of
failure at the source evaluation center or at a regional center. The full
value of this option may be realized only if the user is equipped to process
the location information (LOB) that can be delivered by an initial processor.
Central classification can result in an increased level and likelihood of
target identification because the information resulting from multi-source
association is available. In addition, this option will ensure that users at
various command levels are using a consistent situation picture. The data
transmission loads require a detailed analysis in specific cases, because
early classifiaction requires feedback of fingerprint updates while central
clasification may involve transmission of more-elaborate signatures.

The basic nature of signature processing has a significant impact on
network design. Two basic uses of signature data are outlined in Viewgraph
17, which also discusses the associated data requirements. The
differentiation between establishing a track designator and classification may
be blurred by incorporating signature data for unidentified targets in the
Fingerprint File. The most effective way to assess the confidence of a
classification based on signature data is to compute the relative likelihood
of alternative matches. This requires relatively complete files of observed
signatures. This data should be regarded as relatively dynamic, with an
update frequency determined by the time dependence of the emission parameters
and alterations in deployment. The modeling of emission parameter time series
for individual targets may be desirable in some cases.

Cases in which parametric separation is not sufficient to support unique
classification will require a "dynamic signature" approach. The basic
principle is presented in Viewgraph 18. If a combination of parametric and
geographic separation is sufficient to permit a track designator (tracking)
analysis, then the ability to maintain classification of a target follows
directly from the ability to track it. Initial classificaion must be
established, but this is the case for any signature-based analysis. Thus,
initial classification is always based on multi-source correlation, but track
maintenance is sufficient thereafter.

4. MULTI-SOURCE INTEGRATION (MSI)

The MSI problem and the closely associated multi-target tracking problem
are technically sweet. This must account, in part, for the large number of
potential solutions to these problems [3] which have been advanced in recent
years. An analysis of advanced approaches to the multi-target tracking
problem can be found in a review by Bar-Shalom [7]. More recent work is
exemplified by the JPDA analysis of Bar-Shalom, Fortmann, and Schaeffe [8] and
the highly regarded Bayesian multiple hypothesis system developed by Reid [9].

The basic principles that must be applied to the association of data
from multiple sources are indicated in Viewgraph 19. Position comparison at
simultaneous or nearly simultaneous view employs relatively simple algorithms,
but it is likely to be successful only when the two sources produce very
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accurate position measurements. Track matching also employs position data, as
this is the data element common to nearly all OSP sources. Characteristic
consistency tests are particularly useful where signature analysis has
provided a partial classification (eg. identified a specific type of
emitter). A Bayesian approach to the use of characteristic consistency in
association analysis has been developed [10. Operational characteristics can
also be used in MSI, as they serve to pin point the time of anticipated
events. The difficulty associated with adoption of an approach that relies on
the typical operations of targets is its vulnerability to deception and
exploitation in times of crisis.

An appreciation of the OSP processing at a regional processing center may
be obtained from the hypothetical data flow illustrated in Viewgraph 20. The
trade-off between time required for preprocessing, such as HULTEC analysis,
and the resulting increase in efficiency of the selection of candidate tracks
for association is an interesting issue in the design of the processing
subsystem. Motion models, which may involve both position and signature
projection, are employed in both the evaluation of candidates and the update
of state vector and parameters which follows an association decision. These
applications are different, and it is by no means evident that the same models
should be used at both processing stages. The provision of review procedures
to detect and recover from association errors is critically important-in
automatic decision systems.

A list of some interesting problems associated with MSI analysis is
presented in Viewgraph 21. Problems associated with the impact of target
maneuvers on position projections have long been recognized. The impact of
volitional maneuvers is outlined in Viewgraph 22. The uncertainty of
statistical distributions may lead to contradictory results when different
decision rules are applied [11], and the identification of an optimal rule
must be based on empirical analysis. The importance of maneuver detection and
adjustment procedures for tracking filters applied to ocean surveillance is
well known [12].

Ambiguity is always present when decisions must be based on uncertain
information. In considering approaches to this problem, it is useful to
distinguish between their contribution to an actual resolution of the
ambiguity and their potential to clarify our picture of the ambiguous
situation. The basic considerations are presented in Viewgraph 23, where the
rapid growth in complexity and processing demands associated with complex
decision algorithms are also noted. A second problem associated with
representation is the determination of a form of representation of situation
plot ambiguities that is useful to operational commanders

Classification chains occur in MSI when data containing different
degrees of target identification is associated. Viewgraph 24 presents an
interesting example where accurate positional data arising from a radar sensor
may be associated with an ELINT report that also has high positional
accuracy. Subsequent association with a series of low position accuracy HFDF
reports using a combination of characteristic consistency (ie. emitter is
compatible with target identified by HFDF) and track matching provides a
complete target ID for the radar track. The opimal use of such classification
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chains to upgrade the OSP is an interesting open problem. This example may
also be used to illustrate the potential problems arising from data bias. If
the reference frames employed by the three systems are inconsistent,
statistical position comparison procedures will prove ineffective.

5. CONCLUSION

This analysis is , admittedly, rather long on problems and short on
solutions. The time when the design of a surveillance system will be a
straightforward engineering task still lies well ahead of us. The objective
of this report will be realized if it functions as a primer to introduce you
to the problems that can arise in the design of a real world ocean
surveillance system. At this point, a few comments on design approaches seem
appropriate.

* Multiple Data Paths: The provision of multiple data paths from
source to user will enhance the survivability of the system. The
problem with such a design arises from the temptation to use these
paths simultaneously. The assumption that association of duplicate
reports of an event will be trivial, because the data delivered will
be identical, is naive.

Simulation Testing: Simulation testing of tracking and decision
algorithm performance may be very useful. It is clearly essential
in the case of data sources still in the design phase. However,
care should be exercised to conduct the tests in a ruthless manner.
Significant errors and/or systematic bias should be incorporated in
the simulated data. Robustness against such errors is essential
in processing data from deployed sensors.

* Automation: High data rates may dictate a hands-off decision logic,
but even in such cases an interactive interface is an important
development tool. These systems can fail in ingenious ways.

Sophisticated Decision Algorithms: The need for fancy analytical
footwork to achieve some improvement in the processing of ambiguous
data indicates a failure in overall system design. An effective
ocean surveillance system should provide relatively unambiguous
data.
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SURVEILLANCE INTEGRATION
BRIEFING OUTLINE

DEFINE THE OCEAN SURVEILLANCE PRODUCT (OSP), ITS USES,
AND QUANTITATIVE REQUIREMENTS

CHARACTERIZATION OF SENSORS/SOURCES AND THE LOCATION AND
CLASSIFICATION DATA THEY PROVIDE

* DISTRIBUTION OF PROCESSING IN SURVEILLANCE NETWORKS --
DATA REQUIREMENTS AND UTILITY

MULTI-SOURCE INTEGRATION PRINCIPLES AND PROBLEMS

SURVEILLANCE SYSTEM DEVELOPMENT PROBLEMS: A SELECTED
LIST



DEFINITION OF THE OSP AND ITS USES

OSP FLEMENTS

1. TIME (EVENT OR RECEIPT OF SIGNAL)

2. STATE VECTOR (POSITION-VELOCITY COMPONENTS)

3. ACCURACY OF STATE VECTOR (CONTAINMENT ELLIPSOID)

4, CLASSIFICATION (UNIQUE ID, CLASS, TYPE, CATEGORY)

5. CONFIDENCE OF CLASSIFICATION (PROBABILITY THAT CLASSIFICATION
IS CORRECT)

6. TRACK DESIGNATOR (UNIQUE ASSOCIATION INDICATOR)

OSP USES

OPERATTONAL INTELLIGENCE

1. ALTER ALERT STATUS 1. STRATEGIC I&W

2. DIRECT MOVEMENT OF FORCES 2. ORDER OF BATTLE

3. UTILIZATION OF WEAPONS AND 3. TACTICAL I&W

SENSORS 4. SCIENTIFIC INTELLIGENCE

EVALUATED OSP CONTAINS

7. INFORMATION SUPPORTING TACTICAL INDICATIONS AND WARNING
(I&W) (RANGE AND CAPABILITIES OF WEAPONS AND SENSORSJ ETC.)
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USERS AND DATA REPRESENTATION

MINIMUM
TRACK USEFUL

USER APPLICATIONS REPRESENTATION CLASSIFICATION

NATIONAL STRATEGIC I&W T3 C2
COMMAND

AREA/FLEET SITUATION MONITORING T2 OR T3 C1 OR C2
COMMANDS SENSOR TASKING

AREA I&W

BATTLE GROUP TACTICAL I&W T1 C3
UNIT TARGETING

ORGANIC SENSOR
TASKING

KEY

TRACK REPRESENTATIONS Ti: STATE VECTOR + VARIANCE
T2: TIME ORDERED POSITIONS
T3: CURRENT CONTAINMENT AREA

CLASSIFICATION C1: COMPLETE ID
C2: CLASS OR TYPE
C3: CATEGORY

(FRIEND-FOE; FISH-FOWL)



QUANTITATIVE PERFORMANCE REQU I REMENTS

LOCATION ACCURACY AND TIMELINESS VIA ROU (RADIUS OF UNCERTAINTY)

ROUMAX = ( (S * T)2 + A 2 )1/2

A = MEASUREMENT ACCURACY

S = MAXIMUM TARGET SPEED

T = TU + TR WITH

TU = MEASUREMENT TO UPDATE INTERVAL

TR = REVISIT INTERVAL

CLASSIFICATION PERFORMANCE MEASURES

Fc = FRACTION OF OBJECTS CLASSIFIED

PC = PROBABILITY OF CORRECT CLASSIFICATION

T C = INTERVAL FROM DETECTION TO CLASSIFICATION

(THESE PARAMETERS MAY BE SPECIFIED FOR VARIOUS TARGET
TYPES)
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ILLUSTRATION OF THE ROU CONCEPT

RO 

A -

-I - I I I I i t
Tm Tud Tm Tud Ti Tud

4 Tr TuH
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DATA ASSOCIATION PERFORMANCE
ESTIMATES

CONTAINMENT AREAS:

PROJECTION AN =2 r Q a 2 (-LN0)

FEASIBILITY AM = r ((S TR)2 + (3 cra)2)
TR = REVISIT INTERVAL S = TARGET SPEED

cra = MEASUREMENT ACCURACY

= SIGNIFICANCE LEVEL Q = TRACKING EFFICIENCY PARAMETER

(1< Q<6)

PROBABILITY OF CORRECT ASSOCIATION:

Z = Ap PSD

= TRAFFIC DENSITY

PSD= SIGNATURE DISCRIMINATION (PROBABILITY THAT SIGNATURES
OF DISTINCT TARGETS WILL BE ACCEPTED AS A MATCH)

RANDOM CHOICE INSIDE AREA

PC1 = (1 - EXP (-Z))/Z

CHOICE OF OBSERVATION NEAREST PROJECTED POSITION

Pc2 = (1 + 2Zo)-1

WHERE Z T Q a 2 PPsD

14



GENERAL SENSOR TYPES

TYPE EXAMPLES SIGNAL DETECTED

ACTIVE RADAR E.-M, (HF TO GHz)
LASAR RADAR E-M, (IR - VISUAL)
SONAR ACOUSTIC

PASSIVE OPTICAL E.M. (IR - VISUAL)
INVOLUNTARY IR DETECTORS IR

HYDROPHONES ACOUSTIC

PASSIVE ELINT E.M. (HF TO GHz)
VOLUNTARY COMINT E.M. (PRIMARILY HF)

15



BASIC CLASSIFICATION DATA

Si 6

..- ,,7_~,. S2

SIGNATURE DATA
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CLASSIFICATION PRINCIPLES

BASIC DATA ANALYSIS PROBLEMS

IMAGE COMPARISON WITH - ASPECT DEPENDENCE OF IMAGES
IMAGE FILE - LOW PROCESSING RATE
(NORMALLY - HIGH DATA TRANSMISSION RATE
MANUAL)

SIGNATURE COMPARISON WITH - AMBIGUITY DUE TO OVERLAP IN
FINGERPRINT - SIGNATURE SPACE
FILE - TIME DEPENDENCE OF SIGNATURE

DATA

17



POSITION DATA EXAMPLES

FIX 
S

LINE OF
BEARING . -.-- .

TIME
DIFFERENCE

S2

// / \C S

/// /

S = SENSOR LOCATION
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FORMS OF
POSITION AND VELOCITY INFORMATION

POSITION PROCESSING CONSIDERATIONS

FIX + ELLIPSE KALMAN FILTER UPDATES OF STATE VECTOR

LOB + ACCURACY EXTENDED KALMAN-FILTER REQURIED FOR
UPDATES

HYPERBOLIC LOP EXTENDED KALMAN FILTER REQUIRED FOR
(TIME DIFFERENCE UPDATES
+ ACCURACY) REQUIRES MULTISITE ASSOCIATION

VELOCITY PROCESSING

DOPPLER SHIFT + RADIAL VELOCITY INCORPORATED IN
ACCURACY FILTERS MEASUREMENT UPDATE

DOPPLER DIFFERENCE REQUIRES MULTISITE ASSOCIATTON
+ ACCURACY

TRACK SEGMENT FROM SENSORS WHICH CREATE A TRACK AS
PART OF THE SIGNAL DETECTION PROCESS
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EXAMPLES OF SENSOR CHARACTERISTICS

BASIC
LOCATION

SENSOR TYPE DATA CLASSIFICATION DATA

RADAR A FIX SIGNATURE E.G., CROSS
SECT I ON

HF RADAR A FIX + DOPPLER CROSS SECTION

IMAGING RADAR A FIX IMAGE
(SAR CR ISAR)

PHOTO OR VISUAL PI FIX IMAGE

ACOUSTIC ARRAYS PI LOB (AT,A D) SIGNATURE (ACOUSTIC
FREQUENCIES)

ELINT PV LOB (AT) SIGNATURE (EMISSION
PARAMETERS)

HFDF PV LOB SIGNATURE OR MESSAGE
CONTENT

KEY: A = ACTIVE LOB = LINE OF BEARING
PI = PASSIVE INVOLUNTARY AT = TIME DIFFERENCE
PV = PASSIVE VOLUNTARY A D = DOPPLER DIFFERENCE

20



FACTORS INFLUENCING TIMELINESS

SIGNAL PROPAGATION DELAYS: SIGNIFICANT FOR
ACOUSTIC SYSTEMS (C 2900K)

SIGNAL INTEGRATION TIMES: INTERVAL IS DETERMINED
BY REQUIRED FREQUENCY RESOLUTION

* MULTISITE ASSOCIATION PROCESSING: FOR SOURCES
WHOSE BASIC MEASUREMENT IS NOT A FIX'

* CLASSIFICATION PROCESSING: IMAGE INTERPRETATION
OR FINGERPRINT MATCHING

* TRANSMISSION DELAYS

21



SURVEILLANCE NETWORKS

SENSOR/SOURCE

SEGMENT

RECEPTION ALTERNATE

PATHS

DETECTION USER
AND

INTEGRATION

, ' _ = RECEIVE
ASSOCIATION FOR FIX DATA
CLASSIFICATION _UPDATE
PROCESSING PLOT

PREPROCESSING

fMSI DECISION
PROCESSING

PROCESSING
CENTER

22



A SOURCE NETWORK

S S P @ @SITES/DETECTORS

D&I . D&I D&I D&I

Class Class Class Class

EVALUATION CENTER
POSITION FIX PROCESSING

! \

I CLASSIFICATION
\ PROCESSING

! - DISSEMINATION TO REGIONAL CENTERS
AND USERS

KEY: S = SENSOR

D&I = DETECTION AND INTEGRATION

CLASS = CLASSIFICATION PROCESSING

23



CLASSIFICATION PROCESSING OPTIONS

CLASSIFICATION PROCESSING CAN TAKE PLACE:

IMMEDIATELY AFTER SIGNAL INTEGRATION
AT A SOURCE CENTER IN CONJUNCTION WITH FIX DETERMINATION
AT A REGIONAL PROCESSING CENTER

CONSIDERATIONS:

EARLY CLASSIFICATION

- REDUCES DATA LOAD DOWNSTREAM FROM THE SOURCE
- CAN REDUCE VULNERABILITY IF THE USER CAN PROCESS THE

BASIC POSITION DATA
- INCREASES THE FEEDBACK DATA LOAD BY MULTIPLYING

FINGERPRINT DATA BASES

CENTRAL CLASSIFICATION

- CAN REQUIRE TRANSMISSION OF ADDITIONAL SIGNATURE DATA
FROM THE SOURCE

- INCREASFS THE LIKELIHOOD AND LEVEL OF CLASSIFICATION
THROUGH MULTI-SOURCE DATA ASSOCIATION

- ENSURES A CONSISTENT REGIONAL PICTURE

24



SIGNATURE PROCESSING

TWO BASIC USES:

* COMPARISON OF REPORT AND TRACK SIGNATURES TO
ESTABLISH A TRACK DESIGNATOR

CLASSIFICATION OF TARGETS VIA A MATCH WITH
FINGERPRINT FILE DATA

REQUIREMENTS:

* FEEDBACK FROM REGIONAL AND NATIONAL CENTERS TO
MAINTAIN CURRENT FINGERPRINT FILES. (UPDATES
INITIATED FOLLOWING EACH ASSOCIATION DECISION.)

DETERMINATION OF CONFIDENCE OF CLASSIFICATION IS
CRITICALLY DEPENDENT ON COMPLETENESS OF
FINGERPRINT DATA.

DATA ON GENERAL AREAS OF CONTAINMENT FOR TARGETS
(POPULATION ANALYSIS) CAN BE USED TO ENHANCE THE
ASSOCIATION ANALYSIS.

TIME DEPENDENCE OF PARAMETERS, ARISING FROM CHANGES
IN ASPECT OR ALTERED SOURCE CHARACTERISTICS, MUST
BE MODELED.

25



DYNAMIC SIGNATURES

ABILITY TO TRACK (ASSOCIATE SUCCESSIVE
TARGET OBSERVATIONS)

ABILITY TO MAINTAIN CLASSIFICATION FOLLOWING
INITIAL ID

GENERALIZED SIGNATURE

= EMISSIONS SIGNATURE

+ GEOGRAPHIC CONTAINMENT
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MSI PRINCJPLES

POSITION COMPARISON AT SIMULTANEOUS VIEW

TRACK MATCHING (A MORE COMPLEX POSITION COMPARISON)

CHARACTERISTIC CONSISTENCY TESTS (E,G., ONLY
CLASS A HAS RADARS OF TYPE B)

OPERATIONAL CHARACTERISTICS (E,G, SHIPS NORMALLY
COMMUNICATE WITH A TRAFFIC CONTROL NEAR THIS
LOCATION)

27



DATA FLOW IN A REGIONAL
PROCESSING CENTER

CONTACT
REPORTS

PREPROCESSING
HULTEC ANALYSIS

CANDIDATE
SELECTION

EVALUATION I MOTION
PROCESSING I e i MODELS

DECISION | TRACK UPDATE
PROCESSING TRACK REVIEW

FUSION OF
PREPOSITIONED
INTELLIGENCE
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SELECTED MSI PROBLEMS

* MOTION MODELS: VOLITIONAL DYNAMICS

* AMBIGUITY: RESOLUTION AND REPRESENTATION

* CLASSIFICATION CHAINS

* ROBUSTNESS: ALGORITHMS VS. BIAS

29



VOLITIONAL DYNAMICS

ANALOG OF NEWTON'S FIRST LAW

"TARGETS MOVE AT CONSTANT SPEED ALONG STRAIGHT (RHUMB)
LINES, EXCEPT WHEN THEIR COMMANDERS DECREE OTHERWISE."

MANEUVERS:

- INVALIDATE STATISTICAL DISTRIBUTION ASSUMPTIONS

- NECESSITATE EMPIRICAL TESTING OF MOTION MODELS

TIME SCALES:

TM = TIME TO EXECUTE A TYPICAL MANEUVER

A r= MEAN INTERVAL BETWEEN MANEUVERS

FILTER CHOICE IS BASED ON RELATION BETWEEN REVISIT
INVERVAL AND THESE TIMES.
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AMBIGUITY

RESOLUTION IS DESIRABLE, BUT THE IMPROVEMENTS
WHICH CAN BE ACHIEVED WITHOUT NEW DATA ARE
SEVERELY LIMITED

REPRESENTATION IN A FORM USEFUL TO OPERATIONAL
COMMANDS REMAINS AN OPEN PROBLEM-

MULTIPLE HYPOTHESIS SYSTEMS CAN CLARIFY THE
REPRESENTATION OF AMBIGUITY, BUT FACTORIAL
GROWTH OF STORAGE AND PROCESSING REQUIREMENTS
IS A PROBLEM
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A CLASSIFICATION CHAIN

_ -F

t - RAIDA Associated by simultaneous

consistency
(unique ID)

32
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SELECTED DEVELOPMENT PROBLEMS

MULTIPLE DATA PATHWAYS: THEY SHOULD EXIST
BUT NOT NORMALLY BE USED.

TRACKING UNDER ADVERSITY: SIMULATION TESTS
SHOULD BE CONDUCTED IN A RUTHLESS MANNER.

AUTOMATION: AN INTERACTIVE INTERFACE IS AN
ESSENTIAL DEVEI OPMENT TOOL, EVEN FOR "HANDS-
OFF" SYSTEMS,

SOPHISTICATED DECISION ALGORITHMS: THESE MAY
REPRESENT A TACIT ADMISSION OF FAILURE IN
OVERALL SYSTEM DESIGN.
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AB3STRACT described in the following.

The basic problem of the ocean acoustic detec- 2. THE CONTINUOUS-TIME DETECTION MODEL
tion process is formulated analytically under
the assumption of fully developed saturated phase In this paper, detection at time t is defined
random multipath acoustic fluctuations. Detection
is defined as occuring whenever p, the root mean through a specified threshold level p, as follows:
square pressure at the receiver, exceeds a speci- through a specified threshold level p
fied threshold level p0 A continuous time model p(t) = P (t) ) 3 (1)
is first developed for obtaining the probability
density functions of the time between two success- The unconditional probability of detection,
ive detections and of the time p is above n (hold-- denoted by A dt is b

-denoted by 1 dt, is by definition the probabilitying time). This model is then compared wi the that (1) is satisfied at some instant of time in
extensively used (A, a) model and with data. The the interval (t, t+dt) where t is random and dt
model is seen to exhibit similar long-term behavior is small.
but markedly different short-term characteristics It is straightforward to show [3, 8, 143 that
as compared to the (X, a) model, a fact which is if a 2 is one half the long time average mean
due to the memory of the process. A comparison 1
of these models with data obtained from various square pressure and is the root mean square

single path phase rate (in rad/sec), then X (infield experiments demonstrates, in most cases, a secl) is given by the following formula: 1
significantly improved prediction capability over
the (A,a) model.

Subsequently a two-state anda four-state discre- P, p 2 2 (2)
te-time Markov models are derived and closed-form X ex(-p
expressions for the probability mass functions of 1
the corresponding interarrival and holding times
are developed. The results obtained using the Eq. (2) holds under the assumptions of the phase
latter models are favorably compared with both random multipath model [4], in which p has a
the continuous-time model and the data, the great- Rayleigh PDF, p a Gaussian PDF, and p,p are
est improvement lying in the much lower computa-ndeendent
tional effort involved. We call A the "unconditional detection rate"

or the "per unit time unconditional probability of
1. INTRODUCTION detection"; X is the average number of detections

(or "arrivals' )per unit time.
Much of the work in the area of acoustic detec- The conditional probability of detection, deno-

tion in the ocean has traditionally been based on ted by 4(t)dt, is defined as the probability that
the so-called (A, a) model characterized by the a detection occurs at some instant of time in the
"relaxation time" 1/X and the standard deviation o interval (t, t+dt), given a detection occurred
of the signal-to-noise ratio" [1]. Use of this at time 0.
model has relied heavily on parameter estimation It is again straightforward to show [14] that
from field experiments without application of the if f . . (P ,P2,l, 2 

) is the joint PDF of
relevant physical and probabilistic structures of P1P2 1P2 2
the process. p 1,p2,P2lp , where subscripts 1 and 2 refer to

This situation has been improved recently by times 0 an~ t respectively, then d(t) (in sec- 1) is
the efforts of several authors ([2] to [8]). Under given by the following formula:
the assumption of a fully developed saturated multi-
path phase-random field, probability distributions 1
for several random variables such as p, the root (t) A P f pPlP2 o PlpP)dp 2
mean square pressure at the receiver, p = dp/dt, . 0 1 2
the phase and $ = dW/dt, as well as many joint (3)
probability distributions have been derived. This
new knowledge has enabled us to develop new conti-
nuous and discrete-time detection models, which are

J6~~~~~~~~~~~~~~~~~~~~~~ 



We call ¢(t) the "conditional detection rate", refinements of this model were based on al approxi-
or the "per unit time conditional probability of mation to the definition of detection using a modi-
detection". If the detection process had no memory, fied but equivalent detection criterion that produ-
4(t) would be equal to A for all t. Evaluation ced very accurate results with significanitly reduc-
of (3) for the phase random process has however ed computational effort [14].
shown that this is not the case. Results showed We now proceed to briefly describe the current-
that 4(t) - 0 as t + 0 and 4(t) = Al for t > t ly used (X, a) model and put it in a form compati-
to is the decorrelation time of the process and ble to our model:
was observed to be in the neighborhood of 3/2vv The basic assumption of the (A, a) model is
to 4/2rv . For t between 0 and t0, the behavior that "detection opportunities" are generated in
of 4(t) was observed to be either monotonically time according to a Poisson process of parameter
increasing up to t , or to have a peak higher than X [1]. The reciprocal of X is known as the "relax-
A at some intermediate value of t. The existence ation time" of the process and its value is usually
ol the peak was seen to depend on the selected taken arbitrarily from empirical considerations of
value of a1, v and p . A conditional probability the process, and without any explicit relationship
similar to 4(t) is q/t), defined as the probability to the detection threshold level. At any particu-
that a downcrossing through p occurs at some lar detection opportunity, a detection occurs if
instant of time within (t, t+St), given that an the level A in dB ( = llog p2), which is
upcrossing occured at t=0O. The formula giving assumed to be normally distributed, exceeds a
+(t) is similar to (3), the following: specified threshold level Ao.

It is argued in [14] that a common basis of
t (r comparison between the (X, a) model and our conti-

1 0 J 1 2 P1P2 (4) unconditional probabilities for both models. It
0 - P (4)

turns out that in order to satisfy this require-
ment, the values of X can be no longer be taken

We now proceed to evaluate the PDF's of the inter- arbitrarily, but according to the formula:
arrival and holding times:

We use the term "interarrival time" to denote A v (7)
the time between two successive detections. The
exact evaluation of the PDF of the interarrival 1 2
time seems to be very difficult. Rice [11],
Longuet-Higgins [12] and McFadden [13] have presen- The above value of X is called "equivalent A".
ted several approaches to this problem in the It is the value that X should take in the (A, a)
general context of axis-crossing of random funct- model so that this model has the same average
ions. We propose here the technique used success- number of detections per unit time with our new
fully by Psaraftis [9], which states that a good detection models. Hence, all comparisons of the
way to approximate the above PDF is by the function: (A, a) model with the continuous-time model impli-

t citly assume that A takes the above value. If
,(t) exp(-f0 4(x)dx) t>O this is the case, the (X, a) model has, in terms

F(t) = { (5) of our previously defined terminology, the follow-
0 t<0 ing properties:

We now define "holding time" to be the interval a) 4(t) = 4(t) = const = A1 (no memory)
between any upcrossing through the threshold p b) 'PDF for interarrival time: Negative exponen-
and the first downcrossing through p0 that follows. tial given by: f (t) = tl(exp(- t); t>0
By analogy, the PDF of the holding time can be t 1

c) PDF for holding time: 1/2-order Erlang (or
approximated as follows: Gamma) given by:

{f(t) exp(-f p(x)dx) t> 1

0 t<0
,we.r.e, - ~ i obtaned b 4We will now see how the continuous-time andwhere b(t) is obtained by (4).

The determination of the interarrival and hold- the (A, a) models compare with the data that was
ing time PDF's exhibits a non-trivial complexity. made available to us.
The reason is that the joint PDF inside the inte- From the analysis of the CASE experiment [7,
Thegrals f ista the jointP p ) is itself difficult 16] which was done at ranges varying from 200 to

2gras f 2 2is itself difficult 400 km and frequencies of 15 and 33 Hz, we chose
to evaluate. In [4] & t11] it is shown that p and to present Record 21. Although a record of low

[ 1 signal-to-noise ratio, this was chosen for being
P2 are linked in a rather complex fashion, involv-
ing Bessel functions. Moreover, the correlation one of the few records examined that satisfy the
of p with f and of pM e with r is not a well-esta- phase-randomness assumption, an assumption on which
of P with .2 and of, p2 with l1 is not a well-esta- our detection models are based. In Figs. 1 (Inter-blisned function.

bli d ,fun.ction. e a s arrival Times) and 2 (Holding Times), a thresholdThe exact evaluation of 4(t) and p(t) involves of = 175 = 7 volts a 2 = 15.95 volts2 and
the execution of a total of 3 nested numerical 0 1 1

v = .1734 Hz were used. In both cases, the (A, a)integrations. This was the reason why the computer
model, unlike our model, fails to match theimplementation of the model originally presented observed experimental histogram for small values

significant computational difficulties. Subsequent ob served experimental histogram for small values
of t (t3O). On the other hand, both models predict

~~~~~~7 ~ ~ ~ ~ s ·· s,



equally well the behavior for times greater than P prob(p>p at time TIp<po at time O) = bthe decorrelation time. DU
0.20 l I ! I PDD = prob(p<p0 at time Tip<pO at time O) = l-b

Data
0.16

0.12- Continuous-Time Model l - ab

0.08 _ \\ i Fig. 3: Two-state Markov Model
JJ I- \h X (A, a)

0.04 If Pi, P2 are the values of p at times 0 and T
respectively, then we can evaluate a and b as
follows:

0 5 10 15 20 25 30
t(seconds) f O

Fig. 1: Continuous Time Model. Interarrival Time a P J f PdP 2 /j fp(p)dp
P 0 PO0.7 p(9)

06 k j b = | fb ( 1l,P2 )dpldp2/ JP fp(p)dp
Data 0

05
U \1I \ _. From [4] we know that

0.4 2
fp(p) = 2 exp( -2 ) and-that (10) 

0.3 Continuous-Time Model - a1 2a1
A , a)

0.2 0.~/ f2 ( P P2 (p1
2 +p2

2 ) 2 'P =2f (P'P2 ]exp[-1'P2 2 1 o2(1-Y2 0 2... .]exp[ - 2

~0.~1 -I- -_(11)

00 1 2 3 4 5 6 In (11) P = 1 , Y = exp(-v2T2 /2) and I0 (x) is
t(seconds) the modified Bessel function of order zero.

Fig. 2: Holding Time, Continuous Time Model We now proceed to find expressions for the
interarrival and holding time Probability Mass
Functions (PMF's) using the two-state model.

3. DISCRETE-TIME DETECTION MODELS Suppose the following sequence of transitions:

We now present equivalent discrete-time Markov Discrete
models that are computationally less complex than time 0 1 2 3 ..k, k+l, k+2 ..n, n+l
the continuous time model and that can be more state D U U U U D D D U
readily interfaced with sequential decision-making
schemes such as target tracking algorithms. Two
discrete-time models have been developed:

i) PH(k) _ prob(holding time = kT)
3.1. Two-State Markov Model

- prob (downcrossing between k and k+l1
We define states U (for "up" and D (for "down") upcrossing between O and 1)

by the requirements p2p0 and p<p respectively, k-l k-lwhere p, pO are as defined for the continuous-time PH(k)
model. We assume that we observe the system at
discrete points in time, O,T,2T,..,nT,.., where and
T is a user-specified time increment. Then, for ii) PI(n) prob(interarrival time = nT) =
the Markov model of Figure 3, we have the follow-
ing transition probabilitie(upcrossing between n and n+lI

n-l upcrossing between O and 1)
PUD = prob(p<p0 at time Tip>p0 at time 0) = a Then Pi(n)= b (-a) al-b k-l)/o, orUD p p 0 1\nI kl (1-a) aZ- /Z, or

ln-1PUU = prob(pBp0 at time TIpp 0o at time 0) = 1-a PI(n) = ab Z (1-a)k-l(1-b)n-k
- 1

(13)

k=l
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0.16 I I I I Pl P22 P33 P44

O0.14 Continuous Time Model _ 
O.14 J.2( )123 34

0 o.12 - 3 10.12 Markov Model

0.l0 , -o P21 - 3 2 P4 3
Fig. 5: Four-state Markov Model

0.08 -v 0.08 the PMF's of the interarrival and holding times

P.,n14 0.06-_ - because now more involved, because "up" states
are now states 3 and 4 and "down" states are states

v0 .044CII ~ c -- 1 and 2.
X .4 Defining PH(k) and PI(n) as in the two-state
0.02 model, and also

V0 ) 5 10 15 20 25 31) PN(n-k) = prob (non-holding time = (n-k)T)0 5 10 15 20 25 30 N
t (secon-s) prob (upcrossing between n and n+ll

downcrossing between k and k+l)
Fig. 4: Interarrival Time, 2-State Markov Model

then it can be seen that

Figure 4 presents a comparison of the interarrival p P(k P-k) (14)
time PMF of the two-state Markov model with the P(n) H N nk=0
interarrival time PDF of the continuous-time model
for Record 21 of the CASE data.(The data histogram

These PMF's can be evaluated by working in the z-
for this record is shown in Fig. 1). The agreement It
of this very simple Markov Model with the data as

can be shown that the holding time PMF is given
well as with the continuous time predictions is
quite satisfactory. The only parameter that has by the formula
to be calibrated by the user is the time step T, P (n) P [AnBnp (An-l n-l

-B )1/(A-B) (15)
which can be seen in Fig. 4 to be T = .6 sec. The H 32 44
results of a cursory sensitivity analysis showed
that the form of the PMF predicted by the Markov and that the non-holding time PMF by the formula
model does not change appreciably over reasonable
(less than one order of magnitude) changes in T. PN(n) = P23 [Cn-D - (Cn-Dn-)]/(C-D) (16)
The holding time prediction of the two-state model
sometimes compares with the data even better than where A,B,C and D are constants given in terms of
that of the continuous-time model. Still, its the transition probabilities as follows:
form does not fully satisfy our intuition, since 2
it has its most probable value in the first time A = /2[P 3 3 +P P 33-P44 ) + 4P 4 3P34]
increment (similarly to the (X, a) model having 2
its mode at t=O). This somewhat counter-intuitive B = l/2[P3 3 +P44-/(P 33-P44) + 4P4 3P3 4
result, together with the apparent simplicity of /2 
the two-state model in its description of the dyna- C = 1/2[Pll+P2 2 +P 1 1- 2 2 + 12P21
mics of the underlying process, has motivated us to D 2
formulate a more refined Markov model, discussed D = 1/2[Pll+P22-V(Pll-P22) + 4P12P21 ]

below:

3.2. Four-State Markov Model Hence P (n) can be evaluated by substituting (15)
and (163 into (14).

Introducing two additional states in the two- Figure 6 is similar to Figure 4, with the '
state model, we obtain the model of Figure 5, where difference that here the continuous-time modeiJis
we have: compared with the four-state Markov model. (same

CASE 21 Record as in Figs. 1 and 4). The results
State 1: 0 P < Pt0 of the four-state model are only slightly superior
State 2: PO , p < p0 to the ones of the two-state model. Here p' aad

State 3: <" ', as well as T, have to be selected by the user.
SP0 t : P 0O In Figure 6, T = 6 sec, p 3.5, P 14, with

State 4: P0 6 P < P0 = 7. volts, 01 = 15.95 volts2 and v = .1734Hz-
same as in the two-state discrete-time and the

Here pad p " are artifical thresholds, chosen by continuous-state model comparisons. A brief sensi-.
the user. As before, the user also selects the tivity analysis has shown that better results are
time increment T. As it can be seen from Fig. 4 obtained for levels of p', po" not close to p
the system is a birth-death process. (namely,p'<p 0/2 and p0" 2 0 ).

For a given value or l, the transition prob-
abilities of the four-state Markov model can be 4. DISCUSSION AND CONCLUSIONS
evaluated from the PDF's f (p) and f (plP2)

2P2' The main conclusion from this study is that for
in a similar fashion as those for the two-state phase-random ocean acoustic fluctuations, the
model. However, the derivation of expressions for
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0.16 I I I acoustic propagation, provided that enough is known
14 Continuous Time Model about the various PDF's of the relevant acoustic

0.14C - to Continuous Time Model -- variables.
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suggest numbers in the ranges of .4/v to .3/v for Function", Royal Phil. Soc., Transactions, Vol. 254,
the interarrival time and .2/v to .1/v for the No. 1047, 1962.
holding time. If v is small enough, therefore, the

(X ) rditos .Concerning ...''. [13] Mc Fadden, J.S., "The Axis-Crossing Intervals(X, a) predictions are quite inaccurate. Concerning
.) preditn of Random Functions - II", IRE Transactions onthe mean arrival and holding times, our model pre-

dictions are in better agreement with the observed Information Theory, 11-4, 1958.
values than the predictions of the (X, a) model. [14] Psaraftis, H.N., Perakis A.N., Mikhalevsky P.N.,

Since the Markov models are efficient and accu- "New Models on the Ocean Acoustic Detection Process",
rate, they could be used in sequential decision- paper to J.A.S.A. (1980).
making schemes such as target tracking algorithms, [15] Porter, R. and Spindel,R. J. Acoust. Soc. Am.
they should be studied further, beginning with a 943-958 (1977)
more comprehensive sensitivity analysis for the
calibration of arbitrarily chosen parameters [16] Anton, J.N., "A Fluctuation Data Base for the
(T, PO' p0 ") CASE Experiment," Technical Report 5204-2, Systems

Finally, it should be noted that the detection Control, Inc. April 1978.
models developed in this paper are not bound to
assume a phase random model; their analysis frame-
work can always accommodate any other model of
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1. INTRODUCTION

Garden-variety tracking problems involve processing

measurements (e.g., range and azimuth observed by a sensor) from

a target of interest and producing, at each time step, an

estimate of the target's current position and velocity vectors.

Uncertainties in the target motion and in the measured values,

usually characterized as random noise, lead to corresponding

uncertainties in the target state.

A common and versatile approach to such problems involves

assuming that the state dynamics and the measurements are both

corrupted by additive, white, possibly Gaussian noise; the

solution is then the celebrated Kalman-Bucy filter

[1, 2, 3, 4, 5], which is the conditional mean state estimator,

best linear estimator, maximum a posteriori estimator, maximum

likelihood estimator, or least-squares estimator, depending upon

one's point of view. The parameters that determine tracking

performance in such a filter are the system matrices in the

equations describing target state dynamics and measurements,

which will be considered fixed for the purposes of this

discussion, and the covariance matrices of the process and

measurement noise, which specify the uncertainties in target

motion and measured values, respectively.

In many tracking problems, particularly those arising in

surveillance, there is additional uncertainty regarding the

origin of the received data, which may (or may not) include

In the least-squares case, the assumptions about noise are
replaced by assumptions about error weightings.
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measurements from the target(s) of interest, interfering targets,

or random clutter (false alarms). This leads to the problem of

data association or data correlation, which has been attacked on

a number of fronts [6, 7, 8, 9, 10, 11, 12, 13, 14] and surveyed

in [15, 16, 17]. In this situation, tracking performance depends

not only upon the noise covariances, but upon the amount of

uncertainty in measurement origin. In some of the approaches

cited above [6, 7, 8, 9, 10], this dependence is explicit and is

characterized in terms of the detection probability and clutter

density (which is proportional to false alarm probability).

In typical applications, measurement data are provided to a

tracker by upstream signal processing and detection algorithms,

as indicated, in Figure 1. The process noise covariances are

normally selected on the basis of experience and intuition (i.e.,

they are guessed). The measurement noise covariances are either

provided by the signal processing algorithm, as shown in the

figure, or they are selected in the same manner as the process

noise. In any case, the true noise levels are usually fixed by

target dynamics and sensor configuration and cannot be adjusted

on line.

Detection and false alarm probabilities, on the other hand,

are highly interdependent and adjustable via a detection threshold:

raising the threshold lowers both probabilities, and vice-versa.

This relationship, which is also parameterized by signal-to-noise

ratio (SNR), is usually characterized by means of a set of receiver

operating characteristic (ROC) curves. The threshold is typically

set by choosing a design point on the most applicable ROC curve,

based on the perceived tradeoffs between false alarms and missed

detections. However, to the best of our knowledge, these tradeoffs

have never included any systematic or quantitative consideration of

the effects downstream on data association and tracking performance.
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In this paper we shall describe such a quantitative relation-

ship. The dependence of a tracker's error covariance upon detection

and false alarm probability is explicitly (but approximately)

characterized by a scalar parameter q2 in the covariance equation

(modified Riccati equation). The scalar parameter depends upon

the probabilities of detection and false alarm, and also upon the

volume of the data association gate, which in turn depends on the

state error covariance matrix P. The modified Riccati equation can

be iterated to convergence, yielding a steady-state P, and tracking

performance can be characterized by a scalar metric such as the

determinant or trace of P (in surveillance applications, the root-

mean-square position error is a convenient metric). This result is

important for the following reasons:
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1. Contour plots of the scalar tracking metric as a function of
detection probability and false alarm probability form a set
of "tracker operating characteristic" (TOC) curves, which
can be superimposed on ROC curves for the detector or
receiver of interest in order to determine graphically the
operating point that "optimizes" tracker performance.

2. The stability of the tracking process depends critically on
the detection and false alarm probabilities; a region of
apparent instability of the modified Ricatti equation exists
in the PD-PF plane of the TOC curves.

3. Allocation of tracking resources (both computation and
communication) requires prediction of future state error
covariances under various resource configurations, i.e.,
as a function of detection and false alarm probability and
of process and measurement noise covariance.

4. The same derivations provide a solution to the related problem
of determining the statistical properties of the modified
likelihood function [18], used for decision making (e.g.
maneuver detection) when measurement origins are uncertain.

A full version of this paper will be presented at and appear

in the Proceedings of the 1981 IEEE Conference on Decision and

Control.
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ABSTRACT

The primary value of single platform multisensor integration (MSI)
accrues from its synergistic use of multispectral target data, whereas
multiplatform internetted surveillance integration, ISI, provides a common
display for coordinated attack/defense. This paper introduces the general
software architecture and proposes candidate algorithms to solve these
sensor integration problems. The focus is on the track correlation problem
ana the utilization of distributed processing to reduce the computational
burden.

1.0 INTRODUCTION

By distributing reliable specialized subsystems throughout our air
force, and enhancing tne coordinated battle planning capability which nets
and exploits those subsystems, we can more cost effectively engage the
enemy. The avionics approach to force multiplication advocated herein
represents a potentially viable alternative to the current "autonomy and
equality" force composition approach with its attendant problems of rising
cost, shrinking force size, and reduced force effectiveness. A distributed
avionics approach introduces system complexity which must be countered with
reliable subsystems and flexible fire control software architectures. The
force mix must be adaptable to a variety of situations to reduce single node
vulnerability and enhance total force effectiveness. This will require
increased subsystem and weapon dependence and a flexible software
architecture which can be easily tailored to the mission plug-in modules.
The result will be a reliance on stand-off weapons in the initial high-risk
confrontations with later transitions to shorter range weapons only as
required. Reliable and adaptable integrated surveillance, decision aids and
asset control implementation software are necessary to display, assess, and
manage this situation so that aircrews can focus on their most pressing
problems.

The first step to better utilize sensor and weapon subsystems is
automatic data integration, prioritized decision aids, and nonlethal
subsystem mode control on the autonomous aircraft level. The functional
flow for this integrated surveillance and fire control software is shown in
Figure 1-1. The principal components of this software are the distributed
sensor processors, multisensor integration (MSI), prioritization, asset
management, and the crew displays and controls.

The second step is to net the fighters in order to improve the
targeting of stand-off missiles in a dense environment. The overall
internetted fighter system concept illustrated in Figure 1-2 is composed of
internetted surveillance integration (ISI) and battle planning. ISI is the
process of fusing sensor reports for various platforms together to provide a
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common description of tne surveillance volume. The concept entails an
automated fusion of all the sensors on each fighter in MSI and then a fusion
of these MSI files on the flignt leader platform. The MqSI track file
outputs from each fighter are communicated to the flight leader along with
the link relative navigation data or GPS inertial data and any C3I or
JTIDS net track data. The baseline ISI performs the common reference
processing, track correlation, and target state estimation.

This common ISI surveillance picture is used as the basis for target
handover. The threat identification (FFN, Class or Type), prioritization,
velocity vector and missile launch envelopes are available for display.
Battle planning and asset management is performed by the flight leader. The
flight leader software generates the internetted surveillance solution and
common display file to aid in command and control of the flight. Each
member of the flight must have this same software available so that they may
assume the flight leader role when necessary. However, as a flight member
they exercise alternate modules to validate these data integration files.
As the engagement progresses the targets, that each flight member is
engaging, are instantly displayed to the net to aid in their target
selection. After target selection, each flight member begins to rely
increasingly on his own MSI and decision software. Even so, the internetted
processing will continue to be supported, to the extent possible, in order
to maintain internetted situation displays and support reassessment and
reengagement efforts.

2.0 MULTIPLE SENSOR INTEGRATION

Multiple sensor integration (MSI) is the first step in development of
the internetted surveillance track file. The aircraft (MSI) problem,
although complex, is summarized as follows: The objective of MSI is to
automatically provide the best possible perception of the target set through
synergistic use of multispectral sensors as depicted in Figure 2-1. MSI
system criteria are of the maximum a posteriori form which incorporate
target kinematics and identification data into a single objective functional.

The significant functional components of MSI are common reference
processing, track correlation and target state estimation. The problem
posed by track correlation can be segmented into hypothesis generation,
evaluation, and selection. This problem is solved by utilizing the target
kinematics and classification data as well as the a priori sensor and target
information. The significant processing options selected for the
implementation of the MSI functional components are shown in Figure 2-2.
Although the best performance is obtained using the right-most column, the
path shown has been selected to yield the best tradeoff of performance for
reduced computational complexity/cost.

The resulting software development follows a two-step process defined
as follows: Fusion Tree Selection, and Fusion Node Processing Description.
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2.1 Fusion Tree Selection

The goal of fusion tree selection is to segment the data processing
into smaller batches to lessen computational and memory requirements while
minimizing the loss of performance accuracy. Thus, the fusion tree is
selected to take advantage of any natural segmentation of the problem.
Although the fusion tree can be selected in real-time, it is selected here a
priori to reduce the computational burden and complexity associated with
real-time fusion tree selection. This and other computational reductions
are driven by the requirement for a real-time onboard solution. A priori
fusion tree selection for generic MSI includes the definition of the sensor
data structures and the partitioning of this data for correlation.

The first step is to require each sensor to generate its own target
track files, where each track file contains the best estimate of the target
state at the current time given all past sensor observables. This provides
the following benefits:

* reduces real-time data transfer requirements
* utilizes sensor specific track filters
* enhances system reliability due to decentralization and reduced

computational complexity
* minimizes modifications of existing sensor systems
so reduces the MSI data filtering requirement.

The principal drawback of this assumption is that the sensor track files
input into MSI are correlated across time and sensors for each target.
However, since the multispectral sensors considered here have negligible raw
observable correlation problems the effect of ignoring this correlation is
reduced. The correlations in the target kinematic estimate errors have been
treated in the literature [1,2]; however, here, to reduce computational
complexity, this correlation is also ignored.

The sensor track files are assumed to contain both target kinematics
and classification information. Both kinds of information can be useful for
track correlation and neither should be left out. An example of this is the
integration of radar tracks with limited identification information and a
ESM sensor with type level ID and rough angular tracking data. Thus, the
correlation is based simultaneously on the classification and angular track
data.

To perform accurate real-time data integration of spatially separated
sensors, the relative alignment of the sensors must be computed. The
relative sensor misalignments separate naturally into the parallax error,
base-to-base alignment, and the line-of-sight (LOS)-to-base alignment. The
residual misalignment which remains after this common reference processing
can be estimated by MSI to within the sensor track accuracy. These residual
misalignments are modeled here as a bias plus a random noise in spherical
coordinates. The choice of spherical coordinates is based on the
restriction of passive sensors to predominately azimuth and elevation
kinematics. In summary, the sensor data structures have been specified as
follows:
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* only filtered and tracked sensor track files are available
* target kinematics and classification data are utilized
* bias residual misalignments are modeled in spherical coordinates

The next step is to define the partition of the sensor track files for
NSI processing. The partitioning is defined so as to limit the
computational burden. Thus, it is implicitly assumed that the recursive
correlation memory between partitions will be restricted.

The first partitioning to be defined is with respect to the time
variable. This follows naturally from the user requirement to have track
estimates (albeit report correlation results) periodically in real-time as
the scenario unfolds. At each MSI file update time the most current track
files from each sensor are correlated. Since the sensors provide tracks the
high confidence correlation results from past MSI can be easily utilized to
simplify the problem at each MSI update.

The secona partitioning selected is to process the current sensor track
files with the current MSI file on a sensor-by-sensor basis. For this
partitioning, the order in which the sensors are processed in the fusion
tree can significantly effect the number of candidate hypotheses that must
be saved. The goal in ordering the sensors is to make the anticipated high
confidence track correlation decisions first so that fewer candidate
hypotheses need to be saved. Thus, the best sensor (i.e., accuracy and
target detection ) is selected to initialize the MSI track file each MSI
update time frame. Here, this sensor is the radar. The remaining sensors
are then correlated to the MSItrack file one at a time. This sensor
partitioned fusion tree is depicted in Figure 2-3.
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Figure 2-3. Sensor partitioned Track File Correlation Fusion Tree
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2.2 Fusion Node Processing

For the fusion tree shown in Figure 2-3, each of the fusion nodes is
similar. Namely, correlating a given sensor track file to the MSI track
file. Thus, what is envisioned is a single fusion node processing
architecture which can be applied at each fusion node. When the tracks
within each sensor track file are correlated to the MSI track file as a
whole, the full maximum a posterior solution requires a sum over all their
targets of the correlation log-likelihoods, as shown in Reference [1].
However, to reduce the real-time computational burden the tracks can be
scanned for the best single correlations. Here, such a fusion node is
recommended. A candidate functional flow is given in Figure 2-4.

The first step is to define the sensor track file correlation objective
criterion. The candidates, as discussed in Reference [3], are reviewed in
Table 2-1. Of these, the second is selected since it has least
computational burden and similar performance based on satisfying user
requirements.

Table 2-1. Candidate Report Correlation Maximum A Posteriori Criteria

1. Joint multisensor correlation decision and target state estimation

Max P(H,elreports) = Max [max P(elreports,H)] P(Hlreports)
H,e H e

2. Multisensor correlation decision

Max P(Hlreports) = Max [P(reportslH) P(H)]
H H

3. Target state estimation

Max P(e reports) = Max [ E P(reportslH,e) P(Hle)] P(e)
e e H

As shown, this second criterion splits into the maximum likelihood, P(RIH)
term, and the prior P(H) term. The first term provides a measure as to
which MSI track to correlate to a sensor track while the second measures to
what extent a correlation to any MSI track is expected. The fusion node
processing is developed from the general report correlation architecture
proceeding as follows:

* Hypothesis Generation
* Hypothesis Evaluation
* Hypothesis Selection

Hypothesis generation defines the feasible track correlations based on
the current data and the prior correlation hypotheses. These feasible track
correlations are then linked to form current correlation hypotheses. The
feasibility track gating process is expected to provide a quick search of
the data to indicate the track correlations which should be considered in
more detail. Thus, it is not an exact statistical computation and it is
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aposterior track correlation criterion breakdown (see Reference t4):

w p(Y(O),Z(O))a alnd Y(t),Z()) are the kinematic and classification datafrom the sensor and MSI track files which are selected according to the

assumption that for one of the two the target classification is made

irrespective of its kinematic data, e.g., ESM.. k .HoerThe hypothesis evaluation hypotheis based upon the following maximum a
posterior track correlation criterion breakdown (see Reference 4):

P(H[Y[O),Y(1),Z(O),Z(1 )) = P(Y(O)jZ(O),Z(1),Y(1),H) (1)

[ ~] P(Z(O)IH,class K) P(Z(1),Y(1)jH,class K) P(classKIH)] P(H)
keclasses

where

(Y(O),Z(O)) and Y(1),Z(1)) are the kinematic and classification data
from the sensor and MSI track files which are selected according to the
assumption that for one of the two the target classification is made
irrespective of its kinematic data, e.g., ESM

H is the correlation hypothesis that this data is from the same target
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K is the index over a set of disjoint classes selected for each
pairing such that for all K the following holds:

P(Z(O),Z(1),Y(1)IH,K) = P(Z(O)JH,K) P(Z(1),Y(1)IH,K) (2)

This last equality clearly relies on the target class conditioning,
since it is precisely the unconditioned correlation between Z(O) and
(Z(1),Y(1)) that the target attribute track correlation criterion is based
upon. The existence of such a set of disjoint target classes, K, is
predicated upon the sensor target observables being noncommensurate. For
example, Z(O) could represent a set of ESM observables like PRI and
frequency and Z(1),Y(1) could represent a set of radar threat image
observables along with the current radar kinematic track, Y(1). Typically
this set of target classes will be the lowest common level of target
classification that can be performed with the two sets of data. In order to
avoid having to compute the terms in the summation above in the MSI
software, the following step, utilizing Bayes Rule, is applied:

P(Z(O)1H,class K) = P(class KIZ(.O),H) P(Z(O)IH)
P(class KjH) (3)

and similarly for the (Z(1),Y(1)) term. The result is that the
P(class KIZ(O),H) type terms can be computed at the sensor level. The
P(class KIH) terms are the a priori probabilities of the targets being in
class K which on application wduld be part of the mission data input to the
fire control computer in either a look-up table or constant form.

At this point it should be emphasized that, although the Y(O) and Y(1)
terms above are the track file kinematic estimates, the Z(O) and Z(1) terms
are the raw attribute observables and not the track file target
classification estimates. The reason for this is that, if track correlation
were based on the track file classification data statistics rather than the
raw data statistics, the performance accuracy can be noticeably degraded. A
typical example of the degradation caused by using the track file target
classification reports as the attribute data, is when a sensor may have a
low probability of outputting a high confidence target classification
estimate. In fact, this is an expected occurrence for the envisioned
avionics sensors. Namely, the individual sensors are not expected to each
completely solve the non-cooperative target identification problem most of
the time. So, typically, for any given sensor there will be target classes
for which it is not expected to correctly identify but for which it might be
able to some of the time. By using these target classification report
statistics, whenever the sensor is able to correctly identify this target
class, such information would be discounted for track correlation due to its
low probability of occurring. This reduces the contribution of a correct
classification match in helping to solve the track correlation problem.
Thus, the Z(i) refer to the raw data observables here.
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The hypothesis evaluation criterion in equation (1) using (3) is
computed as follows:

P(HIY(O),Y(1),Z(O),Z(1)) (4)

= exp[-l(rTV-lr + loglVI)] [ E (P(class KIZ(O),H)
2 keclasses

P(classKlZ(1),Y(1),H)IP(class K H))] P(H)

where

r is the residual, [Y(O)-Y(1)], and V is the covariance of r.

H is the hypothesized MSI track correlation, MSI track initiation or
false alarm declaration for the given sensor track, which is
approximated as follows:

P(Track Correlation Hypothesis) = [1 - PFA(Sensor)] [1 - PFA(MSI)][PD(MSI)]

P(MSI Track Initiation) = [1 - PFA(Sensor)][1 - PD(MSI)]

P(Sensor False Alarm) = PFA(Sensor)

In addition, this term is alsonormalized with the expectations of the
kinematics and classification terms.

The P(H) evaluation is typically the subject of much debate due to the
inherent inaccuracies in the a priori sensor characteristics and scenario
target kinematics and classification appearance expectations. It should be
emphasized that this does not imply that this term should then not be
computed. This term can still have a substantial effect to the extent it is
known. Thus, the best estimate of these parameters should be made and, as
always, to decrease their effect, the sensors are expected to be designed
with as low a false alarm and as high a detection probability as possible.
The estimate of these characteristics is expected to entail the use of
look-up tables in real-time as a function of sensor mode, field-of-view,
signal-to-noise ratio, etc.

Hypothesis selection determines the hypotheses to be retained for the
next recursive step and the one to be used for the MSI update. The
tradeoff, for retention, is the performance accuracy of retaining more
hypotheses versus the reduced computational complexity associated with
retaining fewer. Also, memory of past correlations must be maintained in
order to keep ESM ID data associated with the radar tracks after the emitter
file has been dropped.

3.0 INTERNETTED SURVEILLANCE INTEGRATION

This function generates a single surveillance picture for the flight
from the internetted aircraft sensor information. The subfunctions are
common reference processing, track correlation and target state estimation.
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The focus here is on the multitarget 1-D, 2-D, and 3-D track correlation
processing. The significant design options are the same as those given in
Figure 2-2. The first step is the selection of the fusion tree which
specifies the partition of the data for fusion node processing. This
segmentation of the data is given in terms of which sensors, timeframes, and
tracks are to be simultaneously correlated. The motivation for enhancing
the fusion tree towards simultaneous consideration over multiple platform
sensors, multiple timeframes, and multiple sensor track files, is summarized
in Table 3-1.

Table 3-1. Enhanced ISI Fusion Tree Selection Motivations

* Multiple Platform Sensors
- Improve number of 3-D tracks available for

correlation
- Remove two sensor angle-only track correlation

ambiguities
* Multiple Time Frames

- Provide memory of confirmed past ISI 3-D tracks
- Buffer angle-only tracks for 3-D track initiation

* Multiple Sensor Track Files
- Detect inter-platform misalignments
- Improve correlations for weakly overlapping track

files
- Avoid correlated errors from MSI target ID files
- Utilize like-sensor target attributes to solve

angle-only correlations

As an example, the last option considered in Table 3-1 indicates the
motivation for single sensor attribute data rather than the MSI file data.
For the single aircraft case, it is desirable to take advantage of the
non-commensurate nature of the onboard sensors by distributing the
attribute-to-classification processing to each of the sensors. Then, the
data bus load is lower and the MSI processing of the resulting
classification trees is simpler. However, in the ISI problem the
classification errors from each aircraft MSI file are significantly
correlated, due to the commensurate nature of the target signatures upon
wnich each is based. Thus, for correct target correlation, as well as
target state estimation, the target attributes from each sensor on each
netted aircraft are needed. In particular, the RF and PRI common ESM
measurements can significantly reduce the angle-only correlation problem for
dense environments. The drawback is that this increases the communication
load and processing complexity. As a result, the extent of compensation for
these correlations must be weighed against the improved accuracy which would
result.

A candidate ISI functional design is given next which emphasizes a
reduced communications and processing load. The options selected are as
follows:

* Integrate only the platform MSI track files where the MSI files
contain either 3-D or angle-only kinematic tracks, and target
classification tree confidences. The platform relative
navigation and alignment data g; assumed available with each time
tagged MISI file.
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* The aircraft are correlated one at a time to the ISI track file
except for the DOA data which is processed using pairs of
aircraft.

* A single track file is used for the 3-D correlation and a
three-time interval buffer is used for the 2-D correlations.

* The 3-D tracks are given correlation scores track-by-track and
the 2-D tracks are given scores pair-by-pair.

* The standard, P(HIR), maximum a posteriori track correlation
criterion is used as the correlation objective functional.

The ISI functional flow, as shown in Figure 3-1, is separated into
reference processing, track correlation, and target kinematic and
classification state estimation. The inputs are the internetted aircraft
MSI files, along with their relative navigation and alignment.

The principal difference between ISI and MSI is the correlation of the
angle-only tracks. For line-of-sight (i.e., azimuth and elevation) tracks
the correlation residual requires the computation as shown in Figure 3-2.
In addition, the usefulness of the angle rate information is degraded due to
its projection into the unknown range rate of the alternative correlations.
The most significant problem is that for alternative correlations which lie
near the same plane determined by two platforms and a given target track,
the solution becomes ambiguous. This commonly occurs when the netted
aircraft are at co-altitude for all co-altitude target aircraft as depicted
in Figure 3-3. These ambiguities also occur for all azimuth-only candidate
track correlations. This problem is solved, albeit with additional
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TRACK COMMON COMMON 

TRACK TIME REFERENCE
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REL NAV
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2D-TO-3D 2D TRACK 2D-TO-2D 2D-TO-2D
TRACK FILE CORRELATION TRACK
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Figure 3-1. Internetted Surveillance Integration Functional Flow
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computational burden, by correlating three or more platform high probability
of detection track files, simultaneously. In each case, the target
classification data is utilized simultaneously with the kinematics as
described above for MSI. Selection of the ISI fusion tree and fusion node
processors which best trade the performance for the computational
requirements remains to be accomplished.

4.0 SUMMARY

A Bayesian approach to integrated surveillance for both single and
multiple platforms has been developed here. The motivation for this
internetting of aircraft is summarized as follows:

* Cost Hi/lo force mix performance
multiplication via internetting

* Reliability Reliable stand-alone subsystems are
integrated and controlled

* Mission Adaptability Flexible core architecture with
preflight initialization software

lo Chaos of Battle Internetting to improve targeting of
stand-off weapons and maintain local
advantage

* Pilot Workload Automated data fusion, decision aids and
non-lethal subsystem controls

e Limited BVR-ID Integration and memory of identification
data from passive, active, and C3I
sources

The primary value of multisensor fusion accrues from its synergistic
use of complementary multispectral sensor data. The report correlation
problem is expected to be solved by sequentially processing a partitioned
set of reports and utilizing both the kinematic and target classification
data. The processing option selected is influenced by the computational
requirements as well as the relative uncertainty in the data, especially
with regard to the correlation hypothesis a priori information (e.g.
individual sensor probability of detection and false alarm).

In conclusion, the algorithms proposed here utilize both target
kinematics and target classification data in order to solve the track
correlation problem. The problems attendent in utilizing distributed
processing for MSI are shown to be of less concern than for ISI due to the
multispectral independence of the single platform sensors. A preference of
ISI correlations to 3-D targets before angle-only correlations is proposed
with angle-only correlation ambiguities indicated.
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1. INTRODUCTION

The problem of tracking in a multi-target/multi-sensor environment can
be stated in terms of two principal sub-problems:

o the data association/clustering problem, viz., partition the
dataset into disjoint subsets or clusters with the datapoints in
each cluster being associated with some one target (or with
"noise data");

o the data fusion/correlation problem, viz., estimate charac-
teristics and quantities of interest about a target (e.g.,
positions, courses and speeds) from the data in the data cluster
associated with it.

Thus, the data association/clustering problem arises from the multi-
target aspect of the tracking environment (i.e., the possibility that
there are zero, one, two, or more targets represented in the data), as
illustrated in figure 1. This problem is difficult to solve because
the number of ways to cluster the data is combinatorially large. And
the data fusion/correlation problem arises from the multi-sensor aspect
of the tracking environment, wherein one is faced with extracting all
of the information about a target from datapoints that may differ in
information content, statistical properties, etc., as illustrated in
figure 2.

MARCY is an algorithm for solving both the data association/clustering
problem and the data fusion/correlation problem. That is, MARCY is an
algorithm for tracking in a multi-target/multi-sensor environment.
MARCY, which is potentially a better tracking algorithm than such
algorithms as OUTLAW HAWK and OUTLAW SHARK (these latter algorithms,
which are now operational, also address the data association and fusion
problems), currently lives at the Advanced Command/Control
Architectural Testbed (ACCAT) at the Naval Ocean Systems Center (NOSC)
in San Diego.

Our purpose here is to describe MARCY in some detail. We do this in
three parts. First we give, in section 2, an overview of MARCY. In
particular, we describe what it is like to run MARCY, and mention her
two operating modes (batch mode and recursive mode). We list the
algorithm's inputs and outputs, and we summarize the many versions of
MARCY that are now in existence along with the tracking situations in
which they have been used in practice. Secondly, we briefly describe,
in section 3, how MARCY works. In particular, we indicate how MARCY is
based on two principal subalgorithms: a Kalman filter of a novel kind
for solving the data association/clustering problem in a "local"
manner via data fusion/correlation; and an integer program for solving
the data association/clustering problem in a "global" manner.
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We also indicate how, in solving the overall data association/
clustering problem, we avoid the combinatorial problem of explicitly
considering all possible partitions of the dataset. Finally, in sec-
tion 4 we give an example of a run with MARCY on a set of artificial
data representing a hypothetical two-target/three-sensor ocean sur-
veillance tracking scenario. This example illustrates, inter alia, the
user/MARCY interface.

2. OVERVIEW OF MARCY

2.1 OPERATING MARCY

MARCY is, of course, computer-driven. MARCY is coded in some 6000
lines of FORTRAN source code. Graphic outputs are coded in PLOT10--a
graphic package callable from FORTRAN that has been provided by the
Tektronix Corporation for use on DEC PDP10 computers. The algorithm
requires about 120K of core storage at loading time; much of this is,
of course, paged out at running time. As mentioned above, the
algorithm resides on a DEC PDP10 computer at the ACCAT facility at
NOSC.

MARCY is interactive in character--that is, she prompts the user to
guide her activities and responds to his control choices; as such, she
is human-engineered to a degree (e.g., she is tolerant of "silly"
errors on the part of the user).

Figure 3 is a high-level flowchart indicating how a user of MARCY
operates the algorithm. As the figure shows, MARCY runs in either of
two modes -- batch mode and recursive mode -- whose general appearances
to the user are similar. In both modes, the user provides the
algorithm with target-related data and with certain control parameters.
The algorithm then performs "local data association/clustering" via
data fusion/correlation to produce a candidate set of possibly
overlapping data clusters or tracks. The user may manually modify
these results at his option. The algorithm then goes on to perform
"global data association/correlation" to produce a best possible subset
of these tracks subject to the constraint that they do not overlap each
other in datapoints (i.e., no two tracks have datapoints in common).
At this point the user of MARCY may, as shown in figure 3, accept these
results by outputting them to track files; alternatively, he may
recycle back throught the track construction dialogue (presumably with
different values for the control parameters) so as to try to obtain
results that he likes better.

MARCY's two operating modes differ in the method of initialization of
the Kalman filter that is at her heart, and in running speed. On the
one hand, MARCY can, in batch mode, do multi-target/multi-sensor
tracking well even when her filter is poorly initialized, but in doing
so requires a long running time compared to what the running time would
be in recursive mode. On the other hand, MARCY can, in recursive mode,
do multi-target/multi-sensor tracking well only when her filter is well
initialized, but in doing so requires a short running time compared to
what the time would be in batch mode.
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Thus, MARCY's two running modes have complementary capabilities: the
user runs MARCY in batch mode whenever necessary to initialize or re-
initialize the estimated tracking scenario; and he runs her in recur-
sive mode whenever possible to update track estimates handed off to her
by batch mode.

2.2 MARCY's Inputs and Outputs

MARCY's inputs and outputs depend, of course, on the particular
multi-target/multi-sensor tracking environment to which she is applied.
We here describe the algorithm's inputs and outputs for the case of
the ocean surveillance environment.

2.2.1 MARCY's Inputs In An Ocean Surveillance Tracking Environment

As figure 1 shows, MARCY's inputs are of two types:

o values of control parameters;

o target-related data.

MARCY obtains values for her control parameters either directly from the
user (there is an extensive user/MARCY input dialogue for specifying
parameter values) or from a previously created control parameter data
file on disk. Table 1 shows the most important control parameters for
which MARCY needs values.

After MARCY has a complete set of parameter values, the user may
instruct her to print ,these values out for inspection. An example of
such a printout is given in section 4. MARCY then offers the user an
opportunity to change values of one or more parameters (without, of
course, requiring that he respecify them all). The user may, at his
option, save parameter values on a disk data file for his later use.
MARCY reads target-related data from a previously prepared binary disk
data file.

MARCY is, in principal, applicable in any multi-target/multi-sensor
environment and thus can, in principal, accept any kind of target-
related data. For each data type, MARCY must be supplied with the
appropriate "measurement equation"--that is, the equation that relates
that type of data to the target's position and motion.
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The current MARCY, however, has been developed with the ocean sur-
veillance application foremost in mind. Thus, the current MARCY's data
has most often been that of the ocean surveillance community, viz:

o positional information

- radar measurements;

- pairwise coherence measurements;

- active sonar reports;

- pilot sightings;

o bearing-only information

- SOSUS lines, of bearing;

- HF/DF lines of bearing;

- passive sonar reports.

Indeed, much of the early work with MARCY has been with a single data
type--that of pairwise coherence measurements. (Table 4, which appears
in section 4 of this paper, shows an example of a dataset consisting of
48 pairwise coherence measurements, each line on the table being one
such datapoint.)

2.2.2 MARCY's Outputs

As figure 3 shows, a user of MARCY has two major opportunities for
output: one after MARCY's Kalman filter has solved the data
association/clustering problem in a "local" manner, via data fusion/
correlation; and the other after MARCY's integer program has solved the
data association/clustering problem in a "global" manner. At either
point, the user may request any of eleven types of information, of
which seven are tabular in character and four are graphic in character,
about all or a selected subset of the clusters or tracks found by the
algorithm. Table 2 lists these types of output information. Examples
of some of these types of output are given in section 4. After viewing
any type of output the user may recycle through the output dialogue and
make other output selections.

2.3 Versions of MARCY

The algorithm MARCY that we describe in this paper is applicable in a
general multi-target/multi-sensor environment. As such, MARCY may be
seen as the progenitor of a number of existing versions of the
algorithm each one tailored for use in some one special practical
situation.
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Table 2. MARCY's Output Types

Type
Number Information Content

1 Water times, peak numbers

2 Water times, peak numbers, probability scores

3 Water times, peak numbers, probability scores, chi-square
scores .

4 Water times, peak numbers, probability scores, chi-square
scores, measurement residuals

5 Water times, peak numbers, state vectors

6 Water times, peak numbers, state vectors, covariance
matrices

7 Water times, peak numbers, position coordinates, courses
and speeds

8 Plot of feasible tracks in geographic space

9 Plot of feasible tracks in measurement space

10 Plot of residuals versus time

11 Plot of covariance matrices versus time
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Most of these special versions of MARCY have been created to support
ocean surveillance experiments by the Advanced Research Project Agency
(ARPA) of the Department of Defense. The ARPA experiments in which a
version of MARCY has provided tracking support are:

Date Experiment Name

Fall, 1978 Semi-Alerted Search Experiment (SASE)

Spring, 1980 Broad Area Search Experiment I (BASE-I)

Spring, 1981 Broad Area Search Experiment II (BASE-II)

Summer, 1981 Pathfinder

All of the versions of MARCY that have been created to support these
experiments are equipped only with batch mode (i.e., none of them are
equipped with recursive mode), and all operate on real data in real
time.

3. HOW MARCY WORKS

MARCY works by solving the data association/clustering problem in two
stages: a "local" stage and a "global" stage.

MARCY first solves the data association/clustering problem in a "local"
manner, by which we mean that MARCY:

o considers (at least implicitly but not necessarily explicitly--
see below) all possible partitions of the dataset into can-
didate clusters;

o scores, via data fusion/correlation (which is carried out by a
Kalman filter applied to the data in each candidate data
cluster), each data cluster for the degree of agreement
between: a) what the data in the cluster would imply about the
behaviour of a target under the assumption that the datapoints
in the cluster are all due to that target; and b) a simple
model of target motion, namely, one of constant course and
speed.*

o rejects candidate data cluster whose scores are sufficiently
poor--along with (implicitly) all other candidate data clusters
that could be formed that contain such poorly scoring clusters
as subsets.*#!*#

* A user of MARCY can arrange for the algorithm to accomodate
maneuvering targets as well. He does so by supplying parameter values
that specify a high uncertainity in the constant course and speed model
(i.e., he specifies a large amount of "system noise").

*#!*# This idea, which as a moment's reflection will show is entirely
rigorous, is what keeps MARCY computationally feasible. This idea is
due to Charles L. Morefield of VERAC Corporation.

74



Figure 4 illustrates this process. The numbered circles in the figure
represent individual datapoints (of any type). The columns of circles
in the figure represent copies of the entire dataset. The figure shows
MARCY building candidate clusters in a bottom-up fashion -- trying
first all possible one-point data clusters, all possible two-point data
clusters, all possible three point clusters, etc., rejecting (as indi-
cated in the figure by solid vertical bars) all such candidate clusters
that score poorly (along with, implicity, all other clusters containing
the failing cluster as a subset). The surviving candidate clusters are
then fed to the global data association/clustering process described
below.

Note that it is possible, and indeed often happens, that, because data
clusters are scored in a "local" manner (i.e., independently of each
other), surviving data clusters can have datapoints in common. Such
cases of surviving data clusters that overlap are bothersome because
one then has instances of a datapoint being associated with more
than one target! Thus, it is necessary to consider the surviving data
clusters as a whole -- that is, in a global manner.

MARCY next addresses the data association/clustering problem in a
"global" manner, by which we mean that MARCY:

o notes cases of local solutions to the data
association/clustering problem and the data fusion/correlation
problem in which surviving candidate data clusters have data-
points in common;

o selects, via a 0-1 integer program, the "best" subset of non-
overlapping surviving data clusters.

Here, by "best" we mean that subset of non-overlapping data clusters the
sum of whose local scores is better than the sum of scores of any other
subset of non-overlapping surviving data clusters.*

Figure 5 illustrates this global data association/clustering process.
The blobs on the left-hand side of the dotted line in the figure repre-
sent clusters of data that survive the local data association/
clustering and data fusion/correlation process, and the numbers shown
in those blobs represent their scores. Since there are cases of
overlapping blobs, we must select a subset of them that do not overlap.
We (more generally an integer program) find that the subset of blobs
shown on the right-hand side of the figure is the "best"** such selec-
tion of non-overlapping blobs.

* This idea of a globally best subset of non-overlapping data clusters
is also due to Charles L. Morefield (1).

** "Best" here means that the sum of the scores of the (non-overlapping)
clusters is as large as possible.
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4. AN EXAMPLE

Consider the hypothetical two-target/three-sensor ocean surveillance
scenario shown in figure 6. Two targets move on constant courses
at constant speeds: target #1 on course 1700 at speed 20 knots, and
target #2 on course 1900 at speed 30 knots. These data, along with
their initial positions at hour 0 as indicated, will result in the
targets passing through one another at hour 10.*

The three sensors in the figure are SOSUS stations. They are fixed in
space** and are arranged in a triangular configuration as shown. Table
3 describes this scenario in numerical terms. Table 3 also indicates
the levels of "process noise" and "measurement noise" that will be
injected into the scenario by a data generator in computing artificial
target data based on the scenario in figure 6.

Table 4 shows a collection of 48 artificial pairwise coherence measure-
ments that were computed from the data in table 3. Thus, the data in
table 4 are synthetic data that represent the surveillance scenario
shown in figure 6. This data comes to MARCY without any indication of
the number or characteristics of the targets which produced them (the
target numbers shown in the second column of table 4 are, of course,
stripped away before the data is given to MARCY). MARCY's job is to
unravel the data in table 4 so as to recover, as closely as possible,
the scenario shown in figure 6.

Figure 7 shows the dialogue that a user of MARCY had with the algorithm
in running MARCY on the data in table 4. Our description below of this
dialogue is keyed to the figure by symbols of the form A , B , etc.
The rectangles on the dialogue show entries made by the user.

At point A , the user is logging on to his account on the computer
system. At point B , he sets the width of the terminal to 132 charac-
ters, thereby allowing for outputs with wide formats.

At point C , MARCY is invoked by hitting "MARCY". The algorithm is then
loaded into core, and execution begins. MARCY first announces herself
and then prints the running notes (these are overall reminders to the
user) as shown.

At point D , MARCY determines whether or not the terminal in use is a
Tektronix terminal. This information is necessary in order to be able
to automatically clear the display, and for graphic output purposes.

* We chose this case so as to make it harder for MARCY to assign data-
points to targets than would otherwise be the case.

** MARCY can handle situations involving mobile SOSUS stations.
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INITIAL POSITION \ INITIAL POSITION FOR
FOR TGT #1 TGT #2
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TGT #2: COURSE 190, SPEED 30 KTS

Figure 6. Hypothetical Ocean Surveillance Scenario.
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At point E , MARCY asks the user to specify the (spherical) coordinate
system with which he desires to deal with the tracker. The user, as he
is working in the North Pacific, naturally selects north latitude and
west longitude as being positive. All coordinate inputs and outputs
are then regarded by the user as being in this coordinate system.

At point F , MARCY asks the user for the speed of sound in knots.

At point G , MARCY asks for data concerning surveillance stations. The
user, wishing to run the artificial data case with three immobile sur-
veillance stations as illustrated in Figure 6, enters the station data
as shown.

At point H , MARCY asks the user to supply the names of two scratch disk
datafiles that will be used to store parameter values for batch and
recursive modes. The user responds as shown.

The user has now finished entering the "universal parameters" (so
called because they apply to both batch and recursive mode). MARCY
prints these parameters out starting at point I , and asks the user to
verify them. The user indicates that they are satisfactory. (If the
user had made an error in entering one or more parameters or had he for
any reason been dissatisfied with the values of the universal parame-
ters, he could have indicated this fact to MARCY. MARCY would then
have recycled through the relevant part of the input dialogue, thus
giving the user the opportunity to change these values).

At point J , MARCY asks the user to indicate whether to run in batch
mode or recursive mode (or to stop). The user chooses batch mode, as
shown.

At point K , MARCY advises the user that it has begun the process of
constructing tracks in batch mode.

At point L , MARCY asks the user whether he wishes to provide batch-mode
parameters by restoring them from an old parameter datafile or by
entering them manually. The user, not having already created a
suitable parameter datafile, indicates that he will enter them
manually.

At point M , MARCY asks the user to specify the first parameter --
the name of the target datafile. The user responds with "PKSF5" (i.e.,
the datafile whose contents are displayed in table 4) as shown.

At point N , MARCY asks the user to specify a lower bound and upper
bound on the length of the tracks he is seeking.

At point 0 , MARCY begins a series of questions aimed at establishing
what constraints, if any, the user wishes to place on tracks.
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Basically, the user has an opportunity to constrain tracks by means of
each type of data in the datafile: station numbers, bearings, fre-
quency gins, times of receipt, time differences, frequency differen-
ces, and coherences. The user also has the opportunity to constrain a
track's components by datapoint numbers. The first question concerns
whether or not the user wishes to constrain a track's components by
datapoint number. The user, not wishing to limit the tracker's atten-
tion to any particular datapoints in the datafile, answers "no". MARCY
then goes on to ask the user whether he wishes to constrain tracks in
other ways as shown. The user responds "no" to all of these questions
except for the one involving the "times of receipt" (TOR) of datapoints
where, as he wishes to limit the tracker's attention to the datapoints
coming from the first five hours of the scenario shown in Figure 6, he
does so as shown.

At point P , MARCY begins to ask for parameters that will be needed for
local data association/clustering and data fusion/correlation (i.e.,
the Kalman filter). The first item is the measurement noise covariance
matrix R. The user responds as shown. Note that MARCY advises the
user of the units in which to respond.

At point Q , parameters 21 and 22, which are needed to determine the
process noise covariance matrix Q, are asked for and received; again,
desired units are provided.

At point R , the minimum water time and maximum water time between
adjacent components of tracks are asked for and received.

Point S is concerned with the specification of initial state vectors
and covariance matrices for MARCY's Kalman filter. The dialogue here
is self explanatory (to those familiar with Kalman filtering);

At point T , MARCY asks for and receives the three types of thresholds
by means of which local data association/clustering and data
fusion/correlation is cut short. Here the availability of default
options as shown make it easy for the user to specify standard values.

At point U , MARCY advises the user that values for all parameters have
been received and asks the user whether or not he wants these parame-
ters printed out for his inspection. The user, after indicating that
he does, receives the printout as shown.

At point V , MARCY asks the user to indicate whether or not the batch-
mode parameter values are satisfactory. Upon inspecting the printout
of parameter values, the user decides that he would like to change the
threshold for stagewise chi-square scores from 9 to 10. He indicates
this fact to MARCY. MARCY responds to this by listing, beginning at
point W , all the areas in which the user might wish to change parameter
values. The user makes appropriate selections and, after MARCY
recycles through the relevant part of the input dialogue, makes the
desired change at point X
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At point Y , the user indicates to the tracker that he is now satisfied
with the values of the batch-mode parameters. MARCY responds to this
by saving these values in the batch-mode parameter datafile.

At point Z , MARCY asks the user whether or not he wants to look at the
data in the specified peak datafile. The user responds "no" as shown.
Had he responded "yes" instead, the user would find himself looking at
table 4 (less the second column as mentioned previously).

MARCY's output in this case (i.e., for the target data shown in table 4
and the control parameter values shown in figure 7 above point Y ) is
shown in the remaining tables and figures: type 4 output is shown in
table 5, type 7 output is shown in table 6 and type 8 output (a
geographic graphical display) is shown in figure 8. As tables 5 and 6
show, MARCY produced six data clusters (each with 5 or 6 datapoints) in
the local data association/clustering process. These six clusters
divide into two sets of three clusters each. As figure 8 shows, each
of these sets of clusters is traceable to one of the two targets in the
hypothetical scenario of figure 6.
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ABSTRACT

This paper discusses a novel aposteriori approach to the multisensor

correlation of dissimilar sensors. In particular, the paper discusses the

properties of a measure of track to track correlatibility that incorporates

kinematical estimates, extracted features, platform identifications and,

most importantly, the sequence of events exhibited by the tracks. It is

shown that the measure of correlatibility is recursively calculable,

exhibits robustness, incorporates the 'comparison' property (defined

herein) and tends to one for the correct track pair.

I. BACKGROUND

The multisensor correlation function is depicted in the context of the

surveillance function in Figure 1. The architecture displayed is typical

of many military (especially Navy) surveillance systems. Multiple sensors

are coupled to the tactical environment to generate streams of data. Each

sensor system segments (clusters) the data stream into data substreams with

each substream associated to a specific component (e.g. engine, emitter,

hull) existing in the tactical environment. Each substream is further

processed to yield kinematical estimates (generally not fully 3
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dimensional) and identifiable features (attributes). Such a structure is

denoted an intermediate track and the set of intermediate tracks for a

sensor system form its intermediate track file.

The separate and, generally, dissimilar intermediate track files are

then fused to form a single platform based global track file. The fusion

process begins with multisensor correlation wherein it is determined which

intermediate tracks refer to the same platform. The fusion process

continues by combining the separate kinematical estimates to yield a more

complete kinematical estimate and combining all available clues to generate

a detailed platform identification.

As can be seen, the multisensor correlation function requires a

framework that can measure track-to-track correlatibility based upon:

1) Kinematical estimates, extracted features and platform

identification.

A more subtile requirement is that the multisensor correlation function be

capable of measuring correlatibility based upon:

2) The sequence of characteristics (kinematical states, features,

etc.) exhibited by the intermediate track.

The second requirement stems from the fact that in a noisy, hostile

environment the information necessary to make good correlation decisions

becomes available not at once but over time as the platforms exhibit their

distinctive characteristics. The problem addressed in this paper is to

exhibit a measure of correlatibility satisfying both of these requirements.

Many current multisensor correlation schemes do not adequately take

into account the second requirement. For example, the usual measure of

correlatibility that is derived from kinematical estimates is the

chi-square statistic or the chi-square statistic plus the log-variance

term. The problem with these measures of correlatibility are that they do

not have a correlation 'memory', i.e. they measure the extent of current
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kinematical agreement but do not reflect correlatibility based upon

historical kinematical agreement. Therefore, these measures of

correlatibility do not reflect all available information and must be

considered definitely suboptimal. The correlation probability exhibited in

this report is based directly upon a Bayesian framework and satisfies both

of the above requirements for a measure of correlability. In particular,

it accounts for all data and builds upon the sequence events exhibited by

the tracks.

Some symbology is indicated in Figure 1:

DA = the data stream generated by sensor A-when coupled to the

tactical environment. Same definition for DB and DC .

DAJ = the Jth data substream obtained after segmentationAJ
(cluttering, correlation) in the sensor system A.

P[SP,FI DAJ] = the Jth intermediate track in sensor system A described

as a conditional density over kinematical states and

features.

P[SP,ID DAJ, DBJ, DCL] = a global track described as a

conditional density over kinematical

states and platform identifications

conditioned upon the correlated data

substreams indicated.

II. MOTIVATION FOR THE APOSTERIORI APPROACH

To further motivate the particular correlation probability to be

chosen for detailed evaluation, consider Figure 2 wherein three general

correlation approaches are indicated. The setting for this discussion

consists of two intermediate track files with track J in one track file

correlatible to tracks K and L in the other intermediate track file. HJK

and HJL are the two'correlation hypotheses: J and K represent the same
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vehicle; J and L represent the same vehicle, respectively. The parameter

appearing in the data substreams indicates that the data substream is

current up till and including time, T n

The three approaches are

a) the strict aposteriori approach (top case)

b) the 'semi'-likelihood approach (middle case)

c) the strict likelihood approach (bottom case).

For each case a ratio is indicated that measures the relative strength of

the two correlation hypotheses. The ratio would be compared to appropriate

decision thresholds to yield correlation decisions.

It is well known that a decision rule based upon the strict likelihood

approach is equivalent to one based upon the strict aposteriori approach

for some set of apriori probabilities and some loss structure. Thus, at a

theoretical level, decision rules based upon the top, and bottom approaches

are equivalent. A significant problem occurs in a multisensor correlation

context with the bottom approach. It lacks the 'comparison' property. The

'comparison' property is defined as the property whereby the ratio is

meaningful no matter the quantity or units of the data items appearing in

the data substreams. In the strict likelihood approach, the ratio is

meaningful only if the number of data items in D (n) and D BL(n) are the
BK BL

same and that the respective data items have the same units. Otherwise,

the likelihoods (densities in the continuum case) are not comparable.

To circumvent this problem, algorithms have been developed in which

the comparison property is forced, for example, by discarding data items so

that the numbers of data items are the same (Reference 1). This clearly

compromises the approach at a very basic level. The strict gposteriori

approach, on the other hand, obtains the comparison property since the

probabilty that is calculated in not a probability or density of data items

but rather of correlation hypotheses.
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The middle approach in Figure 2, the 'semi'-likelihood approach,

measures correlatibility by conditioning upon the previous data streams (up

till Tn_ 1 ) and the correlation hypotheses, and calculates the probability

(density in the continuum case) of obtaining the new data items at T . The

'semi'-likelihood approach suffers by not incorporating a correlation

memory. Though the conditioning depends upon the previous data substreams,

the probability or density is evaluated by considering the new data only.

It does not build upon correlation probabilities calculated at earlier

stages. On the other hand, the strict aposteriori correlation probability

is based upon the full data streams and thus, at a theoretical level,

incorporates all data into the measure of correlatibility.

Any other approach, other than those indicated, that measures

correlatibility will lie along a continuum between the strict likelihood

and the 'semi-'likelihood approaches. That is, any other approach will

differ by more or less of the data substreams appearing in the conditioning

or to the left of the conditioning bar. In all these cases, the approach

will lack to a greater or lesser degree the comparison property or

correlation memory. Based upon these observations, it was felt that, at a

basic theoretical level, the strict aposteriori approach be followed.

III. PROPERTIES OF APOSTERIORI APPROACH

The aposteriori correlation probability between track J and K at time

T is now discussed in more detail. See Figure 3. It is written

recursively as a rational expression of the previous correlation

probability and the correlation likelihood ratio. The correlation

likelihood ratio measure the relative strength of obtaining the new data at

T assuming the tracks are the same vehicle versus obtaining the new data

assuming the tracks are not the same vehicle.

In Figure 4, the dependence of the correlation probability at Tn is

expressed as a function of the correlation probability at Tnl

parameterized by the correlation likelihood ratio. Note that the
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correlation probability increases if the correlation likelihood ratio

exceeds one and decreases if it is less than one. Note also that the

correlation probability is relatively insensitive to the correlation

likelihood ratio when the previous correlation probability is near one.

This property indicates that the correlation probability is fault tolerant

or robust when it is near one, that is, sensor processing errors that cause

the correlation likelihood ratio to be in error do not significantly effect

the correlation probability as long as the correlation probability was near

one.

The correlation probablity is now exhibited in more detail for a

simple case of two radar ADT systems observing the same straight line

vehicle. The ADT systems determine kinematical estimates using a 2

dimensional straight line Kalman filter. The new data items at T are the

(x, y) coordinates of the radar detections of the two ADT systems.

XJ(n) = (x, y) coordinates of detection (centroid) of track J at Tn
J-n

i(n) = (x, y) coordinates of detection (centroid) of track K at Tn.

The graph in Figure 6 characterizes the mean correlation probability

as a function of the radar scan number when track J and track K, in fact,

represent the same vehicle. Nominal radar accuracy measures were used. No

sensor misalignment is assumed.

The intervals about each point represent the possible values of the

correlation probability (with 90% condifence) if the correlation

probability on the previous scan equals the average correlation probability

of that scan.

The initial correlation probability is based upon the Gaussian density

function that is coverted to a probability by multiplying by'an area

increment.

Note that the average correlation probability rises to one and that

the variation in the correlation probability from scan to scan (the 90%

confidence intervals) decreases. If track J and track K did not represent
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the same vehicle, the correlation- probability would not, in general,

exhibit the same behavior. Also, it should be pointed out that the

correlation probability rises more steeply to one in the three dimensional

case and less steeply in the one dimensional case.

IV. SUMMARY

A summary of the properties observed so far concerning the aposteriori

correlation probability are indicated in Figure 7. The correlation

probability supports the multisensor correlation function since it is based

on a general aposteriori framework. Its most novel features are that it

explicitly measures the correlatibility of intermediate tracks based upon

the sequence of events exhibited by the tracks; it is recursively

calculable and tends to one for the correct pair of tracks; it becomes less

sensitive to new data as it approaches one (fault tolerance); it obtains

the 'comparison' property and, when considering the human operator, it is

easily and directly interpreted.

Further studies are in progress to assess the operational utility of

the correlation probability defined herein.
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THE CORRELATION PROBABILITY:

o SUPPORTS MULTISENSOR CORRELATION
OF DISSIMILAR SOURCES

* RECURSIVELY CALCULABLE

a PRESERVES MEMORY (TRACK HISTORY)

e TENDS TO 1 FOR CORRECT PAIR

* BUILT IN FAULT TOLERANCE

o 'COMPARISON' PROPERTY

* EASILY, DIRECTLY INTERRPRETED

FIGURE 7 SOME PROPERTIES SO FAR OBSERVED
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Nils R. Sandell, Jr.
Leslie C. Kramer

ALPHATECH, Inc.
3 New England Executive Park

Burlington, Mass. 01803

1. INTRODUCTION

In many practical situations, dynamic systems are subjected to abrupt
structural and parametric changes at random instants of time. A representative

sample of such switching environments include:

multi-object tracking problem in surveillance theory with realistic
features such as uncertain observations due to false alarms caused

by low signal to noise ratio or clutter; missing measurements due

to detection probability less than one caused by noise or noise-

like interference; non-uniform media; and changing target character-

istics due to maneuvers [1]-[21];

* system failures caused by sudden external disturbances such as occurs
in a power network subjected to transmission line trippings, genera-

tor shut-downs, malfunction of protective equipment, and the like

[22]-[26];

* modeling uncertainties produced, for example, by the linear, finite-
dimensional approximation of nonlinear, distributed and time-dependent

dynamics of a chemical process or a power plant [27]-[29].

In this paper, we provide a general mathematical framework for classifying

the existing state estimation and hypothesis testing problems C[1-[291 arising
in systems subjected to random structural and parametric disturbances. The

mathematical approach is based on an event-driven, linear stochastic system model

comprising a hybrid (i.e., continuous and discrete) state space. It is shown
that the problems of multi-target tracking in surveillance theory, Markov chain-

driven systems, estimation under uncertain observations, maneuvering target

tracking and system failure detection are special cases of this general formu-
lation.

It is generally well known that implementation of the optimal (in the sense

of minimum mean-sauare error) state estimate for these problems requires an
exponentially growing number of hypotheses and, hence, memory and computational

resources. Therefore, the main thrust of the previous research has been to
devise techniaues for reducing the number of hypotheses with little or no com-

promise on optimality. The general problem formulation of the present paper

provides a common intellectual framework for comparing numerous existing (and

proposed) hypothesis reduction techniques, and facilitates the development of

a general purpose package for state estimation in switching environments. The
computer algorithms permit a convenient comparison among various approaches in
common numerical terms.
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The paper is organized as follows. In Section 2, the estimation problem
is formulated in the framework of an event-driven linear stochastic system

model with hybrid state space. The optimal Bayesian estimate is derived in

Section 3. The techniques for reducing the exponentially growing number of

hypotheses are discussed in Section 4. Finally, the issues involved in the
choice of a programming language for the implementation of the estimation

algorithm are discussed in Section 5. It is concluded that the programming
language PASCAL affords a flexible, general purpose implementation of the

estimation algorithm.

2. PROBLEM FORMULATION

We consider a discrete-time, event driven system of Fig. 2-1 described by

the state and measurement equations:

x(k+l) = Ax(k) + w(k) + e(k) (2-1)

z(k) = Cx(k) + v(k) + f(k) (2-2)

where the matrices A and C, and the deterministic bias vectors e(k) and f(k)

are functions of a discrete-state stochastic process, q(k) s Q(k). The number
of levels (i.e., number of discrete states or hypotheses), nk in Q(k) can be

stage dependent. We call the set of hypotheses Q(k), the local set of hypoth-
eses at stage k. The noise sequences w(k) and v(k) are zero-mean, white-

Gaussian noise sequences with covariances W(k) and V(k) dependent on the
discrete-state process, q(k). Clearly, the complete state description of the

system at any stage k entails the mixed Markov process {x(k), q(k)}.

It is required to find the minimum variance estimate of x(k) given the
measurement set zk A [z(l), z(2), ..., z(k)]* i.e., the conditional mean:

x(kjk) = E{x(k) zk} = f x(k)p(x(k) tz )dx(k) (2-3a)
x(k)

and the conditional error covariance:

(kIk) = E{ x(k)-x(klk) [x(k)-x(k k)]' (2-3b)

The complexity of the event-driven system,and consequently of the estima-

tion problem, is determined by the dynamics of q(k), i.e., number of levels n

of q(k) s Q(k) and the nature of dependence of q(k) on the past measurement
history, zk-l and on the discrete-stochastic process history, qk-l = [q(l),
q(2), ..., q(k-l)]. A partial list of problem formulations subsumed by Eqs.

2-1 and 2-2 is provided in the balance of this section.

2.1 MARKOV CHAIN-DRIVEN SYSTEMS

The process q(k) takes cn values 1, 2, ..., N and is described by the

Chapman-Kolmogorov equation

r (k+l) = w (k)P (2-4)

The problem formulation may be generalized to include noisy observations on the

discrete-state stochastic process, q(k). In surveillance context, this general-
ization corresponds to data transfer from various field commanders to the data

fusion process.

117



where r_(k) = [71l (k), 72(k), ..., T(k)] is a row vector of discrete Markov

state probabilities with 7i(k) = Ptq(k)=i} and P = [Pij] is a matrix of

(possibly time varying) transition probabilities. That is, Pi = P{q(k+l) =
jjq(k) = i, qk 1, zk} = p{q(k+l) = jlq(k) = i}. The matrices i, C, and the
bias vectors e and f are known for every q(k) = 1, 2, ..., N. It may be noted

that when q(k) is absorbing Markov chain (i.e., P=I), the formulation reduces
to the well-known multiple model adaptive estimation (MMAE) algorithm, first
derived by Magill [27].

2.2 STATE ESTIMATION UNDER UNCERTAIN OBSERVATIONS

The problem of state estimation when there is a nonzero probability that
the state cannot be observed has been studied extensively in the literature

[1]-[6]. In this case, the stochastic process q(k) is a binary random variable
and affects only the observation Eq. 2-2. Thus,

C = q(k)C ; q(k) = 0, 1 (2-5)
and

V(k) = (l-q(k))V 0 (k)+q(k)Vj(k) (2-6)

The dynamics of q(k) are represented by a two-state Markov chain described by
an equation of the form (2-4), or as a binary independent random process. In

the latter case, we have

P(q(k)=lk-l,zk-l)= p(q(k)=l) = 6 ; p(q(k)=0) = 1-6 (2-7)

2.3 TRACKING IN A CLUTTERED ENVIRONMENT

The basic problem of tracking multiple targets is as follows: "given a
set of returns (i.e., measurements) on the targets in each scan (stage) k,

associate the measurements with the correct targets and determine an estimate

of each target's state." Various solutions have been proposed for this prob-
lem, and [7]-[20] represent the state-of-the-art in multitarget tracking.

In a multitarget tracking problem, the q(k) process affects only the

measurement subsystem. In order to specify the q(k) process for the tracking

problem, we first consider a single target with cluttered measurements. If

Mk is the number of measurements at stage k, and given that only one of them
could have originated from the target of interest, then q(k) assumes one of

the following nk = Mk+l values:

q(k) = 0 if none of the returns is correct (2-8)
i if the ith return is correct, i=1,2 ,...,Mk

The dynamics of q(k) may be represented in various ways. For example, Bar-
shalom and Tse [8] hypothesize a missed detection probability of a for the

target, and then assume that no inference can be made on which of the Mk
returns is correct from past data; so that

k-l k-l 1 k-1k-! !-cp(q(k)=Oq k,z ) = k; and p(q(k)=iql z-) _ - (2-9)
Mk

Clearly, other representations are possible. Note in particular that the pro-
blem of state estimation under uncertain observations is mathematically

equivalent to single target tracking in clutter with Mk=l. (Compare Eqs. 2-7

and 2-9). In a multitarget tracking problem with Mk returns, the process



q(k) E Q(k) represents a particular assignment of Mk returns among all the
possible targets. These are Nf false targets, Nn new targets, and Nd of the
previously hypothesized Nt targets (confirmed and tentative) such that
Nf + Nn + Nd = 4Mk. With the assumption that each target can be associated
with at most one measurement for each hypothesis (assignment) per scan, Q(k)

is the set of all possible assignments of Mk measurements among all the possible
targets. The number of possible assignments (i.e., levels) nk are:

min(Mk,Nt) Mk-Nd
Nk = Z __Z 0 ndn (2-10)

Nd=0 n

where

-N. N. (n = -( d) N -N (! N!NdNn) (2-11)

The above specifications of nk, where new targets can be initiated, corres-
ponds to Reid's algorithm [15]. He specifies the q(k) process as follows:

a particular assignment containing Nd of Nt

p(q(k)qk-l /Z ) = P previously hypothesized targets, Nf false targets

N new targets such that Nd+Nf+Nn=Mklq ,z )

an assignment containing Nd, Nf, and Nl all}

assignments containing Nd , N, Nf

P{NdNf,Nnll k-,zk- }

k-l k- {Nd qI k z } * P{N, k- zk- (2-12)

Reid assumes that all the assignments containing the same Nd, Nf, and Nn are
equiprobable, i.e., Pdn = 1/ndn. Also, the number of targets detected at
stage k, Nd is assumed to have a binomial distribution:

P{NdI k-i k- jNt d Nt-N d
PN = (2-13)d| = ) PD (1-P D

Nd

where PD is the probability of detection. Finally, both the number of new
targets and false targets are assumed to follow Poisson distributions given by:

Nn
P Y) · exp[-a Y]

k-1 k-1 (a * exp[ y] n (2-14)

n

Nf

k-l k-l (ScY) · exp[-f Y]k-l (fy) [f (2-15)
P{Nf 5 _ z N,!
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Thus, Eq. 2-12 simplifies to:

N N
k( Y) (Y) Nt-Nd

P{q(k) q :z PD (1 dPD t d exp{-(f+Sn )Y}

(2-16,
When no new targets are allowed, Eq. 2-10 simplifies to:

min(MkN't) Nt!

n= =O NtNd (2-17)

and corresponds to Bar-Shalom's [91 version of the multitarget tracking
problem. For example, when Mk = Nt = 3, we have nk = 86 and nk = 34. Thus,
the number of possible assignments at each stage k are, in theory, considerably
larger in Reid's version of the multitarget tracking problem [15] than in Bar-
Shalom's [9]. When clutter density is high, the difference (nk-nk ) could be
quite large (zMk 2Mk-l assuming Mk >> 2 and Nt = 1). This suggests that the
initiation of new target tracks via an operator-interactive process may be
preferable to an automated track initiation!

2.4 MANEUVERING TARGET TRACKING

The usual analysis of a tracking situation consists of describing the
target dynamics by the state-space equations of the form 2-1 and 2-2 and
designing a Kalman filter to provide the conditional mean estimate x(klk).
This type of analysis works well until the target suddenly changes course or
speed. One method of modeling a maneuver, suggested by Moose [21], is to let
the bias vector e(k) in Eq. 2-1 assume N distinct (known) values, eI, e2, ...,
eN. The transitions between any ei and ej are modeled by a Markov process.*

qc(k) = i<------e(k) = e.; i=1,2,...,N (2-18)

The dynamics of q(k) are described by Eq. 2-4.

2.5 SYSTEM FAILURE DETECTION

Recently failure detection and identification (FDI) has been the subject
of considerable interest [22]-[26]. An important subclass of FDI problems is
the detection and estimation of soft failures, viz., the bias errors and
changes in the noise levels. The failure events are modeled as additive dis-
turbances. The failure detection case can be modeled by

x(k+l) = Ax(k) + w(k) + q(k)e (2-19a)

z(k) = Cx(k) + v(k) + q(k)f (2-19b)

where q(k) = 1 for failure and a(k) = 0 otherwise. The bias vectors e and f
are, in general, unknown and have to be estimated online. However, we will
not address this question here, as there is a large literature on this subject
[24], [35].

It should be noted that Moose assumes a semi-Markov process for the transitions,
but actually uses a Markov process model in the final implementation.
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This concludes the list of special cases of our problem formulation. We
now turn to the derivation of optimal (Bayesian) state estimate.

3. OPTIMAL BAYESIAN ESTIMATE

The sequence of measurements zk = [z(l),z(2),...,z(k)] is a function of
the particular sequence of the random process qk = [q(l),q(2),...,(k)].
Therefore, if we define

Qk = Q(1) x Q(2) x ... x Q(k) = j } (3-1)

as the global set of hypotheses at stage k, the cardinality of Qk is

Qk1 k
N (k)= |Qk | = H n. (3-2)

i=l

The conditional mean, x(k k) is given by

x(kjk) = x(klk ,ik)P(q k zk) (3-3)
qksQk -

In Eq. 3-3, x(kjk;jk) is the conditional mean of x(k) given zk and a parti-
cular sequence of the stochastic process, jk and P(qklzk) in the posterior
probability of the sequence qk given zk. Clearly, x(krk) is the convex com-
bination of the conditional estimates x(klk;qk).

The conditional error covariance, Z(kjk) is given by

Z(kfk) = Zk '
¢k aQk 

qkF~~~~~~~~~~~~k~~~ ~(3-4)
where Z(klk;ak) is the a posteriori estimation error covariance matrix for a
given qk

There are two important features of Eq. 3-4 that are worth noting. First,
the conditional error covariance, I(kIk) is a function of measurement data,
due to the presence of terms P(qklzk), x(klk;qk) and x(klk). Second, Z(k k) is
not just a convex combination of the covariances of individual terms, E(k k;qk):
it includes additional terms of the (positive semidefinite) dyadic form
[x(klk; q)-x(klk)] [x(klk;2k)-x(klk)]'. This shows that the covariance in-
creases by the presence of terms whose estimates are significantly different
from x(klk), weighted by P(qklzk). The structure of the optimal Bayesian
estimation algorithm is shown in Fig. 3-1.

The conditional mean and covariance are evaluated as follows. Since the
density p(x(k) zk,qk ) is Gaussian, the density p(x(k+llzk;qk) is also Gaussian
The corresponding means x(klk;qk) and x(k+l k;)k) are given by a Kalman filter
of the form

x(k+llk;q k) = Ax(kIk;qk) + e(k) (3-5)

x(k+lfk+l;atk+l) = x(k+lj1;) + Kr(k+l;_k+l) (3-6)

where r(k+l;ak+l) is the innovation process:

r(k+l; +l z(k+l) -Cx(k+lk+lk;q ) - f(k+l) (3-7)r~k~l;~ ) = ~k~l_) - -

Here, K is the Kalman gain calculated from the following equations:
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Z(k+1Ik; k) AZ(kjk;j )A' + W(k) (3-8)

S(k+l;q ) = CZ(k+llk;q )C' + V(k+l) (3-9)

K = Z(k+llk;k )C'S- (k+l;ak+ l) (3-10)

Z(k+lik+l;q ) (I-)C)7(k+llk; ) (3-11)

It should be noted that A, e(k) and W(k) are functions of q(k), and C, f and
V(k+l) are functions of q(k+l) in Eqs. 3-5 through 3-11. Here, Z(k+l)lk;qk)
is the a priori estimation error covariance matrix for a given ak. The
innovation process r(k+l;jk+l) is zero mean, with covariance S(k+l;qk+l) and
is normally distributed.

The only remaining item in Eqs. 3-3 and 3-4 is the a posteriori probability
P(qklzk). Using Bayes' rule, this probability is given by

P(q kZ k) a -aK (z ki )p(P ) (3-12)

where ak = p(zk) is a normalizing constant, pCzk qk) is the likelihood function,
and P (q) is the a priori probability of the sequence qk. The likelihood
function p(zkfqk) may be evaluated recursively from

kzi k k-l k p((k) k-l k-l) (zk-lj qk-1) Ik1k-1
(3-13)

Since in most applications q(k) is independent of zk- l, the likelihood func-
tion simplifies to

k jk) k zk l k-1) k-l)
p(zk) = p(z(k)la Z ) p(zkl ) (3-14)

Using the normality of innovation process, the negative log-likelihood function
may be computed recursively from

- k q k-1l Jj+ ' (.; qk)S - (k; rk; k
X(q) = -ilg p (z |q) = A( ) 2 r r(k; )

+ dim(z(k))log (2r)+log S(k;)k ) (3-15)

with X(qi) = 0. Since r is Gaussian and white, X(qk) will have a chi-square
distribution with k=l dim z(i) degrees of freedom. The hypotheses for which
Xexceeds a certain threshold may be dropped [13], [16].

A more direct recursive formula for P(qkczk) can be derived as

P( Ik) p(z(k) qk k-l k-l k-l l 1 -1) (3-16)

where Ck = p(z(k)izk-l) is a normalizing constant. Again, the hypotheses for
which P(qak zk) is less than a certain threshold may be deleted [14], [15]. As
mentioned earlier, the complexity of the estimation algorithm is determined by

the quantity P(q(k)aki-l,z -l) in Eq. 3-16.

Equations 3-3 through 3-16 constitute the recursive relations for the
optimal Bayesian estimate. There are two important characteristics of this
estimate that are worth noting. First, the optimal (condition mean) estimate
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is a nonlinear function of the measurements due to the terms P(~ zk). Second,

the computation of x(kjk) requires an ever-growing number of filters with an

associated growing memory and computational requirement. Thus, at stage k, we

need Nc(k) (cardinality of Qk) elemental estimates, x(kjk;qk); NC(k) covariance

matrices, E(klk;qk); and Nc(k) posterior probabilities, P(ak1zk). This is

clearly impractical and hence, techniques must be devised to reduce the number

of hypotheses. These are discussed in the next section.

4. HYPOTHESIS REDUCTION TECHNIQUES

The basic idea of hypothesis reduction techniques is to transform the

global set of hypotheses Qk into a smaller global set Qk such that the memory

and computational requirements are minimized, while maintaining the "near"

optimality of the estimation algorithm. The various available techniques may

be categorized into the following five groups: (1) use of a simplified dynamic

model of the q(k) process; (2) hypothesis deletion; (3) hypothesis merging;

(4) decoupling of hypotheses (cluster formation); and (5) use of system con-

straints to advantage.

A practical estimation algorithm may employ one or more of the above

reduction techniques. Also, note that the hypothesis reduction techniques

have close analogy to the methods of aggregating Markov chains [30], [311.

This analogy is pursued elsewhere [32].

4.1 SIMPLIFIED MODELS OF THE q(k) PROCESS

When q(k) is described by an N state Markov chain with N absorbing states

(i.e., the transition probability matrix P=I), the global set of hypotheses

Qk is independent of k with a cardinality of N. The optimal Bayesian estimate

can be implemented by a bank of N Kalman filters, each corresponding to one of

the N absorbing states. The resulting estimation algorithm is the well-known

multiple model adaptive estimation (1MAE) algorithm [271]-[29].

A more realistic description of the q(k) process, however, is via a weakly

coupled Markov chain. In this case, the transition probability matrix, P=I+EB,

where s is small. That is, P is diagonally dominant. Note than in this case,

even for small _, the optimal Bayesian estimate x(k'k) is the weighted sum of Nk

elemental estimates x(kjk;qk) as in Fig. 3-1. However, intuition suggests that

as long as a/s >> max (TRi), where a = (tk-tk-1) is the time step and TRi is the

"response time" of the ith Kalman filter in the multiple model, then the MMAE

algorithm should be "nearly" optimal. That is, the posterior probability of

hypotheses with nonidentical elements is negligible and the number of hypotheses

that are almost identical, and that have nearly identical estimates and co-

variances is large. The former set of hypotheses can be deleted, while the

latter can be merged (as shown in the following) so as to reduce the computa-

tional load of the estimation algorithm. Thus, the weakly coupled Markov chain

formulation provides an analytic framework to study hypothesis reduction tech-

niques and is a subject for future research.

4.2 HYPOTHESIS DELETION

The basic idea of hypothesis deletion is to simply prune unlikely hypothe-

ses in view of the measurements or via a heuristic technique. A straight-

forward heuristic pruning procedure is to simply limit the number of hypotheses

to be included in the estimation algorithm. This is the approach employed
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by Singer, et al. [7] in developing an N-scan (stage) filtering algorithm for
a single target tracking. At each stage k,kthis algorithm keeps hypotheses
corresponding to the last N scans, viz., i=--N+l ni hypotheses, where ni =
Mi + ., and Mi is the number of returns at stage i. A remarkable conclusion of
their simulation was that with only N=l, near optimal performance was achieved.
However, this conclusion is not, in general, valid in the multi-target tracking
problem. For example, Keverian and Sandell [16] found that it was essential to
have N>l in tracking targets with crossing tracks.

Pruning on the basis of measurements may be accomplished using the likeli-
hood function p(zklak) (or equivalently, the negative log-likelihood function
X(jk)),or the a posteriori probability p(ck zk). The former approach was
employed by Smith and Beuchler [131, Fraser and Meier [20], Sittler [111] and
Keverian and Sandell [16]. The method of Keverian and Sandell [161 computes
the likelihood function after each branching and keeps only the M most likely
hypotheses at each stage. This prevents hypotheses with probability less than
the current minimum of the M hypotheses from being extended. The choice of
the parameter M is critical and determines the complexity versus optimality
tradeoff of the estimation algorithm. The pruning technique based on posterior
probabilities was employed by Reid [15]. He eliminates all hypotheses with a
probability less than a threshold, a. Morefield [143 uses an optimization-
based integer programming formulation to delete unlikely hypotheses; this is
a batch processing approach. An illustration of a typical pruning technique
is shown in Fig. 4-1.

If Qk is the set of hypotheses remaining at stage k, then the correspond-
ing prior and posterior probabilities must be normalized to have sum equal
to 1. Thus,

() = P( [ k ( ) (4-1)
q sQ

and a similar expression for the posterior probabilities. k forms the basis
for enumerating the subseauent set of hypotheses Qk+l = Qk x Q(k+l) at stage
k+l.

4.3 HYPOTHESIS MERGING

Hypothesis merging is the process of combining hypotheses in a "suitable"
manner. The hypothesis merging techniques may be categorized into single-
stage (also known as zero-scan or nonback-scan) and multistage (or multiple
scan) algorithms. The multistage algorithms can be subdivided into fixed-
scan (or fixed-depth) algorithms [115] and variable-scan (or variable-depth)
algorithms [16]. A single-stage algorithm allows only one hypothesis to remain
after each stage. Prime examples of the single-stage algorithms are the prob-
abilistic data association filter (PDAF) of Bar-Shalom and Tse [8], the approxi-
mate Bayesian estimation algorithm of Sawaragi, et al. [2], and the algorithm
of Athans, Whiting and Gruber [3]. The algorithlms of Reid [15] and Keverian and
Sandell [16] are representative of multistage algorithms. We briefly summarize
these two types of hypothesis merging below.

4.3.1 Single-Stage Algorithms

The single-stage algorithms of [2], [31, and [8] make the fundamental
assumption that the conditional density p(x(k)lzk-l) is Gaussian with mean
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In the prababilistic data association filter (?DA-), ,(k) takes on values
0,1,2,... ,Mk as in Eq. 2-8. Thereforef, the posterior probability Eq. 3-16
simplifies to

P(q(k)=i ) = Ski = bk p(z(k)lz ,q(k)=i)P(q(k)=iJ z ) (4-2)

where bk = P(z(k) zk-l) is a normalization constant. Usina the model of
P(q(k)=iz-k!l) in Eq. 2-9, and the assumption thlat P(x(k) Izk-l) is Gaussian,

Skis are easily computed.

Since the q(k) process affects only the measurement subsystem and since
p(x(k) zk- 1) is assumed to be Gaussian, a single Kalman-like algorithm (with
a data dependent covariance matrix satisfying a Riccati equation) is adequate
to implement the PDAF algorithm. The derivation is straightforward and may be
found in Refs. [8], [32]. The structure of hypothesis merging is displayed
in Fig. 4-2. The algorithms of (2], [3] have precisely the same form as in Fig.
4-2, but somewhat simpler due to inherently simpler assumptions on their
structure.

4.3.2 Multistage Alaorithms

The basic idea of a multistage algorithm is to combine only those hypotheses
that have "similar" state estimates and covariances. Two hypotheses qk and
k"of the same length are said to be similar, if their corresponding state

estimates x(ktk;,k'), x(kjk; ak) and their covariances Z(k1k;ck'), Z(kik;k )
satisfy the following criteria:

lx i(kik;k )-i (k ik;a) < Zii(kjk; ) + ,(kk; 

and (4-3a)*

|Z ,(ktk;q )-r (k k;q )d

t kr < ': (4-3b)
Zii(kk;q )

This situation may occur, for example, when two hypotheses are nearly identical
except for a few stages back and there is a limit on the total number of stages
to be considered in the algorithm. When these earlier stages are dropped, Eq.
4-3 is satisfied. Then, qk and ck" may be combined into qk such that the
hypothesis ak has the following properties:

k k' k"
q = q or a (4-4)

k( ) = P(q' ) + ?(a ) (5)

Note that this assumes independence cf and qk", which is generally not vai id.
Recently, Bar-Shalom [36] -as provided a formulation that relaxes this asis=1rnton
at the cost of solving an additional matrix Iinear equation for each pair of -seuences.
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kj k = P/k' k kl · k
P(a zk) = p(k Zk) + p(ak *z) (4-6)

1z )T
_(k ka ) = --- (c zk) (4-7a)

[(klk;qk) )p(kk; ak)kZ (k k;Q )
Pt Pk 1 zk Pa kl zk k " k"

(4-7b) *

P (qk zk )

+ j k fc' k' kit, . klP((kjlka)-x(klkk) } x(kk;q )-x(klk;crk )}j
P(a _z) .

Equations 4-7a and 4-7b assume that the sum of two nearly identical Gaussian
densities is Gaussian and that the mean and covariance of the resulting dis-
tribution should be the same as the mean and covariance of the sum. Thus,
hypothesis merging eliminates the redundant enumeration of the hypothesis
tree as shown in Fig. 4-3.

4.4 DECOUPLING OF HYPOTHESES (CLUSTER FORMATION)

The basic idea of this technique is to decompose the set Q(k) of nk levels
at stage k into Zk independent sets Ql(k), Q2 (k), ..., QZk(k) with smaller
number of levels nlk, n2 k, ..., nZkk, respecitvely. There are at least two
ways to decompose Q(k) into Qi(k), viz., additive and product forms.Zk In
additive form, the levels nik, n2k, ... nZkk are such that nk = i1 nik and
is appropriate when q(k) process is represented by Zk decoupled Markov chains.
The multiple model adaptive estimation algorithm falls into this category with
Zk=N, the number of states in the Markov chain and nik=l for i=1,2,...,N. In
product form, however, a level in Q(k) represents a particular way of combining
the various levels of Qi(k), Q2 (k), ... , QZk(k), taking one level from each.
The product form is appropriate in a multitarget tracking problem, where the
entire set of targets and measurements can be divided into independent clusters
via gating (validation region) criterion [83,[9] , [15], and [16] based on resi-
duals or the actual observations.

In order to illustrate the effect of the decomposition on computational
requirements, assume for the present, that .k=Z, nk=n, and nik=ni, i=1,2,... ,:
at each stage k. The decomposition of Q(k) into 2 independent sets Ql(k),
Q2(k), ..., Q%(k) implies that the set of hypotheses Qk of cardinality Nc(k)=
nk can be decomposed into Z independent sets of hypotheses Q, i=i,2, ...,
each with smaller cardinality Nci(k)=n4- Thus, the total set of hypotheses is
reduced to Qk with cardinality N(k) given by

N (k) = E N (k) (Additive Decomposition)
i=l

(4-8)

N (k) = H N i(k) (Product Decomposition)
i=l

In actual implementation, the order of computation should be 7,x, p(q Iz3)
or P(s ) for maximum efficiency.
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Typically, Nc(k)<<Nc (k). Thus, instead of solving one large problem with n
levels at each stage k, we can solve simpler problems, each with ni levels,
independently. Since the computational requirements grow exponentially with
the number of levels, this decomposition can result in tremendous savings in
computer storage and computation time. In addition, the probabilities of
hypotheses qk C Qk are related to those in aqk as follows.

In the case of additive decomposition,

P( k) = P(i -z 
) if q ; Qi ; i=1,2,"', (4-9)

For the product decomposition, we have

p(q zk) = r P(-Z k ) ;q (4-10)

i=1

The general case, where Zk and nik are stage dependent, is a straight-
forward extension of the above ideas. In this case, we have nonstationary
coupling among the sets of hypotheses. Suppose; at stage k-l, we have mkl
global, independent sets of hypotheses Qk-1, Qk- 1, ..., Qk-l The local set
at stage k, Q(k) is decomposed into Zk independent sets Q1 (k), Q2 (k), ....

QZk(k). Then, the global independent sets at stage k, viz., Q1' Q2' ...
for the case of product decomposition are formed as follows: (1) If none

of the Qi(k), i=l,2,...,Zk is associated with a Qk-l. Then Q The
association is determined via a gating criterion mentioned earlier; (2) If
any Qi(k) is associated with (or coupled to) only one Q-1, then Qlk _ Q k-! X

Qi(k) where X indicates a cartesian product (this also includes the case when
several Qi(k) are assocaited with the same Q-l1 ); (3) If a Q; (k) is associated
with more than one global set Qk-1, then the global sets Q k' are combined into

super global set, Qk-. If the sets Qk-l associated with ai(k) are denoted by
a set Ai, then Qgk-l isi the cartesian p2oduct:

Qk =T k-l (4-11)

The number of hypotheses in Qk-1 is the product of the hypotheses in Q-1,
k- s Qs-1 is given byAi . The posterior probabilities of kl i given by

p(kll kl) = IT p( killk-l) (4-12)

j sA

and (4) If none of the Q-, j-,2,...mk_ is coupled to a Qi(k), then a new
set of hypotheses Q = Qi (k) is formed. Thus, the number of global independent
sets of hypotheses mk at stage k is given by

nk = mkl 1 Zk (no. of elements in A.-l) + new sets of hypotheses (4-13)
mk = mk-1 i=l 

Figure 4-4 illustrates the process of forming supersets and creating new sets
for Zk=3 and mkl=4. The case of additive decomposition is straightforward.

4.5 USE OF SYSTEM CONSTRAINTS TO ADVANTAGE

Almost all the algorithms in multitarget tracking use the assumption that
a target can give rise to atmost one measurement at each stage. This gives
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rise to a tremendous reduction in the number of hypotheses. For example, in
the problem of tracking a single target in clutter with Mk returns, the number
of hypotheses are reduced from 2M k to (Mk+l) by this assumption.

5. PROGRAMMING LANGUAGE SELECTION AND THE ESTIMATION ALGORITHM

The computer implementation of the state estimation and hypothesis reduction
algorithm requires the construction and evaluation of hypothesis trees, as well
as the propagation of state estimates and their covariances. Thus, the implemen-
tation requires recursion (i.e., tree structure manipulation) and iteration (i.e.,
numerical computations). The FORTRAN language, despite its controversy [331, is
well suited to iterative computations, but is "clumsy" at manipulating recursive
tree structures. The artificial intelligence language, LISP, on the other hand,
is a natural and powerful medium to construct and evaluate hypothesis trees.
However, it is extremely slow and awkward at scientific computations (e.g.,
matrix multiplication). A happy compromise appears to be the language PASCAL
(similar to ALGOL 68) that has flexible recursive and iterative features. Table
5-1 provides a (subjective) comparison of FORTRAN, LISP, and PASCAL on the basis
of several practical issues.

The programming language PASCAL offers several advantages [34]:
(1) It enables one to develop flexible programs using a small number of basic
constructions (e.g., IF-THEN-ELSE, FOR, PROCEDURES, etc.); (2) One can construct
both algorithms and data structures hierarchically. PASCAL provides more general
data dypes, and extensive data structures (e.g., TYPE, SET, RECORD, etc.) that
clarifies computations on data; (3) PASCAL programs are relatively easy to debug,
compile, and verify. They run efficiently on most computers; (4) Well-written
PASCAL programs are easy to read and write; (5) Recursive structure of PASCAL
permits structured programming in an efficient manner; and (6) In most instal-
lations, FORTRAN libraries can be accessed via PASCAL.

The major drawback of PASCAL is that it exists primarily in an academic
atmosphere and is not tried by the real world. However, this should not be a
deterrant in writing programs in PASCAL, since the (so-called) potential lan-
guages of the future (e.g., ADA) borrow concepts from PASCAL. Undoubtedly,
programming in PASCAL affords a general and flexible implementation of the
estimation algorithm.

A flow diagram of the estimation algorithm is shown in Fig. 5-1. It
consists of six major modules with the following functions:

* MAIN PROGRAM selects the option specified by the user and acts as a
major logic control for the hypothesis testing module.

·* MEASUREMENT MODULE reads the observation data from a tape.
* APRIORI INFORMATION MODULE initializes the clusters using previous

knowledge of the system characteristics and includes specific infor-
mation about various options in order to reduce the computational
effort involved in the hypothesis testing module.

* HYPOTHESIS TESTING MODULE forms new data-association hypotheses for
the set of measurements in each scan using system related constraints
(e.g., almost one measurement per target), updates clusters, and
reduces hypotheses by merging similar hypotheses and eliminating
unlikely ones. This module is the heart of the computer package.

* ESTIMATION MODULE implements prediction-correction equations of the
Kalman filter and bias estimation algorithms useful in failure
detection problems.

* OUTPUT MODULE prints and plots various results as required.
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6. SUMMARY AND CONCLUSIONS

In this paper, we have shown that a broad class of practical estimation

problems arising in surveillance theory and in switching systems can be en-

compassed within a unifying conceptual framework. The analytic formulation was

based on an event-driven linear stochastic model with a large, hybrid (discrete

and continuous) state space. The general formulation of the present paper

permitted the understanding of diverse "special case" algorithms in the liter-

ature on common intellectual grounds. This generality also allows the develop-

ment of a general purpose computer package for convenient comparison of various

existing and proposed algorithms for these problems in common numerical terms.

NATURE

DISCRETE-STATE
STOCHASTIC PROCESS

q(k) e Q(k)

LINEAR
STOCHASTIC SYSTEM

x(k+l )Ax(k)+w_(k)+e(k)

z (k)=Cx(k)+v(k)+f (k)

z (k)

Figure 2-1. Event-Driven Stochastic System.

BANK OF
q(k) LINEAR z(k) KALMAN FILTERS _{x(kjk:q ),Z(kjk;q

k PR S (k1k),.(kWk)
STOCHASTIC ADAPTED TO , WEGHTING

SYSTEM EAC QEACH a CQ

POSTERIOR k k |
PROBABII TY P(q 1z )}
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Figure 3-1. Optimal Bayesian Estimation Algorithm.
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TABLE 5-1. AN APPRAISAL OF FORTRAN, LISP,
AND PASCAL PROGRAMMING LANGUAGES

uFeatge FORTRAN LISP PASCALFeature

1. Program development (write, Fair to Poor Fair Very Good
debug, maintain, etc.)

2. Readability Fair to Poor Fair to Poor Good

3. Readily available compiler Very Good Poor Fair

4. Numerical computation Good Poor Good

5. Recursion Poor Good Good

6. Data structures Poor Fair Good

7. Use of packages Very Good Poor Fair

8. Portability Very Good Poor Fair

9. Ease of learning Very Good Fair Good

10. Efficiency Good _ Poor Good

MAI N PROGRAM

OPTIONS:

· MULTIPLE MODEL
· FAILURE DETECTION
* MARKOV CHAIN DRIVEN SYSTEM
* MANEUVERING TARGET TRACKING
* MULTITARGET TRACKING

M E A S U R E M E N T M 0 0 U L E

HYPOTHESIS TESTING MODULE I
A PRIORI INFO. MODULE ESTIMATION MODULE

* HYPOTHESIS GENERATION
* INITIALIZATION * CLUSTER FORMATION
* PROBLEM SPECIFIC * HYPOTHESIS DELETION * KALMAN FILTER

INFO.· HYPOTHESIS MERGING 
* SYSTEM-RELATED CONSTRAINTS

OUTPUT MODULE

* PRINT
* PLOT

Figure 5-1. Flow Diagram of the Estimation Algoritlnm.
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ABSTRACT

Surveillance systems provide a setting for many nonclassical optimal

estimation problems. These include detection and target tracking (with

maneuvers, clutter, and/or several targets and sensors) as well as problems

which deal with the higher level issues of a C systems. The latter include

mixed detection and communication problems (motivated by geographically

distributed sensors) and sensor scheduuling/resource allocation problems.
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I. Introduction

Research in command and control systems finds a number of important

illustrative examples in the area of surveillance. The problem of detecting,

locating, and identifying a large number of moving, maneuvering objects,

using many dispersed sensors, is extremely rich. This paper describes

the work accomplished in the past years at MIT on a subset of these

problems, as well as an indication of the direction of our future work.

A. The Problem

The rich structure of surveillance problems defies pidgeonholing

them into established disciplines, yet three broad classes of problem

can be considered. The first, estimation,. deals with the processing of

data obtained through sensors, and reducing it to information relevant

to the objects in the surveillance volume. The second class, communication,

deals with the transfer of information between sensors and processors in

the face of restrictions on communication facilities (either in terms of

bandwidth or delay). The third class, control, includes both scheduling

sensors (those that must be pointed in a specified direction, or other-

wise commanded) and allocating weapons to targets (i.e., fire control).

This paper will discuss these three classes independently, yet their

interrelationship should not be overlooked.

The unifying framework behind all surveillance research is provided

by the structure of the problem. While surveillance is essentially a problem

of real time data reduction, it has certain characteristics which greatly

influence the research directions to be taken. Principle factors are:

1. Multiple targets of different types

2. Multiple sensors of different types

3. Limited communication, with constraints on

connectivity, bandwidth, and delay, and

4. Low signal-to-noise ratios.

Not all surveillance problems are characterized by all four attri-

butes, but we feel that the nature of the tactical naval engagement, in
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an era of sophisticated electronic warfare, necessitates consideration

of all of them.

Our view is that every surveillance problem in practice is different,

yet all share these common attributes. Thus we approach surveillance as

a generic problem, addressing the fundamental technical problems inde-

pendently of any specific sensor system.

The role of surveillance in the overall C3 process is also important

to us. Surveillance problems are "mini-C3 " problems - they reflect most

of the issues of the overall C3 problem but have a much more available

analytical structure. Thus one part of our research strategy is to use

surveillance as the starting point for work which addresses successively

larger parts of the general command and control problem. Specifically,

the first steps in this succession are to include communication, data

bases, and weapon allocation into the surveillance research.

The goals of our work, then, are twofold: first, design of specific

algorithms for surveillance problems (e.g., multiobject tracking in

clutter), and second, understanding of the architectural issues. Such

issues include a) the flow of information in a surveillance net, b)

management of surveillance assets, c) the organization of a surveillance

system, and d) evaluation of a systems performance using quantitative

measures.

B. The Model

The unifying model of the objects and environment around a sur-

veillance system has two parts. The targets are modelled as independent,

hybrid stochastic systems. The sensors are hybrid observations processes

which introduce errors and noise.

Target models are driven by a Markov chain representing the "mode

of operation" of each target. Modes include the birth or death of a

target as it enters or leaves the region of interest, maneuvers, long-term

fading and reappearance of its signal, identification, etc. Each

discrete state i indexes a linear, Gaussian, time-varying dynamical model

x(t+l) = Ai(t)x(t) + Bi. (t)wi(t) w. (t) N(O, Qi(t)) (1)
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with states representing positions, velocities, etc. (The LG assumption

never holds in practice; it provides a framework which can be used as a

basis for approximations such as the extended Kalman filter.)

The sensors are modelled as binary channels coupled with a linear

process.- With certain probabilities of detection, which for a first

approximation depend only on the discrete part of the target state,

an output is produced

y(t) = Cx(t) + v(t) v ' N(O,R(t)) (2)

for each target. Other outputs arise as a result of a clutter process;

the number of clutter points is given by a Bernoulli process and each

point takes values given by a Gaussian distribution on the measurement

space. The "observation" of each sensor is thus a set of points at each

time.

C. Issues

As mentioned above, the issues addressed in our work, using this

model or variants thereof, fall into three broad categories. The major

topics of research, and the people associated with them, are:

1. Estimation:

Targat tracking (Castanon, Levy)

Data association (Hughes, Liao)

Hybrid estimation (Roth, Bruneau)

2. Communication:

Distributed detection (Ekchian, Ozbek)

Track management (Salman)

Organization (Ekchian)

3. Control:

Search and scheduling (Ekchian)

Weapons allocation (Ekchian)
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II. Estimation

The work most closely associated with classical estimation theory

falls into three subclasses. The first deals with the general problem

of decentralized estimation of the state of a linear system. The second

is data association - assigning elements of a sensor's observation set

to targets of interest. The third addresses the estimation process

for hybrid systems in general, seeking the most likely discrete state

trajectory and the continuous state estimate conditioned thereon.

A. Linear Systems

The work on decentralized estimation for linear systems was moti-

vated by a situation where several sensors each acquired observations

of a linear process. Each could produce a local estimate based on

these observations; the interesting question centers on the role of a

fusion center which received (prefiltered) data from each sensor and

seeks to reconstruct the best global estimate. The reconstruction can

be done perfectly unless other restrictions are made (such as linear

prefiltering, sampled data communications, reduced order local estimates,

etc.), and suboptimal schemes have been found for numerous cases.

B. Data association

Much attention has been devoted to the problem of multiobject

tracking, but usually in a high signal-to-noise ratio or single sensor

setting. A natural extension to this involves distributing the tracking

computation through a network of sensors. This begins to introduce

communication issues (or the single sensor algorithms would apply), and

opens the door to broader C3 problems.

An algorithm has been devised and implemented to perform data

association in a realistic setting (many missed detections, false alarms,

non-Gaussian noise, highly nonlinear observations). The basic structure

is one of growing trees of hypotheses with heuristic pruning for

computational feasibility. The algorithm has been evaluated in extensive

Monte Carlo simulations.
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Two startling conclusions resulted from this work beyond the feasi-

bility demonstration. They concerned the sensitivity of the algorithm's

performance to parameters describing the environment: false alarm rates,

detection probabilities, etc. Contrary to prior speculation, this

sensitivity was quite low in the range of reasonable values. However,

the data association is quite sensitive to the covariance matrix used

to describe the noise driving the target dynamics. These results are

consistent with the interpretation that the data association is dominated

by target kinematics and not by prior probabilities.

C. Hybrid estimation.

The problem of estimating the state of a hybrid process such as

our target model combines discrete state and linear-Gaussian estimation.

Each of these subproblems can be solved quite elegantly by itself: the

former by the Viterbi algorithm and the latter by a Kalman filter. The

marriage of these two algorithms is our goal.

The Viterbi algorithm is essentially a tree growing/pruning

algorithm, but the breadth of the tree is limited to the size of the

discrete state space. It seeks the most likely trajectory through

these states. By appending the linear dynamics to the discrete states,

bounding argument supply optimal pruning rules which eliminate candidate

trajectories as they can never be most likely (i.e., no matter what

observations appear in the future, a more likely candidate exists).

Results in this direction are preliminary, but those obtained so

far require only statistics that can be generated by a Kalman filter.
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III. Communication

Communication enters the surveillance picture when data is obtained

through several sensors among which only finite communication channels

exist. Traditional approaches to communications issues address such

problems as coding, routing, and flow control as though the communications

assets are a utility, available to users on an equal basis. We prefer the

view that the communications resources are embedded in a specific (sur-

veillance) problem: that their function is to support a decision process

with specific goals, rather than maximize the number of bits or packets

passed through a link.

The integration of the target tracking and communication functions

can take place at two levels: the conceptual and the analytic. The former

focusses on the question: what should be communicated in order to support

a distributed surveillance algorithm?, while the latter investigates

specific, well posed problems to derive optimal communications policies,

with the objective of generalizing from the simple results to more general

conclusions.

A. Multisensor management.

The conceptual approach matches well with the distributed multi-

object tracking algorithm mentioned above. There is a clear relationship

between a target's motion through a field of sensors, and the shifting

center of the processing required to track it. This immediately suggests

a target-oriented approach to data association; the hypotheses concerning

a target and the measurements assigned to it constitute a data base in

each sensor or node. In the absence of communication, such data bases

are disjoint; communication introduces the possibility of information

exchange such as target handoff from sensor to sensor. While providing

the greater continuity of coverage required of a surveillance network,

this introduces the added complexity of overlapping data bases and the

control required to manage them. Viewing each data base as a set of

hypotheses which are suggested, confirmed, or denied by interactions

between nodes, gives a glimmer of an approach to dealing with the command

and control aspects of surveillance. However, the problem is only at
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the formulation stage now.

B. Detection

The analytic approach to introducing communication into estimation

problems has evolved from some early work done on distributed detection.

The underlying problem formulation has:

1. A number of discrete hypotheses which can occur with known
prior statistics;

2. A number of sensors receiving noisy observations of those
hypotheses,

3. Some restricted (e.g., binary) communication variables from
sensor to sensor, and

4. An objective function penalizing various (output) decisions
for each hypothesis.

For a number of problems, optimal decision rules have been obtained.

Usually these are of a structure similar to centralized detection rules,

e.g., likelihood ratio tests. These structures can be parameterized by

a finite number of parameters, and the parameters found by standard opti-

mization techniques.

From a theoretical point of view, these results are interesting as

these problems exhibit a highly nonclassical information structure. Re-

duction from a functional optimization (for decision rules) to a parametric

optimization (for thresholds) yields a great simplication in these often

intractable problems.

More importantly, light is being shed on some organizational aspects

of surveillance system. For instance, given two sensors of different

quality which can be connected by a unidirectional, limited communication

channel, which should be upstream of the other? Examples show that the

two possible arrangements can yield different levels of performance when

optimal decision rules are employed. Is one always better? There is a

strong conjecture that the upstream (transmitting) sensor should be the

one of lower quality; the receiver should have the best observational data.

If this is indeed true, it opens the door to other statements which can be

made concerning organization and interconnection of surveillance assets.
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IV. Control

The interface of traditional surveillance functions, such as de-

tection, localization, and identification, to the other functions of a

command and control system, such as resource allocation and fire control,

is only starting to be probed. We have identified two problems which are

related to the preceeding discussions and also allow an optimal solution

to be found.

A. Search

Many sensors must be directed in their operation, either to physically

or electronically point in a specific direction, or to selectively process

the received signal (e.g., selecting frequency bands, beam forming, etc.)

The control of these sensors must be compatible with the subsequent

information flow in order to achieve the goals of the system as well as

possible.

Our search and scheduling research centers on the following generic

problem. A number of bins exist; an object may or may not be present in

each. Each of several sensors may examine one bin at a time; the sensors

have detection and false alarm probabilities which vary from bin to bin

and sensor to sensor. The problem is to determine which bin should be

examined by each sensor at each point in time. Naturally this depends on

the objective function which defines optimality; a particularly convenient

one, from an analytical point of view, penalizes the a posteriori distri-

bution for each bin at each sensor with functionals of the form

P O l (3)
P0 P1

where (p0,P 1) are the no target/target probabilities and O<c<l. Optimal

selection strategies have been found for this problem.

B. Research allocation.

As a start on integrating the weapons aspects of C3 into surveillance,

we considered a simple SAM problem. A number of sites are equipped with

radar, missiles, and communications, each of limited range. Enemy aircraft

appear in any pattern on one side of the fortified area; their objective
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is to cross to the other side. For surprisingly restricted capabilities

of the local sites, we found an allocation strategy which guaranteed the

maximum number of kills with only three bits of communication per target,

sent, at worst, to a single site two hops distant! We are seeking to

generalize this result to other, more general problems.
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V. Conclusion

Surveillance is a part of C3 . To the extent that they determine the

objectives of a surveillance system, the other functions of C3 are part of

surveillance. Surveillance produces a variety of well posed, tractible

analysis problems which allow constructive and significant extensions

to current theory. A small number of these problems have been solved;

most are yet to be examined. Because of their generic nature and wealth

of structure, we will continue to address surveillance problems actively

and with clear intent to extend to as much of the overall C3 problem as

possible.
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A DIFFERENTIAL GAME APPROACH TO DETERMINE PASSIVE TRACKING MANEUVERS

ABSTRACT

This paper describes our efforts to formulate the submarine passive
tracking problem as a two-person, zero-sum differential game. By choosing
an appropriate performance criterion which reflects the objectives of both
participants, namely the pursuer (ownship or tracking vehicle) and the
evader (target), we wish to determine the optimal tracking maneuvers. The
selected performance criterion, which is of the Bolza type, consists of
two terms: (1) an integral term which represents the total acoustic infor-
mation available to the tracking vehicle and (2) a quadratic in the relative
distance at the terminal time. Both terms are dependent upon the speed of
each participant which become the controls in this particular formulation
of the problem. Hence we convert the submarine passive tracking situation
into a two-person, zero-sum differential game where the state vector is the
components of the relative horizontal position between the two vehicles.
For this game, the pursuer wishes to maximize the performance criterion,
while the evader wishes to minimize it. In a differential game one seeks
the saddle-point solution. However in this problem, due to the nature
of the performance criterion, one cannot be found. Since we are only
interested in finding the optimal tracking maneuvers, we have chosen to
find the max-min solution. The result is that the pursuer selects his
speed to maximize the optimal return to the evader. We show the necessary
conditions that determine the max-min solution. Finally we illustrate
this technique with a numerical example and also include a discussion of
the numerical results.

1. Background

The concept of differential game theory was first introduced by Isaacs
[1] in 1965. Since that time many papers have been published which address
this topic. However there has been a paucity of papers which deal with the
surveillance-evasion problem as a differential game. Several authors have
cast the tracking problem into a differential game format by using Isaacs
homicidal chauffeur game as a model for the dynamics. In the first paper,
Dobbie [2] cast the surveillance-evasion problem into a differential game
format, assuming perfect information for the pursuer and evader. The rules
of the game are simple: the pursuer wishes to keep the relative position of
the evader within his detection region, while the evader wants to escape
from the detection region. The game terminates when the evader's position
is outside the pursuer's detection region. The basic assumptions associated

150



with this model are that the pursuer has a speed advantage over the evader,
but is restricted in his maneuvering. He solves the problem for circular
as well as arbitrary detection regions. The same tracking problem was
extended by Lewin and Breakwell [3] to the game where the objective of the
evader is to strive to escape (provided that he can) in minimum time from
the pursuer's detection circle, while the pursuer wishes to maximize this
time. In this paper the authors discuss various results that they have
obtained purely by graphical construction. However, since they failed to
provide any specific conclusions, it is hard for one to evaluate the
utility of their very interesting results.

2. Introduction

In a previous paper (4), we have considered the problem of determining
optimal vehicle speeds for passive tracking maneuvers. The problem was
treated from the point-of-view of a pursuit-evasion differential game in
which the tracking vehicle played the role of the pursuer, while the
target, in an attempt to escape, played the role of evader. In our
formulation of the problem, the game is characterized by those items
listed in Viewgraph 1. A special feature of the approach is that the
integral term in the performance criterion embodies the acoustic effects
which uniquely characterize the information. Furthermore, no saddle-point
solution exists, so instead we seek the max-min solution.

A typical submarine tracking scenario for passive target tracking is
illustrated in Viewgraph 2. The true relative position is denoted by the
vector (zl, z2). However, in our problem we assume that the pursuer knows
only the nominal (approximate) relative position (xl, x2).

3. Mathematical Formulation

Consider the encounter of two submarines. Each has detected and
classified the other. The evader is assumed to have perfect information
while the pursuer or tracking vehicle knows only the approximate state
vector (x1, x2).

The dynamic equations which describe the behavior of the state
vector are presented in Viewgraph 3. Included is a list of the
controls for ownship (pursuer) and the target. We assume that ownship
selects 80, 81, t 1 and tf a priori. Meanwhile the evader selects an
evasion strategy which consists of running away from the pursuer on a
course opposite to the bearing line between the two vehicles.
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In passive target tracking, information concerning the target is

typically available as a sonar bearing corrupted with noise. The
relationship between the state vector and the bearing measurement is
nonlinear. Viewgraph 4 illustrates the steps performed to linearize the
measurement about the approximate state vector (xl, x2). The acoustical
noise n is assumed to be white Gaussian noise with zero mean and variance

On2. The variance can be shown (see Ref. (4)) to be a function of the
speed of each vehicle and the relative distance between them. The
equation for the variance is specified in Viewgraph 4.

Viewgraph 5 presents the necessary steps to convert the raw measure-
ments into a scalar measure which embodies the information in these measure-
ments. The matrix H has been specified previously in Viewgraph 4, and
although not specifically stated

Q = .n2

The objectives of ownship and the target are specified in Viewgraph 5.

From these objectives we have formulated a two-person zero-sum differential
game with the following performance criterion

J(u,v) = e -v dt - y II x(tf)1 2

ito

where the first term on the right is the total amount of information received
in the interval (to, tf), and the second term is the final relative distance.
The parameter y is a positive constant that allows the weighting of the
importance between these two terms.

4. Max-Min Solution for Ownship

To fulfill both objectives specified in Viewgraph 5, ownship has to
choose fixed speeds v0 and vl for the two phases of the tracking engagement
so as to maximize J(u, v) against the worst possible u. Mathematically,
as stated in Viewgraph 7, this is equivalent to maximizing

F(vo, vl) = min J(u, v)
u
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Therefore by choosing v * and v , ownship can be sure of a performance

no worse than F(v0*, v1 ).

To determine v0* and v * against the worst possible v* (since u =

vxl, vx2), v is the target control variable) we invoke a set of necessary
conditions listed in Viewgraph 8. The transversality conditions and the
differential equations for the Lagrange multipliers are also specified on
this viewgraph.

5. Numerical Example

To illustrate the procedure for determining v* by utilizing the
necessary conditions specified in Viewgraph 8, let us consider the example
where the pursuer chooses a constant v* throughout the entire course of

action. In addition,the pursuer chooses 00 and 01, making this example
a two phase tracking problem. Viewgraph 9 illustrates the tracking
trajectory for ownship and a typical evasion maneuver for the target.

The example is characterized by two six minute tracking legs, so
that the terminal time for the game is 12.0 minutes. We make the
assumption that the evader's strategy is to run away from the pursuer on
a course opposite to the bearing line. Some typical numbers are chosen for
the constants a,c and y as shown in Viewgraph 9. The constant y is of
such a small magnitude because of the I lxl quantity in the denominator

of the information term of the performance criterion.

The method of steepest descent was used to solve the numerical
optimization problem and find v*. Several performance criterion curves
are shown in Viewgraph 10 for different Leo, 01] selections. Also shown
in this figure is the necessary condition for v represented by h(v) ,

tf

h(v) =H (x*,u*vp*)dt
av -5

t0

The results show that when the necessary condition (h(v)=0.0) is satisfied
the performance criterion is a maximum. The label J[15-60] denotes the
performance criterion curve when 00=15.0 degrees and 01=60.0 degrees.

For comparison in Viewgraph 11 we have plotted the performance
criterion curves for 0o=15.0 degrees and 01=60.0, 01=90.0 degrees. We
note in the case where 01=90.0 degrees that a larger tracking speed maximizes
J but there is no gain in performance, in fact the maximum is somewhat lower.
Therefore, by having a large course change between the first and second leg,
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which is good from the standpoint of improving tracking algorithm perfor-
mance, there is no gain in the performance criterion we have selected,
i.e., one that also includes the terminal relative distance. The vehicle
trajectories for these two cases are illustrated in Viewgraphs 12 and 13.
A large tracking speed in the 01=90.0 degrees case is countered by an
equally large evasion speed so that the terminal relative distance is
nearly the same in both cases.

To emphasize the importance of the choice of 00, we have plotted the
vehicle trajectories for the two situations when 80=0.0 degrees, 80=30.0
degrees and 81=60.0 degrees in Viewgraphs 14 and 15. As previously pointed
out, tracking algorithm performance is enhanced by a large course change
between the two legs. However experience has also shown that running
toward the target on the first leg is detrimental to tracking algorithm
performance. Thus a typical tracking trajectory would be 80=0.0 degrees
and 01=60.0 degrees when the target is at an initial bearing of 45.0
degrees. Note in Viewgraph 14 that the evader can take advantage of this
strategy to increase the relative distance from 4.0 Kyds at t 0=0.0 to
8.0 Kyds at the terminal time. The pursuer's strategy from our viewpoint
can be significantly improved if he chooses a course on the first leg more
closely equal to the initial bearing to the target. As shown in Viewgraph 15,
he can even close the relative distance between himself and the evader from
4.0 Kyds at t 0 =0.0 to 3.4 Kyds at the terminal time. The optimal course
change for the tracking vehicle is a compromise between acquiring sufficient
information for the tracking algorithm and optimizing the criterion we
have considered. This problem needs further investigation.
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A DIFFERENTIAL GAME APPROACH TO DETERMINE

PASSIVE TRACKING MANEUVERS

CHARACTERIZED BY:

1. DYNAMIC MODEL FOR THE GAME

2. UNIQUE CHARACTERISTICS OF THE INFORMATION

(ACOUSTIC EFFECTS)

3. PERFORMANCE CRITERION WHICH REFLECTS THE

OBJECTIVES OF THE TWO PARTICIPANTS

4. ESTIMATION AND CONTROL OF A STOCHASTIC

SYSTEM IS CONVERTED TO A DETERMINISTIC

PROBLEM

5. NO SADDLE-POINT SOLUTION EXISTS,INSTEAD

WE FIND THE MAX-MIN SOLUTION
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SUBMARINE TRACKING CONFIGURATION FOR
PASSIVE TAR(FT TRACKTNG

y

t1t
0

/ ~~1 ~E (target)

P (ownship)

(x, y) POSITION OF PURSUER (OWNSHIP)

(x y) : POSITION OF EVADER (TARGET)

(x -xp YEp) = (Zl z2) : TRUE RELATIVE POSITION

* ASSUME PURSUER KNOWS THE NOMINAL (APPROXIMATE) RELATIVE

POSITION -(x, x)
1 2

1 57



MATHEMATICAL MODEL

t STATE EQUATIONS

x = vx -v SIN C
1 1 p

x = vx -v COS C
2 2 p

OWNSHIP PARAMETERS

v: SPEED

C: COURSE
p

TWO PHASES (legs)

V=V ttt

C =Q
P i t <t<t

V=V
1 t <t<t

1 -f
C =)
p 1

* TARGET PARAMETERS

(u , u): VELOCITY
1 2

(u, u) =(vx, vx), EVADER IS ASSUMED TO RUN AWAY FROM
12 1 2

THE PURSUER ON A COURSE OPPOSITE TO THE BEARING LINE.
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PASSIVE SONAR BEARING MEASUREMENTS

BEARING MEASUREMENT:

-1
y = tan (z /z ) + n

1 2

LINEARIZED MEASUREMENT ABOUT (x l,2):

y = H(x) (z - x) + n

WHERE

x2 -x

H= 2 + 2 x2 + x2
Xl + x2 Xl 2

n: ACOUSTICAL NOISE, ASSUMED TO BE WHITE

GAUSSIAN WITH ZERO MEAN AND VARIANCE a2
n

a2: FUNCTION OF THE SPEED OF BOTH VEHICLES AND
n

THE RELATIVE DISTANCE.

EQUATION FOR a 2

02 = kl xll 2 e-llu II + Bv
n

WHERE k,a, AND 8 ARE POSITIVE CONSTANTS.
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INFORMATION IN IMPERFECT BEARING MEASUREMENTS

IN LINEAR RECURSIVE ESTIMATION WITH MEASUREMENT:

y = Hz + n

THE TRACE OF THE INFORMATION MATRIX

I = HTQ- H

DETERMINES TO A LARGE EXTENT THE ERROR COVARIANCE, WHERE

E(n(t)n(T)) = Q6(t-T)

IN OUR PROBLEM

-1 e caju| - v
Q =

kllx 112

AND

e aullu - Bv
tr It = e

ki1x 60
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OWNSHIP OBJECTIVES

1. OBTAIN MAXIMUM INFORMATION TO ACCURATELY

ESTIMATE RELATIVE POSITION OF TARGET.

2. MINIMIZE THE FINAL RELATIVE DISTANCE TO

TARGET.

TRACKING STRATEGY OF OWNSHIP:

V0oV 1

AND ASSUME THAT 0 AND 01 ARE PREDETERMINED -

TYPICALLY A 600 LEAD-LAG TRAJECTORY IS SELECTED.

A PERFORMANCE CRITERION CONSIDERING BOTH OBJECTIVES

ABOVE CAN BE EXPRESSED AS:

allu II - I2
J(u,v) = e2 dt - x(t- tII - 2xt

t

y IS A POSITIVE CONSTANT.
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MAX-MIN APPROACH FOR OWNSHIP

DETERMINE vo AND V1 SO AS TO MAXIMIZE

F(vo,vl) = min J(u,v)
u

= J(u (v0 vl),v)

WHERE v Vo ' 1}

OR TO ENSURE THAT

min J(u,v ) > min J(u,v)
u u

BY CHOOSING v AND v, OWNSHIP CAN BE SURE OF A
0

PERFORMANCE NO WORSE THAT F(vo ,vl ).
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CONDITIONS FOR OPTIMALITY

NECESSARY CONDITIONS FOR v , 1 AND v

DEFINE

H = -e - + Pl(VX1 - v sinCp) + P2(vx2 - v cosCp)

iIx 114

X ea HU 11- ev

1P = 1 2(4 - .14 Ilull) - VP 2

IIx II

allu II- ~v
p = 2 (4 .14 Ilu |1) -p

llx ll

P.(tf) = -Yx.(tf) i = 1,2

THEN:

aH ** *
(x,u ,v,p) = 0 FOR ALL t.

3H
C---- (x ,u ,v p*) dt = 0

v -6

0t
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NUMERICAL EXAMPLE

y

P(tf)

Es~~~~~~o)~tf)

tP0 E(0)

P (0), x

TRACKING TRAJECTORY FOR OWNSHIP AND TYPICAL EVASION MANEUVER

FOR THE TARGET

TWO PHASE TRACKING PROBLEM

· TWO SIX MINUTE LEGS

* EVADER RUNS AWAY FROM PURSUER ON A COURSE OPPOSITE TO

THE BEARING LINE.

* a = .14, 8 = .10 AND y = .0002.
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PERFORMANCE CRITERION AND THE NECESSARY CONDITION AS A FUNCTION OF TRACKIN SPEED

Initial Bearing = 450
II x(O)I = 4 Kyds
y = .0002
c = .14
B = .10

.002 - .0002

* h(v)J(u,v) h(v)

.001 _ .0001

[30-60

5 1 10 2

-.001 -. 0001

-.002 - -.0002

J[15-60

-.003 -. 0003

J[0-601
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PERFORMANCE CRITERION AS A FUNCTION OF TRACKING SPEED FOR TWO DIFFERENT STRATEGIES

(TWO SIX MINUTE LEGS)

Initial Bearing 450

Ij x(O)>11 = 4 Kyds
y = .0002
= .14
= .10

.002

J (u,v)

.001

0 5 IG0 15 20 25

v, Knots

-.001

[15-90]

-.002

-.003 \ 15-60]
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DESCRIPTION OF AND RESULTS FROM A SURFACE

OCEAN SURVEILLANCE SIMULATION

Thomas G. Bugenhagen
Bruce Bundsen

Lane B. Carpenter

Applied Physics Laboratory
The Johns Hopkins University

Laurel, Maryland 20810

(This work was supported by the Naval Electronics Systems Command under
Task G3AO of Contract N00024-8Z-C-530Z with the Department of the Navy).
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Description of and Results from a Surface

Ocean Surveillance Simulation

T. G. Bugenhagen, B. Bundsen, and L. B. Carpenter

The Applied Physics Laboratory, Johns Hopkins University

Laurel, Md. 20810

ABSTPRACT

As a part of the Over-the-Horizon/Detection, Classi-
fication and Targeting (OGH/DC&T) Engineering JAnalysis Program
performed by The Johns Hopkins University Applied Physics Labora-
tory (JILU/APL) in support of the Naval Electronic Systeaa; Co^-_and
(NAVtELEXSYSCOM) (PKE 108-2), it was necessary to establish ocean
surveillance systen requirements in a realistic environment. Thne
area tracking and correlation (ATAC) model was developed and used
to perform analyses for defining these surveillance requirements
in a setting where high interest ships interact with merchant
ships traveling in shipping lanes.

This work was supported by The Naval Electronics Systems Command
under Task C3AO of Contract N00024-81-C-5301 with the Department
of the Navy.
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1. INTRODUCTION

Adequate surveillance of an ocean area may require tracking
large numbers of targets over a broad area using a variety of sensors.
Often, the density of background ships in the area is high enough to cause
interference with the tracking of high interest targets. The high interest
targets themselves may execute maneuvers at unkrnown times, further complicat-
ing the situation. As a part of the OTH/DC&T analysis effort, it was necessary
to determine the requirements of ocean surveillance system parameters for this
setting. In some previous analyses, the merchant ship traffic was assumed to
be uniformly distributed throughout the area. This is quite different from the
actual situation where the merchant ships travel in shipping lanes. To define
the ocean surveillance requirements in a realistic environment, the area track-
ing and correlation (ATAC) model was developed. It is a simulation of the ocean
surveillance situation including:

a. Generation of merchant and high interest ship positions
as they move across an arbitrarily defined ocean area in
defined shipping lanes;

b. Development of simulated sensor reports from a variety
of sensors;

c. Initialization of tracks;
d. Correlation of the reports to previously established

tracks;
e. Continuation and projection of the tracks to any chosen

time; and
f. Measurement of the accuracy of the correlations by

comparing with the actual (ground truth) tracks
stored in the computer.

In the present version of the ATAC model, three different sensors
were modeled and\ used in the analysis: two active radar sensors and a passive
sensor that is assumed to give reports only on the high interest ships. The
passive sensor is assumed to also give a unique identity of the ships on which
it reports. Of the two active radar sensors, one is assumed to give only posi-
tion reports, while the other gives position and velocity measurements on the
ships. A later version of the ATAC model also includes sensors that give line-
of-bearing measurement reports.
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2. THE AREA TRACKING AND CORRELATION MODEL

Figure 2-1 illustrates the functional flow when the ATAC model
is used in a Monte Carlo loop with simulation of ship traffic and sensor
reports. Each block of the diagram will be explained, in turn, in both
Sections 2 and 3.

The three basic steps to the model are: (1) developing sensor
reports, (2) assigning sensor reports, and (3) scoring. The first step is
subdivided into three parts: scenario, process noise, and measurement noise.

In the scenario, the ocean area is defined (by four corners in
latitude and longitude), the structure of the shipping lanes is established,
and the density of the merchant shipping is set. In the process noise subdivi-
sion, the ship heading errors and velocity errors are defined, after which
specific simulated ships and their motion can be generated. Measurement noise
takes into account the sensor parameters to generate sensor reports, which are
perturbed from the ground truth (actual) positions according to the position
error associated with the sensor.

In the correlation phase, which makes up all of step 2, the sen-
sor reports are associated (correlated) with existing ship tracks in a track
file by using Kalman filtering and probabilistic decision making. The time
step loop in this part of the block diagram is meant to show that as sensor
reports are periodically generated and received (based on the sensor update
interval), the correlator associates the reports to tracks. At each time
step, certain measures of effectiveness are calculated and then averaged at

the end of the time period for which the model was run.

After running the ATAC model with one choice of the process noise
and sensor parameters, a new set of values is chosen. The process is repeated
as shown by the Monte Carlo loop. The measures of effectiveness are collected
for each such iteration and used to give the grand averages used in the analysis.

ATAC is currently programmed in the PL-1 programming language and
run on an IBM 3033 computer. It uses about 1.5 megabytes of storage and about
10 seconds of comptuer processing time for one iteration involving roughly 20
ship contact reports every hour over an area of 40,000 nmi2 in a given 10-hour
time period.
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Merchant shipping
lane structure

Military ships:
numbers and courses

Scenario. Step 1A

Merchant shipping
de nsit .

Generation of ship tracks
with heading errors, aC
and velocity errors, aV Process Developing

Process Step lBnoise sensort noise reports
Ground truth

(specific ships and motion)

Sensor definitions:
Detection prob, Pd
False alarm rate
Update intervals, -t Measurement Step 1C
Position errors, an noise

Monte
Carlo
loop Sensor

reports

Correlator control
Time parameters:
step Avg speed assumptions

Threshold settings Assigning
Correlation Step 2 sensor

.__________________________ + reports

Correlator:
Association of

reports to tracks

1OE'sB .utput a^ IStep 3 Scoring

MOE's 

Fig. 2-1 Area Tracking and Correlation Model Monte Carlo Functional Flow Diagram
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2.1 BACKGROUND SHIP TRAFFIC

Background ship traffic in a region of interest (ROI) is gene-
rated along shipping lanes defined as a sequence of geographic coordinates
(turn points). Each lane has a width established by assuming a normal dis-
tribution about a mean path with a standard deviation that can be input.
Within each shipping lane, individual ships of a given type are generated
from a departure rate, which is either input or calculated on the basis of
ship density considerations. Ship tracks consist of a time history of geo-
graphic coordinates between which motion is maintained with constant course
and speed. The time spacing of the points is small enough so that inter-
mediate positions may be determined by interpolation.

2.2 HIGH INTEREST SHIP TRACKS

The procedure used to generate the tracks of high interest ships
is different from that used for background ships. A master file contains data
for a number of sample paths, each representing a ship maneuvering randomly
to avoid detection while attempting to maintain a particular average speed and
course. The state equations from which these tracks are generated are written
in a latitude-longitude system, and the ship follows a rhumb line between ob-
servations. Input parameters are:

a. Initial ship latitude and longitude;
b. Maximum ship.speed permitted;
c. Mean ship velocity desired;
d. Mean target course (angle);
e. Standard deviation of maneuver speed, and beta,

a parameter describing the relationship between
a random change in course and a change in speed.

2.3 GENERATION OF SENSOR REPORTS

After the ship paths and movement along the paths have been
established, sensor reports (using data from this simulated ship traffic)
are generated. Simulated ground truth position data on ships, within some
geographical region of interest, is perturbed according to assumed sensor
error distributions. An input detection probability permits missed detections,
and the capability of generating false targets is provided.
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2.4 CORRELATION OF SENSOR REPORTS

The correlator attempts to make the associations from the sequence
of sensor reports that have been developed. As the sensor reports are periodi-
cally generated and received (based on the sensor update interval), the correla-
tor associates the reports to tracks. Once the associations have been made, a
ship tracker (based on a Kalman filter) is used to develop the individual tracks.

This procedure works well as long as none of the ships are maneuver-
ing. When a ship maneuvers, a contact report's distance measure, obtained from
the tracker, may be large. This may cause the report to be thrown out because
it either failed a threshold test or was not assigned in the best hypotheses.
To overcome this problem and to efficiently assign contact reports from maneuver-
ing and non-maneuvering targets, the correlator has been designed to process four
different types of ship motion in stages, with one type of motion processed in
each stage. The four stages and the corresponding motion processed are listed
in Table 2-1. The correlator processes through all four stages each time a set
of contact reports is received.

Table 2-1

Correlator Stages for Processing Ship Motion Models

Stages Ship Motion Processed

1 Slow, Straight

2 Fast, Straight

3 Slow, Maneuvering

4 Fast, Maneuvering

When all the possible associations between contacts and tracks
have been made in one stage, the contacts and tracks are removed as candidates
for successive stages. Since most of the merchant ship traffic will be follow-
ing a constant heading (rhumb-line sailing) at moderate speeds, they will usually
be processed in the first or second stages. When they are removed, the remaining
contacts and tracks can be associated in a more efficient manner.
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2.5 TECHNICAL DESCRIPTION OF THE CORRELATION OF SENSOR REPORTS

The correlator developed for use in the ATAC simulation is a tech-
nique for assigning reported contacts on the ocean surface to existing ship
tracks or to previously reported points (to initiate a track). In general, the
sensors are assumed to be giving information on many contacts at approximately
the same time with the results being correlated with the current track file.
In this sense, ATAC does report-to-track correlation.

2.5.1 FEASIBILITY TABLE

The construction of hypotheses begins with the construction of the
feasibility table. The table is simply a listing of the current track file
versus the new set of contacts and an indication of which of the contacts are
feasible to be associated with each of the tracks. Feasibility is defined in
terms of possible ship speeds and sensor errors. A maximum ship speed, v

·max
is used to determine the distance a ship could travel in the time, At, since the
tracks were last updated. If d.. is the distance from the last position of track
i to contact j, then the association is, by definition, feasible if

d . < F(V At) +3 + cr3 
j ma- max nJ

where a . is the sensor error associated with the tast position of the ith track
and a no s the sensor error associated with the j contact.

nj

After determining which contacts are feasible for a given track,
the figure of merit is calculated for each of these contacts. The figure of
merit used is log fi (Z.) where tiR function f is given by the distribution
of the expectedtRosmtioA of the i track after time, At, since the last update
and Zj is the j contact.

2.5.2 UNIQUE ASSIGNMENTS

There is one exception to this rule of calculating the figure of
merit. If there is only one feasible contact for a track and if that contact
is not feasible for any other track, then that contact is arbitrarily assigned
to the track. This procedure is called "Unique Assignment" in the program.
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The figure of merit is not calculated. For all remaining locations where a
contact is feasible, the figure of merit is calculated. The resulting table
of values is called the distance table in the program.

2.5.3 THRESHOLD TESTS

The values for the feasible contacts are then subjected to a
threshold test to further reduce the number of ambiguities for each track.
Specifically, if

log fi (Zj) < Th

where Th is the arbitrarily chosen threshold, then the contact Zj is retained
as one of the possible contacts for track Ti.

2.5.4 UNIQUE MINIMUMS

Before going into the hypothesis generation routine, one further
attempt at reducing the number of ambiguities is made. The attempt is to try
to find contacts that give "unique minimum" values of the figure of merit for
some of the tracks. The rows of the distance table represent the tracks currently
being carried and the columns represent the new set of contacts to be assigned.
For each row, the contact is found that yields the smallest figure of merit.
These are called "row minimums." Likewise, for each column, the track is located
for which the figure of merit is smallest. These are called "column minimums."
When a row minimum is also a column minimum, then an assignment of that contact
to the corresponding track will be made if neither of the following two condi-
tions is violated:

a. There must be no other row minimums for that column
(contact), and

b. There must be no other column minimums for that row (track).

2.5.5 THRESHOLD LOWERING AND ITERATION ON HYPMAX

The number of hypotheses that could be generated when initiating
tracks with the first two sets of reports is a function of shipping density
and the circular area within which a ship could have moved in the time interval,
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AT, between the reports. If the ships in the area were uniformly distributed
throughout the area, the number of contacts from the second set of reports
that could be associated with each contact from the first set is

N p7r cAT + 3 /nl + n2

where

p = shipping density,

v = upper bound on ship speed,
S

AT = time between reports, and

Cnl On2 = sensor accuracy of 1st and 2nd reports.

This number by itself can become large. However, the number of hypotheses that
can be generated can become very large. As a result, when the update interval
or the location errors increase, the correlator processilng time increases dramati-
cally. This is shown in Figure 2-2, in which the actual processing time for one
replication is plotted versus the update interval. A similar curve for the-sen-
sor accuracy would reach the upper limit when o % 4 nmi.

n

To keep the processing time and costs within bounds and still ob-
tain results when AT > 2.0 hrs or a > 4 nmi, it is necessary to reduce the
thresholds that limit the size of tie uncertainty areas and, therefore, the
number of hypotheses that can be generated. An estimate of the number of
hypotheses that could be generated is made. If this number is less than an
upper bound (called HIYPMAX), hypothesis generation begins. If the estimate
is greater than HYPMAX, the threshold, Th, is reduced by a set amount, and any
entry in the feasibility table larger than the new threshold value is removed.
A new estimate of the number of hypotheses is made and compared with HYPMAX
again. This process is repeated until the estimate is below HYPESAX. The result
is called the ambiguity table. Thus, for each track that has not been assigned
a unique contact, the ambiguity table lists those contacts that are both feasible
and have a figure of merit less than the final threshold value resulting from the
iterative reduction process.
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Fig. 2-2 Computer Processing Time vs Radar Sensor Update interval
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2.5.6 GENERATION OF HYPOTHESES

To generate the hypotheses, the ambiguity table is used. A pointer
is set at the first unused contact for each track (row) starting with the last
track in the table. The resulting assignments constitute the first hypothesis.
If there are unused contacts remaining, they are saved as possible beginnings of
new tracks. If there are insufficient contacts, then one or more of the tracks
must have received a detection miss. The technique for generating the hypotheses
in these cases is discussed in paragraph 2.5.8.

Successive hypotheses are generated by incrementing the position of
the pointer for the first track to the next unused contacts. When the last con-
tact is used for the first track, the position of the pointer for the second
track is incremented once and the process repeated for the first track.

After all contacts have been used for the second track, the process
is repeated for the third track and so on for the remaining tracks. The overall
process can be compared to an odometer with each track representing one wheel of
the odometer. As the last digit (contact) is used on one wheel (track) of the
odometer, the next wheel is incremented one or more digits. Methods are included
to keep from generating illegal or inconsistent hypotheses (i.e., ones in which
a contact is used more than once).

2.5.7 TRACKER

A basic part of the correlator is the tracker that is described in
Reference (b). The tracker is used to give a figure of merit for relating a
contact report to a track. The state equations of the tracker are outlined below.

If (LK, 1 l) are the latitude and longitude in radians of a ship
contact at the time of the (K-l)th observation, then the coordinates of the ship,

at the time of the K-th observation tK hours later, will be given approximately
by

VNK
LK = LK-1 + R tK + WL,

e

EK +
H = MK-1 + R cos L K + WK M'

e K-l

where R is the radius of a spherical earth, VNK is the average velocity of the
e

ship North, VEK is the average velocity East, and wL and wM are noise terms. In
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addition, it is assumed that the rate of change of the latitude and longitude
(here called AK and DK) are

vNK

VEK

PK R cosL w,e LK-1

where wA and we are velocity noise terms that allow for random minor deviations

in velocity and for maneuvers. If we define

0 tK 0

MK 01 0 tK w

=XK ' K =
' WK-1 =

;KO O 0 1 ) w

VNK VEK

K-1 R and K-1 Re cos LK
e e K-!

then these may be written as

XK - K XK-1 + WK-l'

It is assumed that the noise terms are white and Gaussian with zero mean and
covariance matrix QK.
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2.5.8 EVALUATION OF HYPOTHESES

If X is the state vector of a track and X (+) is the updated

estimate at time K, then the projected estimate of the state at time K + I is

XK+1(-) = K XK(+)

where 0K is the transition matrix. When the targets are not maneuvering or
maneuvering only slightly, the measurement errors can be approximated as Gaussian
so that the probability density, f(XK) , is effectively Gaussian. This allows the
Kalman filter projection routines in the tracker to be used, which then can give
figures of merit for associating reports to track. Techniques showing how to
handle large maneuvers are dis6ussed in paragraphs 2.4 and 2.5.9.

The uncertainty in the estimated position given by the projection
routines of the Kalman tracker is represented by the covariance matrix P(-).
The distribution of XK is given by

" !(X ( -

f(XK) = 21 I /2 exp 2 (XK ) P(- ) ( -)j

where MK = E(XK).

If there are n tracks being kept and m contact reports, ZK
received at time K, with m < n, then

fl (Z K1) ' f2 (Z K2) f (ZKm)

is the likelihood function for the hypothesis that, for all i, the report ZKi
should be associated with the track whose projected uncertainty is given
by fi' The likelihood of this particular assignment or hypothesis is
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m
Lj = log ir fi (ZKi)

i=l

and the assignment that produces the maximum Lj is called the maximum likelihood
assignment or hypothesis.

If we define

ZKi Z Ki- xi(

then

1 n T
L -n An 2 2T -2ZPn C PKi + Ki 

2 i=l Ki

When reports are missing (i.e., when there are less reports than tracks), then
each hypothesis has one (or more) fewer terms in it. However, no one hypothesis
is favored more than another since each will contain the same number of "zeroes."

The last equation is used to evaluate each hypothesis with a certain
number of the best ones retained. When only the single best hypothesis is kept,
it will give the preferred tracks at that time.

2.5.9 INITIATION

In the ATAC model, track initiation is accomplished with the aid of

the Riceian distribution [References (g) and (h)]. This distribution is the
result when an object, whose initial position has a circular normal distribution,
moves with a constant speed v in an unknown direction for a time t. All direc-
tions are assumed to be equally likely. Thus, if the distribution of the initial
position is given by

f(r) = 1 exp - r2/2c2
27L

then the distribution of the final position after a time t is given by

f(r,t) = exp (r2 + u2 t2)/22] IO rt
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th
where Io is the ordinary Bessel function of zero order. For a given time

interval t, the distribution of target positions has spread outward into an
annular region.

It is not only at the beginning of the simulation that tracks must
be initialized. Even after tracks have been established, there are new ships
entering the area and, therefore, tracks to be initialized. In either case,
the log of f(r,t) is used for each hypothesis that assigns a second report to a
point saved from a previous set of sensor reports. The distance between two
such reports is r in the last equation. Speeds of 12 and 24 knots were assumed
for two type ships, slow and fast, as described in paragraph 2.4. The value of
a assumed is

2 2 2 2
a = a +a t + + 

1 v 2

where

21 = variance of the first position measurement,

2
a, = variance of the second position measurement,

a = variance of the speed estimate, and
v

t = time between the measurements.

Besides its use for track initiation, the Riceian distribution
is also used for maneuvering targets in the ATAC model. If a particular track
is not updated in one of the first two motion models (non-maneuvering) described
in paragraph 2.4, then the Riceian distribution is applied again from the last
point of the track to see if possible contacts exist outside the normal projected
uncertainty ellipse that could be associated with the track. If there are no
such contacts, then the track is given a miss for this reporting time. If there
is at least one such contact, then the one that minimizes the likelihood equation
from the previous section is chosen to update the track. In effect, the track is
reinitialized from the last point. As before, two speeds (12 and 24 knots) are
assumed for the two maneuvering motion models.

2.6 MEASURES OF EFFECTIVENESS AND SCORING

The technique used to establish requirements for the ocean sur-
veillance parameters in Reference (a) is similar to that used in other require-
ments analysis. First, a nominal case value is chosen for each of the parameters
in the problem. Then, a sensitivity analysis is done by varying the value of
each parameter, one at a time, over a specified range and calculating certain
measure of effectiveness (MOEs).
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2.6.1 TRACK PURITY

This MOE is intended to measure how pure a track is in the sense
of the track having the same ID number for each contact report. It is the
number of previous time steps that a ships' identity number agrees with the
current identity divided by the number of time steps up to and including the
current one.

2.6.2 MEAN RADIAL PREDICTION ERROR

At each time step, the tracks are projected 1 hour ahead, The
predicted position is then compared with the ground truth position at the
future time and the error between them calculated.

3. RESULTS OF THE PARA1ETER SENSITIVITY ANALYSIS

The results of the ATAC Parameter Sensitivity Analysis are presented
in the following graphs of the MOE as a function of the parameter under considera-
tion. The MOE being considered can be plotted against only one of the parameters
at a time; therefore, it is necessary to select a set of nominal values for the
parameters. The selected nominal values are listed in Table 3-1.

In Figure 3-1, the track purity index decreases rapidly. When the
active sensor is aided by the passive sensor the situation is much improved.
When the radar sensor update interval is increased to larger values the result
is few reporting times in the overall period. Consequently, there are propor-
tionately more passive sensor reports which provide identification of the high
interest ships. Since the passive sensor reports are correlated with few errors,
there is less chance for error overall and the purity index remains high.

The prediction error 1 hour in the future from the sensor reporting
times is plotted in Figure 3-2. In general, the errors for the background ships
increase as the update interval increases while that for the high interest ships
fluctuates around a constant value. Some of the fluctuations are due to the
coincidence of the radar sensor observation times and the high interest ship
maneuver times. When the passive sensor is added, the result is that the error
for the high interest ships is not very dependent on the update interval.

In Figures 3-3 and 3-4 the radar sensor accuracy is varied. The
main characteristic of these curves is the improved track purity for the high
interest ships when the passive sensor is used.
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4. CONCLUSIONS

The correlation approach used here was adequate to handle the
size problem analyzed in determining ocean surveillance requirements.
However, it was necessary to incorporate some threshold reduction techniques
to keep the number of hypotheses from getting too large. This is done by
limiting the size of the uncertainty areas. The costs incurred are more
errors in correlation.

The ATAC model could be extended to include a weapon targeting
model that simulates the launching of OTH weapons. It could then be used
as a tool for defining and developing improvements to the information col-
lection, processing, and distribution portions of the U.S. Navy's OTH-T
capability. Previously generated requirements could also be compared with
Fleet exercise data in the model.
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1. INTRODUCTION

In this paper, we describe a brief study into techniques for detecting
and providing warning of low-altitude airborne threats approaching United

States Marine Corps units in the field. Such threats are difficult to detect

since they can be masked by terrain features until quite close if sensors

located within or above U.S.-controlled territory are used. If sensor alti-

tude is increased to look over terrain features, the sensor's vulnerability

is increased and its deployment typically becomes quite expensive. The alter-

native approach, viz., deploying sensors forward into enemy-controlled terri-
tory, is promising but difficult from the viewpoints of delivery, sensor

vulnerability, and information retrieval.

The purpose of the research reported here was to examine these issues in

light of modern technology and its probable advancement through the late 1980s

and early 1990s. Three objectives for this work were defined:

1. To identify promising sensors and sensor systems which

could provide USMC forces with adequate warning of

impending attack by low-flying aircraft.

2. To characterize the capabilities and the relative
advantages and disadvantages of alternative concepts.

3. To interpret the results of this work in terms of its

implications for future research directions.

We will show in this paper how the ground rules and scenario defined prior

to beginning this work, coupled with the characteristics of the classes of

sensors physically feasible, clearly lead to a preferred approach to solving

the problem.

*This work was supported by the Office of Naval Research and the Naval Ocean

System Center under contract number N00014-80-C-0309.
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2. SYSTEM MISSION AND SCENARIO

The mission of the over-the-horizon (OTH) surveillance concept sought was

to detect, to localize, to count, and to identify the threat in a timely man-

ner. More specifically, the surveillance system should:

1. Provide 5 to 10 minutes warning of approaching threats

of all types: fixed- and rotary-wing, subsonic and

supersonic speeds.

2. Count threat aircraft at a coarse level, i.e.,

differentiate between a few (1 or 2) and many

(10 to 20 or more).

3. Locate the approach sector to about 10° relative to

a reference point (e.g., an antiaircraft battery).

4. Identify the threat as to aircraft type, if possible.

Specific threat aircraft were not identified, in fact, results were developed

parametrically versus target speed, which was the only number of importance

given the level of detail of this analysis. For the sake of evaluating parti-

cular cases when desired, the following speeds were adopted as typical and

nonspecific:

* Helicopters: 130 kt = 70 m/s

* Subsonic Airplanes: 500 kt = 260 m/s = M 0.8

* Supersonic Airplanes: 975 kt = 500 m/s = M 1.5

Appropriate bands about these speeds were then considered when needed.

Friendly and hostile forces were visualized as residing on opposide sides

of the forward edge of the battle area (FEBA). The friendly territory was

defined to be 20 km wide and 20 km deep. The hostile territory was defined to

also be 20 km deep but somewhat wider (30 km) to provide some latitude for the

threat approach azimuth. We found that restricting attention to an area this

size made it impossible to satisfy the warning time requirement in all situ-

ations, so again a parametric approach was adopted as we illustrate below.

3. METHODOLOGY

The purposes of this research were to quickly identify promising OTH

detection concepts suitable for USMC applications and to recommend appropriate

further effort. These purposes would not be served by detailed consideration

of the multitude of physically realizable sensors. Rather, the approach adopt-

ed was to consider generic sensor characteristics (such as range, target

handling capability, data rate, etc.) in order to determine what characteris-

tics were required to meet the surveillance objectives defined for this study.

With these characteristics identified, particular physical sensors or classes
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of sensors could then be considered to determine how to best meet the mission

objectives. This is not to say that existing or projected physical sensors

were ignored as requirements were developed. In this regard, we are particu-

larly indebted to individuals at ERADCOM and MERADCOM who provided valuable

information regarding present surveillance concepts.

The various means shown in Table 1 for detecting aircraft were considered,

and the sensors associated with these means of detection were considered from

the viewpoint of the characteristics listed in Table 2. The operational envi-

ronment faced by the USMC was a very important consideration at all times. The

USMC mission environment cannot be overemphasized as a factor determining the

types of equipment suitable for Corps use. An equally important factor is the

USMC system environment; any novel system proposed must operate compatibly

with other USMC assets, either existing or projected.

In the remainder of this paper, we will present selected technical results

developed in the course of this investigation, and we will describe the sur-

veillance concept recommended for further consideration. Additional detail

may be found in reference [1].

4. DETECTION AND WARNING TIME

In order to minimize the delay between the time when the threat enters the

surveillance system coverage and actual provision of warning to a decision-

maker capable of responding, one must understand the source of the delays.

Figure 1 illustrates the situation. The warning time is determined by the

time it takes the threat to fly from where it is when you find out about it

to where you are (line segment B in the figure). The time lost, so to speak,

is the time that elapses from the instant the target emits an observable with-

in surveillance range to the time when you are notified (line segment A). The

components of this delay (i.e., the lost time) are observable propagation time

and the time needed for signal processing, data processing, data intrepretation,

and data dissemination. We are interested in determining when various con-

stituents of this delay are dominant.

For electromagnetic observables, the propagation time is essentially zero;

the observable travels at 3 x 108 m/s. For seismic and acoustic observables,

the speed is much slower: 1,000 to 2,000 m/s for seismic (under certain con-

ditions, seismic signals can propagate as slowly as 200 m/s) or 300 to 350

m/s for acoustic. If one considers a typical maximum range for acousto-seismic

sensors, say 10 km, then the observable propagation time could be as long as

5 to 30 seconds. While appreciable, this is a relatively small part of the

minimum warning time requirement.

How long should the data handling take? Electronic signal and data pro-

cessing should (with advanced technology) only require a small fraction of

the 5- to 10-minute warning desired. We conclude that only one situation arises

in which the warning differs significantly from the threat travel time from

entry point into the surveillance coverage to the defended location: the

situation in which human data handling is carried out in a system employing
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long-range acoustic sensors. Thus, we prefer completely automatic data hand-
ling and deployment of acoustic sensors (if used) close to the anticipated

threat.

The threat time-of-flight (TOF) is simply related to its speed as shown

in Figure 2. The solid lines indicate the threat speed (plotted along the

ordinate) which results in a 5-, 10-, or 20-minute transit time for a given

range (plotted along the abscissa). Below eaqh solid line is a dotted line

indicating the corresponding speed if a 100-second delay is introduced into

the acquisition cycle. Higher speeds mean shorter warning, of course. One

sees at once that for 5 to 10 minutes of warning, high-speed threats must be

detected well before they enter the 20- to 40-km deep region of interest de-

scribed in Section 2. Only helicopters can be detected in time within this
region. The implication is that either forward sensor deployment, long sensor

range (as much as 100 to 200 km in some cases), or both is necessary to ade-

quately warn of high-speed threats.

5. RESOLUTION AND ACCURACY

Spatial resolution refers to the sensor system's ability to determine

that two objects located close together are in fact distinct. Accuracy refers

to the system's ability to locate a single object along various measurement

"directions" with small error. We quote the word "directions" here because we

mean to consider measurements such as angle or range rate as well as up, down,

left, or right.

Resolution and accuracy are typically related since if an object can be

described as occupying a given resolution cell, that is, a box in measurement

space of size such that objects outside it can be distinguished from the one

inside, the object's position is known to the cell size at worst. In many

practical situations, the error will actually be a small fraction of the re-

solution cell size. For example, radar accuracy in range, angle, or doppler

(i.e., range rate) is frequently described by an equation of the form

a= K (1)

where a is the error (the standard deviation of the random process represent-

ing the measurement), A is the resolution, K is a factor near unity, and SNR
represents the signal-to-noise ratio [2]. Thus, for SNR equal to 10 to 100

(10 to 20 decibels), which represents typical "fair" to "good" measurements,
the error a will be on the order of 1/3 to 1/10 of the resolution A. Much

finer range, angle, or doppler "splitting" is physically feasible at even

higher values of SNR.

We wish to consider whether resolution or accuracy is the driving design

consideration for the systems and mission under study. We will show that in

general, a sensor with adequate resolution to allow coarse threat counting
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will automatically have adequate accuracy to define the threat's position and

heading as required. This conclusion follows from an assumption that the

surveillance system would be adequately able to count the threat if it could

resolve aircraft separated by 100 m or so. This would also permit the system

to adequately judge the size of a formation in the event that many aircraft

were flying together with less than 100 m separating adjacent ones. We will

consider below the implications of this assumption.

The requirement that the threat be located to within a 10
° sector can be

interpreted several ways. In the previous section, we showed that the threat

must be detected several tens of kilometers from its target if adequate warn-

ing is to be provided; a 100 sector will be many kilometers wide at these

detection ranges. Thus, if the sensor system has spatial resolution on the

order of hundreds of meters, it will certainly be capable of localizing the

threat to within a 100 sector.

An alternative interpretation of the 100 requirement, based on threat

velocity, is that the system be able to determine the threat's heading to 10
°.

A simplified means of analyzing this question is indicated in Figure 3. The

analysis is based upon assuming that the system computes velocity from finite

differences of position. A realistic system would use a more sophisticated

approach, thus the results we derive below are conservative: they upper bound

the likely course direction estimation error.

Suppose position measurements are made of the threat at two locations

separated by a distance d as shown in Figure 3. Then the (straight-line)

course of the threat must pass through the two error volumes centered at the

position measurements as the figure indicates. The angular error in the course

direction can be related to the position measurement error in the cross-range

direction as shown in the graph, which is a plot of the equation

y = 2 *- d tan(2)
2 2

where y is the cross-range error and 8/2 is the cone half-angle. The approxi-

mation tan(e/2) 3 9/2 is good to 1 percent for e less than 200. One can see

that if the threat is observed over a range band of 1 to 5 km (i.e., d = 1 to

5 km) a cross-range error of about 90 to 450 m is adequate. If cross-range

resolution is on the order of 100 m to permit threat counting as suggested

earlier, the cross-range error will typically be on the order of 10 m (one-

tenth the resolution) as we indicated earlier. Thus we again conclude that

resolution adequate for counting the threat will automatically result in

accuracy adequate for determining its angular sector.

Having concluded that requiring 100-m spatial resolution will result in

both adequate resolution and adequate accuracy, we consider the implications

of requiring resolution on this order. We will focus on determining the angle

resolution provided by typical sensors of different types in order to identify

those approches which appear to match the needs of an OTH surveillance system.

Attention will be restricted to angle resolution because range resolution of
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the order required is generally easy to obtain from a technical viewpoint if
sensors are used which provide range resolution at all (i.e., active radar).
Note, however, that we have not concluded that range resolution is essential.

The angle resolution A associated with a physical sensor having aperture
dimension s and operating at a wavelength A is generally given by an equation
of the form

A = K (3)

where the angle A is measured in radians, A and s are measured in common units,
and K is a factor near unity which depends on several considerations, for
example, the aperture shape. By solving this equation for s as a function of
X and A, taking K = 1, and combining with the equation

y RA (4)

to obtain the cross-range resolution in meters (y) in terms of the angular
resolution in radians (A) at range R expressed in meters, one can develop
Figure 4. Here curves of constant cross-range resolution are shown in the
plane described by range-to-target along the abscissa and aperture size along
the ordinate. Several ordinate scales are shown, corresponding to several
typical sensor wavelengths: IR (10 microns), millimeter wave radar (X = 3mm,
corresponding to 100 GHz frequency), microwave radar (A = 10 cm, corresponding
to 3 GHz or S-Band), and an acoustic sensor operating at 100 Hz. If typical
operating ranges for various sensors are selected as well as typical aperture
sizes, one sees that the cross-range resolution requirement of about 100 m is
met for alternative sensors as shown in the figure.

6. SENSOR TYPES AND CHARACTERISTICS

In this section we discuss general characteristics of several sensor
classes as applied to the OTH surveillance mission. In many cases, we make
assertions about sensors which we do not support by detailed calculations or
references yet which may be controversial if taken out of context (e.g., "long-
range radars tend to be expensive"). We believe that within the context of
the discussion our assertions are reasonable, and that taken overall our ulti-
mate recommendations given below are justified.

RADAR

Radar sensors generally provide excellent quality data at a relatively
high "generalized cost." By this we mean that radars can provide functional
characteristics of the type listed at the top of Table 2 at a level that far
exceeds the requirements of the mission defined in Section 2, but that several
disadvantages accrue relative to some of their physical and operational char-
acteristics as listed at the bottom of the table.
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Radars can be built using modern technology that have long range and fine
resolution. Accuracy can be quite high. Many targets can be processed simul-
taneously. Signal processing technology is well understood and reasonably easy
to implement. The physics of radar signal propagation are well understood and
system performance can be predicted with some confidence. These characteristics
imply that radars are excellent sensors for some applications. We argue, how-
ever, that they are not very well matched to the low-altitude aircraft detec-
tion mission. Several factors lead to this assertion.

First, radars are vulnerable to countermeasures because they are active:
they broadcast in order to receive. This makes radars vulnerable to anti-
radiation missiles which home on their emissions. Also, adaptive jammers can
be built which listen to radar emissions and adjust their interference output
for maximal effect. By use of sophisticated signals and the associated signal
processing technology, these vulnerabilities can be minimized. Such measures
increase the cost of the radar, however.

Second, the apparent long range available with radar sensors is illusory
for this mission due to the effect of terrain masking. Low altitude air
threats will be hidden from view by hills if the radar is at low altitude over
friendly territory. If it is at high altitude or deployed forward over enemy
territory, vulnerability to attack is increased and deployment cost is in-
creased as well.

The third and final factor to consider is that radars tend to be expensive
in general terms. If only a few are deployed to fulfill a mission, they must
have long range (and thus large power-aperature product) for broad coverage.
Also, an ability to handle many targets is needed. If many short-range sensors
are deployed to fulfill a mission, the number required will result in a large
total cost even if unit cost is modest.

PASSIVE OPTICS

The obvious advantages of passive optical sensors are that they can be
quite small and light physically and that they can provide very high quality
data (in the sense of fine spatial resolution). Their small size and weight
make them well suited to applications requiring high mobility, however they
require careful design if they are to be rugged and reliable. Their primary
disadvantage is relatively short range in bad weather or when faced with op-
tical countermeasures such as smoke. Also, search is difficult due to their

typically narrow field of view.

We examined optical sensors (both active and passive) at some length

during this study, primarily from the viewpoint of sensitivity calculations.
The goal was to determine the current state-of-the-art; the details are col-
lected in [1]. While we are able to make first-order judgments regarding
the range reasonably expected under various circumstances, we could not
develop definitive results without a more detailed threat signature character-
ization than that available to us. Our results are therefore largely para-
metric, as shown in Figure 5. Here we plot the noise-equivalent temperature
difference (NETD) at various ranges for a typical passive IR sensor with
various values of atmospheric attenuation. The NETD indicates the temperature
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difference between object and scenic background which results in a signal just
at the noise level; for a signal-to-noise ratio of x, the object-minus-back-

ground temperature difference must be x times NETD. The sensor parameters are
given in [l]. They are not meant to represent any particular current sensor;

they are, however, typical. We assume a sensor operating in the 8 to 14 micron

waveband with a 3000K background. The figure shows that an operating range of

up to 5 km or so is reasonable to expect for these sensors.

ACOUSTO-SEISMIC SENSORS

Acousto-seismic sensors were discussed extensively with individuals at

Lincoln Laboratory, ERADCOM, and MERADCOM. We found that the potential dis-

advantages of acousto-seismic surveillance are limited range, a poorly under-

stood signal environment, and an immature system technology. The consensus

we observed was that the technology of acousto-seismic (i.e., mechanical-wave

or MW) sensors and sensor systems is in its early stages of development but

that this technology is very promising. The real thrust of the research in

the MW arena is the analysis of system questions rather than transducer ques-

tions. Very sensitive microphones and seismic transducers are already avail-

able; the real issue is how to process the resulting signals and data in order

to associate the measurements with particular physical emitters in a multi-

target environment and to extract the information about them which is desired.

The range expected of MW sensors is not yet clear. Several individuals

interviewed quoted maximum ranges of 10 km or so for both acoustic and seismic

detection of single aircraft under quiet, well-understood measurement condi-

tions. Under realistic battle conditions, one would expect the operating

range of MW sensors to be shorter. On the other hand, their cost may be low

enough and their size and weight may be low enough that large numbers could

be delivered to cover the required surveillance zone, even with maximum range

of 5 km or so. A more serious question surrounds the utilization of MW sensors

in a complicated, noisy battle environment. This environment requires very

sophisticated signal and data processing and interpretation. Compounding this

problem is the fact that the signal propagation physics for MW sensors is not

well understood (compared, for example, with electromagnetic signals) so that

the "known" signal being sought in the noise is not very well known at all.

In contrast to the disadvantages faced today by MW surveillance systems,

there is a potentially huge payoff in mission utility if the problems are

successfully resolved. The components can be small and inexpensive. They
can be put where needed by several means. Their capabilities (e.g., in terms

of spatial resolution) are well matched to the requirements for this mission,

and their physical characteristics (e.g., size, weight, ruggedness) are well

matched to the needs of a highly mobile USMC force. For these reasons, we

recommend a more extensive investigation to define a system using MW sensors

as the primary threat detection mechanism and to identify and catalog the

issues associated with it.
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7. CONCLUSIONS AND RECOMMENDATIONS

As a result of our studies, we recommend that an OTH surveillance approach

encompassing two classes of sensors be considered: numerous hearing-like

sensors ("ears") for fulfilling functions requiring only coarse spatial re-

solution coupled with a much small number of vision-like sensors ("eyes") which

would carry out tasks requiring high resolution. Our immediate recommendation

is that this concept, which we describe more fully below, be defined in suf-

ficient detail that the USMC can make a well-informed judgment as to whether

or not to develop some or all of it.

The concept we propose is described as follows: We envision the ears to

be acousto-seismic sensors deployed beyond the FEBA. These would be delivered

by artillery, by remotely piloted vehicles (RPVs),or by manned aircraft.* In

the last case, sensor delivery would be a new task assigned to existing air

assets; no new aircraft can be dedicated to this task, and in fact, a delivery

mechanism which does not interfere with existing tasks would be required. The

information collected by these sensors would be relayed back to the USMC C
3

system via smart repeaters: repeaters with a certain amount of internal data

processing capability. These would reside on both sides of the FEBA as required.

The eyes would be RPV-borne infrared (IR) sensors. (Millimeter-wave radar

sensors are a possible alternative.) For most situations, these sensors would

have to be on station when required; the time-to-station is typically excessive

if one contemplates launching these vehicles on demand. Often, a logical loca-

tion for prestationing such sensors is obvious, e.g., near an enemy airfield

or along an important approach route.

In operation, the system we propose would behave much as a human does:

the ears cue the eyes. One hears a noise, which results in a head turn to

identify the cause in the event that further data is needed.

An important aspect of the two-sensor-class system we envision is a

nonheirarchic, distributed information processing and dissemination mechanism.

Such a mechanism is shown pictorially in Figure 6. The architecture depicted

allows data fusion (i.e., the combination and interpretation of data from

several sensors or transducers) at several levels, with the concomitant feature

that information can be identified and routed to relevant users as soon as it

is derived from data, thereby circumventing further delays in the system.

We believe that this system structure offers several advantages. It is

clear, for example, that the USMC contains a heirarchy of decisionmakers

whose information needs vary over a wide span. The individual in charge of a

single antiaircraft battery is concerned with a much smaller part of the

threat than the officer responsible for the entire task force. A surveillance
system which can simultaneously fill the needs of decisionmakers at each end

of this spectrum obviously offers distinct advantages. Benefits accrue in

terms of reduced reaction time, for example, if warning information can be

provided to the force capable of responding to it without passing through

*In an advanced scenario, battlefield robots could be used for sensor

emplacement.
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intermediate stages of handling while simultaneously presenting higher level
echelons of command with suitably condensed or abstracted reports of the
threat and the reaction to it. The architecture we suggest can accomplish
this. Developing in detail the means to accomplish it, both from a hardware
and a software viewpoint, is a present focus of C3 research.

A major advantage of the concept we propose is that it is a natural ex-
tension of the already existing Remote Battlefield Sensor System (REMBASS)
which is being readied for deployment by the U.S. Army and the USMC in the
early 1980s [3]. The approach to aircraft detection we propose would add new
elements to the mission for which REMBASS is designed, however we believe that
many aspects of the research and development which have gone into REMBASS and
its predecessor systems bear on the OTH aircraft detection problem.

The surveillance concept description just presented is obviously quite
sketchy. We believe the concept is sound. Nevertheless, many issues come to
mind immediately. We recommend that these issues be addressed in subsequent
work. Among these issues are questions related to utility, operations, phen-
omenology, and architecture.

By utilitarian issues, we mean to ask: does the system tell you what
you want to know, when and where you want to know it. To resolve this,
further work needs to be done to define the threat and to determine precisely
what information is needed by different USMC decisionmakers.

By operational issues, we mean to ask: what sort of components make
sense from a USMC operational viewpoint, particularly with regard to sensor
delivery, to system mobility, and to interface with the existing and planned
USMC C3 network.

By phenomenological issues, we mean to ask: What do the targets of
interest look like and sound like to the sensors we propose. Some data was
examined in the course of this research. It appears that, for example,
acousto-seismic data has very high potential for providing target identifica-
tion, however a great deal of processing is required to extract the information.
Defining this information extraction process is a major focus of several re-
search projects. Many system issues (as compared to one-target, one-sensor
issues) such as data association among targets and measurement correlation
among transducers remain to be resolved.

By architectural issues, we mean to ask: how should the information
processing be distributed. What sorts of "computers" are required at what
physical and functional locations within the system? Is packet radio the
proper technology for information retrieval?

The issues described above are relevant to USMC surveillance system
research and development in general as well as to any future consideration
of the particular surveillance concept we suggest. Whether or not our con-
cept is pursued further, these questions should continue to be addressed in
fundamental terms. We stress in particular the importance of further research
into acousto-seismic approaches to surveillance. This technology is poorly
understood at present from the system viewpoint, as we have said, yet it offers
great potential for fulfilling a critical need for our military forces.
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ABSTRACT

This paper will describe a data fusion system which combines
artificial intelligence metnods with formal Bayesian techniques.
Traditional approaches to the multisensor, multitarget ocean
surveillance tracking problem have produced only limited success.
Computational limitations, lack of flexibility and responsiveness,
limited user understanding of program processing, and the inability of
an analyst to guide the system are typical shortcomings of these
systems. Previous applications of A.I. have approached some of these
difficulties by use of "expert system" technology. In these cases,
correlation is invariably based on simple mathematics or heuristics
which generally do not take full advantage of the significant body of
formal mathematical techniques available in the area of decision theory.

In principle, these mathematical techniques provide a firm basis
for forming correlation decisions in a multisensor, multitarget
situation. In practice, however, the ocean surveillance environment is
such that important parameters required for the Bayesian methodology
vary widely with sensor mix or surveillance scenario in a manner that is
often poorly understood or even totally unknown. Thus, dependance on
such techniques alone often results in an inflexible system which is
unresponsive to the realities of an ocean surveillance problem.

For this reason, the approach we have taken in this work is to
overlay an A.I.-based control structure on a set of Bayesian theoretic
functional elements. In this way we hope to successfully tune the
individual Bayesian techniques to the changing surveillance situation
and to manage the ambiguities that necessarily arise when analytical
decision procedures are applied to a real surveillance problem.

In particular, our research has identified several A.I. constructs
which, when combined with Bayesian decision methods, can result in
improved data fusion system capabilities. These constructs include the
following:

1) A functional organization such as that found in A.I. systems
like the Hearsay II speech understanding program can make the
system both understandable to the analyst and highly
flexible. This flexibility is most evident in the system's
ability to incorporate diverse expert knowledge, encompassing
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both quantitative and heuristic information, over a range of
timelines, specific to an variety of sensors or scenarios,
and responsive to a high degree to analyst review and editing
requirements.

2) Production rule techniques are useful in dealing with the
fuzzy control rules necessitated by the sensor mix and target
scenarios inherent in the ocean surveillance environment.
These techniques permit easy specification, review and
moaification of the rules that guide the Bayesian processing
and tune it for operation over a spectrum of situations,
ranging from the well-known and usual to the poorly
understood and unexpected.

3) Search techniques developed in speech understanding and game
theory are useful in guiding the generation, evaluation and
selection criteria for investigating competing surveillance
hypotheses. The diversity of search strategies embodied in
these techniques permits flexible management of ambiguities
in the various plausible surveillance pictures, and provides
a mechanism for tuning the search tactics to those specific
scenarios where they are most efficient.

The system we have developed to exploit these techniques is
illustratea in the figure. We have termed the system the Intelligent
Correlation Agent (INCA), and have derived its architecture from that of
the HEARSAY II software system. In this design, development of a
surveillance product is accomplished by a cooperating set of Knowledge
Sources (KS) consisting of production rules and procedural code. These
KS's communicate via a global data structure called a blackboard. There
are essentially three tiers of knowledge sources. The lowest level
"atomic" are concerned with detailed mathematical or symbolic
correlation processes such as track scoring or filtering. The next
level performs an observation/evaluation of the correlation modules to
determine their success is propagating data up the blackboard data
structure. Finally a control tier, using the conclusions of evaluation
modules and the entire blackboard (if necessary), can make global
decisions on system operation so that the user inputted goal state is
most quickly achieved. Goal satisfaction occurs in either a forward or
backwara chaining mode.
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INTRODUCTION

This paper describes a method of extending the capability of a production system
applied to Tactical Situation Assessment (TSA) by adding a "package" of system-logic rules.
(A "production" is an if-then-rule implemented in a "production system," a system also
having a data base and a number of control mechanisms.) The implementation of these
rules within such a production system was termed a Platform-Track Association Production
Subsystem (PTAPS) [ 1 ]. The function of PTAPS is to perform much of the logical reasoning
such as process-of-elimination reasoning, needed to match tracks to specific platforms.

Proof-of-concept experiments with PTAPS rules were conducted in a modified
version of STAMMER, a System for Tactical Assessment of Multisource Messages, Even
Radar [2], [3]. STAMMER was developed to serve as a demonstration of the applicability
of rule-based inference techniques to the TSA problem. A small, fast skeleton version of
STAMMER was created for PTAPS experiments by stripping the original of its confidence
mechanisms, explanation functions, and graphics interface. The experiments involed two
basic scenarios: one concerned with the identification of submarines, and the other with
the identification of members of a Soviet task group with the help of satellite reconnaissance
data. The submarine scenario was later successfully run in STAMMER2 [4] and in Rosie-l,
the first version of Rosie (A Rule-Oriented System for Implementing Expertise) implemented
by The Rand Corporation [ 5]. It was concluded from these experiments with different
production system structures that PTAPS rules should work in any system in which con-
ventional TSA rules will work [6] . Since then, many of the rules were implemented in the
second version of Rosie, under development by the Rand Corporation.

This effort has been just one phase of a larger research effort to develop automated
data-fusion techniques using artificial intelligence tools. The work has been performed at
NOSC under the Command Control & Communications Systems Theory project, sponsored
by NAVELEX Code 613.

PTAPS OVERVIEW

Many of the PTAPS rules have the sole function of-building into the data base an
"intermediate framework" of membership files which permit, via other rules, chains of
reasoning not otherwise possible. This framework includes many kinds of "track files" and
"platform files." To become a member of some track file or platform file, a track or platform
must satisfy the conditions of a certain membership rule, and a member is removed by
another rule when the original conditions are no longer all satisified. (The term "member"
has a special meaning in Rosie, so the concept of listing an element in a file was substituted
for membership.) Of particular importance are "OR-files." The members of the OR-file of
a platform are those tracks which have not been ruled out as the track of that platform. A
platform is a member of a track's OR-file if that track has not been ruled out as a track of that
platform. The platform-OR-file of an emission has, as members, platforms which have not
been ruled out as the emitting platform.

216



It is assumed that no active track entered into the PTAPS data base is a false track,
eg the result of a radar's false alarm. Also, no two active tracks can be the track of a single
platform. The amount of time after contact is lost that must elapse before an active track is
made an inactive track should depend on the situation and be specified by rules.

A track file is "complete" if the system holds an active track for every platform in
that region (of that category, type, or class, if a subset file), even if none is identified. As a
result of high-altitude surveillance, for example, the surface track file of a region may
temporarily be complete. A platform file is complete if every platform in that region (of
that category, type, or class, if a subset file) is a member of the file. Note that members of a
complete platform file need not actually be in the region. Most platform files will be
complete if the region is enclosed (eg the Persian Gulf, Red Sea, Mediterranean Sea) and the
entrance/exit areas are continually monitored.

Another concept used in combination with file completeness is that of correspondence
between platform files and track files. For example, the track file containing tracks of sur-
face platforms has as its corresponding file the platform file of surface platforms thought to
be in the region. A typical rule involving these concepts is: The OR-file of a track is com-
plete if the track is a member of a track-file whose corresponding platform-file is complete.
The OR-file of a surface track is complete, for example, if the file of surface platforms
possibly in the region is complete. Examples of other rules are given below.

- If the OR-file of track t is complete and its only member is platform
p, then t is the track of p.

- If t is the track of p, and track t' is not t, then t' is an impossible-
track of p.

- If t' is an impossible-track of p, then remove p from the OR-file
of t' and remove t' from the OR-file of p.

These rules are written in widely different forms for the different production systems in
which they have been implemented. The last rule above is implemented in STAMMER2 as
follows.

ORFILEREDUC
(CONDITIONS

((MEMBER RPF *P)
(ORFILE *P *ORF)
(MEMBER *ORF *TR)
(IMPOSTRACK *P *TR)
(ORFILE *TR *FRO))

ACTIONS
((MEMBER *ORF *TR)

(MEMBER *FRO *P))
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CONF -1.0 PRINFORM
"A track and a platform are removed from each others' OR-files if the track is found to be
an impossible-track of that platform.")

The same rule is implemented in Rosie in this English-like form:

For each platform,
for each track such that the OR-file of that platform does list that track,
if that track is an impossible-track of that platform,
deny the OR-file of that platform does list that track and the OR-file

of thattrack does list that platform
and send (return, _____ _
that track, "and", that platform, "have been deleted from each other's",
"OR-files because", that track, "was found to be an impossible-track", "of", that platform, 
return).

Examples of rules involving emissions are the following.

- For each platform p possibly in the region of an emission, if platforms
of p's class or type carry the emitter type, then p is a member of the
platform-OR-file of that emissioni

- [completeness rule and various removal rules]

- If the platform-OR-file of an emission is complete and has only one member,
then that platform is the emitting-platform of that emission.

- If platform p is the emitting-platform oif an emission and track t is incon-
sistent in bearing with that emission, then t is an impossible-track of p.

Some of the rules needed to support the chains of logical reasoning in PTAPS are
also individually useful in an unextended system, and some of these require routine but ex-
tensive geometry calculations. Most of the latter were omitted from the experiments, and
the data were obtained by other means. The geometry functions involved could be imple-
mented without difficulty, but would increase execution time while not serving a purpose
relative to the intent of the investigations.

SCENARIOS

The experiments involved two basic scenarios, one concerned with the identification
of submarines and the other the identification of members of a Soviet task group with the
help of satellite reconnaissance data. The two scenarios used in the recent experiments with
Rosie are summarized below.

Two-Sub Scenario: Only two submarines could be in the region - a Delta and an
Echo II; and two subsurface tracks are reported. The acoustic signature of one track shows
that it cannot be a Delta; therefore, it must be the Echo II, and the other track must be the
Delta.

UNREP Scenario: Recent positions on all major surface tracks are obtained from a
satellite radar map, for a region corresponding to a segment of a radar swath. The positions
of ownforce ships are known, leaving four unidentified tracks. From earlier surveillance, it
is known that only four other ships could be in that region, an oiler, a destroyer, and a
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cruiser, the latter three comprising a Soviet underway replenishment group. A signal which
only the cruiser could emit is consistent in bearing with two tracks; and a visual sighting
of the merchant eliminates one. It is then known which tracks correspond to the unrep
group, so the lead-track of the group is eliminated as a track of the oiler. Every platform is
then associated with its track.

CONCLUSIONS

Reference I discusses the additional kinds of rules and capabilities that must be included
in an operational PTAPS and the problems involved in integrating PTAPS rules into an actual
tactical situation assessment (TSA) system, and none of these conclusions has changed. The
most difficult problem with compatibility with TSA rules may be the handling of confidence
values. PTAPS does not use confidence values and must be constrained from operating on
assertions that have less than a near-certainty confidence value. In discussions regarding con-
fidence values, reference 1 describes how conclusions which would logically follow from
different assumptions about particular tracks or platforms could be determined by PTAPS and
assigned confidence values based on the confidence values of the initial data. Implementing
this would not be an easy task.

The logical reasoning that can be implemented with PTAPS rules is essential to the
function of associating tracks with platforms. If the other reasoning functions of tactical
situation assessment are to be performed in a production system, then probably the PTAPS
function also should be performed within that system, so that the functions can be easily
coordinated and can share the data base. A possible alternative would be to create a specialized
problem-solving technique for platform-track association and interface it with the production
system, but coordination and data base sharing would be more difficult.

The next desirable step in continuing PTAPS investigations is to integrate experimentally
PTAPS rules with TSA rules in a production system.
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