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CHAPTER I

INTRODUCTION

1.1 The Lyapunov and Riccati Equations in Control Theory

The application of modern control theory to real

problems involves solving the Lyapunov and Riccati equations

accurately and in an efficient manner. These equations arise

in a number of problems such as the stability of linear sys-

tems or in the evaluation of cost functions in optimal con-

trol and covariance matrices in filtering and estimation [1],

[2].

Consider the linear system

x(t) = ATx(t) + w(t) , x(s)Rn

where w(t) is formally a stationary, zero mean, white noise

process with spectral density matrix Q > 0 (i.e. Q is

positive semidefinite).

The steady state variance of this system is given by P

where

A P + PA + Q = 0

for stable A T and P is the unique positive semidefinite

solution of the algebraic Lyapunov equation. The Lyapunov

equation also arises in connection with the Lyapunov function

TV(x,t) = x (t)Px(t)
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for the linear system

x(t) = A x(t) , x(O) = x

Differentiating V(x,t) we obtain

0 T T
V(x,t) = x (t) [A P + PA]x(t)

T
- - x (t)Qx(t)

where Q is positive semidefinite since V(x,t) is a

Lyapunov function. If P and Q are both positive definite

then the system is guaranteed to be stable and x(t)

approaches zero as t tends to infinity [3]. Moreover, if

J is the associated quadratic cost of the state trajectory

over the infinite time interval so that

0J - I xT(t)Qxlt)dt

then, because the system is stable

TJ = xTPx
O o

We may also obtain from the variation of constants formula

and the integral formula for J that

00 T
P-=eA tQeAtdt

0
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Turning to the Riccati equation, consider the determinis-

tic optimal control problem

min{J(u) = f xT(t)Qx(t) + uT(t)Ru(t)dt}
u 0

subject to x(t) = Ax(t) + Bu(t), x(O) = x0

where R > O , Q > 0 and J(u) is the cost.

Provided [A,B] is controllable and [A,/2] is observ-

able, the minimizing control and minimum cost are given by

-1 T
u (t) = - RBKx(t)

T
J = xTKx0 0

where K is the unique positive definite solution of

T -lT
A K + KA + Q - KBR B K = 0

the algebraic Riccati equation [283.



-9-

1.2 Decomposition and Decentralization in ' Large Scale Systems

As the dimension of the state space increases and becomes

very large, as may happen with interconnected systems, the

task of computing solutions to linear-quadratic control

problems using general purpose algorithms becomes exceedingly

difficult. These difficulties arise because the number of

operations specified by an algorithm and the associated sto-

rage requirements exceed reasonable time and size limits

dictated by the computing facility. Even if these limits are

not exceeded, the numerical accuracy achieved may not be

sufficient, due to round-off errors.

However, if the dimension of the problem is very large,

there is usually a special sparse structure that can be

taken advantage of to reduce these computational difficulties.

There are two approaches to do this, which are somewhat

related; they are decomposition and decentralization. Briefly

decomposition is concerned with the reduction of off-line

computation required to obtain a control law. Decomposition

is attractive, since it breaks the original problem into

several subproblems that are simpler and easier to solve and

then reconstructs the centralized solution. Decentralization

on the other hand, is concerned with the reduction of on-line

communication and computation implicit in a defined control

law. Formulation of decentralized control laws leads to a

number of smaller subproblems or infimals, which reduce the

T"" " " "- I- - ~` "--" -^ -- - ---------
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on-line computation and communication. This however, may

increase the off-line computation to obtain the control law

since the infimals may not be simpler and easier to solve than

the original problem [4]. The approach considered here is

similar in some respects to that of Laub and Bailey [5] and

is one of decomposition. However, since subproblems are

defined in decomposition approaches, there is a certain off-

line decentralization of information about system process

parameters. Laub and Bailey point this out in defining a

decomposition for the centralized decision problem leading

to a decentralized solution. In this decomposition, each

controller or infimal decision maker needs only limited in-

formation about the system process parameters and only a

part of the state. A supremal decision maker called the co-

ordinator directs the decisions of each infimal decision

maker or controller by supplying a correction term to each

controller's decision. To obtain this type of decomposition

and decentralization, they pose the problem as a classical

least squares problem in Hilbert space. They then obtain

conditions under which this decentralized decision making with

coordination can achieve the optimal centralized decision

process. For the linear regulator problem over the infinite

interval, this results in at best, a partially closed loop

solution.

In the approach taken here, the only decentralized aspect



will be that of the. decentralization of information about the

sysntem parameters.. The solution obtained will be in closed

loop form, but will not be implementable in a decentralized

fashion, since. it is merely the centralized solution in par-

titioned form.

To contrast- the decomposition approach of Laub and

Bailey to the one taken here, it can be noted for the linear

regulator problem that at each iteration, they solve the

minimization of the cost function exactly while approximating

successively the. linear constraint of the differential system

equation. In thins thesis, the. necessary conditions for op-

timality are decomposed instead of the original problem. How-

ever, this can be interpreted as satisfying both the state

equation constraint and the minimization of the cost function

approximately and then obtaining convergence conditions under

which the successive constraints and cost functions converge

to the true state equation and true cost function.

--- -- ·----- ------------ ·- v;·- ··- ·-- ·---------- ·· ------- -r ~~l-~~~-`~~-~ -~
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1.3 Summary of Thesis

The Lyapunov and Riccati equations of control theory are

presented and analyzed in the case where special structure may

be taken advantage of. In Chapter II, the relationship of the

Lyapunov equation to linear vector equations and techniques

for solving them is explored. Chapter III discusses an itera-

tive method to solving the Lyapunov and Riccati equations mo-

tivated by singular perturbation theory which suggests the

particular decomposition. This decomposition is identified

with the separation of time scales between subsystems of a

large scale system. Chapter IV presents a decomposition

algorithm motivated by the idea of weakly coupled subsystems

of a large scale system being approximated by independent

subsystems. This method is applied to a power system model

to obtain some numerical results. Chapter V presents some

conclusions and suggestions for further research along with

the appendix which contains a somewhat lengthy algebraic deri-

vation of the two-time scale decomposition algorithm for the

Riccati equation.

The main contributions of this thesis are:

1) The presentation of a new two time scale, iterative

decomposition algorithm for the Lyapunov and Riccati equations.

2) The extension of the weak coupling iterative decompo-

sition algorithm by use of a relaxation parameter.

3) The showing of the way in which a special canonical
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form may be useful in reducing computations for the decompo-

sition algorithm.
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CHAPTER II

ITERATIVE SOLUTION METHODS

2.1 MATRIX PRELIMINARIES

Vector and Matrix Norms

It is useful to have a single number to measure the size

of a vector or matrix. This number is called the norm of the

vector or matrix and is denoted by J' Ii, [17].

For vector norms the following relations must hold

Ixll >O unless x = 0

I laxll = lal ilxll for any complex scalar a

Ilx + YI! < Ilxll + Ilyil

Three vector norms that are commonly used are

Illxip = (- X ll + lx2 lP +--.+ IxnlPyi /P (p = 1,2,)

where I xlx i.s interpreted as maxlxij . The norm Ixjl12

is the usual Euclidean length of the vector x. An important

inequality is

IxTyl < I 1xll121 jyl 2

the. Schwarz inequality.

Similarly, for the norm of a matrix A, denoted I] Al I

the following relations must hold



I IAI I > 0 unless A = 0

I cAIA = al I IA I for any complex scalar a

IIA + B11' . 11AII + liB[[

IAI I BI I JAI IA| I

Corresponding to each vector norm the associated matrix

norm defined by

[IAll = max J ixl 

satisfies the conditions for a matrix norm and is said to be

subordinate to the vector norm.

Corresponding to the three vector norms the subordinate

matrix norms are

I|AI = max Jai I

i J

I IA2 = max['Xi ( A H A ) ] 1/2

where X (AHA) are the eigenvalues of A HA and A H

denotes the. conjugate transpose of A.
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From the definition of these norms it is apparent that

IlAxl. llp I IA_ Il Ii l ; p = 1,2,c

is satisfied for all x. Any matrix norm which satisfies this

inequality is said to be consistent or compatible. Another

matrix norm which is used frequently that is compatible with

the vector norm °I 112 is the Euclidean norm. The Eucli--

dean norm for a matrix A is defined by

II IIE = [E Elaij 121 / 2
i j

The I IAI 12 norm is referred to as the. spectral norm. Some

useful relationships involving the spectral and Euclidean

norms that can be developed are

IAI 12 < IAi E < nl/21 AI 12

where. A is an n x n matrix. These inequalities follow

from the fact that A A is positive semidefinite and

max I(AHA) -< I [Al12 = tr(AHA) < n max l(AHA)l .

Also, if X is an eigenvalue of A and x is a corresponding

eigenvector, then for consistent matrix and vector norms

|I|Ax| = IxA Ilxii <__ IAIl 11xll

Ixi < IIAII 



From this we can obtain

I IAI 12 maxjX(AHA)| < IIAHAIoo< IIAIIIIAII1

_ _ _ _ _ _ _ _ _ _ _ _ - -2- 
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2.2 THE LYAPUNOV EQUATION AS A VECTOR EQUATION

The Kronecker Product

The useful notion of the Kronecker product and its ele-

mentary properties is presented here to facilitate later

analysis of the Lyapunov equation.

The Kronecker product is discussed by Bellman [11] in

which some useful elementary identities are stated. The

Kronecker product of two matrices A and B is denoted by

A 2 B and defined by

11 a 12B ... alnB

A Q B = a21B a 22B a2nB

anl- an2B ... annB

In order to justify the use of the term product, it may be

seen by using block matrix multiplication and the definition

of Kronecker product that the following identities hold:

(A Q B) Q C = A Q (B 2 C)

(A + B) 2 (C + D) = A Q C + A 2 D + B 2 C + B 2 D

(A Q B)(C 2 D) = AC 2 BD

(aA 2 bB) = ab(A 2 B) for scalars a,b
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Eigenvalues of A 2 B

The eigenvalues of A 2 B have a simple relationship to

the eigenvalues of A and B. Suppose a and B are eigen-

values of A and B respectively, with corresponding eigen-

vectors x and y. Consider the Kronecker product

(Ax) 2 (.By) = Cax) Q (By)

which can be written alternatively as

(A 2 B) (x 2 y) = (a(x 2 y)

using the previous identities. Thus aB is an eigenvalue of

A 2 B with corresponding eigenvector (x 2 y). Note, however,

that for multiple eigenvalues of a defective matrix (i.e. not

diagonalizable. the generalized eigenvectors or principal

vectors of grades greater than one will not be of the form

x 2 y. A vector xm is called a generalized eigenvector of

rank m (or a principal vector of grade m) [17] of the matrix

A and eigenvalue X if (A - XI)m xm = 0 but

(A - XI xm- O

Kronecker Products and Linear Equations

In studying the Lyapunov equation, it will be useful to

examine the linear matrix equation

AXB = C
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where AsR n x n BRmxm and X,CsRnx m This equation can

be decomposed into two separate problems

AX = Y and YB = C

If X,Y and C are composed of vector columns xir Yi

and c. respectively for i = 1 to m, then it is apparent

that

A X 1 [ Yl

[A]LX .Ym

and

[Y1Y2 ... Ym] B = [1c 2 m]

Hence,

Ylm

i. = E bkiyk [b liI b 2iI ... bmiIl Y2 , i = 1 to m
k=l

where b.. is the (i,j)th element of B. As i runs from
1one to m tis can be rewritten as

one to m this can be rewritten as
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bll I b2I . . . b I- Y cli 21 ' bml 1y

b 12 b22IA x1 C2

b IIb I ym CblmI . ... nI c

Now, by substitution for Y we obtain

b I b21 . . . b I A x c

or

b A b 2 1 A b A XL Cl

b 12 A b 2 2A x 2 C 2

blmA . . . . . bA x c
im mm m m

Now by definition of the Kronecker we can write

(B 2 A)x = CC

m m
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We have now obtained a linear vector equation from a

matrix linear equation. However, suppose that it is desired

to construct xR and c R of the rows of the matrices X and

C instead of the columns as we have done previously. This

can be accomplished simply by considering the columns of XT

and C T so that for the original problem we substitute the

equivalent problem

BTXTAT = CT

and using our previous result we obtain

(A Q BT)XR = cR

where

Fx1 - c

x2 c2
XR -L: and c R =

with

T T
X = [x1 x2 ... x n] and C [clc2 ... cn]

Furthermore, the relation between xc and xr is given

by

xc = PxR

with
pP P= P = I
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where P is an orthogonal permutation matrix. P is defined

by

Ull U211 2 . . Unl

U 12 U 22

-U 1m . . . . U Ulm ' ' ' ` · Unm

where each U.. is a n x m matrix which has elements of

zero except for the (i,j)th element which is a one. In the

case n = m P is then symmetric.

It has been shown previously that the corresponding sets

of equations in terms of Kronecker products for AXB = C is:

AXB = C ++ (A 2 BT)xR = cR

TAXB = C -++ B Q A)xc = c ·

Hence, T T
(A B BT)xR =P pTcc

(A B)PT x c = P Tc

[P(A Q B T)pT]xc = c

which implies that

(B Q A) = P(A 2 BT)PT

or that BT 2 A and A X B T are similar and therefore have

the same elementary divisors.
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The Lyapunov Equation and Kronecker Products

Using the formulas for Kronecker products, we may rewrite

the Lyapunov equation

ATK + KA + Q = O

in the form

KAkR = qR

where

KA = A T I + I 2 AT

and kR and qR are vectors comprised of the rows of the

matrices K and Q respectively.

Eigenvalues of KA

If A has eigenvalues X i then

ATx. = X.x.
1 1 1

where xi is an eigenvector of AT corresponding to X..

Consider the Kronecker products

ATx. xj = ixi. 2 x.
1 I I1 j

x. 2 Aj X. Xjxi. x.I J Ji j

which when added give

(AT I + I Q A T ) (xi 2 xj) = (Ai + .j)(x i 2 xj)

79 -7-s a~~----- * r~~l1 1 J 1 
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Hence, the eigenvalues of KA are simply Xi + Xj

counting multiplicities. If A possesses n linearly

independent e-igenvectors Ci..e. A is not defective) then

KA has only linear elementary divisors and n 2 linearly

independent eigenvectors

z.j = Xi . Xj i = 1 to n ; j = 1 to n

Givens [12] has shown that if A has a Jordan form with

Jordan blocks of size Pi , i = 1,2,...,m , where m is the

number of Jordan blocks, then K A has Jordan blocks of size

Pi+ PjPj 1 Pi P P - 3,..., P i - Pjl + 1; i = 1 to m

and j = 1 to m

Norm Relationships for KA

Since K= A & I + I Q A , AR

a I a1 I+I . . . alIallI +12 Aln

a21I a221 + A a2n
KA =

_anl I an2 I annI + A

Suppose for 1 < r < n and i = 1,2,...,n

Ilarl I > I lail

where
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A =[ala2 .a . ain] [a

ani

then

IIKA I I = KI = 21larll = 211AI11

TThis is necessary since KA has one column with every element

of ar appearing twice except for element arr which is

replaced by 2arr and the remaining elements of the column

being zero.

Similarly for the rows of KA we can deduce that

IKAI I = = 1 I - 21 IAI .

For the Euclidean norm, if

A= B+D

where D is diagonal and B has a zero diagonal,

|A B2 2+ |iDIi 2
IE IA IE =I IBI E

Hence,
2 2 2

IIKAI IE = 11KBI IE + IIKD DIE

must hold.
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2 2Now I| KBI E = 2nl IBI E since B has a zero diagonal,

and
n

JID 1 2 Z laii 12

I IDI = aii + a ii
i=l j=l i=l j=l

+ lajl2 + 21aiiajjl)

|IKJ<12 =2n|D| |2 + 2 tr2 (A)I IKD 12E. 2ni IDI 'E

Therefore

22 22(trA)2
2K = 2n I IAI I

2 + 2(trA)IIKAI IE - E

The spectral norm of KA has only an inequality rela-

tionship to the. spectral norm of A ;

IIKAI I2 = I1KAI2 < IIA Q I 12 + III A 12

2 HI IA a 'I1 2 = (pA 2 I) CA g I)] = P (AHA I'] = p(AHA)

where

p (X) = max[lXi(X) I]

Also

2 2I1I ~ AI |2 = p[CI Q A) (I C A)] = p(AHA) = I IA|I2
and hence.

IIA112 <- IIKAI12 < 211A1 12
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2.3 ITERATIVE METHODS FOR THE LYAPUNOV EQUATION

Present iterative methods [6] for solving the Lyapunov

equation

ATK + KA + Q = , KeR n x n

in continuous time transform the equation into a discrete

time version which is then iterated to stationarity. The

discrete time Lyapunov equation is

K FKmF +=FKF+G, K O0m+l m o

Convergence of this iteration is ensured if all of the eigen-

values of F lie within the unit disk. However, the rate of

convergence may be extremely slow, if F has eigenvalues

close to the unit circle, but may be accelerated using the

following iteration

S F FSF + S G
m+l mmm m o

F - F F Fm+l m ' o

where {Sm} K and Sm = K m
m 2m

This iteration is nonstationary and can be shown to converge

quadratically for the case when F is diagonalizable. To

see this write K asm

m-l T

K i= (Fi) T GF
m i=0
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then

K =(Fm)TK F + K
2m m m

so that with m = 2P we obtain

K = (F 2P) TK F + K
2P +I 2p 2p

the described iteration above. To simplify the convergence

analysis, the iterations may be written (using Kronecker pro-

duct notation of Section 2.2) as vector iterations

km+1 (F F) km + g k =0

2m T
m+l [(F a F) ]s + s , s =g

where k Sm and g are the vectors formed from the rows

of Km , Sm and G respectively, such that the first row

forms the first n elements of the vector, the second row

forms the second n elements of the vector and so on. Now,

defining the error at each step in the iterations quadratic

convergence may be demonstrated. Since the solution k

satisfies the equation

k = (F Q F) k + g

let
em k - k and em k - sm m m m
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then with

B = (F Q F)T

em+ 1 = B e

e =Breem+r m

so that with m = 0 and r = 2P

2P 2 P
ep =e = e = B k

When F is diagonalizable and stable, B is diagonaliz-

able and stable. This is true because there exists an X

such that

F = X 1Ax where A is diagonal

so that

B = (X-1 a X-1 ) (A A)(X Q X)

B (X Q X)- (A Q A)(X Q X) = T- DT

ij (B) = Xi(A) Xj(A) for i = 1 to n and

j = 1 to n

Let

d 1

d2

D ; N = n 2

dN
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and consider the following norms for any = [klk 21 ... IkNJ

m+L N m+lI2 k~l2 id k221 kit2 i

N
[2[I 2=2 _ a !

2 m% 2I12 - i 2i-, 2

IID ku 2 > ;Idk u i |
N

since
n

ilxl 12 > E xi

and define

1'i. 'i=l to N

a max ai ; i = 1 to N
i

hence
N N

21 2m N 2 m+K 22 2 2 N 2m+1 22ID iD2mi 2> Z Id ki ai il Id2 k i

>-2 iz 2 ID

_i 2m+l 2.2
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or
el ID2m 2 2m+l1 2

|D | 12 > | 12

T-1D 2mll2 = ID2 k 2 > 2 > D2
iiTT D 2 D 2 2ID 112

Multiplying both sides by I T-1I 12 and using matrix norm

inequalities

| T|J 2 |T | 1 |T 1D~m~ 2 > |T-1| 2
2 TIi!li 112clTD 2l2 - liT-111D21 1k112

1D2m+l 

with
t = Tk

(M IITl12 ITTI I)B2 k 2 > i 2m+l
i2 2nl

and finally

Iem+1li2 < 0(eo) em11 2 v

where ^
a(e o ) = alT1T 11211TI 122

the desired result of quadratic convergence.

The methods that use this approach differ only in their

transformations from continuous time to discrete time. One

transformation is h

eA h G = (eA )T QeA d
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Davison and Man [7] use the approximation

Ah
G -Qh ; F = e

where h is required to be small in order for the approxima-

tion to be good. Reducing h, however, leads to an increase

in the number of iterations required which in turn limit the

accuracy obtainable due to round off error. This problem can

be circumvented to some degree if a better approximation for

G is used by including more terms of the series expansion

for G. Another transformation utilized by Smith [83 which

is better uses a matrix linear fractional transformation. In

this case the left half plane is mapped into the unit disk by

F =- (A - aI)-1(A + aI)

(AT - aI) 1Q(A- aI)-G = 2a

where the choice of a = [1Xmin(A)max(A)l] 1/2 for real

Xi(A) minimizes the spectral radius of F. The operation

count for this algorithm is (3a + r)n3 where a is the

number of iterations required.

---- - ----- -- -- - -- -·~--- -- ·-- ·- ----------__ _ _ _ -------- ---1·--- - - ---- -----
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2.4 ITERATIVE METHODS FOR LINEAR VECTOR EQUATIONS

Since the Lyapunov equation may be written as

KAkR qR ' KARn

it is simply a linear vector equation that may be solved by a

number of numerical methods that are currently available.

Note that if Q is symmetric the number of equations to solve

can be reduced from n 2 to n(n + 1)/2.

For such linear systems of order n 2 direct methods

will require O(n6) arithmetic operations with even the for-

ward and backward substitution requiring O(n4) operations.

Thus this approach can obviously not compete with methods

developed specifically for the Lyapunov equation which re-

quire O(n 3 ) operations. This remains essentially true

even if sparsity is exploited in the direct methods. However,

there is theoretical insight to be gained from this formula-

tion of the Lyapunov equation. Therefore for the rest of

this chapter the equation Ax = b will be studied.

Iterative Methods for Ax = b

The iterative methods discussed here are referred to as

norm reducing methods [18] since they start with an arbitrary

first approximation to the solution and successively reduce

the norm of the error. There has been much research in this

area that has been directed to the solution of large sparse
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systems such as arise in the solution of partial differential

equations [13,14].

The basic idea of these methods is to split the A

matrix of Ax = b into two parts Ao and Al and form the

iteration

AoXK+l = A1 K + b

where

A = A + Al

To be an effective algorithm the splitting should be of such

a nature that XK+l is easy to compute. Therefore A°

should be simple and invertible. Usually A is diagonal or

triangular or block diagonal. To ensure that the algorithm

converges to the correct solution for any initial vector x

it is necessary and sufficient that

P(- A 1o A) = p(Ao Al) < 1

If the iteration is subtracted from the true equation

Aox = - Alx + b the form of the error at each step results:

AoeK+1 = AleK

where
eK = x - xK

or
eK+ = -A AoeK
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K -1 K
eK = C- Ao A1)Keo

so that

||eK|I 'I I A(1A1)K A I I eo I I

Now, if P(Ao A l) < 1 then for some K not necessarily

small

|(A 0ol Al) K < 1

and it is entirely possible for some Ko iterations for

I j (AolA1)K II to increase although eventually it must approach

zero as K tends to infinity. The spectral radius is only

the asymptotic rate of convergence. If Ao Al has a full

set of eigenvectors yi and eigenvalues X.i this is clearly

seen since

K K
eK= l +..+ cn nYn

where

e = clYl + c 2 Y2 +. .+ cnyn

c i = constants

and the largest Ixil will eventually be dominant and govern

the convergence.

Obviously, different splittings result in different methods

with different rates of convergence. For A = L + D + U

where L is strictly lower triangular, D is diagonal and
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U is strictly upper triangular, the well known methods are

classified by the following table.

A (w) A1 w) Method

D L + U Jacobi

D + L U Gauss Seidel

1
D/w l1 -)D + L + U Simultaneous overrelaxation*-:

D/w + L (1 - ')D + U Successive overrelaxation**

* wO0 w is the relaxation parameter and

k** O<w<2 A = A (W)+A1(W)

Postponing explanation of what w is for a moment, a

brief discussion of the first two methods will be given.

Firstly, one of the simplest splittings of A in which A

is easily invertible is Ao = D, the Jacobi iteration.

However, the Gauss Seidel iteration is just as easy to

invert even though it does not appear so at first glance.

The reason is that the components of XK+ 1

T _ +l K+l K+l
XK+1 [x1 ',x2 ,...,X n ]

K+l K+I
are computed in order from x1 to x n This allows the

Gauss Seidel iteration to be written as

DXK+1 = -LXK+l UxK

;-· -~~-·---------------~~--~------r---~-~-~- ___ - .~~ --~ ~~ ~--~~~~----·----.--.- -F----
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Since L is strictly lower triangular, LxK+l can be included

on the right hand side of the equation because in computing

any component of xK+l only components of XK+l that have

already been computed are present in LXK+ 1. Hence, Ao for

the Gauss Seidel method is just as easy to invert as the A

for the Jacobi method since all it involves is updating the

components of xK as soon as the K + 1 updates become

available. This cuts the necessary storage in half from the

Jacobi method since xKx+ and xK always can be stored in

n storage locations. The Jacobi method is required to keep

all the components of xK until the calculation of XK+l

is complete but does have the advantage that all of the com-

ponents of XK+l could be computed simultaneously on a suit-

able processor.

Turning to the next two methods and the idea of relaxa-

tion of algorithms, we observe that if w, the relaxation

parameter, is equal to one that the simultaneous relaxation

method reduces to the Jacobi method and the successive over-

relaxation method reduces to the Gauss Seidel method, which

suggests their origin. Relaxation techniques applied to

the Jacobi and Gauss Seidel methods yield the latter two

methods in the table, and try to inprove the convergence

rate of the algorithms by attempting to reduce the spectral

radius of AolAl , p (Ao A). The way this is done will be

illustrated using the Gauss Seidel method.
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The Gauss Seidel method rearranged s-lightly is

XK+1 = D-1 LXK+ D-1Ux + D-lb

Trying to improve on this algorithm's estimate of what XK+l

should be, we define a new iteration

K+1 = K + K+ 1x K } 1 xK XK+1

where XK+ 1 is the old Gauss Seidel estimate of what XK+1

should be, given all the components of XK+l and xK that

have been computed so far, so that

-LX 1 -1UX-

XK+1 D Lx K1 - D Ux + D b

and

xK+l = xK + w{-D -1LxK - D-1 -K} + wD-l b

K+ 1 = wD LxK+1 + [I(1 - w) - wD-1U]xK + wD lb

or

CD + wL)xK+1 = [(1 - w)D - wU]xK + wb

(D 1
+w +L)XK+l = [(l + U]XK + b

A o - A 1

Note w allows us to correct more or less than the original

Gauss Seidel method and that the new xK+1 is a weighted

mean of xK and xK+l'

" [~~` .......... T ~ sl~^l~ ll ~1--'---------------- '~~~'~~^-~~"'~~"--~-~~~~-~~----~--- ........................--
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Relaxation attempts to overcorrect if the algorithm is

converging monotonically to the solution and undercorrect if

the iterates oscillate about the solution, damping the oscil-

lation. Obviously, if one component of the vector iterates

is converging monotonically to its limit point while another

is oscillating about its limit point, there are conflicting

objectives to achieve using a single relaxation parameter w.

In this case, optimal relaxation finds the best compromise.

Very roughly speaking, if the oscillation of one component

hurts the convergence the most, then the best policy would be

to undercorrect at each step. The reverse would be true if a

slow monotone convergence in one component was the most damag-

ing to the convergence of the algorithm.

If relaxation is effective in reducing the spectral

radius of AoAl , it can lead to a significant reduction in

the arithmetic computation. Determination of an optimum

relaxation factor w0 is therefore of interest. The original

iteration

AoXK+l = - AlXK

can be written with relaxation as

XK+l = BxK + c

where

B = B(w) = - Ao (w)Al(w)

c = c(w) = Al(w)b

~ - -- -- - - - ~ - -·IO
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For the four methods discussed B(w) is given by:

B (.w} Method

- D (L + U) Jacobi

- (D + L)- U Gauss Seidel

I(1 - w) - wD (CL + U) Simultaneous overrelaxa-
tion

(I + wD-1 L)- [(1 - w)I - wD- U] Successive overrelaxa-
tion

In the simultaneous overrelaxati.on method, the eigen-

values of B(w) are

X(B) = 1 - w + wX(J)

where

-l
J = - D (L + U) = B(1)

If all the eigenvalues of J, Xi(J) are real and

X1 (J) < X2(J) <...< Xn (J) then for Xi (J) < 1 for all i

or X. (J) > 1 for all i the optimum relaxation factor, wo

and the minimum spectral radius, p[B(wo)J are given by:

2
0o 2 - X1(J) An(J)

oB(w ~ 2- n ( J) - X (J) n
0 ~~~~ 1( J n l (1
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If Xn (J) = - X1(J) < 1 then wo = 1 and p[B(wo) ] = A (J).

This is true since for X1(J) < A2(J) <...< An (J) < 1

wA (J) + 1 - w > 1 for w < 0

therefore w > 0 and it follows that

wX (J) + 1 - w) <...< w n(J) + (1 - w) < 1

and hence IWoA1 (J) + (1 - Wo) = IwoAn (J) + (1 - w0o)I which

implies

wo ( - 1C(J)) - 1 = w o (Xn (J) - 1) + 1 = p[B(w )]

The case for 1 < A1(J) < A2(J) <...< An (J) follows similarly.

However, when the eigenvalues of J are complex with

a < 1 and aj > 1 for some i and j , where

i - Re{Xi(J)} , then p[B(w)] > 1 for all w. This follows

from the fact that

laKW + 1 - w < IA K(J)w + 1 - wI for all K

and that if

w =0 then p[B(w)] = 1

w < 0 then w(a. - 1) + 1 > 1

w > 0 then W(aj - 1) + 1 > 1
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In general, when the eigenvalues of J are complex

IwI < 2/z

where z = max(tXi(J) - Xk(J)I)
i,j J

for p[B(w)] to be less than one. This is necessary since

all of the eigenvalues of B(w) must lie within the unit disk.

For the successive overrelaxation method it is absolutely

necessary that 0 < w < 2. This result is Kahan s theorem

[see Ref. 13]. It is quite simple to show since

detB(w) = det{(I + D- Lw) - [(1 - w)I - wD U]}

= det(I + D- Lw)- 1 det(.1 - w)I - wD-1 U]

= det[(l - w)I - wD 1U] = (1 - w)

because D -1L is strictly lower triangular and D- U

strictly upper triangular. From this, we can obtain

n

I(1 - w)= n = h I i (B) I < I n(B)|n ; B B(w)
i=l

where

IXn(B) I = maxX i(B) 

and hence

11 - wl < pCB(w)) < 1
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implies 0 < w < 2.

These relationships give some insight into the nature of

relaxation methods and a limited region in which to search

for an optimal w.
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2.5 HIERARCHIAL AND DECENTRALIZED FEATURES OF ITERATIVE
DECOMPOSITION METHODS

To illustrate the relation between hierarchial coordina-

tion and iterative methods for Ax = b consider the parti-

tioned problem

All A12 x1 b 1

LA21 A22 Lx2 b2i

and the associated block Jacobi iteration

L: A22J LX+2 J [A21 -O J LX1f + 2[

This can be written in the form of subproblems with coordina-

tion depicted.by Figure 2.5.1 which reveals the two

level hierarchy of coordinator and subproblems and the de-

centralization of information about system parameters.

Note that neither the coordinator nor the subproblems

"know" all of the A matrix and that new information from

the coordinator for the subproblems may be sent to both

subproblems simultaneously allowing the computations to be

done in parallel.

Now consider the Gauss Seidel iteration

........................................................... -- F T -
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Coordinator's Problem

K+1 _b1 = bl - A12x2

K+1 Kb 2 =b 2 A21x 1

RK+l K+1

/X K+l bK+
1 2

Subproblem 1 Subproblem 2

K+l K+l A xK+l bR+l
11F1 1 22 2 2

Figure 2.5.1
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A 0 K+l] 0 -A x b
11 1 12 1 

K+l K
A 22 L2 21 2 2

If this iteration is decomposed in fashion similar to the

previous case, the same terminology may be adopted. Here,

the information about the system (the A matrix) required by

each of the subproblems and the coordinator remains the same

but now the coordinator can no longer process new information

from the subproblems in parallel, but must process the infor-

mation sequentially. However, now the coordinator requires

only half the storage space for x" it required previously.

Also, the Gauss Seidel iteration generally converges faster

than the Jacobi because it utilizes the new information cal-

culated in a more efficient manner. In terms of decentralized

information about system parameters, both methods are the

same. Their difference arises from the coordination scheme

used, which changes the decomposition.

When both of these algorithms are relaxed, the coordina-

tor requires more information about the system and the infor-

mation about system parameters required by the subproblems

remains unchanged. This can be seen by writting out the

methods as before. For the simultaneous overrelaxation

method, the iteration is
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I= W + W

o A 22 [x +l -A 0 L[ bJ

All O0 x K2

+ C1 - w)

Decomposing this

A K+ = bK+ ... subproblem 1

K+i K+i
A X =2 b2 ... subproblem 2

the subproblems have exactly the same form and hence, require

the same information about system parameters. The coor-

dinator's problem becomes

K+l K K K
b1 = - (AllXl + A 2 2 + A12x2) + wbl

K+1 K K K
2 - w(A 2 1Xl + A2 2 x2) + A 2 2x 2 + wb 2

and it is necessary for the coordinator to "know" all of A.

Even so, the coordinator may still process information from

the subproblems in parallel.



-49-

Sequential processing is however, required for the suc-

cessive overrelaxation method which can be written as

[A 11 1K2 r1
A K+l -A 0 x

[ 22 ]2[LIZ [21 ] [ 2 2A [2

All 0 x 1

+ (1 - w)

A 22 X2

The subproblems and coordination problem are then defined

as
K+l K+l

A1 xK1 = b 1 ... subproblem 1

K+A x bK+lA22 x2 b2 ... subproblem 2

K+l K K K
1 = - w[A11 x 1 + A 12 x2 - b1 + AlXl

K+i K+l K K
b2 = - w[A 2 1 x 1 + A 22 x 2 - b 2 + A 2 2x 2

coordinator's
problem

In this case, the coordinator again must "know"' all of A

which is bad from the decentralization of information view-

point, but not surprisingly the storage required for xK is

cut in half. As mentioned before, it is also true that the
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processing of information transferred must be done sequen-

tially.

These types of decompositions and iterative techniques

can be applied to the Lyapunov equation without writing the

Lyapunov equation as a linear vector equation. This makes

these iteration feasible because the dimension of the problem

has not been increased. However, now the subproblems are

Lyapunov type equations instead of vector equations.



2.6 CONDITIONING, STABILITY AND DECOMPOSITION METHODS

Conditioning and Stability

Computing the solution to mathematically exact analyti-

cal expression using high precision in the calculations may

still result in a very inaccurate solution. This happens,

barring outright blunders, for one or both of the following

reasons: (l) the problem is illconditioned or (2) the

algorithm used to compute the solution is unstable. A

problem is defined to be.illconditioned if a "small" pertur-

bation in the data may result in a "'large" change in the

solution. Conversely, a problem is said to be well condi-

tioned if a "small" perturbation in the data necessarily

results in a "small" change in the solution.

It is important to note that conditioning of a problem

is independent of the procedure used to obtain the solution.

Stability or instability is a property of the algorithm used

to compute the approximate solution. An algorithm is defined

to be stable if the approximate solution it produces is the

exact solution of the problem with slightly perturbed data.

A well conditioned problem solved with a stable algorithm

produces an approximate solution that is "near" the exact

solution. In any other case we cannot make this guarantee

rœ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~----------~---~------;--~--r-- -~~~-- ---- --------
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In order to measure the conditioning of the problem of

solving systems of linear equations, the notion of a condi-

tion number [15,16] is introduced. Consider the linear system

of equations

Ax = b

where x is the unknown and A and b are the data. If

perturbations in b are designated as 6b and the corres-

ponding changes in x as 6x then

A(x + 6x) = b + 6b

and
A6x = db

Using the relationships of vector and matrix norms, the

following inequalities must hold

!lbl < I1 xll < IIA-111 1IblI
!AII -

YiTblY < 11 6xI < IA -111 1I1bl 

which in turn imply

C-1 I!6bll < 116xl l < c I
cA l bl -j - 11ll-

where cA = IIAl I A- 1 11 the condition number of A with

respect to inversion. If cA is very large, we see that the

norm of the relative error in the solution 116xll/llxl may

be very large or very small for a small relative error in the



-53-

norm of b. For many b,db pairs the upper bound may be

very pessimistic, but there is always some pairs for which

it is achieveable. However, for small cA the norm of

relative error in x will be small if the norm of the rela-

tive error in b is small. In this case, the equations are

said to be well conditioned or A is well conditioned with

respect to inversion. Note that cA > 1 since

I IAA-1I 1 I A I IA-1A 1. In this discussion the words large

and small are not given a precise definition. This is because

such a definition is not possible because it is problem de-

pendent.

So far, we have only considered perturbations in b, but

perturbations in A may be also analyzed. It should be

pointed out though, that for any perturbation in A there

exists an equivalent perturbation in b so that previous

bounds still apply in this case also.

Suppose that now both A and b are perturbed then

(A + E) (x::+ 6x} = b + 6b

and
(A + E)6x = 6b - Ex

The next difficulty encountered is the possibility that

CA + Ea-1 may not exist. However, making the reasonable

assumption

IIA-1 EI < IIA-A II IIElI < 1
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the invertibility of CA + E) is guaranteed.

To see this write (A + E) in the following form

(A + E)-1 = (I + A 1E) 1A ' 1

so that CA + E)-1 exists if and only if (I + A- E)- 1

exists. Letting S = A-1E we have I IS I < 1 hence (I + S)

is invertible and

(I + S) 1 I + S) = I

or

(I + S)-1 = I- S(I + S)-

which leads to

~~~-1or 1us to bound A + E) as

This allows us to bound (A + E) i as

|ICA + E) | | < |IIA 1 1 ||(I + A-1E)-1 II < IA-11I
1 - IIA-111 II | |

and hence, returning to the perturbations in x, we have

< Ii A-' I I [1 ||b|! + |I E I I Ix {IX
- A-1 iA:iiiiE{



-55-

I | sXI I A-,A I I L1 6b[ L 1l Ib + E I I JA I
T4T 1 -| b I |A I- -I 1 1IA11 1 1- Ixl

Using the inequality IA! I I x I ibl I , we may obtain

~j 1 -IIA-111 IIAI IA 1 bli t t I

or

IX- 1 C A i i i[ IA]. 1A
Ai~j~i~ A E lb + II 1 ]

Again, it is immediately apparent that cA is the determining

factor in bounding the relative error in x. Unless

CA ]EI I/i IAI I << 1 the bound will be very large and the

problem illconditioned. Also note that if E = 0 we return

to original bound for perturbations in b only. If 6b = 0

then

Ic1 1 E
CA A

and the problem is only well conditioned if cA is small.

One of the main reasons for obtaining these type of

bounds is related to the philosophy of backward error

analysis, as opposed to forward error analysis. Forward

error analysis regards the computation in question as being

described by a number of mathematical equations and hence, a

"11~~'"11111-- -~-~ ~ _--~----. .__-l--l-~L~li~~i~i~li~rjli~a~ll~-i .--..- -.. __ ~-._~___ _I__._.~~-~.. -_ .I_1__(~_Xl.~~-r~l~~l--~-.1-~____1 1.-1I1.----- ---------- ~-
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number arithmetic operations. Each arithmetic operation is

associated with a maximum rounding error. Then, by con-

sidering each operation in turn, the maximum error is deter-

mined for the computation. Backward analysis is concerned

with representing each arithmetic operation on the data as

if it were an exact computation on slightly perturbed data

and giving a bound on the effective perturbations in the data

that the total computations of an algorithm make. Therefore

backward analysis can tell us if an algorithm is stable,

which is really what we are concerned with developing.

After the effective perturbations have been determined, the

perturbational bounds just derived may be used to bound the

relative error.

Conditioning for Decomposition Methods

Since the conditioning of a problem is independent of

the method used to solve it, decomposition methods cannot

improve an illconditioned problem. However, by utilizing

more information about the system, it may be possible to

obtain a better bound than one specified with minimal infor-

mation in the condition number. For example, consider the

linear problem

1 0 X1 1

1000 XL1000
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where

IIAlIKIIA I.= 1000

For the perturbation

~Ibb = ; _bI =b l0

but even for small Sb perturbations

[x] 1 ;xiI K1 1 

so that

1 16x I 1 | I I lb ll~
ITI = IIA IIA Ii -1bli

However, suppose that in solving this problem as two

subproblems

allx = 1 X1 = 1 = b

and

a22x 2 = 1000 x 2 = 1000 = b 2

we could guarantee that

16bX b11 -3 1 6b2-11 -3
< 10 and 1jib 10

then since the condition numbers of all and a22 are unity
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we could bound the error in x as

II axl 1 1 6Xl 161x 121 c IbllI
I'xFKl < 7lxt7 + <..C T 1x211 T cI 1XI I - II x1 I 1O lix 2 l o - all I IblT

i !2 b21- -3
+ b 211 ...... 2 10-3

Ca22 II11b211

Thus, the additional information obtainable from the pertur-

bational bounds on the subproblems and their condition num-

bers can result in a better bound by knowing which types of

perturbations have been ruled out.

For illconditioned problems, decomposition methods will

exhibit the illconditioning in several different ways,

though they cannot remove the illconditioning. In fact, by

decomposing the problem it is possible to have illcondition-

ing in the subproblems whereas the original problem may be

well conditioned. To illustrate these ideas, suppose that

we are trying to solve Ax = b where

A 1+ ; b = ; x = 

Clearly, as s + 0 A becomes singular and there is no

unique solution to the problem. The condition number of A

is also very large. If the Gauss Seidel iteration is formed,

each of the subproblems is well conditioned and can be
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written
K+ L 2 K 1

X1 1 + s X2
+ 1 + £

K+1 1 K+1 1
2 2 = 4

Substituting the first equation into the second, we have

K+1 1 K 1- ¢
X2 1 + s 2 4 (1 + ( sI

There are several observations to make. First, if

s = O (corresponding to a singular A matrix) then

p-AoiAl) = 1 and the illconditioning of the original problem

is "hidden" in the rate of convergence (divergence) of the

coordination scheme and not in the conditioning of the sub-

K+i
problems. Next, if s = - 1 , the subproblem for xl is

illconditioned Csingular in fact) even though the A is

invertible. For - 2 < s < 0 , the method does not converge

since p(AolA) > 1 . We say in this case that the coordina--

tion is not successful (it is successful if p(AolAl0 < 1).

since each of the. sequences of solutions to the- subproblems

cannot be combined to obtain the centralized solution. How-

ever, the. reason the method diverges for this case is the

fact that the coupling between the subproblems has. become too

strong, relative to the subproblems which no longer govern

the nature of the solution. This is due more to the inappli-

cability of the method than to illconditioning of the problem.
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Alternatively, it is possible for the illconditioning

of the original problem to be reflected in the conditioning

of a subproblem rather than in the spectral radius of the

iteration. In Chapter III this particular case occurs.

Finally, it is possible for all the subproblems to be

well conditioned and the spectral radius to be less than one

but the overall problem still illconditioned. This happens

because illconditioning of the coordination scheme can

occur in more than one way. The spectral radius may be less

than one, but small perturbations in the coordinator's solu-

tion's that are returned to the subproblems may radically

alter the subproblem's solutions. For the iteration

A K+1 = - AlxK + b = b+

this says that small perturbations in bK+l (the coordina-

tor's solution) lead to large perturbations in xK+1 (the

joint solution of the subproblems). If the sequence of {bK}

cannot be computed exactly, there is a possibility that the

relative error in x may be large. An example of this is

the Jacobi iteration for Ax = b where A is n x n and
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1 -1 -1 . .. -1

1 -1

A 1

* 2 4

IAIl 1 1 an 4 .n. . 2 n2

For the splitting A = I ,A 1 = A -I = U we have that
- -

pA A 0 and 1 so that the iteration
P(AolA ) = O and Ao Ao = 1 so that the iteration

converges in n steps and each of the subproblems is ideally

well conditioned. The Jacobi iteration is written as

XK+1 = (I - A)x K + b = bK+1 x = 0

-- -- ...-- .---- --~I-----~I---~- ---~--- li~·--_ T_. ~IO------ ------- 1..-
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which certainly verifies that the subproblems can be solved

without error given bK+1 from the coordinator. The only

possible problem that could occur is that the coordinator

might not accurately calculate bK . This can be seen from

the particular case where

T
b = [n,n - 3,n - 4,...,1,0,-1]

T -n+l
bT [1 1 1 .. 11 2 n+l

x- = i -i -1 ... -1]T

SxT = [1 1/2 1/4 2- n + l

116 x l 1 !l b il| 2-n+1, = 1 and hb[ - n

If n = 10 this means that a uniform relative perturbation

of b on the order of .02% results in a 100% relative

error in the norm of x . Hence, if b K is not calculated

exactly large errors may result.

This last example shows that in order to obtain pertur-

bational bounds for iterative methods that not only must

the condition numbers of the subproblems and the contraction

condition be accounted for, but also the rounding errors in

the computation of the information supplied by the coordina-

tor to the subproblems. If these errors in the coordination

equations can be bounded or particular error directions be

iji----
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eliminated it may then be possible to obtain accurate solu-

tions even though the original problem is illconditioned.

Condition Number of KA

Viewing the Lyapunov equation as a set of linear equa-

tions in n2 variables, the conditioning of the problem is

determined by the condition number of KA . Athay [25] has

examined this problem in an attempt to formulate the condi-

tion number of KA in terms of quantities involving A.

However, there seems to be no easy way to compute or approxi-

mate the condition number of KA . The following inequality

illustrates the nature of the problem.

Using the spectral norm,

II-1 maxlXi .(KA) max.Xi .A) + .CA) l

CKA II IK 21 I A1A 2 > min IXi (KA) 1-minXi(Al + X (A)I

where Xi (KA) and Xi (A) are the eigenvalues of KA and A

respectively. Now suppose A is a 2 x 2 symmetric matrix

with eigenvalues a + jw and a << w , corresponding to a

lightly damped system,which is not uncommon. It follows

that

maxIX i (A) I
CA I IIA 121 IA1 112 minJX (P 1

while

~CK I ||K2j21 - ,21a + jwl X '2w 1
KA= IAI1 A121 l 112 > 2-ic-> l 2w 1-- (1 -- …1
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and it is clear that the condition number of A is not

related to the condition number of KA . The basic diffi-

culty of approximating CK is that of finding an upper

bound on I IKAl | that is easily computable from quantities

involving A.



I
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CHAPTER III

TWO TIME SCALE ITERATIVE DECOMPOSITION

3.1 Introduction

It is common in engineering practice to obtain approxi-

mate solutions to difficult problems by truncation of a

series representation of the solution. These series approxi-

mations are often easier to obtain and therefore attractive.

Perturbational techniques can be applied to characterize the

nature of the solution's dependence on some relatively small

parameter. In the case of singular perturbations, the formal

expansion of the solution in a power series may produce a non-

convergent series. This series may nevertheless, be useful as

an asymptotic series expansion of the solution which may yield

a sufficiently accurate approximation [191].

In control theory, the use of singular perturbation tech-

niques resulting in asymptotic series expansion has been mo-

tivated by the desire to reduce the numerical computation

associated with large scale problems for which analytical

treatment is not feasible [23]. It has also been noted re-

cently, that application of singular perturbation techniques

to linear stochastic optimization and estimation problems

result in hierarchically structured approximations to optimal

controllers and filters [20,21,22]. Basically, the upper

levels of the hierarchey develop their control strategers

based on a reduced model of the system that predicts the long
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term behavior while the lower levels of the hierarchy utilize

a boundary layer model to predict the short term behavior.

This can be extended to the multiple time scale case.

To obtain the reduced order models of the corresponding

fast and slow modes of the system, the system is decomposed

according to its dependence on a small parameter. By decom-

posing the original problem into decoupled subproblems and

coordinating these solutions iteratively to a global solution,

a hierarchical structure is imposed.

However, a decomposition of the global problem raises the

questions of coordinability (convergence), rate of convergence,

and convergence to the correct solution.

-·-----··---·- ··~~~`-~-~------- ~11`~ ~ ~ ~-`~3~l~rr. ----..~--~---~-~-1.1.______ _ -·I- --.Cl~t~r---.--~in--~-?.l----~-~.-----·-1-·-·- ---·-- -·-·--- --------------------~'` ---~"--i-~ ~~i---~·-l-~-r:·- ------- -----------
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3.2 Decomposition Algorithm for the Lyapunov Equation

For the stable linear system

x = Ax , x(O) given

we write the Lyapunov equation

A TK + KA + Q = 0

where Q is positive semidefinite and K is the unknown.

Assume x is partitioned into n1 and n 2 dimensional

vectors and that A,K and Q are partitioned conformably as

A =| | ' Q = , K=

A A21 A22 LQ21 Q22J [K21 K22

Consider the following algorithm, motivated by singular

perturbation theory whose connection will be given later

T 2 1 l 12 m 12 11 A12 IQ Q12

+ + O

Here12 22denotes the m- 1 21 22 21 22

Here e denotes the mth iterate and the initial guess

K ° = O . To more clearly formulate the algorithm, the follow-

ing subproblems are defined.

Fast Subproblem

A e + A + Q22222 2222 22
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Slow Subproblem

TA +Id O 'A+ A -A A A
T1111 1 + Q 1 = ; A 11 11 1 2 22 21

Coordinator' s Problem

1222 m 12 2 1 2A 2 12

Qm AT Ke- 1 + e1+-A + Q
22 1212 12 12 22

Qm Q + AT K_-l
Q12 = Q12 + All 12

Ql, Q + (A-A I ( -1 m -1 T m

11 22 21 Q2 2 22 A2 1 1 -QA 2 21 2A 2l A 21

or

QT _-1 T 1
ll = Q11 - At12 (A22A21 2221 21 11

Q -1 T A1 -1 T 1

112 1 Q 12 (A 22A 2 121 + (A2221) Q22 (A2221

This can be represented diagramatically (Figure 3.2.1) as

Coordinator's

Problem

22 11
Fast Slow

Subproble Problem 

Two-Ti'me Scale Decomposition Algorithm for the Lyapunov
Equation

Figure 3.2.1
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with the initialization of the algorithm beginning with

1 1
K2 = 0 to obtain Q22 and = Q22 Next, both of

12 2

the subproblems are solved and Kll and 2K1 are sent to the11 22

coordinator for its calculation of K1 2 and Q22 and
12 an 22

so forth. Note that the fast and slow subproblems are de-

coupled and that both the reduced order system

X1 = AllX1

and the boundary layer system

X2 = A2 2X2

need be stable for the algorithm to be well defined at each

step. However, even if the subproblems are well defined, the

algorithm need not converge to the global solution. We will

say that the coordination is successful with this decomposi-

tion method if and only if

lim Km = K

Theorem 3.2.1

Define the linear operators

L1 : Rn n + Rnxn and L2 : Rn n Rnxn by

the following equations
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T T T
A 1111+K lAll+A21K21 +K12A21 21 22 11 12 12 22

L 1(K) =
·A+T A T K AT K +K

22A21l2 22 21 +A2 22+ 2222

AT 1 K 12

21All - A1 2K12+K21A12 .

Assume that All and A 2 2 are stable so that

ReXi (A )11 e < 0 vi,j

The Lyapunov equation is then successfully coordinated by the

two time scale decomposition method if and only if

P(L L 2) < 1

Proof:

If L1K = 0 then

A22K22 + K22A22

and hence K 22 0 since A22 is stable.

Next
T
A2122 + 11A 12 + K12 A22 = 

or

Ki2 = K- AA22
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which implies that

T T T 
11K11 + K +A11 + 212A21 = AllKll + K1A1 = 

and thus, it is necessary that K = 0 and therefore,

K 12 = 0 because All is stable. Hence, if L1(K) = 0 then

K = 0 and L 1 has no zero eigenvalues and therefore must be

invertible.

Now the decomposition algorithm can be written

L1(K) + L 2(Km
- ) + Q = 0

or

m = _ L 1 , L2 (Km l) L-l(Q)

-2

It is necessary and sufficient that p(L1 . L2) < 1 for the

iterates { m } of this last equation to converge to K as m

tends to infinity for any initial K ° and any positive semi-

definite Q. Q.E.D.

The. asymptotic rate of convergence is also given by

p (L1 a L 2) . This can be seen if the error at each step is

Em so that

Em = m - K

then

Em = - L1 L 2(Em-l) (-L l. L 2)mE0

Eventually, the eigenvalue of Llln L 2 of largest

-l1
modulus equal to pCi l . L2) becomes dominant and the "eigen-

vector" associated with this eigenvalue becomes the dominant

...........-- - -- -
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direction. Note that L 1 L 2 has in general n2 + n2

zero eigenvalues and 2nln2 nonzero eigenvalues. In the

limit

IEm1 = p L-1. L 2)lEm-l11

for any matrix norm but as noted before, it may take many

iterations before this asymptotic convergence rate is achieved.

The calculation of p (Lll L2) is not feasible as a conver-

gence test since it involves an n(n + 1)/2 order eigenvalue

problem. It may be reduced to an n order eigenvalue problem

after some algebraic manipulation, but in any event, this

would involve as much effort as solving the original problem.

However, a few examples will provide insight as to when the

algorithm may be expected to converge.

Scalar Example

Writing out the decomposition algorithm,
m
Mqli

11 
2al1

K m

e =22
22 2a2 2

12 T l)[a12 1 + a212 + all2 + q1 2]

m l 2all a21 q-1

22

"~'"""""~"""""""~""~I"'-~'~---~1~-~~' ~ ~ ~ "'~~~"~~`~~~"''"' ~~~~'~~~~ ~~~~'~~ ~ ;" '~1~;~ ~~"~"~~~;~"~` "~~~~~~~~~ ~~ ~~ '~~~' '^'~~' ' ~- ----------- --- ~
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22 = 2a 12 12 + 22

and by substitution and algebraic manipulation

21 1a22 1 + cl ; c1 a constant
~11 a22

a
m = - 1 21 +c 2 ; a constant

22 a2 2 12

al f121 + c 3 c 3 a constant

It is now clear that the equation for K1 2 governs the con-

vergence of the whole iteration and hence

p(L L2) a- a~22

Decoupled Example

For A12 = 0 A =0

ATe11 + K11Al + Qll = 0

AT Km + KmzA + Q 
2222 22A22 22 =

Kmn AT - A e mL1-1
12= All12 A 22 - Q 12

so that K1 and K2 are constant and only K12 varies

from step to step. The asymptotic convergence rate of {Km }--------- c~-~ ~ K12
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is given by

(L L2) T -T I(A)- k 1 A1 1 A22)A22P (Lll * L2) - p ( All 22 i, j | ]

Hence

p (.L1 . L2) < 1 if and only if

maxl i2 (A l l) l < minlj j(A2 2)1
i 3- j

which means that subsystem All represents a slow system

relative to subsystem A 2 2 which represents a fast subsystem.

It is here that the two time scale nature of this algorithm

becomes apparent. Note, in fact, that only one of A12 or

A21 need be zero for this separation of time scales condi-

tion to apply.

In order to obtain a similar condition for convergence

in the general case when A is not block triangular, it is

first necessary to discuss the subproblem conditioning.

Subproblem Conditioning

The conditioning of the subproblems is considered as

side issues since the purpose of this section is to derive a

bound for IIK.ill in terms of IIQiil and IlAiilI - The

conditioning of the subproblems arises in connection with

bounding
{A = T T Il1

11
II-- -- - - -- ----
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and since CK = I[KA, |. IIK -II | the condition number
KA 11 ii

of KA for each subproblem is directly related to this

bound. This bound is then used to obtain a sufficient condi-

tion in terms of matrix norms for the convergence of the algorithm.

Each of the subproblems is in the form of a Lyapunov

equation, so we will not bother with subscripts. To avoid

confusing notation let P be the unknown of the Lyapunov

equation

A P + PA + Q = O AERnxn

Using the Kronecker product notation, this can be written as

RAP = _ q

where KA = A T I + I A and and p = qR

discussed in Chapter II, Section 2.2. Now using some basic

matrix norm relationships, we may write

1 ! K -11211qj
11PI12'I < A I121q112

or reforming the matrices P and Q

lP l E I IKA 112110QIIE

and

and I IP12 n A1/21 AI12i IQ 12

Define Di to be the condition number of KA with respect to

~~~ ----- ~~~~~~~~K
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various matrix norms so that

= IIKAI~iIIKA Ilj; i = 1,2,o,E1i I KAI I il I KA I Ii; i 2,E

where E denotes the Euclidean norm. Manipulating matrix

norms we find

-1 2 -1 I KAll I 11 KI I KA 2- IIKA I1lIK K
or

-3 2 11 U
A jKl12 <A K

and since I|KAil|1 = 21|1A|1, we may write

11~) 1/2 l2 111IKA ll2l 3-o < 3aooI I KA 2(I i l I 11 Al I ) 1/2 - T'

If the Euclidean norm is used then

IIKA 112 < 1IKA I E < I 

and since I KAI IE2 = 2nl |A I2 + 2(trA)2A E E

II A I IE < /2- I2' 'A'" Jz~-~ IIAI I~ 2rII HE

We have now obtained bounds on I KAll I in terms of its con-

dition number and I IA I . By substituting these bounds for

I KA1 I into the appropriate inequalities involving IIP I1

and I IQI we obtain

~"T'"" " ~"~~~~~~''1-~ i^~...-~11______1I--1-l~~i- .. ____~~.~.__.1_____1-1 1..1^..~7.~_~. .~~~~_ _~.~~
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I I P~1 2 </2 1 IQ1 o22211AI2
and

I <E t 2 ) 1 / 2 1 I Q I E
I PI IE <n E 21 IAlIE

Note also that

21/2 < 2)1/2E < I (nl)
2 ± ) uE <_ /Z (n~ 1/2

which shows the maximum size of () 1/2PE as compared to

,(n ) 1/2

Sufficient Convergence Condition for the General Case

Using the bounds just developed, a sufficient but not

necessary convergence condition can be derived. Not being a

necessary condition, it leads to a pessimistic estimate of

when the algorithm will converge, but seems to be the only

condition obtainable. If we define

a'1a2'1l and a2 as

1/2
a1 = (nlPl1O) 1/2

=2 =2 Ip) /2

= (2/n 1 ) 1/2 1E

S2 = (2/n2 ) 
1

/2 VE
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where

i 11 II1

i tIA22 IlilIKA 1 21 i = 1,2,o,E

and

All is nl X nl

A22 iS n2 X n 2

then, from the subproblems of the iteration

m IKM111lI2
21 K111 2 

21Q IQm IE
1 ~ 21 |A111E

and

I K< a211Q22112

I I 2 1E - 2 1A2. E

The coordinator! problem for Qm and Q m leads to
22 l 

IjIQ2 2 11<_211A 1 2 11 1 R lKH + Q2211
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I I 11 < 2 11111 I i IK'I2lI FI IA22A211l + I I11 11

If we let y1 denote al or S1 depending on which

matrix norm is used and likewise Y2 for a 2 or 2 then

using the last two inequalities we have

''K) -I Y IIAl A II 11Km 11 + 1Q11l

I en II Y< 1 IA21.21 I I 1< 2 1 1 + IQ11 2211 - 11 A22ll 211All IY211A t /I~ll, l. Y2 11Q 22 11II 1211 Y- 211A121 + x{ ii+

Now these inequalities are used in the coordinators

equation for K1 212

_R-2 iia I1 I I11I A II I IZ I + I J 11 I _ I1

+ IA II I A l ; 1ll + IIQ12 1 1

to obtain

!!K'2!I _ IA22ll1Y1I1A12!! 22 21 + Y2 21 11A11-I I 111 I IA 11 ++ 1A 211~2 <_Il A22 A12 +[ 2 1 Q 11 I=!

Y IIA11H 

+ Y2 lA 21 11 I IQ2 2 1I I-lA-1l
211A 2 211 IA22



-80-

or

[A- + A 1. A-1i 1 [ IIA2 [II I e12 I < 22 Y-2 121 1 22 2

+ I IAllII II2 111 + c , c = constant.

Therefore, if

L A1iI (Y1 + Y2) I A1211 IA21 IA2lI I11]

the algorithm is a contraction mapping and e{2 } must con-

verge to K12 and so {(1 } and f{1(2 } converge to K

and K22 respectively and the whole algorithm converges.

When A is a 2 x 2 matrix, both y1 and Y2 are unity

-and the condition becomes

____r 21 al2 la 21 1
in1 [ 11 a22 1 

instead of
lall 

which is the necessary and sufficient condition. This shows

that the matrix norm condition may be not satisfied even for

cases that would converge fairly rapidly and is therefore

pessimistic for many cases.

If y1 and Y2 are close to one, which implies that the

subproblems are well conditioned, we might conjecture that

~~~~a"" ~~~~""'~""T~~~~~""~?""T"1
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IIA2211 IA11 I < 1

might be a reasonable condition which under which convergence

could be expected. It is interesting to note that as All

approaches a singular matrix, the p(L1 . L2) < 1 condi-
A

tion may not be violated. Of course, the solution of the All

subproblem does not exist in this case. However, A 22 be-

coming singular does affect the spectral radius so that

p(LL , L2) > 1 and the algorithm diverges. However, when

the algorithm does converge, it would be helpful to know how

much computational effort is required.

Number of Operations

This section gives a comparison of the number of opera-

tions required to compute the approximate solution to the

Lyapunov equation by the decomposition algorithm and the

general method used to compute the subproblems.

The following assumptions are made:

C1) Q is symmetric

(2) The state is decomposed into two substates of equal

dimension, i.e. n1 = n 2 = n/2 .

(3) f(nl is the number of operations to solve the

Lyapunov equation and f(n) = an3 where a is a positive

constant.

(42 Additions are not counted only multiplications.

Breaking down the algorithm according to subproblems and



-82-

coordination, we see that

Forming Operations

All and A'1A 3n11 22 21

3n3

Qll 8

m+l n
Qll 4

m+l n
Q22 8

Solving for

m+l c-i 3

m+l 3
K 22 n

m+l m+i a 3
K12 and K 2 1 n

Let A = number of iterations, then the total operation count

3n 7n 1 3
for symmetric Q is T = t 8.o.c. 3 n + a n 3 .

For the algorithm to effectively reduce the computations

involved

3
T :< an

or
8aa - b

a< 2 + < 4
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This shows that neglecting sparsity if only a few iterations

are required the computation can be reduced.
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3.3 Numerical Results for a Simple Model

Coupled Harmonic Oscillators

As a test of when [lAlli[ 1| IA21I[j might be a reliable

indicator of convergence, the spectral radius of L 1, L 2

was computed numerically for a variety of couplings and sub-

system pole placements for the system given by

0 1 0 0

2
w - 2 Wl 1 0

O 0 i 0 1

2
2 - w 2 - 222W2

This system matrix represents coupled harmonic oscilla-

tors where w is the natural frequency and % is the damping

ratio. Define r as

i (A11)
r = max

ij j(22

In this test, r is set to a value of 1/5 and the

damping ratios of the two subsystems All and A22 are

varied.

The spectral radius, p(L 1 L2) was generally smaller

when the two subsystems had poles with the same angle in the

-- ~--~'"~~''T~"~' ~ I~~'~-~'~~~` ~ ~ ~ ~ -~~~~`-`~"-"~~'~`~I~~`~~~'~T
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complex plane.

Also, when [l1l21 I WlW2 , all cases gave p(Ll. L2) < 1.

22If I:162 > Ww2 , All is singular or A is unstable. The

coupling was varied as

22
ale2 = 'iWlW2

where
ai = 1, 1/2, -1/2, -1, -2

This was done because in the detailed analytical expression

for the spectral radius (not given here) for this specific

example s1 and E2 always appear together as the product

1 2

Only the cases for cai = + 1 are tabulated in Table

3.3.1. For £ l2 = - 2w w2 cases in which

p(L 1 L2 ) > 1 were obtained. This limits how strongly the

subsystems may be coupled. The results generally indicate

that r is a reliable indicator of convergence when

|s CS2 < w2w2 and the subsystems do not have large angles

between their complex poles.

Numerical Calculation of p(Lll. L 2)

The calcualation of the spectral radius can be accomplish-

ed by finding the eigenvalues of a matrix of order n where

n = dim(L 1) . The algorithm written in operator form

1~-- "----
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Table 3.3.1

2
1 = 1 a s ±+ Jis eigenvalues of All

2
=2 = 25

5 =F + jwF eigenvalues of A22

111 2 22 2 2, as 1 ws F cP(L 1 ' L2)

1 1 1' 2-1.

.5 4 1 1 -.25 1 .9681 -2 4.583 ' .320
2 4 1 1 -1 I 0 1 -2 1 4.583 I .367
1.5 ! 1 1 -.75 .661, -.5, 4.975 .425
.5 1 1 ' -.25 .968 1 -.5 4.975 .274

1 9 1 i -.5 1 .866 i-4.5 i 2.179 i .360
1.5 1 9 1 1 -.75 I .661 ,-4.5 1 2.179 , .327
.5 1 4 1 -1 -.25 1 .9681 -2 1 4.583 1 .488

2 1 4 -1 1-1 1 0 i -2 1 4.583 .289
1.5 , 1 , -1 , -.75 , .661, -.5 4.975 , .425
.5 1 ' -1 1 -.25 1 .968J1 -.5 4.975 .458

1.5 1 9 1 -1 1 -.75 1 .661 '-4.5 1 2.179 1 .217
1 1 9 1 -1 , -.5 , .866 -4. 5 2.179 , .248

.5 110 1 -.25 1.9681I -5 0 .800*

.5 10 o -1 -.25 .968 -5 0 .553**

-a p 1 * for £ 22

* max p(L1 * L2) for -1e2/12 

-1min P( L2) =.200 for E1E2/W1 2 -
min p(L1 . L2) = .200 for el 12/w1w =+ 1
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L1(Km+l) = - L 2 (K
m ) - Q

corresponds to a matrix iteration

Mm+l 
Mlk = M2k m q

where km and q are vectors formed from the rows of Km

and Q respectively. Taking into account the symmetry of

K and Q , we define the matrix iteration by using the

Kronecker products and identities found in Section 2.2.

T T T T p 0 k
l I+IQAa IA 21+ (A212I)P O -

k AT T T
M1k = L12 IA 22 21 I k12 

O O A22I+A22 k2222 22 22

0 0 0 0
kll R

M2k 0 Ala I 0 k12R
0 AT 2 QI+ (IQA 2 ) P 0 k

where P is the permutation matrix associated with the order

of the matrices Aii Q I . In the case where Aii is 2 x 2
.1.
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1 0 0 0

0 0 1 0
P=

0 1 0 0

O 0 0 1

Now note that M1 1 M 2 is much larger than n x n and that

(M1 M) = p (L L 2)

since they are the spectral radii of the same iteration. If

M 1 and M2 are partitioned so that

X l X12 X13

M1 = X2 X22 X23 = X

X 31 X32 X33

and
0 0 0

-201

0 N2 0

then

0 X12N+X13 N2 0

M1 M2 = 0 X22Nl+X23N 2

0 X 32 N 1+X 33N 2
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so that

P(M11 . M 2) P(X22N 1 + X 23N 2)

Define J as J = X22 N1 + X N

To determine Mll - X, M i is partitioned as1 0

NTM T T T T

M1 21 M22 M23 I12 IA22 21 

O O O O |O ATQI+I&A2o' ooo,22 22

and it follows that Mll , M22 and M31 exist for stable
1 1 22 33

All and A22. It can then be shown that

v = (M22 M -1 )-l
X2 22 - M 2 1MM11 12

X =-X N -1
X23 = - X22M23M33

Finally, using these last two formulas, the spectral radius of

Lll L can be written as

p (1 L2) = pEM2 2 -M M2 1 MM12 2 1 - 2 3 M3 3 N 21) = P(J)

Note that here J is only an n x n matrix. Using this

formula, the spectral radius for different pole placements

was calculated.
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3.4 Singular Perturbation Theory and Multiple Time Scales

Relation to Singular Perturbation Theory

Up to this point, the connection of this algorithm to

the ideas of singular perturbation theory [19-24,29] has been

somewhat obscure. After some preliminaries about singular

perturbations, the connection will be made clear.

Consider the partitioned linear system

lr I -[ 11 12 l

£X2_ A21 A22 x2_

It is conventional to assume that s is a small positive

parameter, £ << 1 , and that IIA11 1 and 11A 22 1 1 are

approximately the same magnitude. With this system, there

are two associated systems called the degenerate system and

the boundary layer system [291. The degenerate system is

formed by setting s = 0 and is given -by

1 (A1 1 - A 1 2A 2 2 A 2 1)x 1

X2 = (-A2 2A 21)X 1

The degenerate system predicts the long term behavior of the

system. In order to predict the short term behavior of the

system, the boundary layer system is formed using the stretch-

ing transformation

-t = t/s
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and making a change of variables in the original equations.

To obtain the boundary layer system s is set to zero in the

transformed equations. This results in

dx1

dx2
do A21Xl + A 22X2

Note here that x1 in this system is a constant. If A22

is assumed to be stable, we may interpret these two systems

as an approximation to the original system over different

time intervals. We see that the eigenvalues of A(s) where

A11 A12

A(£s) = 21 22

A22approach the eigenvalues of All and 22 where

-1
A11 = All - A12A22A21

Now, notice that in the boundary layer system since xl is a

constant that A (21 1) can be regarded as a constant input to

the stable system

A_22 A21X1
x2 2 X 2 +u u

Therefore, in the original system, when s is near zero, the
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eigenvalues of A 22/s will be much greater in magnitude

than the eigenvalues of All and xl(t) will remain essen-

tially constant while the transients due to the initial con-

dition x2(0) die out. Thus, x2(t) approaches -A 22A21X 1 (0)

and from this time on, the system may clearly be modeled as

the degenerate system. Here it is important to notice the

separation of the time scales of the substates x l(t) and

x2(t) in addition to the separation of eigenvalues of A(s)

when s is near zero. Systems may have eigenvalues that are

widely separated, but the substates defined may be of mixed

modes corresponding to both fast and slow eigenvalues. Hence,

a similarity transformation is necessary in these cases in

order that the substates defined should have different time

scales. It is also important to realize that we refer to

x2 (t) as being a fast substate (or has a fast component) only

over the interval that the boundary layer system model

applies, since as t becomes large

- 1

X2(.t) A A22A 1xl(t)

Kokotovic and Chow [24] define a system partitioned as

X2 A21 A221 x2

to possess a two time scale property if it can be decomposed

by a similarity transformation into two subsystems
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A 0 X
S i ] s S i [ S ]

x] Af J Sf

where

I (A s ) I << I X(Af) min

which is satisfied if

| IAq1|| << 11AS11-1

After extended argument, this last condition can be shown

[31] to be satisfied if

IIAAI 1-1-

I221 I 3 [I IA11 + IIA1211 IA22A211 1]

and

I A2111 << IlA11I1 

These last conditions will guarantee the system to possess the

two time scale property. Note however, that this is only a

sufficient condition and not strictly necessary, which can be

seen by letting A be defined as

-10 9

9 -10

In this case, A has eigenvalues -1,-19
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but does not satisfy the two time scale inequalities of Koko-

tovic and Chow.

A somewhat different, but related definition is that of

a singularly perturbed structure. This is concerned more with

the magnitudes of the block elements A.. () than with the
13

eigenvalues A(e) which are imposed by the singular perturba-

tion method. We define a system to have a singularly perturbed

structure if it can be put in the form

X1 All A12

x2 A21 A22

where

£ << 1 and IIAll! . I IA2211

Alternatively, instead of using the conventional assump-

tion E << 1 and I IA1 111 IIA2 2 11 , we may assume that

£ = 1 and IA 11 ! << I IA221 

and use this as an alternate definition. Note also, that if

approaches zero, this is equivalent to IIA2 1 1 I becoming

large relative to I A 1 1 ! for E = 1 . To clarify the re-

lationships between two time scale systems and systems with

singularly perturbed structures, the following examples are

given. Consider two system matrices A and F where

·-----·-·-~~~~----------------~~~~~-· ---------- --··· ·- ·- ·------------ ·----------·---·---- ··1·-- · ·--------------- ----------- -----··------- -------··----· · -it-- ·;----·-·-r--·--~~~~~~~~~~~~~~~~~~~~~~~~~ -------
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A = ||and F = .

9 g -10 -9 -6

As before, A has eigenvalues -1, -19, whereas F has

a multiple eigenvalue of -3. Notice that A does not have

a singularly perturbed structure since

I1- l011 / I 11-1011

but that F does since

11011 << 11611

corresponding to a very small s in the conventional sense.

Hence, systems that do not possess widely separated eigen-

values may still fit the singularly perturbed structure

induced by the singular perturbation for some range of .

On the other hand, systems that do possess a two time scale

property may not exhibit fast and slow substates without first

performing a similarity transformation (i.e. linearly recom-

bine the states to form a new set of states) so that its two

time scale nature cannot be used to advantage.

In the A matrix of the first example, not even reindex-

ing or scaling will put the system in a singularly perturbed

structure and it often must be physical insight that provides

the key as to how to define the right set of states so that
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singular perturbations can be used.

Relation of Algorithm and Asymptotic Series

Consider again the partitioned linear system

X1 A11 A12 xl

= A21 A22
X2 £ £ x2

where | All l << IIA2 2 1 so that £ = 1 is small parameter

relative to IIA2 2 1/ I/ Al11 1 . The Lyapunov equation for this

system is

12 1 K222) 21 22 1 

AT A2 1 K (E eK 1 () K l (E ) !2 A (

=AT 21 11 12 11 12 11 12
A12 A22- 121(2) A22 (£) A2 1 A2 2

I Q11 Q121
LQ21 Q22

where (E12 1 (1 ) () 1 K2 () and

22 ) 1 K 2 2 2 (

$,~p,,-,;-~·n;-- -· --·----- ---- 2 T
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Define

[Kll(C)j 12

K(2) =()

~1(E:2 (Es

then, the Lyapunov equation can be written as

L1(i(s)) + eL2 (k ()) -Q

where L 1 and L 2 are given as in the algorithm as

T T TA +A K +K A ATK +K A +K A
A1111 +K 1111 +A1 21 +K12A21 A2122+11 12+K 12 A2

L1 (K)

T T TK AK +K
K22A21+A2 11K+A22X21 A22K22+K22A22

0 AT11 12

L 2 (:K)' = 1
K 21 All A12K12+K21A12

Now, we try to expand £(C) in an asymptotic series in

s about s = 0 and evaluate it at s = 1. A sufficient con-

dition that (0O) exist and be unique is the requirement that

A22 be stable [23]. Therefore, we may define Km as22
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m

Km = r! 
r=0 s=

which is the (m + 1)th partial sum of the power series ex-

pansion in s of i(s) evaluated at s = 1. To calculate

the derivatives of (eC) , we differentiate successively

the Lyapunov equation in operator from and get

l3K~ L-1 p l(£)1L -> 1 2 =r-

or [ r r! (- L L 2)r[ L l (Q )]
3 =

Using this last equality in the expression for Km , we have

that
m

= E (- L L2)rEL- (Q)]
r=O

thHence, the m- partial sum of the asymptotic series is

simply the mLh iterate of the two time scale decomposition

algoithm of this chapter. This correspondence is the result

of the linearity of L 1 and L 2 and does not extend to the

nonlinear case, so that the extension of this algorithm to the

Riccati equation, developed in Section 3.5, is not equivalent

to an asymptotic series expansion.

However, having shown this equivalence in the linear case,

~~'~" " "'""~ " " " "~~~" " "~"-~" p ""n'r- "-~~~c~-- ~ ~ ~ - --------- --·--------- --I-----~~~~~~ ------~~---------~~~--~-·------·--1[-i- -~~~~--~-1T~~--~~~~~~'T -----------
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some remarks on the convergence of the algorithm and the two

time scale property along with singularly perturbed structures

is in order. Since singular perturbation methods are usually

associated in the control area with multiple time scale

systems, it is natural to assume that the necessary and suff-

icient condition for the algorithm to converge, namely

p (L, 1 L2) < 1 , implies a two time scale system. This is not

the case. Examination of our two previous examples where

A = | 10 and F =

9 -10 -9 -6

and represent system matrices show that for A

PA(L 1 L2) = 1
-10

while for F

PY(L 1 L2 ) = = 

Yet, A having eigenvalues of -1 and -19 has the two

time scale property while F having the multiple eigenvalue

of -3 does not. However, F does possess a singularly

perturbed structure. Hence, under reasonable assumptions

about the coupling terms, the conjecture that

II_ ,1, I IA-- <<1 

22 - ·---
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is a reliable indicator of convergence implies that the

system possesses a singularly perturbed structure often as-

sociated with two time scale systems. However, as seen

before, these two properties are not always associated. It

is nevertheless, convenient to refer to the algorithm as a

two time scale method since every two time scale system can

be put into a singularly perturbed structure by the proper

definition of the states (i.e. similarity transformation).

- ~-r -~'~~ T----
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3.5 Decomposition Algorithm for the Riccati Equation

The decomposition algorithm for the Lyapunov equation

can be extended to the Riccati equation using some additional

constraints. The system and associated cost functional con-

sidered are respectively

x = Ax + Bu

o00

J(u) = f (xTQx + uTRu)dt

0

Assume that [A,B] controllable and [A,-Q] observable

with Q > 0 and R > 0, then

A K + KA + Q - KBR-1BTK = 0

has a unique solution K > 0 . Partitioning the Riccati

equation, let

r K11 O 1 i0 K12l
K = K 1 + K2 = +

K21 K22 0 .

then the algorithm is defined by

ATK + (Ki)TA + Qm _ (i)TBR-1BTKR i 0

where

Qm = Q + AT 2 -1+ (K A _ ( -1)TBR 1TK-2 K2 2 2

_(y--l) T- 2m - ( L) TBR-lBTKm-llBT 2l 1
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with K2 being initialized as zero. After tedious algebraic

manipulation, which can be found in the Appendix in Chapter V,

the algorithm can be written in a form analogous to the

linear (Lyapunov) case.

Fast Subproblem

T m -. lo~m m
A2222 2222+ Q22 22B2 2 22=

Slow Subproblem

A1 K A +Km Ql - (Km Bl-B + Sm)T = O

Coordinator's Problem

-1 T m
(A22 -B2R B222) + Kmll (A12- BR B2 ) + A1 + Q12

- 2 222 1112 1 222 2122 12

12 12 11 11 1 T12 2 1.. 1Q12 m Q 12 + [A 1ll - K+ 1 B RlBTm

21 12 21 1 12Q22 = Q22 + A12 +12 1 -1 21 B1R Bl12

- 1 B 1-1 T m-l -1 R-1 TKm-l
21 1 2K22 22 2 1 12

Qll Qll + (A22 A 21 ) Q 2A22A21 Q 2 (A22 A21 ) - (A22 21

Sm = [(A)1 T m(AB22A21 Q22 Q12 ] A 22

m = R + (A2 1B T m (A2 1B2)
2B2 22 here22

where
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^A -1
A 11 A A1222A21 an 1 1 A12A 22B2

Also, define Qll as in the Lyapunov algoirthm as

-'1 T -1 -L 011 a11 22 21 Q22 (A22A21 1(A2A22 (A22A21 21'

Now, the algoirthm is initialized with K12 = 0 in the coor-

dination equations for Q12 and Q 22 With K12 =0 we

find that K 1 is the usual signular perturbation approximation

to the solution K. Note that if A 22 is singular, the equa-

tions must be written in a different form.

For the algorithm to be well-defined, the subproblem and

coordination equations must all have solutions. Sufficient

conditions for this to happen are the conditions [All,B1]

and [A2 2,B2] controllable, [All,Qll] and [A2 2 ,2 2] ob-

servable and the requirement that Qm > 0 for all m. This

is exactly the requirement that the boundary layer system and

the degenerate system are both controllable and observable,

where observability refers to the cost observability of the

state in the quadratic cost functional [29,32]. Also, the

original system is assumed to be controllable and observable.

The nonlinear nature of the iteration precludes a global

analysis, but local convergence conditions are quite simple.

The coordination strategy of the decomposition algorithm is

locally successful if there exists a neighborhood of K the

solution such that if Km is an element of that neighborhood,
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then lim Km = K.

Theorem 3.5.1

Define the linear operators L 1 n: - Rnxn and

nxn nxn
L2 : R +- R by the linear operators L 1 and L 2 res-

pectively of Theorem 3.2.1 where A is replaced by A and

A = A - BR- BTK

Assume [All B1 and [A22aB2] controllable, [Alt ] and

[A22, Q22] observable and

Qm > O
Km=K

The algorithm has a locally successful coordination strategy if

-1

p (L 1 L 2) < 1

and only if -!

p(L 1 L 2) < 1

Proof:

Let K + AK K + K 1 + . Then, the linearized

equation

At TK + A-l) + (E<i + A )A = 0

is obtained and must converge to AKm = 0 by Theorem 3.2.1

for Km in some neighborhood of K. For IlAKmll suffi-

ciently small, the convergence of the. algorithm is given by

·- ·- ;--~"" " ~" ~?"T 1`- ~ `~~~-~-- ^ ;;~~~ ~~~'` -'~" m~`'~`I·· ---- ------------------------- ~I--- I -r- - U .-.~....-T
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the linearized equation. Also, for I IAKml I sufficiently

small (i.e. Km in some neighborhood of K) Qm > 0 so

that the subproblems are well defined. Thus, when
-1

p(L1 * L2) < 1 , there exists a neighborhood about K such

that the algorithm converges Q.E.D. The gap between the suf-

ficient condition and the necessary condition arises because
-1

for p(L 1 . L2) = 1 , the nonlinear terms not included in the

linearized equation in AKm govern the convergence.

It is important here to realize that it is the closed

loop matrix A that determines the convergence of the algo-

rithm in the neighborhood of K, and not open loop matrix A.

Therefore, the feedback may alter the natural separation of

modes in the physical system in either a favorable or un-

favorable fashion. Note, also that for systems that possess a

singularly perturbed form so that

A 21 A 1 B - 2
21 s 21 22 22 ' 2 2

there always exists an s sufficiently small so that the al-

gorithm converges. This follows from the asymptotic behavior

of K12 = k2 and K22 = 22 where 12 and have

finite limits as s + 0+ so that

Qm >0 

Km=K

and
-1

p (L1 L 2) < 1
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are readily verified from the fact that K1 is the singular

perturbation approximation to K which is known to approach

K as £ + 0+ [23,29].



-107-

3.6 Hierarchial Structure of the Algorithm

It has been mentioned before that singular perturbation

methods applied to control and estimation problems yield

hierarchically structured filters and controllers that are

asymptotically optimal [20,21,22]. The hierarchial structure

of the filters or controllers result from using the gains

computed from the singularly perturbed control and filter

Riccati equations and processing information hierarchically.

Information from the slow substate is passed to the controller

or filter, but not vice versa. However, this is not at all

the same hierarchical structure of the decomposition algorithm.

In the decomposition algorithm, the hierarchy is not divided

between the fast and slow subproblems, but between the co-

ordination scheme and the subproblems. The decomposition

algorithm which computes the gains to be used by the filters

and controllers is an off-line hierarchy, while the filters and

controllers represent an on-line hierarchy which process the

information of observations or outputs. In the decomposition

algorithm, the coordinator representing the supremal decision

maker guides the subproblem or infimal solutions to the global

solution. This is depicted in Figure 3.6.1 for the Riccati

equation and back in Figure 3.2.1 for the Lyapunov equation.

In terms of decentralization of information, the fast

subproblem requires the least information about the rest of

the system needing only A 22 , the fast boundary layer model.
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Coordinator's

Problem

m m m m

Fast 2 1 low

Subproblem Subproblem

Two-Time Scale
Decomposition Algorithm for

the Riccati Equation

Figure 3.6.1

-II-~~--- ;r~l~r--~-li-i-l-li--~ - ---~T 
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The slow subproblem requires the slow degenerate model

~~~^ -1
Al = All - A 12A22A21 and is uncoupled from the fast sub-

problem. The coordinator, however, needs information about

the total system or the full order model.

The basic novelty of this algorithm is the decomposition

of the global problem into subproblems

X1 = AllXl + BU1l

11 11

[sm)T Rm [u1
1

and

x2 = A 22X 2 + B 2u 2

T+ T
J2 = f (X2Q22x2 + u 2Ru2 )dt

0

with u = u1 + u 2 on the basis of multiple time scales rather

than the usual weak coupling approach. This decomposition can

be viewed as two reduced order aggregate models of the overall

system. From this perspective, the slow or degenerate model

approximates the fast subsystem by its steady state, while the

fast or boundary layer system approximates the slow subsystem

by its initial value a constant. This approach could be

adapted to the case where the state dynamics are nonlinear or

the general two point value boundary problem of optimal control.



-110-

CHAPTER IV

WEAK COUPLING ITERATIVE DECOMPOSITION

4.1 WEAK COUPLING ALGORITHM FOR THE LYAPUNOV EQUATION

For large systems composed of smaller sybsystems that

are interconnected weakly, different decompositions are

practical [4,23,25]. Several variations of a weak coupling

algorithm proposed by Athay [25] for the Lyapunov equation

will be described here.

Basic Weak Coupling Algorithm

For the linear system

x = Ax

where

All A12 ...-- 1N

A
a= 22

_ANl .· ·ANI

we associate the Lyapunov equation

ATK + KA + Q = O

Conformably partitioning K and Q the Lyapunov equation is

N

E (AT.K + K. A ij
m=l mimj immj ij
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All

A 2 2

AD= and Ac A- A

_L EANN-

The matrix AD represents the individual subsystems and

Ac represents the coupling among them. This splitting of

the system matrix induces a splitting of the Lyapunov operator

LA defined by

A T
LA(X) = A X + XA

Letting

L(X) LA (X) and L (X) L (X
1 AD 2 Ac

the Lyapunov equation can be written in the following manner

L 1 (K ) + L 2 (K) + Q = O

If the coupling among the subsystems is weak L 2CK) should

be small compared to the contribution of L 1 K)_ so that the

approximate solution is given by

-1
K L1 (Q)

To include the effects of the coupling, we form the iteration

L1 Km+l
) =Q - L 2 (K

m)

'" ~~'~T` ~ T~ --~-1.~1..---..-~
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or

+S1 = _ Ll(Q) - L-i L 2 ~ 

Provided L exists, the convergence of this iteration

occurs if and only if

P (Ll L 2) < 1

where p(?) denotes spectral radius. Alternatively, this

iteration can be written in the form

AT K'+it + Krt 1 A... AT n+' + e.tlA. + Qil = 0 , i=1,2,...,NJz ij 1jj3 ij

j=i,i+l,...,N

where N N

m+l
Q.ij = Q + Z A'.K + Z A 

i r=l ri r3 r=l 2r rj
r3i rij

which represents NCN + 1)/2 uncoupled generalized Lyapunov

equations (i.e. of the form ATX + XB + C = 01. Note that if

Aii is stable then Ll exists and the iteration is well

defined. Also, this iteration, if written as a linear vector

equation iteration will be recognized as- a Jacobi iteration

[13,14].

Relation to Power Series Expansion

There is a direct relationship between this iteration

and the approximations found by using regular perturbation

theory 123,19].
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Consider the linear system

x = Ax

where

A11 A12 A1N

EA21 A22 CA2N
A = A(s) = . = AD + sAC

ANl EAN2 . ANN

The Lyapunov equation for this system is.

L1(K (E )) + EL 2 (KtE )) = - Q

or

K(e) = - EL l L2 (K( e)) - ll(Q)

Differentiating this last equation successively and evaluating

the derivatives at E = 0, we obtain

a mK E m![(- 

m !- L L2)m(K(O))]

Hence, the sum of the first m terms of the power series ex-

pansion of K(£) about s = 0 and evaluated at e = 1 is

m-1

Km = [- (_- - L L2) (Q)]
i=s

where Km is the m th iterate of the basic weak coupling

algorithm.

- -- ·- - -- ---~~- - -- ----·~---- ·--- ···--- ·---- -------- -~~--- - ·---- ··-- ··--- ·r- ----- ·- ·------ ·- ·----- V------
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Gauss Seidel Variations of the Weak Coupling Algorithm

The Jacobi iteration can be modified to a Gauss Seidel

iteration by simply utilizing each Km+ 1 as soon as it is

available instead of K.. in the basic weak coupling algo-

rithm (Jacobi iteration). Depending on how the indices i

and j are varied to select the different subproblems, it

is possible to form different versions of the Gauss Seidel

iteration. These versions may converge at different rates

since the order of updating the block matrices of K induces

a slightly different splitting of the Lyapunov operator and

hence may change the spectral radius of L i L 2

Two possible orderings can be seen to be effective for

special forms of A , and seem to be likely candidates for an

algorithm to handle a general A matrix. To illustrate the

relationships of these variations, the 2 x 2 block case

will be shown.

Jacobi

AT mn+ 1J. a= + AT Km + m
111 11 11 - [ll " 21 21

+
2 A 21

T Kl +1 T+ in+A - Q12 A 2TIn+
11 12 12 22 Q12 21 2 + 2

AT +' + K lA Q = - + A1T + 1222 22 22 22 =22 122 -2 1 12



Gauss Seidel #1

AT K+l + e-+l A = Q + A 1 +K 2Al1l1 T 212] 1221

T .m+l +1 T
All 12 22 [Q1 2

+ A21 2 + 1+ 12

AT KIt+l + 1+A AT .n+l + 1n+A
2222 + 2 = 2 2 [Q 2 2 12 12 21 A12

Gauss Seidel #2

T enl +Km+l A T i + 
A1 1 11 11 21 21 + ~12 21]

T +1 + Km+l +T MI
22 22 22 2 2 A12 K2 1 1 2

AT t ++Km+lA T Ie-m+l+ Km+A 
111 2 12 22 + A1 2 21 22

+ 11 12

In all of the above iterations Q is assumed to be symmetric

and hence. K. is symmetric.

For a block diagonal A Ci.e. A12 = 0 and A2 1 = 0Q

all three methods converge in one step. However, for a block

triangular A, the Jacobi iteration converges in three steps.

Note that it makes no difference what order the equations in

the Jacobi iteration are solved. For Gauss Seidel #1 itera-

tion, the method converges in one step for upper triangular

A (A21 = Q0 , but takes three steps to converge exactly for

a lower triangular A (A12 = 0). The Gauss Seidel #1 itera-

tion can also be written in terms of linear operators

~~-?? ~ ~ ~9"a~~--i-~- -- -- -- ·---. _I~_.. _~~.~.~. _~~~.. ~ x- -.--- 1.- --·----------. ~~~~. .-. ...... ~.- T - - -----~~.~.~~~~~~~~~."~.



-116-

L(1Kf+l) = - L 2(K
m ) _ Q

where
LA (X ) = A X + XA

and

L1 (K) LA OK) ; L2 (K) A L (K)
1 2

with Al being upper block triangular and A 2 being

strictly lower block triangular such that

A = A1 + A 2

Note that the case in which it takes three iterations to

converge could be reduced to one by requiring Al to be

lower block triangular and A 2 strictly upper block tri-

angular with again A = Al + A 2

For the Gauss Seidel #2 iteration, a triangular A

requires two steps to obtain the solution. This iteration

might be used in the general case where the coupling matrices

(A1 2 and A 21 ) are roughly the same "size". The Gauss

Seidel #1 iteration in one of its two forms might be used for

A matrices that came "close" to being block triangular.

One further comment on the Gauss Seidel #2 iteration is that

it is in the form of two uncoupled subproblems which are

Lyapunov equations for the All and A22 subsystems with a

coordination problem to calculate the effect of the. coupling

in K 12. This identification will be made again with the
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Riccati equation in a later section. The following diagram

(Figure 4.1.1) illustrates this particular identification

with the decomposition.

Coordinators
Problem

K+1 Qm+l Qm+l
12 11 22

+1/ / m+1

Subproblem 1 1Subproblem 2

I m+l Km+l 1
11 22

l ll + A21 21 + 12A21

m+l T +KA
2 22+ 12 + 21 12

Gauss Seidel #2 Algorithm -

Weak Coupling Decomposition for
Lyapunov Equation

Figure 4.1.1

'~ r~'~la" " n^,~~~--~~--------~ ~ 1~1~~~`x~-~~I~ ~`~..~.~ .-~------- ~~- I~~.. ~`-~`-"1"~-..".. .....- ~.--·T - - ---·-----. 



4.2 RELAXATION OF ALGORITHMS

To enhance the convergence characteristics of the vari-

ous algorithms, relaxation techniques (13,14] can be applied

to attempt to reduce the spectral radius of the iteration.

The spectral radius is the asymptotic convergence rate

and reducing it may or may not significantly improve the

average rate of convergence. Hopefully, the iteration

reaches its asymptotic rate quickly. All of the algorithms

for the Lyapunov equation in the previous sections can be

written in the following form,

L 1 (Km
+ l) = - [L 3 (Km +l ) + L2 (K

m ) + Q]

where L(K) = L 1(K) + L 2(K) + L 3(K) and where L 3 is a

linear operator that uses only the elements of 1+l which

have been computed previously in computing the elements of

L ~m+i

Solving for K m+ l we have

Km+l - [L1. L3 m+l) + L1 ' L2 L + L1 (Q) I

Applying relaxation to this iteration, we find

Km+ = _ w[L1 L3(i+l) + Lll L2(nL + L L(Q)]

+ 1 - w)K .

Here, w is a relaxation parameter to be selected to try to
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reduce the spectral radius of the iteration operator

-1 -1 -1
(r + wL 1 . L3) - wC - wL- 1 . L2

For a Jacobi iteration L 3 is zero so that the spectral

radius becomes

p{(1 - w)I - wL 1 * L2 = max ( - - wA (L L2-

where A CL1 is the th I
where *i(L- L2 ) is th e i- eigenvalue of LZ- L 2

Note, if w = 1, we are back to the original algorithm.

To calculate the spectral radius for the different itera-

tions, it is necessary to write the linear operatiors in

matrix form using the Kronecker product notation. However,

in actually using the algorithms, the computation will be done

from the standpoint of solving smaller Lyapunov and Sylvester

equations (generalized Lyapunov equations). In terms of

linear operators, this can be written,

L1(Km+ll = - w[L 2 (Km+ l + L2 (Km) + Q]

+ (1 - w) l(Km)

where Ll (+l) is decomposed into a number of subproblems
1

so that Ll is not formed.

Relaxation of Gauss Seidel Algorithms

Writing the relaxed algorithms in terms of the sub-

problems we obtain
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ATI +K;. + 'K A + Qm+1 

r=l

where a and 6 take on the values m or m + 1 depending

on the ordering of the subproblems.

In the Gauss Seidel #1 iteration i = 1,2,...,N and

j = i,i + 1,...,N is the indexing scheme. For the Gauss

Seidel #2 iteration the indexing is i = 1,2,...,N and

j = i + k where k = 0,1,...,N - i .

This second scheme decomposes the original problem into

N coupled subproblems of Lyapunov type and N(N - 11/2

coupled coordination problems (Sylvester equations). The

coupling, of course, is only produced by utilizing all infor-

mation as it becomes available, the basic difference between

the Jacobi and Gauss Seidel iterations, and does not arise

from the use of relaxation.

Operation Count for Algorithms

Let f(nd denote the number of operations required to

solve a Lyapunov equation order n and g(n) denote the

number of operations to solve the generalized Lyapunov

equation order n. Assuming Q is symmetric, there are N

subsystems of dimension n and

f(n) = an3 ; a constant~~-- so l v a L y puo equationodr n n ent h
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gCn) = n 3 ; B constant

> a

the number of operations (multiplications) required per

iteration may be calculated.

Calculating Operations

N(N + 1)/2 Qm j's N(N + 1)[2Nn3]/2

N(N - 1)/2 Kfl.'s N N - 1)[Bn3]/2
13

N KEr 's NTan 3]
11

For a iterations, the total operation count T is

T = [N (N + 1) + N(N - 1) - + Na]n a
2

T = [N + (1 + B)N + (a - )]Nn3a-

For the decomposition algorithm to reduce the number of

multiplications required as compared with the subproblem

method

T < aCNn)3

or

UIl1 + ti + -+ a 12 N this will approximately require that

For most N this will approximately require that
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However, suppose that A , i 3 j are sparse having only one

nonzero row, which may be a fairly common situation with large

scale systems. Then the number of multiplications required

M 2 3
to compute Qij is only 2Nn instead of 2Nn . Then the

total operation count is

T = In + (1 + ')N + (a - f)]Nn 3an 2 2

and to reduce the computations for most large N will

require approximately

a< < 
n<c

This shows if the size of the subsystems is appreciable, the

computations can be greatly reduced. Also, if Q is block dia-

gonal, it might be suspected that the resolution operation count

for K.. could be reduced. This unfortunately does not make a signi-
13

ficant difference since even if Q is block diagonal Qm

will not be block diagonal. Hence, even using saved real

Schur decompositions of Aij as in Bartels-Stewart algo-

rithm [30], the operation count is still order n3 for the

subproblems since Qmi is not sparse and must be transformed

at each resolution with an operation count order n . Never-

theless, as will be seen later, the assumption that f(n) = an

may be changed to f(n) = an2 for special cases and signifi-

cant reductions in computation will be possible. Therefore,
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we conclude, if only the approximate solution corresponding

to the first few terms in the Taylor series is needed, the

number of computations will be reduced even in the general

case. If sparsity is exploited or a particular canonical

form is utilized, the reduction of computation will be signi-

ficant.

-.·~~~~~~~~~~----~~~~~~~~~~~~--~~~~~~~~n-.-i·;-~~~~~~~~~~~~~~~~~~~~ap~~~~~~~~~~~·~~~~~---··----·-·-~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~~~~~~~~~~~~~ 
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4.3 POWER SYSTEM MODEL AND NUMERICAL RESULTS

Power System Example

To gain insight into the computational aspects of solving

the Lyapunov equation, by the weak coupling algorithm with

relaxation, a simple power system example was studied.

Solution of the Lyapunov equation may serve as a measure of

coherency between generators that form an interconnected

system 125,26]. This is important since machines that form a

coherent group tend to swing together under a major network

disturbance.

A linearized model of a three generator infinite bus

system was used, where each generator was represented by a

constant voltage behind transient reactance. The linearized

equations for this model are

MlAwl + AWl/R1wo = - Y 1 61 + Y 12 62 + Y 13 63

61 = W1

M 2 Aw2 + Aw2 /R 2 wo = Y 1 2 1 Y 22 6 2 33

62= =W2

M 3Aw 3 + Aw3 /R3Wo = Y1361 + Y 23S 2 Y3363

63 = Aw3

where
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Aw. = frequency deviation of machine i
1

M. = moment of inertia of machine i

6i = perturbation of machine i's rotor angle from
the operating point

Ri = droop of machine i

Y.. = transfer admittance between machines i and j
13

Y.. = self admittance
1J

Athay [25] adapted this model from Lee 1261, who studied

the identification of coherent groups for transient stability

analysis, by adding the damping terms in order to guarantee

the existence of the solution to the Lyapunov equation. The

model used here is the same as the one used by Athay except

that a parameter was added to vary the coupling between gen-

erators, but keeping the admittance to the infinite bus

constant.

This is represented as in Figure 4.3.1

machine machine

YS mmachine YsF

infinite bus Figure 4.3.1

"~~~'~~~"~"P" -"' ~~^-~~'`-~~-~~^~~~~~-~~"'~`~~~~~' ~~- ~~~-~~~ I`~~~
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The per unit values used were

12 Y1 - .3

Y13 .9 Y2 .4
02

Y23 = 1.2 Y = .2

Y1 Y Y1 + Y 13

Y22 Y2 + Y12 + Y23

Y33 =Y3 + Y13 + Y33
0

w = 377 rad/sec

M 1 = .1326 R1 = .01

M2 = .1592 R 2 = .01

M3 = .1194 R3 = .01 .

Here C is varried from one to zero. At £ = 1, the

model is identical to Athay's and the coupling between

machines is the strongest. Athay tried to solve the Lyapunov

equation for this case by using Jacobi iteration (i.e. w = 1)

or the iterative decoupling algorithm as he refers to it.

He found that the algorithm diverged because the spec-

tral radius of the iteration was greater than one. This
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happened because the generators were too tightly coupled as

verified later by simulation. However, using relaxation on

the Jacobi or Gauss Seidel iterations, it is possible to

obtain convergence.

Numerical Results

The effectiveness of relaxation techniques was evaluated

for both the Jacobi and Gauss Seidel algorithms by calculat-

ing the spectral radius for different values of the relaxation

factor w and different values of £ the coupling factor.

To obtain a visual estimate of the relative effects of the

variations in the coupling parameter £ , a simulation of the

system was done. Step inputs were applied to one machine and

the response of all three machines in rotor angle perturbation

and frequency deviation were recorded. The initial conditions

in each simulation were set to zero. These simulations yield

a comparison of the strength of the coupling and the conver-

gence rate of the algorithms.

Results indicate that convergence though slow, may be

achieved for even strongly coupled systems and as expected,

a better convergence rate for more weakly coupled systems.

Generally, the Gauss Seidel iteration converged faster if

the Jacobi converged, but diverged faster if the Jacobi

diverged. Also, for all cases examined in this example, the.

optimum relaxation factor was always less than one and

greater than zero. For strongly coupled systems, it was the

- --- · -------------~`~~-- ~ '--~-~·-~` ~ ·~~~~11~-~~~- 1-- ~····~- -- · · ~ ~~~~~~~- ---- -·- -r·---
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smallest and approached one the more weakly coupled the

system.

It should be mentioned that the spectral radius was

computed for the Gauss Seidel #11 iteration. The spectral

radius as a function of w and s is tabulated in Table

4.3.2. In the plots that follow, a step input was applied

to machine #1. The units of time are in seconds and the

perturbation of rotor angle and frequency deviation are in

radians and radians per second respectively.
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WEAK COUPLING DECOMPOSITION EXAMPLE

Relaxation factor - w
Coupling factor - e
Spectral Radius - sr

Jacobi Gauss Seidel

w sr w sr e

1.0 1.44 1.0 2.79 1.0

1.0 1.24 1.0 1.97 0.75

1.0 .99 1.0 1.19 0.50

1.0 0.64 1.0 0.46 0.25

1.0 0 1.0 0 0

0.5 0.94 0.6 0.90 1.0

0.6 0.90 0.8 0.80 0.75

0.8 0.83 0.9 0.72 0.50

1.0 0.64 1.0 0.46 0.25

Three Machines Interconnected
Forming 6 x 6 System

Table 4.3.2

~~~~C S~"'~"~T~-~-_l~CI_~_ ~ ~_ ._ ..~I___I...I~·... -. I~.L--- .~.. -~. .~-.·-...~-~~.~~- ..~-.~- ..~~._~ - .l~_1 -U~.
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DELTA 1,2,3 VS. TItME
EPSILON= 1.00
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~~~~~~* . . . 2 3 1.

3. 13D+00 * … *…-- ...:..... .... ·... 23-…--………-1*
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* .... 2 3 . 1.
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* . . . 2 3 . 1
* . . .. 23 1 .
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. .. 2 3. .

. . .. 2 3 . I
5.00D+00 ------------------ ----- ------ 2-3---*-----1---*

.... 2 3 . 1
. . .. 2 3 . 1. * . . 23 , 1
. .. 2 3 * 1 .
... 2 3 . 1

5.63D+00 * …-------- ---------- 2-3---* 1---*
. ... 2 3 . 1 

.. . _.2 3 . 13
·... 2 3 . 1
. . .. 2 3 . 1

6.25D+03 *-------- ----- ----- 2------------



-131-

FREQ. 1,2,3 VS. TIME
EPSILON= 1.00
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a a . 231 1

.a 2 3 1 
· 23. 1 .
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a 1. 3 
1 32 .
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· 32 a .
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. 231 .a.
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a 132 .
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a 3 . . .
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a 3 . a a a ·
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. 3 . . * .

· 3 a . a . .
* 3 a 

2 3 . . .. .

6 25D +0 *----3----*--------------*------- -------



-132-

DELTA 1,2,3 VS. TIME
EPSILON= 0.75
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FREQ. 1,2,3 VS. TIME
EPSILON= 0.75
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DELTA 1,2,3 VS. TIME
EPSILON== 0.50
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FREQ. 1,2,3 VS. TIME
EPSILON= 0.50
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DELTA 1,2,3 VS. TIME
EPSILON= 0.2.5
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FHREQ. 1,2,3 VS. TIME
EPSILON= 0.25
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4.4 Interconnected Single Input-Single Output Systems

To demonstrate the advantages of the weak coupling

decomposition algorithm, consider a large scale system com-

posed of interconnected single-input, single-output (SISO)

subsystems. One of the common representations for these

subsystems is the transfer function from which a companion

form state space realization is easily constructed.

Suppose the transfer function is given by

K(sm + m-1 + + a2s + a) Y(s)

T(s) = m2 1 Y(s)
n 2 n

This input-output relationship can be described in state

space form as

Xf1 O0 1 0 . . . O X 1 0

x 0. 1 0 x
d 2

~~_adtl * u0

' . 0x 0 0 . .0 1 x K

-a 1 -a 2 . .-an

companion form

y [ala2 ... am 1] x'
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With each subsystem in the above form, the overall

large system matrix is of the form

All A12 AlN

A21 A22

A = ·

AN1 .. . . IN

where Aii is in the above companion form and Aij, i ~ j

is of the form

0 o . . . o
0.o . . . O

Ai.= ; s and t integers
0 0 . . .0 s t

Cs Cs+l - C t

since the systems are interconnected only through their single

controllable input.

The weak coupling decomposition algorithm for the Lya-

punov equation is (in Jacobi form)

ATK. +1 + Km.+IA. + m+l
1113 ij j 33 ij

m+ N N

Qij = A+ri r r j ij

r3i rrj

Notice that only off diagonal block elements occur in

m+lthe computation of Qi and therefore, each term of the sum

ij~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~----- ----
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for a given r, is of the form

(CX + YD)r =Zr

where C and D are zero except for their last rows. The

component equations can then be written as

e a
(ziJ) =Cpipj + Yipdpj)

r P=l r

(zij) = (ceixej + y id C j)
r (i + Yidaj)r

e,a = values depending on the sizes of the
subsystems interconnected

Thus, only the last row of X and the last column of Y

m+l
are needed to generate Z. Hence, in order to compute Qij

only the last row and column of K. for all i and j is

required.

In an algorithm given by Molinari [271, the last row and

column of .ff. is solved for given Qmi and the remainder

of K generated. The total operation count in evaluation

of Km. is 5 rs multiplications when Ki. is an r x s
1] 1]

matrix.

Using this algorithm, the complete solution need only

be generated at the last step in the decomposition algorithm.

This allows all computations to be done with rows or columns

of Km... Reducing the number of computations significantly,
1]
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however,is due to the use of Molinari's algorithm.

For N subsystems of dimension n we have:

2
evaluation of Qij = 2n (N - 1) multiplications

ij

evaluation of last row and column ; i Z j

= 3n2 multiplications

3 2

evaluation of last row and column Kii n multiplications.

For one iteration

N(N + 1) Q's n 2N(N2 - 1) multiplications
2 i

N(N 1) K.. 's ; i i j n2N(N - 1) multiplications
2 j3 2

N Kii's + 3 n2N multiplications

Hence, the total operation count after a iterations is

(Nn)2 + On4 [4N2 + 6N - 7] < (nN)2 (2No + 1)

where the extra (nN) 2 comes from generating the full solu-

tion from the last row and column of the final iterate.

When the algorithm is of the Gauss Seidel type and re-

laxation techniques are applied similar results in operation

counts can be attained with only a slightly higher number of

operations.

Here it is important to note that the overall system is

not in companion form, but only its interconnected subsystems.

~"`~"-~T~~~~~~~`-'-" " ------· ·-------- -···-- ···-------- ·----- ·---·-- ··--·--------- ·;-·· :--- --·----· · -·- - -- · ~ · ·' I-·
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Hence, algorithms that take advantage of special canonical

forms are of interest even though the large scale system does

not exhibit the exact form required for the algorithm.

A general system matrix may be transformed into companion

form and Molinari's algorithm used to solve the Lyapunov

equation in 5n3 multiplication where n is the dimension

of the system. The existence of the companion form is gua-

ranteed if the system is controllable for some input B

matrix. However, the transformation to companion form is

numerically unstable and the roundoff error is too great for

even modest size systems.

Nevertheless, if the companion representation is already

available, this algorithm appears particularly attractive.

For multiple input-multiple output representations in stan-

dard controllable form 131 Molinari's algorithm may be

adapted and used in conjunction with the decomposition al-

gorithm. This is the case, since in standard controllable

form the system is represented as

0o I 0 . . . 0m m m 0
m

o 0 r 0 0

A= '. .B = B Q

0 m 0 . .... 0 m I mm m m

-ali -a2 m -a mlm a2 ma m mm

Imn

C =[RoR Rn_
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where
R(s) = C(Is - A)-lB

p( s ) = S n + as n - 1 +' ' + a2 s 
+ an 

p(s)R(s) = (Ro + Rls +...+ Rn_1s

and p(s) is the monic least common multiple of the denomi-

nators of the rij (s).

For completeness, a brief sketch of Molinari's algorithm

follows.

Molinari's Algorithm for Companion Form Matrices in the

Solution of A K + KB + Q = 0.

Suppose

O i I
I

A= _---------__---_---- ----

al i -a2 -a3 . . -an

B = - --n-----------------

b1 -b 2 -b 3 . .- b

A n x n matrix

B mxm matrix

C n x m matrix

Denote the characteristic polynomials of A and B by

..-. '"~"""~~~'`~~''~-' "--~I~`~~~~"~'~"~ ~ ~'' ~~' ~;'-'---·-ui-r. ·~,-, ir-;~·-,r- · ··-··---- F --· - ·· ··
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Aa (s) =s + an s +* .+ a1

= sm + sm 1 b
Ab(s) s +bm s ..

Writing the equation in component form

n m
Y arikrj + kirbrj qij i 

r=l r=l j = 1,2,...,m

For A = [aij] r B = [bij] we have

1 ; i ~ n and j = i+l

aij -a. a i = n

0 ; otherwise

1 ; i 3 m and j = i + 1

bi. = bj ; i=m

0 ; otherwise

Now

n ki -1 j aiknj ; i $ 1

E arikrj
r=l - alknj ; i =1

k.- bk. =
kirbrj

r=l -blkim ;j = 1

Defining k.. - 0 if i = 0 or j = 0 , then, the
1component form of the equation becomes

component form of the equation becomes
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a k + b.k. - k - kij
Jim -1,j il,j-1 j

i= 1,2,...,n

j = 1,2,...,m

If all the component equations for which i + j = con-

stant are summed according to

(aikn j + b.k. -k - k -l ij(nj +j im i-l,j i,j-1 (-1) qij
i= i=a

where

1 ; N<m

N + 1 - m ; N> m

N M ; N<n
=

in ; N > n

the equations simplify greatly.

To see this, consider the sum letting p = i - 1

68-1 p+l
g(N) = -) i N+l-i (i,N-i.+k i ) ( (pN-p)1

i (kp,N-ii=c p=a-l
i=o+

g(:N) = (-llekeN_ + (-l)kl, N+ 1

__. _, ,,. ,_,, _.____,_._ _ .__-- _.r_-- : -. - -'---'''- -- ·-- '-' ' '' 1
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Then

0 ; N < m and N < n

(-1) N+ kNmm ; N > m and N < n

g (N) =

(- 1 )n ; N < m and N > nn,N-n

(j) Nl Ink + (1) na
(-1 )l-mkN m ,m n,+ (- k n ; N > m and N > n

Define

(-1) qi N+-i; N 1,2,...,m + n - 1

h (N) = i=

O ;N=m+n

The Sylvester equation may now be written as

' (-1) (aik N+1 i + N+1 kim ) - g(N) = h (N)i n,N+l-i bN+1-i nf
i=a

This in turn may be written in matrix form by defining an

(n + m) x n matrix F(x,n,m)

x 1
X 1

x 2

F(x,n,m) x 2
.X

Xn+l

Xn+l

Xn+l
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with x an n + 1 component vector.

Now, the Sylvester equation is

[F(c,n,m) ' F(d,m,n)] .. = h

where

c = [-al,a2,..,(-l)a (-1)n+, (-1)]

dT = [bl,b2,...,bm,1]

= [knl n2'* kn m ]

[-klmk2m... (-) nm

T
h = [h(l),h(2),...,h(n + m)]

This (n + m)-dimensional set of linear equations is

solved in 3mn multiplications using a special algorithm

that takes advantage of the structure of F . The remainder

of K is generated from the last row and column using

ij-l =qij + ajk. - BTk.. ; j = m,...,2

or

kji = qji + b.k - A Tk.. ; j = n,...,2
kj-li = qjij ni 
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4.5 Decomposition Algorithm for the Riccati Equation [4]

The Riccati equation like the Lyapunov equation, for

the system

x1 A1 1 A12 

X2 LA21 A22 LX 2 B 2

can be decomposed for a weakly coupled system. If A12 and

A21 are "small", the solution of the Riccati equation should

be "near" the solution of the Riccati equation from the block

diagonal A made up of All and A 2 2 . This suggests an

iteration, similar to the previously discussed weak coupling

algorithms for the Riccati equation.

Subproblem #1

A KT +K A + Qm -iT B =0
Allll 11 11 Qll 1 1 1 11

Subproblem #2

T m + m A + m m -1 T m 0
22K22 K222 22 22 2 R B 2 K2 2

Coordinator's Problem (Jacobi Iteration)

(A R B-1 T -l -T Km (Am R-1 T m-1 m

(A - B1 1 11 K 1 2 + K 1 2 22 2 2 2 2 ) +Q 1 2
=

For a Jacobi type iteration

m _T m- 1 I- 1 m-1 -1 T i-1l
Ql Qll A K + 1 1 BA -

1l 11 a21 21 12 21 12 2 2 2 1
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m T- 1 + Km-A
Q12 21 22 11 A12

m T m-1 M 1 m-1 -1 T m-1
Q22 = Q22 + A12 + K21 12 - K21B 1 R B1 K 12

must hold.

To change this to a Gauss-Seidel iteration, the coordina-

tor's problem changes to

Coordinator's Problem (Gauss-Seidel):

~~lm (A 2 - 2 + = n 0
(A1 1 - B1 R B1 K 1 1 K 12 K+ 1A22 R-2 B 2 2 12

± T m m
Q A 1 K + K A1 2Q12 = A21K22 1112

and the subproblem remains the same, but must be solved before

the coordination process. This is directly analogous to the

Gauss-Seidel #2 iteration for the Lyapunov equation in the

weak coupling section.

In a region sufficiently close to the solution K, the

linearized equation governs the convergence rate of the

algorithm, as in the two-time scale case.

;- -- ---· -- - - ----- ·~·-- - ---~------ ·----- ·-------------- --- ---- -~- -- ------ --------- ~ - ---- --- .--T r - ---- --
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CHAPTER V

CONCLUSIONS AND FUTURE RESEARCH

Two decompositions for the Lyapunov and Riccati equations

have been presented. These decompositions make possible the

solution of problems not feasible by standard methods, due to

the large amount of storage required for manipulation of

arrays during computation.

Using the decomposition algorithms, size of the arrays to

be manipulated is reduced and computational savings can be

attained when the number of iterations need be few or when

the subsystem possess a special canonical form which may not

be exhibited by the overall system. Finally, these algorithms

recommend themselves where the regulator problem need be

solved on-line,due to system parameter variations,by a number

of small computers no one of which is able to solve the

global problem.

Future Research

Much of the literature concerned with relaxation tech-

niques has been with matrices that arise from partial dif-

ferential equations that are discretized. These matrices

form a very different class of matrices from the matrices

that arise from state space descriptions of dynamical systems.

Hence, many of the theorems related to solving this

class of large linear systems are inapplicable because they
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depend on this type of special structure.

Specifically, the results on the selection of relaxation

parameters is difficult to adapt and possibly other criteria

such as a measure of the coupling might be substituted or

selection of a relaxation factor might be done dynamically

during the iteration. Also, other canonical forms besides the.

companion form might be used in decomposition methods to

reduce computations.

"^I~-I~;" ~"~,,~~-,lrr-- -·----- ---·- ·-- ·----- ·- ·- - ·--------- ·- · r I-·- ··- ·-- - --- ·--- ------- ----- · ·- ·- ·- li·- ·- T
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APPENDIX

Two Time Scale Decomposition Algorithm for Riccati
Equation

A.1 Computation of Q

Let
L BR- 1BT (A.1.1)

[L1 L B RlBT B-1 RT
L11 12 1 B1 1 1 2

~~~~~= ~(A.1.2)
LL2 1 2 jL 2 1 22 -1 T

m-lTA{ F. 1
L" Aj[ 1 12 1 1 

AT K-1B11-1 ( 1

A K 2 (K ) TA ) ( (A.1.4)

A A-l ° ]Km1=A

0 [L21 L22 0L1
1 L A11(A.1. 12( -O Lle-n 1

0 10
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0 ° l 11 L12 K 11 0

1 21 22 j 21 22

-K 3 L i 1 °L 12K1 T-.1 _o o o-111

T Km~1 Kml+Kmm- 1 _-1 m-1 2m-1O_-4 KT - 1 K~L - Kl LL2Klm m Kn 1 m-l K 1L m- M1 1

K1 1 K11 2 +KL 1 2 12 21 12 22

(A.1.7)

Since

Tm Tm-1+fTKMiTAI T mr-1 r-m- -m-1 m-1m-
2 2 1 (K 1 2 2 1

(A. 1.8)

we see that

8n Q11 (A.1.9)

1m T K2- 1 Km 1L K-K1 m -1 m-1 
i2 = Q .2 +A 11 12 11 12 1 2 21 12

~~-~~~~~~ "~~"~""~~~llc-I~-- ~ ~ e -`-'L"- ^ , ~,Krla~~~~~'~--' +R;-n- 'L Km-- ~~I' e- -;'` L KT.·~~~~~'~~ ~~ -'+Km-l~ ~"^~~~-~~~~~ l2 K---r··-·---7--
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m T im-l_2 --
'22 = Q 2 2+A 1 2 12 21A 12 21 11 122 22 21 12 -21 L12 22

(A.l.11)

Here, notice that Q11 in (A.1.9) is different than

?m because of the coupling between the slow subproblem and

the coordination subproblem as yet to be taken care of, but

(A.l.10) and (A.l.11) are in the desired form.

A.2 Computation of ATKi+(1)TA-(K1)TLKi+Qm = 0

| 1 I |1 1 1 1
e e- A A 1

(A.2.1)

11 11 12 21 11 12 12A22

2 A21 K2A22

A e+ () A =

(A.2.2)1T 1

[ll 11 12 21 1lL12 12L22 11 1
(A.2.3)

- 22 21 22L22 21 22
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(cK)TLKm =

K: L 111 'l+2L21 11K 1 12 21 122L2 KT21 1 1222 12 22 22

FK+KmL KT Km L KT+KL KmKTm+KmL K

_22 21 11 2222 2 1 22 2222

from this we can substitute in for L and obtain

K 11 11 +K12L2111 +11 12 21 + 12 22 21

K" (L1 Kl+L12 12)+K22 L2 11 22 21
RlKm m-

K- (B Bl Kl+BR B2TK) + K2 (B2R BlBl+B R2lBT<11 1 Il 1 221 12 2 111 2 221

(= mBR 1 +Bll l+mB2K B -21 )(B Tm+11 1 1 11 2 21 122 (A. 2 .24

B1 1 2 2=+B ) TR (B Kllm +B 2 l ) ) (A.2.4)(T11 221 1 11 221KI 1 L12 KI 2+Km L Km = (Km -1 T+ B R -1 BT)Km12222 1 122R B1 2 122 2 22

= (B_ +BT )T(BT (A.2.5)

2222 22 2 2 22

Let
G .= (B.Tl. + B 1 (A. 2. 7)

G 2 1 22 (A.2.8)

= B2 2 (A.2.8)

2 2 22~lp---- -- · - - ------------.- .r---·-lc~. FI-;.- F
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Now the algorithm may be written as

All +KA +A + A +Q-G R G O (A.2.9)

AT21 +K 1n A + A enA+QVm-GTRlG = 0 (A.2.10)TT+'A+ 22 m T -1

22 22 22 2G 2%2K2+K2m 2+Q22- 2R 20 =° (A.2.11)

We have both (A.2.10) and (A.2.11) in the desired form

only (A.2.9) is not as needed.

A.3 Slow Subproblem Derivation

Solving (A.2.10) for K2

Km = T -1 T ,Am -1
GTR AA]A (A.3.1)2 = [GR G 2-A 21 2-1 12 22

=X - A A-1 (A.3.2)
12 11112 22

TX = ( -1G- T Km -Q]A -1(A.3.3)x 1 2 21 22 12 22 (A.3.3)

Looking at the terms of (A.2.9) we see

Km a = XA =XA-K A A 1 A (A3.4)
1221 21 11 12 22 A21

KmA +KmA i-=K A-( A 1-A A 1
1 11 12 21 11 (All-A12A 2A2l) XA21

(A.3.5)

=1 11 +XA21
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XA =1 m -1 T m -1
XA21 G1R G2Q12 2221 -A21 22 22 21 (A3.6)

XA Y - TK m A A3XA21 = Y A21K22 22A21 (A.3.7)

Y = (GTR G2-Q2)A2 2A2-1 (A.3.8)G2 -Q 1 2 )A 2 2 2 1

TX+XA + T -1 T TK m A )Am-1+21X 2A1 A2 2 A 21 (A2 2 2 2 2 2 2 2 2 (A.3.9)

Now substituting in (A.3.9) from (A.2.11) for A22K22+K22A22

we have

T T -1 T T-1 m -1A2 1 X+XA2 1 = y+yT_ -(A 2 2 A21 ) (G2 R G2 -Q22 ) (A2 2A2 1) (A.3.10)

Letting 1

o = 22A21 A(A.3.11)

A 21 A 2 G .-Q)+(_GoR G-2)AAAT (G-1G Qm ( G1R-1G A
21 21 122 - 12o

T T -1 i(A.3.12)
A (G2 R G 2 -Q22)A

Now (A.2.9Y may be written as

^T m +Km ^ T - A T TT -1 T -1
Allll KllA+11 11 11 R G1-Ao 2R G2 +AG 2 R G 1+GR G 2A = 

(A.3.13)

where

^M T m Tm m A
Qll = Qll+AoQ 22-A oQ21 -Q12 oA.3.14)

which is the required form for Qll Factoring the terms11 c

containing G 1 and G2 in (A.3.13)

l,7,..........
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^T K m +KtL m TR-1
llKll+KllAll+Ql - (G1-G2Ao) R (G1-G2Ao ) (A.3.15)

The last term in (A.3.15) is not yet in the form required.

From (A.2.7), (A.2.8) and (A.3.11) we have

Tm Te -B Tem A A
G 1 -G 2A = B1 +B2 22 22 216)

and from (A.3.1) we get

Km ( -TT -1T [m (A317)
K21= (A2 2)T[G2R G 1- 2 A 2 1-A1 2 ± 11-Q 2 1 .

Substituting (A.3.17) in (A.3.16) and collecting terms

G G AO= (Bl-A~~ A 1 B )Te1L-BT22 A22A21- (A- 1 B) TIflA
G1G 2A (B1 1 2 2 2 2 11 2 22A21 T 22 2 2221

+-A~1 B )TEGT lG m (A.3.18)- T -1 m
+ (A22B2) [G2R Gl1Q21 ]

G -T B T T-1 +1TnRTm

Substituting from (A2.11) agaiG1-2 1 2 22 2 22 22 21 2 2 2 m21

(-G1 -G 2 A0 ) = B.lS.T- (A 2 2 B2 ) [ 2A 21 -(G 2 R iG_-i) ]

(A.3.20)
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GT - T T -1 
G1_G A 0= B1 _+ (A2 2 B2 ) [G 2 R (G 1-G 2 Ao)+Q z 2 A o -Q23I (A.3.21)

-1 T T -1 ZI1 + Te T22B2)T m m
[I(A22B 2 ) G2R ] (G1-G 2Ao ) = +((Q2 2A-Q21)

(A. 3.22)

)T T - 1 -1 ^ Te T m m
G 1-G 2 AO = [I (A212 ) T G R [ B +(A 2 2 B 2

) ( 9 2 A -Q 2 1 ) ]

(A.3.23)

Now
NOW m T m m -1

m = (AoQ22-Q12 2 2 B 2) (A.3.24)

and -1and .- 1 T -1 -1
M = [I- (A 2 2 B 2 ) G2 R ] (A.3.25)

so that

(Gl-G2Ao) = M( TKl +(Sm)T) (A.3.26)

For

M1 =I- ( 2B2) 2 BR-1 (A.3.27)

we can substitute for K2 from (A.2.11) to get

-1 = I A-1 T T m GTRlG ]A -1M = I-(A 2 2 B2 ) [A B R22 22 22 2

-1 (-1 BTm (-1 -1 1 T T -1 -1 -1
M 1 [R+(A2 2 B2 )2Q2 2( 2 2 B2 )]R- +[I-(A2 B2 ) G2 R ]G 2A A 2 B 2 R

(A.3.28)

with

Rm = R+(AB) Q AB (A.3.29)22 2' 22A 22 2' (A.3.29)

-1 RmR-1+M-1 - -1 (A.3.30)M = R R +M G 2 A2 2 330)

~`-~~p~`" ~ ~~~- ~ 1·1__ __~ _ .i~~---~- -__~·_~. -(i· i i--li-l~-i-Y--.YI~~-·-- .-..-. ~-.~-·- ~.-I· _~_l~~~i~~~. .. ~ T -C-l-~·_
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from which

-1
M 1 - RmR- 1 (I-G2A22B 2 R

1) (A. 3.31)

= R (R-G2A 2 1B2 ) 1

Rm _R-1 -1 -1R- = RmMTR-R I-R G 2A 22 B2 ) R 1

or

M = R(M -1 )T(Rm)-l

MTR1 M = (Rm ) -1 (A.3.32)

Now from (A.3.26) we have

(G1 -G2Ao) TR-1 (Gl-G 2Ao) = (Km1B +Sm)MTR-1M B+Sm) T

(A.3.33)

and

( G2 A0 )TR 2- 1 1 +Sm) C( Rm )-I '( 11 +Sm)T

(A. 3.34)

using (A.3.32) so that (A.3.15) becomes

th1A K1A 1+Q-1 (R1B1 +S ) (Rm) (K1B1+Sm)T O (A.3.35)

the desired result.
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