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CHAPTER I

INTRODUCTION

1.1 The Lyapunov and Riccati Equations in Control Theory

The application of modern control theory to real
problems involves solving the Lyapunov and Riccati equations
accurately and in an efficient manner. These equations arise
in a number of problems such as the stability of linear sys-
tems or in the evaluation of cost functions in optimal con-
trol and covariance matrices in filtering and estimation [1],
[2].

Consider the linear system

<(t) = ATx(t) + w(t) , x(s)eR®

where w(t) is formally a stationary, zero mean, white noise
process with spectral density matrix Q > 0 (i.e. Q is
positive semidefinite).

The steady state vafiance of this system is given by P

where

ATP + PA+Q=20

for stable AT and P is the unique positive semidefinite

solution of the algebraic Lyapunov equation. The Lyapunov

equation also arises in connection with the Lyapunov function

Vix,t) = x©(£)Px(t)




for the linear system

x(t) = A x(t) , x(0) = X, -

A Differehtiating V(x,t) we obtain

Vi(x,t) = x° (t) [ATP + PAlx(t)

I

- xT(£)0x(t)

]

where Q 1is positive semidefinite since V(x,t) is a
Lyapunov function. If P and Q are both positive definite
then the system is guaranteed to be stable and x(t)
approaches zero as t tends tb infinity [3]. Moreover, if

J is the associated quadratic cost of the state trajectory

over the infinite time interval so that
T T
J = [ x (t)ox(t)dt
0
then, because the system is stable
_ T
J = xono .

We may also obtain from the variation of constants formula

and the integral formula for J that

o
P=[e" "Qe -dt .
0




Turning to the Riccati equation, consider the determinis-
tic optimal control problem
. T T
min{J(u) = [ %~ (£)Qx(t) + u” (t)Ru(t)dt}
u
0

subject to x(t) = Ax(t) + Bu(t), x(0) = X

where R >0, Q>0 and J(u) is the cost.
Provided [A,B] is controllable and [A,YQ] is observ-
able, the minimizing control and minimum cost are given by

1

u(t) = - R-IBTRx (¢)

_ T
Jd = onxo

where K 1is the unique positive definite solution of

ATK + KA + Q - kBR 18Tk = 0

the algebraic Riccati equation [28].




As the dimension of the state space increases and becomes
very large, as may happen with interconnected systems, the
task of compuﬁing solutions to linear-quadratic control
problems using general purpose algorithms becomes exceedingly
difficult. These difficulties arise because the number of
operations specified by an algorithm and the associated sto-
rage requirements exceed reasonable time and size limits
dictated by the computing facility. Even if these limits are
not exceeded, the numerical accuracy achieved may not be
sufficient, due to round-off errors.

However, if the dimension of the problem is very large,
there is usually a special sparse structure that can be
taken advantage of to reduce these computational difficulties.
There are two approaches to do this, which are somewhat
related; they are decomposition and decentralization. Briefly
decomposition is concerned with the reduction of off-line
computation required to obtain a control law. Decomposition
is attractive, since it breaks the original problem into
several subproblems that are simpler and easier to solve and
then reconstructs the centralized solution. Decentralization
on the other hand, is concerned with the reduction of on-1line
communication and computation implicit in a defined control
law. Formulation of decentralized control laws leads to a

number of smaller subproblems or infimals, which reduce the
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on-line computation and communication. This however, may
increase the off-line computation to obtain the control law
since the infimals may not be simpler and easier to solve than
the original problem [4]. The approach considered here is
similar in some respects to that of Laub and Bailey [5] and
is one of decomposition. However, since subproblems are
defined in decomposition approaches, there is a certain off-
line decentralization of information about system process
parameters. Laub and Bailey point this out in defining a
decomposition for the centralized decision problem leading

to a decentralized solution. In this decomposition, each
controller or infimal decision maker needs only limited in-
formation about the system process parameters and only a

part of the state. A supremal decision maker called the co-
ordinator directs the decisions of each infimal decision
maker or controller by supplying a correction term to each
controller's decision. To obtain this type of decomposition
and decentralization, they pose the problem as a classical
least squares problem in Hilbert space. They then obtain
conditions under which this decentralized decision making with
coordination can achieve the optimal centralized decision
process. For the linear regulator problem over the infinite
interval, this results in at best, a partially closed loop
solution.

In the approach taken here, the only decentralized aspect
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will Be that of the decentralization of information about the
system parameters. The solution obtained will be in closed
loop form; but will not be implementable in a decentralized
fashion, since it is merely the centralized solution in par-
titioned form.

To contrast- tHe decomposition approach of Laub and
Bailey to tHe one taken here, it can be noted for the linear
regulator problem that at each iteration, they solve the
minfmization of the cost function exactly while approximating
successively the linear constraint of the differential system

equation. In this thesis, the necessary conditions for op-

timality are decomposed instead of the original problem. How-

ever, this can be interpreted as satisfying both the state
vequation constraint and the minimization of the cost function
approximately and then obtaining convergence conditions under
which the successive constraints and cost functions converge

to the true state equation and true cost function.
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1.3 Summary of Thesis

The Lyapunov and Riccati equations of control theory are
presented and analyzed in the case where special structure may
be taken advantage of. In Chapter II, the relationship of the
Lyapunov equation to linear vector equations and techniques
for solving them is explored. Chapter III discusses an itera—.
tive method to solving the Lyapunov and Riccati equations mo-
tivated by singular perturbation theory which suggests the
particular decomposition. This decomposition is identified
with the separation of time scales between subsystems of a
large scale system. Chapter IV presents a decomposition
algorithm motivated by the idea of weakly coupled subsystems
of a large scale system being approximated by independent
subsystems. This method is applied to a power system model
to obtain some numerical results. Chapter V presents some
conclusions and suggestions for further research along with
the appendix which contains a somewhat lengthy algebraic deri-
vation of the two-time scale decomposition algorithm for the
Riccati equation.

The main contributions of this thesis are:

1) The presentation of a new two time scale, iterative
decomposition algorithm for the Lyapunov and Riccati equations.

2) The extension of the weak coupling iterative decompo-
sition algorithm by use of a relaxation parameter.

3) The showing of the way in which a special canonical
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form may be useful in reducing computations for the decompo-

sition algorithm.
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CHAPTER II

ITERATIVE SOLUTION METHODS

2.1 MATRIX PRELIMINARIES

Vector and Matrix Norms

It is useful to have a single number to measure the size
of a vector or matrix. This number is called the norm of the

vector or matrix and is denoted by || - ||, [17].

For vector norms the following relations must hold

||x]]|>0 unless x =0
[lex]] = |o| |]|x]|] for any complex scalar «

= + vl < [Ixl] + |lel] -

Three vector norms that are commonly used are
= B 1/ =
[zl = Uxgl® + )P+ = IP17P (o = 1,2,%)

where |[|x]||, is interpreted as max|x.,| . The norm |[|x]][,
i
is the usual Euclidean length of the vector x. An important

inequality is
T.1
=yl < [Ixll,11¥ll,

the Schwarz inequality.

Similarly, for the norm of a matrix A, denoted || A|]

the following relations must hold
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[1a]] > 0. unless A =20
|lea|] = |a| ||A]| for any complex scalar
l1a + B[] < ||a[] + [[B]]

|1aB[| < |{af] |]B]]

Corresponding to each vector norm the associated matrix

norm defined by

— . Ax
1311 = mex S

satisfies the conditions for a matrix norm and is said to be

subordinate to the vector norm.

Corresponding to the three vector norms the subordinate

matrix norms are

[1all, = max 2

- I""ij‘
3 i
Lall, = mix ; |aij]
[1all, = max[}, (afa)11/2

1

where Ai(AHAl' are the eigenvalues of afa and A%

denotes the conjugate transpose of A.
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From the definition of these norms it is apparent that
Haxll, s Al =, 5 p = 1,2,

is satisfied for all x. Any matrix norm which satisfies this

inequality is said to be consistent or compatible. Another

matrix norm which is used frequently that is compatible with
the vector norm || ¢ IIZ is the Euclidean norm. The Eucli-

dean norm for a matrix A 1is defined by

[Z Zlaijlzll/z .
i 3

i

lallg

The IIA||2 norm is referred to as the spectral norm. Some
useful relationships involving the spectral and Euclidean

norms that can be developed are

lall, < [1allg < o312l ],

where A 1is an n x n matrix. These inequalities follow

from the fact that AHA is positive semidefinite and
max»lA(AHhH‘_ﬁ_. | 1a] lé = tr (afa) <n ‘max'l?;(AHA),,[ .

Also, if A 1is an eigenvalue of A and x is a corresponding

eigenvector, then for consistent matrix and vector norms
[fax|| = |x[ [l < [1a]] [l=]]

Al < Hall
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From this we can obtain

[1al15 = maxx @) | < [1a%all, < [1a]],]1a]],
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2.2 THE LYAPUNOV EQUATION AS A VECTOR EQUATION

The Kronecker Product

The useful notion of the Kronecker product and its ele-

mentary properties is presented here to facilitate later
analysis of the Lyapunov equation.

The Kronecker product is discussed by Bellman [11] in
which some useful elementary identities are stated. The
Kronecker product of two matrices A and B is denoted by

A 8 B and defined by

ARB-=

In order to justify the use of the term product, it may be
seen by using block matrix multiplication and the definition
of Kronecker product that the following identities hold:
(Ag2B)RC=2A8 (BQC)
(A+B)@2 (C+D)=ARQC+AQD+B&@&@C+B8&&D
(A 2 B)(C®& D) = AC 2 BD

(aA 8 bB) = ab(A & B) for scalars a,b .
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Eigenvalues of A 8 B

The eigenvalues of A 2 B have a simple relationship to
the eigenvalues of A and B. Suppose o and B are eigen-
values of A and B respectively, with corresponding eigen-

vectors x and y. Consider the Kronecker prodﬁct
(Ax) 2 (By) = (ax) @ (By)

which can be written alternatively a;
(AR B)(xQy) =aBlx R Yy)

using the previous identities. Thus aBf is an eigenvalue of
A ® B with corresponding eigenvector (x 8 y). Note, however,
that for multiple eigenvalues of a defective matrix (i.e. not
diagonalizable) the generalized eigenvectors or principal
vectors of grades greater than one will not be of the form

X 8 y. A vector x is called a generalized eigenvector of

rank m (or a principal vector of grade m) [17] of the matrix

A and eigenvalue \x if (A - AD)™ x = 0 but

m
m-1
(A - \I) X # 0 .

Kronecker Products and Linear Equations

In studying the Lyapunov equation, it will be useful to

examine the linear matrix equation

AXB = C
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where AgR™H ' BeR™™  and X,CeRnx . This equation can

be decomposed into two separate problems
AX = Y and Y¥YB = C .

If X, Y and C are composed of vector columns Xie ¥y

and c; respectively for i 1 to m, then it is apparent

that
a X1 ¥y
A x2 y2
A Xm ym
and
[yly2 cee ¥l B =Fkq6, .. cm] .
Hence,
m yl
== ! y i =
c. = Z by¥ = (b ;I byyT «o. b .T11¥2f, i=1 to m
l’ L ]
k=1 :
Ym

where bij is the (i,j)th element of B. As i runs from

one to m this can be rewritten as




bllI bZII e . e bmlI A
blZI bZZI
_blmI b2mI .« . . bmmI_ ]
or
"bllA b2lA e e bmlA'—
ble b22A .
-bhﬁ o« e e e e Emﬁ"
Now by definition of the Kronecker we can
T =
(B @ A)x_ =
where xl
X, = %2 and
*n

_21_

Now, by substitution for

Yy 1]
Y) Ca
Ly, - Lc, - .

Y we obtain

* €1
A x2 c2
ML*nd  L°ml
F'Xl‘ Cl
- Xm_ ._Cm— .

c
C

write

nm
X ,¢c _€R
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We have now obtained a linear vector equation from a

matrix linear equation. However, suppose that it is desired

to construct X and c¢ of the rows of the matrices X and

R R
C instead of the columns as we have done previously. This
can be accomplished simply by considering the columns of xT
and CT so that for the original problem we substitute the
equivalent problem

T

BTxTaT = T

and using our previous result we obtain

(A 8 BT)xR = c

R
where
= -~ haad
M=, c;
Xz Cz
Sl BT L S O
xn_ _cn
with
T _ T _
X iand [xlxz * o o Xn] and C - {CIC2 e v o Cn] .

Furthermore, the relation between X and X, is given

by

with
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where P 1is an orthogonal permutation matrix. P is defined

by
U, Uy - - o U
Uy, Ups )

where each Uij' is a n xm matrix which has elements of
zero except for the (i,j)th element which is a one. 1In the
case n =m P 1is then symmetric.

It has been shown previously that the corresponding sets

of equations in terms of Kronecker products for AXB = C 1is:

- T
AXB =C « (A2 B )xR cgr

AXB = C «> (BT @ A)x = c i

c
Hence,
T _ T
(A QB )xR = P Co
T, T. _ T
(A & B")P X, = P Cq
T, .T _
[P(A & B™)P ]xc = CC

which implies that
@ 2 a) =p@ o 8T)pT

or that BT 2 A and A ® BT are similar and therefore have

the same elementary divisors.
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The Lyapunov Equation and Kronecker Products

Using the formulas for Kronecker products, we may rewrite

the Lyapunov equation
T
AK+ KA+ Q=0
in the form
Rpakg = = ag

where

K, = ATe@1+18al

and kR and qp are vectors comprised of the rows of the

matrices K and Q respectively.

Eigenvalues of Ky

If A has eigenvalues Ki then

ATx. = A.X.
i i~

. . T .
where X; 1s an eigenvector of A corresponding to A;.

Consider the Kronecker products

T
A xi (5] xj Xixi 8 xj

x., 8 ATx. ALX., 8 x.
i i 3

J J

which when added give

T T -
(A" I +I QA )(xi 5} xj) = (Ai + Aj)(xi (] Xj) .




counting multiplicities.

Hence, the eigenvalues of
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independent eigenvectors (i.e. A

A

independent eigenvectors

2
1]

= X.

1

R x. i=1 to

J

KA are simply ki + AL

is

J

If A possesses n linearly

not defective) then

K has only linear elementary divisors and n2 linearly

Givens [12] has shown that if A has a Jordan form with

Jordan blocks of size Py i=1,2,...,m , where m 1is the

number of Jordan blocks, then KA

Py +

and

where

J

=1 to m.

Norm Relationships for K

p; - 1, p; + Py - 3/---4|P; - P

A

Since K- =A QI+ TI®A,

A

Suppose for

lagll > Ila,]]

has Jordan blocks of size

51

+1; i=1 to m

AgRDXD
rallI + A alZI . alnI 7
_ ale a22I + A aan
A . . .
_a;;I anZI . . %‘;; + A .
l<r<n and i=1,2,...,n
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211
ari
A [ala2 .o an] : a; = .
ani
then
T
Ry = !lKAHl = 2|[a || = 2]|al]l; .

This is necessary since Kg has one column with évery element
of a, appearing twice except for element a,r which is
replaced by Zarr and the remaining elements of the column
being zero.

Similarly for the rows of K, we can deduce that

S

T
all = TIg 11, = 21 ]all,

Hl
For the Euclidean norm, if
A=B+D
where D 1is diagonal and B has a zero diagonal,

lallg = [lell3 + 12113 .

Hence,

+ lIxgll2

|1Ra 15 = | 1%g] 12

must hold.
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<

Now IIKBllé = anlBllé since B has a zero diagonal,
and n
2 _ 2
Hol1E = 24 lay;]
2 2 2
B 2 2 fag; + 2517 = 2 2(1ag, |
+ |a 12 2|a..a..o
J A N R By |
|1xg = 2n| D] |2 + 2 e (a) :
Therefore

!IKAllé = 2n[lA{}§ + 2 (tra)? .

The spectral norm of KA has only an inequality rela-

tionship to the spectral norm of A

-
r

[1Kallp = [1Kall, < 2@ 1], + | [T @ al],

llaez|]=rciae DA enl =pla"a e n] = piala

where

p (X) = max[[A; (X)]] .
i

Also
lzeal2=ptxenrean] =onl - 2] ]2

and hence Hall, < TR, < 2] 2],




-28~

2.3 ITERATIVE METHODS FOR THE LYAPUNOV EQUATION
Present iterative methods [6] for solving the Lyapunov
equation
ATk + xa + 9 = 0 , Rer™"
in continuous time transform the equation into a discrete
time version which is then iterated to stationarity. The

discrete time Lyapunov equation is

=FTKF+G, K =20 .
m o

Km+l

Convergence of this iteration is ensured if all of the eigen-
values of F 1lie within the unit disk. However, the rate of
convergence may be extremely slow, if F has eigenvalues
close to the unit circle, but may be accelerated using the

following iteration

S -
Sm+l = FmSmFm + Sm ’ SO = G
- @l -
Fe1 = Fno v Fo = F
where {Sm} + K and Sm = sz .

This iteration is nonstationary and can be shown to converge
quadratically for the case when F 1is diagonalizable. To

see this write K as

m
ol i i
Km=Z(F)GF

i=0
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then

— m, T
sz = (F) KmFm + Km

so that with m = 2P we obtain

K = (F K _F + K
2P+1 ( ) zp 2P
the described iteration above. To simplify the convergence
analysis, the iterations may be written (using Kronecker pro-

duct notation of Section 2.2) as vector iterations

o
i

(FQF)Tkm+g, k =0

m+1 o

s [(F & F)zm]Ts + s s =g
m+1 ' m m ' o

il

where km ’ sm‘ and g are the vectors formed from the rows
of K. v Sm and G respectively, such that the first row
forms the first n elements of the vector, the second row
forms the second n elements of the vector and so on. Now,
defining the error at each step in the iterations guadratic
convergence may be demonstrated. Since the solution k

satisfies the equation

k= (FRQF) Tk +g

let ~
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then with
B=(FQF)T
Cn+1 T B ®m
emir = B oy
so that with m =0 and r = 2P
;p = e2p = szeo = szk .

When F 1is diagonalizable and stable, B 1is diagonaliz-

able and stable. This is true because there exists an X

such that
F = X_lAX where A is diagonal

so that

B=xTeaxhoenixex)

-1 -1
B = (X & X) (A & AM(X 8 X) =T DT
Aij(B) = Ai(A) Aj(A) for i =1to n and
j=1%to n .
Let
d
d,
D = * ;s N = n2
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and consider the following norms for any ﬁT = [%1’%2’
1™ 2 - 3™, 2
D K = dy k.|
2 i=1 i i
o N o
27y, , 2 27 2
D2 %[12 = 2. |a? &, |
i=1
2%y 4 2L, 2 2
o213 > o182 k1A%,
i=1
since
n.
. 4 4
x| 15> 22 =
i=1
and define
0, X.=0
i
a, = : i1i=1 to N
1 1
A"} o
]ki[ r K; #0
o = max o, ; i=1 to N
i
hence
N N
m m+ ' m+1
o?| D% R[5 > 1 a2 % %2R %= £ ja? %2
2 i=1 i i1 =1 I i
2m+l& 2
= ||D k||
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or
m+]1

al1D? %112 > 102 ¥,

m+l

2 n
RI1,

m m
ol Tr710? X[ = o [D® ¥[|2 > |ID

Maltiplying both sides by HT-]‘H and using matrix norm

2
inegualities

2, -1 1.2 2 -1 oM+l
Ll = el 1T 0% X115 2 777 |,[10°  K|],

m+1
> [lT7% R,
with
X = Tk
20 -1 2 o om+l
TS DB k|5 > [|B k||
and finally
e qll, < 8l )] le |12 v
m+l! 2 — o) m''2 m

where ~ _
Bley) = ol T 1,11l 13

the desired result of quadratic convergence.

The methods that use this approach differ only in their
transformations from continuous time to discrete time. One
transformation is

F o= PP , G = [(e"") 0e™"ac .
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Davison and Man [7] use the approximation

c¥on; F=ett

where h 1is required to be small in order for the approxima-
tion to be good. Reducing h, however, leads to an increase
in the number of iterations requiréd which in turn limit the
accuracy obtainable due to round off error. This problem can
be circumvented to some degree if a better approximation for
G 1is used by incluaing more terms of the series expansion
for G. Another transformation utilized by Smith [8] which
is better uses a matrix linear fractional transformation. 1In

this case the left half plane is mapped into the unit disk by

F=- (A-aI)t@a+ al)
o -antom - ant
2a
where the choice of a = [|A (a) A (A)Hl/2 for real
min max

Ai(A) minimizes the spectral radius of F. The operation
count for this algorithm is (30 + r)n3 where o 1is the

number of iterations required.
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2.4 ITERATIVE METHODS FOR LINEAR VECTOR EQUATIONS
Since the Lyapunov equation may be written as

n2
KAkR = - dg KASR

it is simply a linear vector equation that may be solved by a
number of numerical methods that are currently available.

Note that if Q is symmetric the number of equations to solve
can be reduced from n2 to n(n + 1)/2.

For such linear systems of order n2 direct methods
will require O(ns) arithmetic operations with even the for-
ward and backward substitution requiring O(n4) operations.
Thus this approach can obviously not compete with methods
developed specifically for the Lyapunov equation which re-
quire O(n3) operations. This remains essentially true
even if sparsity is exploited in the direct methods. However,
there is theoretical insight to be gained from this formula-
tion of the Lyapunov equation. Therefore for the rest of

this chapter the equation Ax = b will be studied.

Iterative Methods for Ax = b

The iterative methods discussed here are referred to as
norm reducing methods [18] since they start with an arbitrary
first approximation to the solution and successively reduce
the norm of the error. There has been much research in this

area that has been directed to the solution of large sparse
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systems such as arise in the solution of partial differential
equations [13,14].

The basic idea of these methods is to split the A
matrix of Ax = b into two parts Ao and Al and form the

iteration
where

To be an effective algorithm the splitting should be of such

a nature that x is easy to compute. Therefore AO

K+1
should be simple and invertible. Usually AO is diagonal or
triangular or block diagonal. To ensure that the algorithm

converges to the correct solution for any initial vector X

it is necessary and sufficient that

-1 _ -1
p("' AO Al) = Q(AO Al) <1 .

If the iteration is subtracted from the true equation

on = - Alx + b the form of the error at each step results:
AoeK-!-l = AleK
where
ep = X = Xp
or
e = -2a1lae

K+1 o 17K
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ep = (- a-a)%e
so that
Hegll < Hlagtap®(] Ile Il -
Now, if p(AglAl) < 1 then for some K not necessarily
small
[lagt ap®|| <1

and it is entirely possible for some Ko iterations for
!](AglAl)K || to increase although eventually it must approach
zero as K tends to infinity. The spectral radius is only
the asymptotic rate of convergence. If AglAl has a full

set of eigenvectors Y and eigenvalues Xi this is clearly

seen since

K

MYy

K

where

e = C1¥; + Cy¥, te..t O ¥V

Ci = constants

and the largest Ikil will eventually be dominant and govern
the convergence.

Obviously, different splittings result in different methods
with different rates of convergence. For A =L + D + U

where L is strictly lower triangular, D is diagonal and
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U is strictly upper triangular, the well known methods are

classified by the following table.

vAo(w) Al(w) Method
D L + U Jacobi
D+ L U Gauss Seidel
D/w (1 = %)D + L + U Simultaneous overrelaxation¥®-
D/w + L 1 - %)D + U Successive overrelaxation**
*  w#0 w 1is the relaxation parameter and
* % =
O<w<2 A Ao(w)+A1(w)

Postponing explanation of what w is for a moment, a

brief discussion of the first two methods will be given.

Firstly, one of the simplest splittings of A in which Ao

is easily invertible is Ao =

D,

the Jacobi iteration.

However, the Gauss Seidel iteration is just as easy to

invert even though it does not appear so at first glance.

The reason is that the components of x

are computed in order from x

T

K+1

_ R+1 _RK+1 K+1

XK+1 - [Xl ’X2 LA A 4 n ]
§+l to x§+l. This allows the

Gauss Seidel iteration to be written as

Dx

Il

K+l - T X

K+1

- Ux, + b .

s s S
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Since L is strictly lower triangular, LXK+1 can be included
on the right hand side of the equation because in computing
any component of x

only components of x that have

K+1 K+1
already been computed are present in LXK+1' Hence, Ao for
the Gauss Seidel method is just as easy to invert as the AO
for the Jacobi method since all it involves is updating the

components of x as soon as the K + 1 updates become

K
available. This cuts the necessary storage in half from the
Jacobi method since Xpel and Xy always can be stored in

n storage locations. The Jacobi method is required to keep

all the components of x until the calculation of x

K K+1
is complete but does have the advantage that all of the com-

ponents of x could be computed simultaneously on a suit-

K+1
able processor.
Turning to the next two methods and the idea of relaxa-
tion of algorithms, we observe that if w, the relaxation
parameter, is equal to one that the simultaneous relaxation
method reduces to the Jacobi method and the successive over-
relaxation method reduces to the Gauss Seidel method, which
suggests their origin. Relaxation techniques applied to
the Jacobi and Gauss Seidel methods yvield the latter two
methods in the table, and try to inprove the convergence
rate of the algorithms by attempting to reduce the spectral

1

radius of A; Al ’ p(A;l A). The way this is done will be

illustrated using the Gauss Seidel method.
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The Gauss Seidel method rearranged slightly is

- _ ~1 _ nl -1
xK+l = D LxK+l D UxK + D b .

Trying to improve on this algorithm's estimate of what Xppl

should be, we define a new iteration

n A"
Xgpp = Xg F W{XK+1 - xK} = (1 - w)xK + WXpo g
’\J hg g .-
where Xpi1 is the old Gauss Seidel estimate of what xK+l
should be, given all the components of Xp+l and Xy that
have been computed so far, so that
oY - _ -1 _ a1 -1
XK+1 = D LxK+l D UXK + D b
and
_ a1 I § _ -1
Xppl = XK.+ w{-D LxK+l D UxK_ XK} + wD ~b
X = - wD lix + [I(1 - w) - WD-lUjX + wd 1p
K+1 K+1 K
" or
(D + W'L)xK+l = [(1 - w)D - wU]xK + wb
Crmx, . =-10-3 +uUlx, +b
w K+1 - w’ K -
\ar—, po——
Ao - Al

Note w allows us to correct more or less than the original

Gauss Seidel method and that the new x is a weighted

RK+1

"
mean of X and XK+1'
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Relaxation attempts to overcorrect if the algorithm is
converging monotonically to the solution and undercorrect if
the iterates oscillate about the solution, damping the oscil-
lation. Obviously, if one component of the vector iterates
is converging monotonically to its limit point while another
is oscillating about its limit point, there are conflicting
objectives to achieve using a single relaxation parameter w.
In this case, optimal relaxation finds the best compromise.
Very roughly speaking, if the oscillation of one component
hurts the convergence the most, then the best policy would be
to undercorrect at each step. The reverse would be true if a
slow monotone convergence in one component was the most damag-
ing to the convergence of the algorithm.

If relaxation is effective in reducing the spectral

radius of A;l

Al , it can lead to a significant reduction in
the arithmetic computation. Determination of an optimum
relaxation factor W is therefore of interest. The original
iteration

onK+1 = - AlxK + b

can be written with relaxation as

xK+l = BxK + c

where
B = B(w)

- A;l (W) A, (W)

c = clw) A;l(w)b )
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For the four methods discussed B(w) is given by:

B (w) Method
- D_l(L + U) Jacobi
-+ 1) 1y Gauss Seidel
I(l - w) - wDﬁl(L + U) Simultaneous overrelaxa-
tion
(T +w ') ™ @ -wr - wd™tu]  Successive overrelaxa-
tion

In the simultaneous overrelaxation method, the eigen- -

values of B(w) are

A(B) =1 - w + wA(J)
where

g=-0Y@w+u) =B(1) .

If all the eigenvalues of J, Xi(J) are real and

Xl(J) < AZ(J) <...< An(J) then for Ai(J) <1 for all i
or Ai(J) > 1 for all i the optimum relaxation factor, W
and the minimum spectral radius, p[B(wO)] are given by:

- 2
o 2 - Kl(J) - An(J)

ln(J) - Al(J)

p[B(w )] = — - <1 .
) 2 -2, @) =A@
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If Xn(J) = - Al(J) < 1 then w, = 1 and p[B(WO)] = An(J).
This is true since for 1, (J) < A,(J) <...< A3 <1
wi; () + 1 -w>1 for w <0
therefore w > 0 and it follows that
wAl(J) + (1 - W) <...< wAn(J) + (1L -w) <1

and hence lwoll(J) + (1 - wO)l = IWOAn(J) + (1 - wo)[ which

implies
woll = A W)) - 1=w (A (3) - 1) +1=p[Blw)]l .
The case for 1 < Al(J) < Ay (J) <..< An(J) follows similarly.

However, when the eigenvalues of J are complex with

o. <1 and Gj > 1 for some i and 3 , where

Q
t

Re{)\i(ﬂ')} , then p[B(w)] > 1 for all w. This follows

from the fact that
logw + 1 = w| < [Ag(I)w + 1 - w| for all K
and that if
w=20 then p[Bw)] =1
w < 0 then w(ci - 1) +1>1

w >0 then w(cj - 1) +1 >1 .
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In general, when the eigenvalues of J are complex

|w| < 2/z

where z = Ipa}‘{(lki(J) - Aj(J)l)

1,3]
for p[B(w)] to be less than one. This is necessary since
all of the eigenvalues of B(w) must lie within the unit disk.
For the successive overrelaxation method it is absolutely
necessary that 0 < w < 2. This result is Kahan's theorem

[see Ref. 13]. It is quite simple to show since

detB(w) = det{(I + D 1mw) " 1[(1 - W)I - wD Tul}
= det(I + D ILw) ™1 det[(l - w)I - wD ‘U]
= det[(1 - w)I - WD_lU} = (1 -w?
1 1

because D "L is strictly lower triangular and D ~U
strictly upper triangular. PFrom this, we can obtain
n

@ -wf= 1@ < [a ®[": B=3BW
i=1

where

i

max|}; (B) |
i

2p 3|

and hence

|1 - w| < p(B(wW)) <1
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implies 0 < w < 2.
These relationships give some insight into the nature of
relaxation methods and a limited region in which to search

for an optimal w.
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2.5 HIERARCHIAL AND DECENTRALIZED FEATURES OF ITERATIVE
DECOMPOSITION METHODS

To illustrate the relation between hierarchial coordina-
tion and iterative methods for Ax = b consider the parti-

tioned problem

A1 P Xy by

i

X, b2

and thé aésociated block Jacobi iteration

T x+1 K
Ay 01X 0 “Bya Xy by
= + .
K+1 K
0 A% ~Ryy 0 3 b,

This can be written in the form of subproblems with coordina-
tion depicted by Figure 2.5.1 which reveals the two
level hierarchy of coordinator and subproblems and the de-
centralization of information about system parameters.

Note that neither the coordinator nor the subproblems
"know" all of the A matrix and that new information from
the coordinator for the subproblems may be sent to both
subproblems simultaneously allowing the computations to be
done in parallel.

Now consider the Gauss Seidel iteration




K+1
X
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Coordinator's Problem

R+1 K

Subproblem 1

R+l _ LK+l

Aii¥y T = by

by " =by - A%
K+l _ _ K
by 7 =by - Ayxy
pK+1 bI;"'l
1

Figure 2.5.1

XK+l

Subproblem 2

22xI§+l R+1

A 2

= b
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K+1 K+1
A; O 1 0 -Ay, X by
-— _" -
K+1 K
0 2y, Xo Ry O Xy b,y

If this iteration is decomposed in fashion similar to the
previous case, the same terminology may be adopted. Here,
the information about the system (the A matrix) required by
each of the subproblems and the coordinator remains the same
but now the coordinator can no longer process new information
from the subproblems in parallel, but must proceés the infor-
mation sequentially. However,'now the coordinator regquires
only half the storage space for XK it required previously.
Also, the Gauss Seidel iteration generally converges faster
than the Jacobi because it utilizes the new information cal-
culated in a more efficient manner. In terms of decentralized
information about system parameters, both methods are the
same. Their difference arises from the coordination scheme
used, which changes the decomposition.

When both of these algorithms are relaxed, the coordina-
tor requires more information about the system and the infor-
mation about system parameters required by the subproblems
remains unchanged. This can be seen by writting out the
methods as before. For the simultaneous overrelaxation

method, the iteration is
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K+1 X
A O 1 0 2[R 1
= w + W
K+1
0 By fl*2 Ry O ) by
K
All 0 xl
+ (1 - w) .
K
0 A22 X,
Decomposing this
RK+1 _ . K+1 A
Allxl = bl +++ Subproblem 1
K+1 R+1
Azzx2 = b2 ... Subproblem 2

the subproblems have exactly the same form and hence, require
the same information about system parameters. The coor-

dinator's problem becomes

K+l _ _ K K K
bl = W(Allx1 + A12x2) + Allxl + wbl
K+l__ K K K
b2 = W(A21Xl + A22x2) + A22x2 + wb2

and it is necessary for the coordinator to "know" all of A.
Even so, the coordinator may still process information from

the subproblems in parallel.
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Sequential processing is however, required for the suc-

cessive overrelaxation method which can be written as

XK+l xK+l

A;p O 1 0 -2y, 1 by
= w R + w
K+1 K
0 A22 x2 A21 0 x2 b2
K
All 0 xl
+ (1 - w) .
K
0 A22 x2

The subproblems and coordination problem are then defined

as
RK+1 _ _K+1
Allxl = bl ... Subproblem 1
A22x§+l = b§+l ... subproblem 2
K+l _ _ K K _ K
b1 = w[Allxl + Alzxz bl] + Allxl
K+1 _ K+1 K _ K
by 7= - winayyxy T F RyoXy - byl 4 Ayox

coordinator's
problem .
In this case, the coordinator again must "know"™ all of A
which is bad from the decentralization of information view-
K

point, but not surprisingly the storage required for x is

cut in half. As mentioned before, it is also true that the
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processing of information transferred must be done sequen-
tially.

These types of decompositions and iterative technigques
can be applied to the Lyapunov equation without writing the
Lyapunov equation as a linear vector eguation. This makes
these iteration feasible because the dimension of the problem
has not been increased. However, now the subproblems are

Lyapunov type equations instead of vector equations.
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2.6 CONDITIONING, STABILITY AND DECOMPOSITION METHODS

Conditioning and Stability

Computing the solution to mathematically exact analyti-
cal expression using high precision in the calculations may
still result in a very inaccurate solution. This happens,
barring outright blunders, for one or both of the following
reasons: (1) the problem is illconditioned or (2) the
algorithm used to compute the solution is unstable. A
problem is defined to be illconditioned if a "small" pertur-
bation in the data may result in a "large" change in the
solution. Conversely, a problem is said to be well condi-
tioned if a "small" perturbation in the data necessarily
results in a "small" change in the solution.

It is important to note that conditioning of a problem
is independent of the procedﬁre used to obtain the solution.
Stability or instability is a property of the algorithm used
to compute the approximate solution. An algorithm is defined
to be stable if the approximate solution it produces is the
exact solution of the problem with slightly perturbed data.

A well conditioned problem solved with a stable algorithm
produces an approximate solution that is "near" the exact
solution. In any other case we cannot make this guarantee

[15].
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In order to measure the conditioning of the problem of
solving systems of linear equations, the notion of a condi-
tion number [15,16] is introduced. Consider the linear system

of equations

Ax = b

where x is the unknown and A and b are the data. If
perturbations in b are designated as d¢b and the corres-

ponding changes in x as ¢x then

A(x + 6x) = b + &b

and
Adx = &b .

Using the relationships of vector and matrix norms, the

following inequalities must hold

Hell < jiell < (a1 1ol

B < qlex|| < [1a7H] [lenl]

which in turn imply

-1 []sbl| . llsxll . sb
°a TTBIT = TI=I] ——CAlrJﬁJlLb

where ¢, = | 1Al ] I[A—lll the condition number of A with

respect to inversion. If ¢ is very large, we see that the

A
norm of the relative error in the solution |[|éx]|]|/||x|| may

be very large or very small for a small relative error in the
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norm of b. For many b,8b pairs the upper bound may be
very pessimistic, but there is always some pairs for which
it is achieveable. However, for small Cp the norm of
relative error in x will be small if the norm of the rela-
‘tive error in b 1is small. In this case, the equations are
said to be well conditioned or A 1is well conditioned with
respect to inversion. Note that ¢, > 1 since

122t < ||a]| ||2™||. 1In this discussion the words large

and small are not given a precise definition. This is because
such a definition is not possible because it is problem de-
pendent.

So far, we have only considered perturbations in b, but
perturbations in A may be also analyzed. It should be
pointed out though, that for any perturbation in A there
exists an equivalent perturbation in b so that previous
bounds still apply in this case also.

Suppose that now both A and b are perturbed then

(A + BE)(x:+ 6x) = b + g8b

and

(A + E)Sx = 8b - Ex .
The next difficulty encountered is the possibility that
(A + E)-l may not exist. However, making the reasonable
assumption

127 E || < [|a7H] ||E]] <2
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the invertibility of (A + E) is guaranteed.

To see this write (A + E) T in the following form
a+ 8 t=+aipial
-1 . . -1_..-1
so that (A + E) exists if and only if (I + A "E)
exists. Letting S = A"'E we have ||s|| < 1 hence (I + S)
is invertible and
-1

(I +8S) (I +8)=1I

or
T+s) t=1-5sx+9s?

which leads to

-1 ’ -1

tha+s)y 7| <zl + [Is|] |l + sy 7]
or .
-1 1
[Tz + 8) 7] 2 =778 )
This allows us to bound (A + E)" ' as
-1 -1 -1, -1 1a™t]]
M@+ ey =] < la "] [Jax+a7E) 7| < 1 .
1 - [a ] [Iel]

and hence, returning to the perturbations in x, we have

2”1

1 - a7 el

[Tex|] < Lilspl| + el [1=]]]
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|§x| | 127t Ll |lBl] o LIE]]
Wt s TN [Hb!l =T ¥ 1121 ”A”]
Using the inequality ||A|| ||x]]| Z.Ilb!iv' we may obtain
[lexll . TES TN llsbl| , |IE||
TI=IT =1 2 a7ty ()2l i [bl] LAl
or
loxl]  _ °a [Ilsbbll . %'lgl{]
=T <7 ¢ TE IEIES

Again, it is immediately apparent that c is the determining

A
factor in bounding the relative error in x. Unless

cal |EI[/]]A]] << 1 the bound will be very large and the
problem illconditioned. Also note that if E = 0 we return
to original bound for perturbations in b only. If &b =0

then

E
Iex|| . _°aTT&
HXH —l_cA

E
A

and the prbblem is only well conditioned if Cap is small.
One of the main reasons for obtaining these type of
bounds is related to the philosophy of backward error
analysis, as opposed to forward error analysis. Forward
error analysis regards the computation in question as being

descfibed by a number of mathematical equations and hence, a
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number arithmetic operations. Each arithmetic operation is
associated with a maximum rounding error. Then, by con-
sidering each operation in turn, the maximum error is deter-
mined for the computation. Backward analysis is concerned
with representing each arithmetic operation on the data as
if it were an exact computation on slightly perturbed data
and giving a bound on the effective perturbations in the data
that the total computations of an algorithm make. Therefore
backward analysis can tell us if an algorithm is stable,
which is really what we are concerned with developing.

After the effective perturbations have been determined, the
perturbational bounds just derived may be used to bound the

relative error.

Conditioning for Decomposition Methods

Since the conditioning of a problem is independent of
the method used to solve it, decomposition methods cannot
improve an illconditioned problem. However, by utilizing
more information about the system, it may be possible to
obtain a better bound than one specified with minimal infor-
mation in the condition number. For example, consider the

linear problem

1

0 1000 Xq 1000
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where
-1
1A 12 ~|]z 1000
For the perturbation
1
‘ H(S'bHoo -3
5b = A 11
0 o]

but even for small &b perturbations

1 1 | sx] ],

so that

R TIRTT S TP il
=TS - - TTBTT-

However, suppose that in solving this problem as two

subproblems
a,1% = 1 X, = 1= bl
and
255X, = 1000 X, = 1000 = b,
Qe could guarantee that
| 16By |1, 3 llebyll, o3

TMB, T, =1 2 TR, <

then since the condition numbers of ajj; and a,, are unity
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we could bound the error in x as

lsx| 1, o lle Hemll, 1oyl
=TT, = T 0T, © T, = Cayy TT5, 1T,

| 18,11, -3

+Ca22—l—l~b?ﬂ—:_<_2'lo .

Thus, the additional information obtainable from the pertur-
bational bounds on the subproblems and their condition num-

bers can result in a better bound by knowing which types of

perturbations have been ruled out.

For illconditioned problems, decomposition methods will
exhibit the illconditioning in several different ways,
though they cannot remove the illconditioning. In fact, by
decomposing the problem it is possible to have illcondition-
ing in the subproblems whereas the original problem may be
well conditioned. To illustrate these ideas, suppose that

we are trying to solve Ax = b where

2 4 1 b4

Clearly, as ¢ - 0 A becomes singular and there is no
unique solution to the problem. The condition number of A
is also very large. If the Gauss Seidel iteration is formed,

each of the subproblems is well conditioned and can be
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written :
R+l _ _ 2 K 1
Xy =S~ 13%E *2ti T
R+l _ 1 UK+l 1
X2 —'-‘2-Xl +Z' .

Substituting the first equation into the second, we have

K+1 1 Ko _Ll- ¢
Xy T I Fe ®2770O0F ¢ .

There are several observations to make. First, if

e = 0 (corresponding to a singular A matrix) then

1

p(A; A;) =1 and the illconditioning of the original problem

is "hidden" in the rate of convergeﬁce (divergence) of the

coordination scheme and not in the conditioning of the sub-

K+1
1

illconditioned (singular in fact) even though the A 1is

problems. Next, if € = - 1 , the subproblem for x is
invertible. For - 2 < ¢ < 0 , the method does not converge
since p(A;lAl) > 1 . We say in this case that the coordina-
tion is not successful (it is successful if p(A;lAl) < 1)
since each of the sequences of solutions to the subproblems
cannot be combined to obtain the centralized solution. How-
ever, the reason the method diverges for this case is the
fact that the coupling between the subproblems has become too
strong, relative to the subproblems which no longer govern
the nature of the solution. This is due more to the inappli-

cability of the method than to illconditioning of the problem.
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Alternatively, it is possible for the illconditioning
of the original problem to be reflected in the conditioning
of a subproblem rather than in the spectral radius of the
iteration. In Chapter III this particular case occurs.

Finally, it is possible for all the subproblems to be
well conditioned and the spectral radius to be less than one
but the overall problem still illconditioned. This happens
because illconditioning of the coordination scheme can
occur in more than one way. The spectral radius may be less
than one, but small perturbations in the coordinator's solu-
tion's that are returned to the subproblems may radically
alter the subproblem's solutions. For the iteration

By Xypyy =~ ByXg ¥ b= by,

this says that small perturbations in by, (the coordina-

1

tor's solution) lead to large perturbations in x (the

K+1
joint solution of the subproblems). If the sequence of '{bK}-
cannot be computed exactly, there is a possibility that the
relative error in x may be large. An example of this is

the Jacobi iteration for Ax = b where A is n x n and




-61-

r -
1 -1 -1 . . . =1
1 -1 .
A = . . . H
. |
(L 1 2 4 ... P21
1l 1 2 .
Al o L
: ¢ 2 4
° 1 2
i 1 1
1 o
with
-1 n-1
||al|l,=n and a7 ], = 2 .

For the splitting AO = I, Al = A - I =U we have that

-1 -1 : . .
p(A,7A)) = 0 and ]lAO []ooHAOH°° = 1 so that the iteration
converges in n steps and each of the subproblems is ideally

well conditioned. The Jacobi iteration is written as

x =0

X R+1 '’ o

R+l = (z - A)xK + b =D
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which certainly verifies that the subproblems can be solved
without error given bK+l from the coordinator. The only
possible problem that could occur is that the coordinator

might not accurately calculate b

g This can be seen from

the particular case where
b = [n,n - 3'n - 4,0-.,110'-1]

b = (1 1 1 ... 1127n*l
xF = [1 -1 =1 ... -1]

sxT = [1 1/2 1/4 ... 270+l

||sbl|, ,=n*l

T Y @ TTEITL T Tw '

If n = 10 this means that a uniform relative perturbation
of b on the order of .02% results in a 100% relative
error in the norm of x . Hence, if bK is not calculated -
exactly large errors may result.
This last example shows that in order to obtain pertur-
bational bounds for iterative methods that not only must
the condition numbers of the subproblems and the contraction
condition be accounted for, but also the rounding errors in
the computation of the information supplied by the coordina-
tor to the subproblems. If these errors in the coordination

equations can be bounded or particular error directions be
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eliminated it may then be possible to obtain accurate solu-

tions even though the original problem is illconditioned.

Condition Number of KA

Viewing the Lyapunov equation as a set of linear equa-
tions in n2 variables, the conditioning of the problem is
determined by the condition number of K, . Athay [25] has
examined this problem in an attempt to formulate the condi-
tion number of Kn in terms of quantities involving A.
However, there seems to be no easy way to compute or approxi-
mate the condition number oﬁ Ky - The following inequality
illustrateé the nature of the problem.

Using the spectral norm,

_ max|A; (Ky) | max [A; (A), +AJ(A){
CKA = HKAHZHK [y 2 mlnlk (K )| minfA, (A) + A (A) |

where ki(KA) and Ai(A) are the eigenvalues of K, and A
respectively. Now suppose A is a 2 x 2 symmetric matrix
with eigenvalues o + jw and o << w , corresponding to a
lightly damped system, which is not uncommon. It follows

that
-1 max| A, (A) |
2111277, = ammTro
R

while

e = IRyl 12 |, » 2let dwl o 2w,y

KA o - o

T e e A 8 <3 9 A 2o e et e e T
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and it is clear that the condition number of A is not
related to the condition number of KA . The basic diffi-
culty of approximating CK is that of finding an upper
1) *

bound on I[K;_; that is easily computable from quantities

involving A.




B
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CHAPTER III

TWO TIME SCALE ITERATIVE DECOMPOSITION

3.1 Introduction

It is common in engineering practice to obtain approxi-
mate solutions to difficult problems by truncation of a
series representation of the solution. These series approxi-
mations are often easier to obtain and therefore attractive.
Perturbational techniques can be applied to characterize the
nature of the solution's dependence on some relatively small
parameter. In the case of singular perturbations, the formal
expansioh of the solution in a power series may producea non-
convergent series. This series may nevertheless, be useful as
an asymptotic series expansion of the solution which may yield
a sufficiently accurate approximation [19].

In control theory, the use of singular perturbation tech-
niques resulting in asymptotic series expansion has been mo-
tivated by the desire to reduce the numerical computation
associated with large scale problems for which analytical
treatment is not feasible [23]. It has also been noted re-
cently, that application of singular perturbation techniques
to linear stochastic optimization and estimation problems
result in hierarchically structured approximations to optimal
controllers and filters [20,21,22]. Basically, the upper
levels of the hierarchey develop their control strategers

based on a reduced model of the system that predicts the long
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term behavior while the lower levels of the hierarchy utilize
a boundary layer model to predict the short term behavior.
This can be extended to the multiple time scale case.

To obtain the reduced order models of the corresponding
fast and slow modes of the system, the system is decomposed
according to its dependence on a small parameter. By decom-
posing the original problem into decoupled subproblems and
coordinating these solutions iteratively to a global solution,
a hierarchical structure is imposed.

However, a decomposition of the global problem raises the
questions of coordinability (convergence), rate of convergence,

and convergence to the correct solution.
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3.2 Decomposition Algorithm for the Lyapunov Eguation

For the stable linear system
x = ax , x(0) given
we write the Lyapunov equation

ATK + KA + 0 = 0

where Q 1is positive semidefinite and K is the unknown.
Assume X 1is partitioned into ny and n, dimensional

vectors and that A,K and Q are partitioned conformably as

A A Q

11 12 K K

11 %12 11 12

Y, Q1 Q22 K1 Ko2

Consider the following algorithm, motivated by singular

perturbation theory whose connection will be given later

T T -1 m
LSPRE S | ESTR K11 Ko 211 202 Q1 %12
+ +
T T -1
Ria 2oy K?l Kp2 Kgl Kyo || 221 222 Y

Here K° denotes the mEE iterate and the initial guess
g° = 0 . To more clearly formulate the algorithm, the follow-

ing subproblems are defined.

Fast Subproblem

AL KD 4 KO

22522 22822

+ ng =0 .
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Slow Subproblem

AT ~ m _ . " - _ _1
AD, K]y +KqAyp ¥ Q] =0 A=A, - ALACA, .

T m
KigByy * K11Bg, + A5 Ky, + Q) = 0

moo_ AT gl gl

Qr9 12%12 12 Bqp * Q

22
m T _m-
Q2 = 9o * AllK?z
_ T m _ _
Q1 = 91 ¥ (Azz 21) sz(Azz 21) - (sz 21) (Azz 21) QZl
or
m _ 2 AT  Tpm=13
Q1 = 9y AllK?Z ‘Azz 21! (Azz 21) Kop Ayg

Y + (AL (A~ A ).

Qi1 = 93 - (Azz 21) Q21 9 (Azz 21 22 Ayp) sz 22”21

This can be represented diagramatically (Figure 3.2.1) as

Coordinator's

Problem

Past Slow

Subproblem . Problem

Two~-Time Scale Decomposition Algorithm for the Lyapunov
Equation
Figure 3.2.1

e = i o e A 1AV T T e e o
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with the initialization of the algorithm beginning with

o _ s 1 _ 1 _
K12 = 0 to obtain sz = Q22 and Qll = Q

~

11 ° Next, both of

the subproblems are solved and Kil and K%z are sent to the

. . . 1 2 2
coordinator for its calculation of Kl2 ’ Qll and Q22 and
so forth. ©Note that the fast and slow subproblems are de-

coupled and that both the reduced order system

need be stable for the algorithm to be well defined at each
step. However, even if the subproblems are well defined, the
algorithm need not converge to the global solution. We will

say that the coordination is successful with this decomposi-

tion method if and only if

lim K = X .

m>o

Theorem 3.2.1

Define the linear operators

Ll . Rnxn > Rnxn

nxn nxn

and L2 : R * R by

the following equations
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T T T
By 1K 1 R 1B TR Ko  HR pBg By KoptKy 1B 5 ¥K 5By
L. (K) =
1 T

T T
KooPo1 T8y K 17855801 Bg KooKy oRy,

T
| 211%92
L2 (.K)_ = -

K AT, K, ,+K,.A

A.. AT
21811 128127821812

Assume that A and A are stable so that

11 22

Re[xi(Alll] < 0, Re[Aj(Azz)] < 0 ¥i,J

The Lyapunov equation is ﬁhen successfully coordinated by  the

two time scale decomposition method if and only if

-1 )
p(Ll e Ly) < 1 .
Proof:
If Ll(Kl = 0 then
AT K + K,,A =0
22722 22722

and hence K22 = 0 since A22 is stable.

Next

T —
Ay Kog + KyqByy * RypBoy =0

or

-1
Kio = = KypByoBy0
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which implies that

T T _ o A
B11Kyq * RygRyg t B Koy T RyoByy = AgKyy F KA, =0
and thus, it is necessary that Kll = 0 and therefore,

K12 = 0 because All is stable. Hence, if Ll(K) = 0 then
K =0 and Ll has no zero eigenvalues and therefore must be
invertible.

Now the decomposition algorithm can be written

Ll(Km) + Lz(Km‘l) +Q=20
or

S -1y, _ -1
K' = = L{7. Ly 0) = L7 (@) .

It is necessary and sufficient that p(LZl. L2) < 1 for the

iterates {Km} of this last equation to converge to K as m
tends to infinity for any initial k° and any positive semi-
definite Q. Q.E.D.

The asymptotic rate of convergence is also given by
p(L;li L,) . This can be seen if the error at each step is
E® so that

E' = K" - K
then

-1 m-1 -1 o
B = - Li7e Ly(E" 7)) = (<177 L) EC .

1
modulus equal to (L’l- L,) becomes dominant and the "eigen-
S | 2

Eventually, the eigenvalue of L lc L, of largest

vector" associated with this eigenvalue becomes the dominant
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direction. Note that Lil- L, has in general ni + ng
zero eigenvalues and 2nln2 nonzero eigenvalues. In the

limit
[EM ] = o]t 1 |82

for any matrix norm but as noted before, it may take many
iterations before this asymptotic convergence rate is achieved.
The calculation of p(LIl‘ L2) is not feasible as a conver-
gence test since it involves an n(n + 1)/2 order eigenvalue
problem. It may be reduced to an n order eigenvalue problem
after some algebraic manipulation, but in any event, this
would involve as much effort as solving the original problem.
However, a few examples will provide insight.as to when the

algorithm may be expected to converge.

Scalar Example

Writing out the decomposition algorithm,

_m
Km - qll
11 = 7
2all
-q
& - 922
22 T 7,
a1 -1
Kip = (géé)[alZKTl + ay Ky, + ap Ky + qp,]
n _ zalla21va—l Lo
911 a,, 12 971
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m -1
Qpp = 2a;,K7, + dy,

and by substitution and algebraic manipulation

_ 21 -1 .
K?l = a22 K?Z l ; cl a constant
a -1
ng = - 512 KTZ +¢, i ¢, a constant
22
&= - L@t
12 = ;; 12 cy c, a constant .

It is now clear that the equation for K?z governs the con-

vergence of the whole iteration and hence

a
Pt L) = |2
22
Decoupled Example
For A12 = 0 ; A21 =0
T —
BpKYp * KppByg t @ = O

AT KPS+ k™A o+

22522 22822 ¥ Qp5 =0
1.-1
Ky = 11K?2 Ry 7 9y

so that KTI and ng are constant and only KTZ varies

from step to step. The asymptotic convergence rate of '{KTz}
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is given by

AL (AL )
-1 T -T | i1l
o (L, ¢ Ly} =p (- A, 8 A ) = max | .
S 11 % P22’ TP R,
Hence
p(Lil- L,) < 1 if and only if
m?xfxi(All)[ < m;nlxj(Azz)j

which means that subsystem All represents a slow system
relative to subsystem A22 which represents a fast subsystem.
It is here that the two time scale nature of this algorithm

becomes apparent. Note, in fact, that only one of A or

12
A21 need be zero for this separation of time scales condi-
tion to apply.

In order to obtain a similar condition for convergence

in the general case when A is not block triangular, it is

first necessary to discuss the subproblem conditioning.

Subproblem Conditioning

The conditioning of the subproblems is considered as
side issues since the purpose of this section is to derive a
bound for ||K..|| in terms of ||Q..|| and |]|A..|] . The
ii ii ii
conditioning of the subproblems arises in connection with

bounding

-1 T T -1
HKAii[[=||(Aii@I+IQA Y Tl

ii”®
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and since C = |lx, |l ]_|K"l || the condition number

Ra. . ii Big
11

of KA&. for each subproblem is directly related to this

ii
bound. This bound is then used to obtain a sufficient condi-
tion in terms of matrix norms for the convergence of the algorithm.

Each of the subproblems is in the form of a Lyapunov

equation, so we will not bother with subscripts. To avoid
confusing notation let P be the unknown of the Lyapunov
equation

ATP +PA + Q=0 , AcR™XD |

Using the Kronecker product notation, this can be written as

= al T - =
where KA =A" I +I®QA and p = Pr and p = dg

discussed in Chapter II, Section 2.2. Now using some basic

matrix norm relationships, we may write
ety < 1IR3 5] 1l |
Piig Z 1% H2h1%)

or reforming the matrices P and Q

Hellg < LK 5lel g

and
11211, < n Y210 000l ], -

Define ‘ﬂi to be the condition number of KA with respect to
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various matrix norms so that

: -1 .
}Ji=HKAHiHKAHi7 i=1,2,~,E

where E denotes the Euclidean norm. Manipulating matrix

norms we find

HES RN TN

or |
-1,,2 UL
RSN P 1
A TR,
and since |[[R||; _ = 2| |all, 1 We may write
- W)t
[1&a"1 15 < 172 — 21T, .

2] a1 121,

If the Euclidean norm is used then

Uy

-1 -1
X < K <
HAHZ_HAHE_HKHE

R 2 _ 2 2
and since IIKAHE = 2n||A|]E + 2{(tra)

u H
-1 E E 2
K < = _ ‘/_. .

We have now obtained bounds on I{K;lll in terms of its con-
dition number and |lall| . By substituting these bounds for
llK;lll into the appropriate inequalities involving le ||

and |l|ol| we obtain
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ol
Pl s )™ grrTe

and

ve el

2
P - .
| IIE < (n) g ZIIA][E

Note also that
2,1/2 2,1/2 1/2
(7 uy 2 )7 Tug < /2 (apgu)

which shows the maximum size of (%)l/zuE as compared to

(nuluw)l/z.

Sufficient Convergence Condition for the General Case

Using the bounds just developed, a sufficient but not
necessary convergence condition can be derived. ©Not being a
necessary condition, it leads to a pessimistic estimate of
when the algorithm will converge, but seems to be the only

condition obtainable. If we define

al,az,sl and 62 as
_ ~ 0 1/2

_ 1/2

= e/apt i

172

By, = (2/n2) Up




where

and

then,

and
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>
i

vy = 1% 11185 [l & =1,2,%,E
w; = 1Ry 1K [y i=1,2,0,8
22 22
311 is nl x nl
Rys is n, x n,

from the subproblems of the iteration

a [ 19% 1]
127 a0,

11llg < >
2[ a1 g

k < ol 195,11
[[ngliz-— 2[]A;§?[;

821195, 115
I!ngllE < 2115, 15

The coordinatorks problem for Q?Z and QTl leads to

115,11 < 2112511 TIESST + (el

e e
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1T T < 211A 1 RS g3y, 1] + 1oy, 1]

If we let Yq denote « or

1 Bl depending on which

matrix norm is used and likewise Yo for o, oOr 52 then

using the last two inequalities we have

IIQ M
[ o T
1< v lasia, 1 &S]+ Zl'Allli
volla 11 HESH T v, lla,, 1]
125,11 < =—4 A, 1] ¥ ZELA;jt

Now these inequalities are used in the coordinators

equation for oy

2
1, 1< 133 a1 TR+ Hag, 1] 1R,
+ a1 HESHT + o, ]
to obtain
8,11 < tlAggxi[vlliAlzl! l1agkay, 11 + Y2!|A2%§izl¥?lzl’

Yol 12,11 IIQZZ!I] N
Tt 125211
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or

TRT,IL < 11ag Ty + vd 112,01 [1a530] T2yl

+ llAlllﬂ IIK?Elll + ¢ , ¢ = constant.

Therefore, if

11855 11 fory + ) 11ag,0 1 T1A55IT [lag 11 + [lagl]] <1

the algorithm is a contraction mapping and '{K?Z} must con-

verge to K and so '{KTl} and ’{K?Z} converge to K

12
and K22 respectively and the whole algorithm converges.

11
When A is a 2 x 2 matrix, both Yl and Y, are unity
-and the condition becomes

2| ajpl lag,l

1l
]a22[ [lall! * las,| <

instead of
lall[

< 1
EY

which is the necessary and sufficient condition. This shows
that the matrix norm condition may be not satisfied even for
cases that would converge fairly rapidly and is therefore
pessimistic for many cases.

If Y1 and y, are close to one, which implies that the

subproblems are well conditioned, we might conjecture that
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125501 1Al < 1

might be a reasonable condition which under which convergence

could be expected. It is interesting to note that as A

-1
1

tion may not be violated. Of course, the solution of the A

11

approaches a singular matrix, the p (L, - L2) < 1 condi-

11

subproblem does not exist in this case. However, A be-

22
coming singular does affect the spectral radius so that
p(L;l. LZ) > 1 and the algorithm diverges. However, when
the algorithm does converge, it would be helpful to know how

much computational effort is required.

Number of Operations

This section gives a comparison of the number of opera-
tions required to compute the approximate soiution to the
Lyapunov equation by the decomposition algorithm and the
general method used to compute the subproblems.

The following assumptions are made:

(1) Q is symmetric

(2) The state is decomposed into two substates of equal

dimension, i.e. n, = n, = n/2 .

(3) £(n) is the number of operations to solve the
Lyapunov equation and £f(n) = an3 where o is a positive
constant.

(4) Additions are not counted only multiplications.

Breaking down the algorithm according to subproblems and
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coordination, we see that

Forming Operations
3
A _l 31’1
Ay; and Ay 5RH 5
a 3n3
11 8
Qm+l Ei
11 4
Qm.-!-l gi
22 8

Solving for

m+1l o _3

K11 g B

m+1l o .3

K22 g "

m+1 m+1 a 3
Kl2 and K21 5 n .

Let ¢ = number of iterations, then the total operation count
. . 3n3 7n3
for symmetric Q is T = t.o.c. = =t cfvgw

For the algorithm to effectively reduce the computations

+ a0,
involved

or
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This shows that neglecting sparsity if only a few iterations

are required the computation can be reduced.
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3.3 Numerical Results for a Simple Model

Coupled Harmonic Oscillators

As a test of when [[All}[ ILAgél[ might be a reliable

-1
1 2

was computed numerically for a variety of couplings and sub-

indicator of convergence, the spectral radius of L. : L

system pole placements for the system given by

- i —
0 1! 0 0
|
- - 1
Wy 2¢lwl : €4 0
A= | mecerremcemce————— "' ———————————————— B
1
0 0 i 0 1
1
1
0 1 -w? -2
&2 . Yo PoWy |

This system matrix represents coupled harmonic oscilla-
tors where w 1is the natural frequency and ¢ 1is the damping

ratio. Define r as

r = max ’Ai(All)
i, |23@)

In this test, r is set to a value of 1/5 and the

damping ratios of the two subsystems A and A22 are

11
varied.
The spectral radius, p(LIle LZ) was generally smaller

when the two subsystems had poles with the same angle in the
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complex plane.

2 2 -1
Also, when |eje,| < wiw; , all cases gave p(L]"+ Ly) < 1.
, 2.2 -~ . . .
If !glgz! > WiW, 4 All is singular or A is unstable. The
coupling was varied as
= q.wiw?
€1%2 7 %iM1%2

where
Q. = l, 1/2, -1/2, '-l, —2 .

This was done because in the detailed analytical expression

for the spectral radius (not given here) for this specific

example €4 and €, always appear together as the product
'elsz .
Only the cases for o, = + 1 are tabulated in Table
_ 22 . .
3.3.1. For €16, = 2wlw2 cases in which

p(Lzl- Lz) > 1 were obtained. This limits how strongly the
subsystems may be coupled. The results generally indicate
that r 1is a reliable indicator of convergence when

[8152! < wiwg and the subsystems do not have large angles

between their complex poles.

Numerical Calculation of p(LIl. Lz)

The calcualation of the spectral radius can be accomplish-
ed by finding the eigenvalues of a matrix of order n where

n= dim(Ll) . The algorithm written in operator form
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Table 3.3.1

eigenvalues of A11
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+1
L) = - L&Y -0

corresponds to a matrix iteration

m+l _ m
Mlk = - Mzk - g

where k™ and g are vectors formed from the rows of KT
and Q respectively. Taking into account the symmetry of
K and Q , we define the matrix iteration by using the

Kronecker products and identities found in Section 2.2.

T T T T
AJ,RI+IRA;;  IA . +(A; @I)P 0 kllR
_ T T o
Mk = 1227, 1eA7, LN S, klzR
T T
0 0 AZ,@I+AT, k22R
0 0 0 k
11,
M.k =] 0 AT @1 0 k
2 11 12,
T T
0 Al,@I+(I@AT,)P 0 k22R

where P 1is the permutation matrix associated with the order

of the matrices Aii 2 I . In the case where Aii is 2 x 2




o

Now note that MIls M,

-1
o(Ml
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is much larger than

O

= O

n x n and that

= -1,

since they are the spectral radii of the same iteration. If

M and M

are partitioned so that

1 2
X173 %92 %13
ot =] ox X X = X
1 = 21 22 23
31 %32 %33
and
0 0 0
M, = 0 N, 0
then
0 X N; +X N, c
Moim, = 0 X -N.+X. N 0
12 22N17%53N5
0 X, N,+X,,N 0

3271 73372
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so that

-1 _
MMl . Mz)-— dxzle + X23N2) .

Define J as J = X22N1 + X23N2 .

1

To determine M; = X, M; is partitioned as
! T T | T T
1 1
Ml1= M12 0 AllQI+IQA11 : IQA21+(A219I)P
Sl S [ Bt LI G
M.o=|Mo. oM. M| = IQAT : I@AT
17| M1 T2z T23| T 12 ; 22
: §
o o 0 0 ! 0
1 1 1

0
T
AZIEI
T T
A2291+IQA22

and it follows that Mll R M22 and M33 exist for stable

All and A22. It can then be shown that

_ _ -1 -1
Xyg = My, = My M7, )
Xoo = - Xo.M..M_T

23 22M23M33 -

Finally, using these last two formulas, the spectral radius of

-1 .
Ll » L, can be written as

-1 _ ) -1, -l _ -1
P(Ly7e Lp) = p(IMyy = My My IMyo]1 T[Ny = My Ma3N,T)

= p(J) .

Note that here J is only an n x n matrix. Using this

formula, the spectral radius for different pole placements

was calculated.
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3.4 Singular Perturbation Theory and Multiple Time Scales

Relation to Singular Perturbation Theory

Up to this point, the connection of this algorithm to
the ideas of singular perturbation theory [19-24,29] has been
somewhat obscure. After some preliminaries about singular
perturbations, the connection will be made clear.

Consider the partitioned linear system

1 A1 Ao X

~

€X2 A21 A

22 2

It is conventional to assume that € 1is a small positive

parameter, e << 1 , and that ||Al and |3, are

L ol
approximately the same magnitude. With this 'system, there
are two associated systems called the degenerate system and

the boundary layer system [29]. The degenerate system is

formed by setting ¢ = 0 and is given by

- A A-lA ) x

x; = (B, 125822821

1 1

-1
22R21)%; .

The degenerate system predicts the long term behavior of the
system. In order to predict the short term behavior of the
system, the boundary layer system is formed using the stretch-

ing transformation
T = t/¢
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and making a change of variables in the original equations.
To obtain the boundary layer system ¢ 1is set to zero in the

transformed equations. This results in

dx
1_,
aT
dx2
qr T PBor¥y t Bg%y, -

Note here that 31 in this system is a constant. If A22
is assumed to be stable, we may interpret these two systems
as an approximation to the original system over different

time intervals. We see that the eigenvalues of A(e) where

A A

11 12
Ae) = fﬁl ﬁ%g
€ €
~ A

approach the eigenvalues of All and —%g where

A _ -1
Bi1 T Byy T BoBanBy .

Now, notice that in the boundary layer system since X is a
A%y
constant that (. = ) can be regarded as a constant input to
the stable system
A A..X
s - 22 _ 2171
Xy = T2 %, +u, u = = .

Therefore, in the original system, when ¢ 1is near zero, the
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eigenvalues of Azz/s will be much greater in magnitude
than the eigenvalues of All‘ and xl(t) will remain essen-
tially constant while the transients due to the initial con-
dition x,(0) die out. Thus, x,(t) approaches -AS%Alel(O)
and from this time on, the system may clearly be modeled as
the degenerate system. Here it is important to notice the
separation of the time scales of the substates xl(t) and
xz(t) in addition to the separation of eigenvalues of A(g)
when € 1is near zero. Systems may have eigenvalues that are
widely separated, but the substates defined may be of mixed
modes corresponding to both fast and slow eigenvalues. Hence,
a similarity transformation is necessary in these cases in
order that the substates defined should have different time
scales. It is also important to realize that we refer to
Xz(t) as being a fast substate (or has a fast component) only
over the interval that the boundary layer system model
applies, since as t becomes large

_ _ -1

Kokotovic and Chow [24] define a system partitioned as

Xy A1 By 1

»

-

X1 L2 222 2

"

to possess a two time scale property if it can be decomposed

by a similarity transformation into two subsystems
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Xs As 0 xS

xf 0 Af sf
where

!X(As)*max << ‘A(Af)‘min

which is satisfied if

l1aghl ] << agh™t .

After extended argument, this last condition can be shown

[31] to be satisfied if

125501 < 5 tllagg Il + 12,01 112558,
and
[1a5311 << [ag 1™t .

These last conditions will guarantee the system toO possess the
two time scale property. Note however, that this is only a
sufficient condition and not strictly necessary, which can be

seen by letting A be defined as
-10 9

9 -10

In this case, A has eigenvalues -1, -19
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but does not satisfy the two time scale inequalities of Koko-
tovic and Chow.
A somewhat different, but related definition is that of

a singularly perturbed structure. This is concerned more with

the magnitudes of the block elements Aij(e) than with the
eigenvalues A(e) which are imposed by the singular perturba-

tion method. We define a system to have a singularly perturbed

structure if it can be put in the form

Xy A1 Ay
R Byy
X2
where
e << 1 and ||a;}] v a0

Alternatively, instead of using the conventional assump-

tion € << 1 and IIAllll v [ [Aa,,] ], we may assume that

€ =1 and | |a << ||a

11l 2211

and use this as an alternate definition. Note also, that if
approaches zero, this is equivalent to |[|A,;|| becoming

large relative to ||a for € =1 . To clarify the re-

lationships between two time scale systems and systems with
singularly perturbed structures, the following examples are

given. Consider two system matrices A and F where
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As before, A has eigenvalues -1, =19, whereas F has
a multiple eigenvalue of -3. Notice that A does not have

a singularly perturbed structure since
[1-10]] <4< []-10]]

but that F does since

[Tofl] << |]6]]

corresponding to a very small ¢ in the conventional sense.
Hence, systems that do not possess widely separated eigen-
values may still fit the singularly perturbed structure
induced by the singular perturbation for some range of ¢ .
On the other hand, systems that do possess a two time scale
property may not exhibit fast and slow substates without first
performing a similarity transformation (i.e. linearly recom-
bine the states to form a new set of states) so that its two
time scale nature cannot be used to advantage.

In the A matrix of the first example, not even reindex-
ing or scaling will put the system in a singularly perturbed
structure and it often must be physical insight that provides

the key as to how to define the right set of states so that
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singular perturbations can be used.

Relation of Algorithm and Asymptotic Series

Consider again the partitioned linear system

x A A

1 11 12 X1
. |7 Y. y
2 € £ 2
where [IAllll << ||a,,]| so that e =1 is small parameter
relative to |[A22{[/||All|| . The Lyapunov equation for this
system is
T
T An ‘
ST W RSTRCIRSPALY Rip (&) Ky lei] Ay By
T +
A A A
T 22 21 22
A, - Kzl(e) K22(€) Kzl(e) Kzz(e) - =
T T
Al Bo1 [®ppte) eXp,e) Kip(e) K, [a; A,
= +
T T 4 oy \
A, A5, kZI(e) %22(8) eKZl(s) kzz(e) Ay Bygl
911 %12
Q1 923
where ¥ (e) = I K, , (g) s (e) = l—K (e) and
12 e 12 roT21 e 21

1
Byyle) = 2 Ryple)
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Define

K. . () %12(e>

E . (¢)

21 (€) 22

then, the Lyapunov equation can be written as
L, (K(e)) + eLy(K(e)) = - 0

where Ll and L2 are given as in the algorithm as

T T T
Ay K 1R 1By R Ko HR 9By By RoaH Ry 1B 5F R 5R)

Ll (X) =
T

T T
KoaRothy Ky +855K0 AyoKyo¥Kooh,,

T
0 211Ky

T
Ki1By1  P12K127Ko1845

Now, we try to expand k(e) in an asymptotic series in
¢ about € = 0 and evaluate it at & = 1. A sufficient con-
dition that k(O) exist and be unique is the requirement that

A22 be stable [23]. Therefore, we may define K" as
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which is the (m + 1)— partial sum of the power series ex-
pansion in ¢ of K(g) evaluated at € = 1. To calculate
the derivatives of R(e) , we differentiate successively

the Lyapunov equation in operator from and get

?%(E)] = - r L—l- L., [_.__r lk(e)}
: 5 r 1 2 r-1
L 3¢ i: . o€ £=0
« 'ar&%(e -1 r..-1
or } Ll . Lz) [Ll (Q)1 .
€=

Using this last equality in the expression for . , we have

that

-1 r,.-1l
= 2 -ttt .

Hence, the mEE partial sum of the asymptotic series is
simply the mEE iterate of the two time scale decomposition
algoithm of this chapter. This correspondence is the result
of the linearity of Ll and L2 and does not extend to the
nonlinear case, so that the extension of this algorithm to the
Riccati equation, developed in Section 3.5, is not equivalent

to an asymptotic series expansion.

However, having shown this equivalence in the linear case,
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some remarks on the convergence of the algorithm and the two
time scale property along with singularly perturbed structures
is in order. Since singular perturbation methods are usually
associated in the control area with multiple time scale
systems, it is natural to assume that the necessary and suff-
icient condition for the algorithm to converge, namely

p(Lzl. LZ) < 1 , implies a two time scale system. This is not

the case. Examination of our two previous examples where

9 -10 -9 -6

and represent system matrices show that for A

=10

-1
o, (L,” - L,) = 1
A1 2 10
while for F
-1 _ 0 _

Yet, A having eigenvalues of -1 and -19 has the two
time scale property while F having the multiple eigenvalue
of ~3 does not. However, F does possess a singularly
perturbed structure. Hence, under reasonable assumptions

about the coupling terms, the conjecture that

|1a a3l << 1

11!]
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is a reliable indicator of convergence implies that the
system possesses a singularly perturbed structure often as-
sociated with two time scale systems. However, as seen
before, these two properties are not always associated. It
is nevertheless, convenient to refer to the algorithm as a
two time scale method since every two time scale system can
be put into a singularly perturbed structure by the proper

definition of the states (i.e. similarity transformation).
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3.5 Decomposition Algorithm for the Riccati Equation

The decomposition algorithm for the Lyapunov equation
can be extended to the Riccati equation using some additional
constraints. The system and associated cost functional con-

sidered are respectively
X = Ax + Bu

(xTQx + uTRu)dt .

'..-‘8

J(u) =

Assume that [A,B] controllable and [A,/Q] observable

with Q > 0 and R > 0, then

T

A“K + KA + Q - KBR™ T

BTK = 0

has a unique solution K > 0 . Partitioning the Riccati

equation, let

then the algorithm is defined by

ATKT + (KT)TA + Q™ - {K?)TBR-IBTKT =0

where

Q" = o+ aTkyt + @ HTa - &1 Ter"ETKE !

_(KQ—I)TBR~1BTK§—1 _ (Kg—l)TBR-lBTKT—l
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. o
with K2

manipulation, which can be found in the Appendix in Chapter V,

being initialized as zero. After tedious algebraic

the algorithm can be written in a form analogous to the

linear (Lyapunov) case.

Fast Subproblem

T m m -1_7T _
A22K1§2+KI;2A22+Q22—K B.R "BiKY. =0 .

Slow Subproblem

T 2 mo m, ,_m m,® _
A7, K1 + Kjp2yp * Q) (Kll 1t SH®RY K?lBl +8)7 =0
Coordinator's Problem
T -1.T T m
K], (Byy = ByR™ 183Ky, + K1y (B, = ByR "ByKj,) + Ay Ko, + O, = 0
m _ 1 -1,7. m~1
Qp =9y * 11 (K]17By + KTz B,)R "BiIK;,
m - - _ T 1
Qyp = Q7 AlZK?Z + Kgl 12 Kgl B,R leTz
-1 _-1.T.m-1 1 T.m-1
- Ky1 BjRByK, - K5, ByR BIK?Z
m -
Q17 =9 ¢ (Azz 21 022(A22A21) (Azz 21) (Azz 21 95,
s" = [(Azz 21) 922 12](A2232)
B =r+ (alis,) o™ (alls.)
= 22821793, 22 B,)
where
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~ } -1 ~ -1
Ajqp = By T AjoA 5By, and By = By - A A 0B, .

Also, define Qll as in the Lyapunov algoirthm as

— -— -l -
Qll Q) ‘Azz 21) sz(Azz 21) T Q12 (B55R,54) (Azz 21) Q1

Now, the algoirthm is initialized with K12 = 0 in the coor-
. . . 1 _
dination equations for le and Q22. With K12 =0 we

find that 'Kl is the usual signular perturbation approximation
td the solution K. Note that if Aqs is singular, the equa-
tions must be written in a different form.

For the algorithm to be well-defined, the subproblem and
coordination equations must all have solutions. Sufficient
conditions for this to happen are the conditions [ill'
and [AZZ,BZI controllable, {ill,/g;l] and [Azz,/ﬁézl ob-

Bl]

servable and the requirement that Q" > 0 for all m. This
is exactly the requirement that the boundary layer system and
the degenerate system are both controllable and observable,
where observability refers to the cost observability of the
state in the quadratic cost functional [29,32]. Also, the
original system is assumed to be controllable and observable.
The nonlinear nature of the iteration precludes a global
analysis, but local convergence conditions are quite simple.
The coordination strategy of the decomposition algorithm is

locally successful if there exists a neighborhood of X the

solution such that if K' is an element of that neighborhood,
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then lim Km = K .
m->co

Theorem 3.5.1

Define the linear operators il : R0 > g¥D 4ng
iz : RP¥D . R™M by the linear operators L, and L, res-
pectively of Theorem 3.2.1 where A is replaced by 2 and
A=a-BrR1BTRk .

Assume [All,Bl] and [A22,B2]

[Azz,/szl observable and

o™ >

K=K

controllable, [All, Qll] and

The algorithm has a locally successful coordination strategy if

-1
p(il 3 iz) <

and only -1

p(x,l .Lf <

Proof:
Let Km =

equation

AT (AKT

-1
K + AK? + AK? )

+ AKlg-l) + (AR] +

is obtained and must converge to

K"

for in some neighborhood of

1

Then, the linearized

AKg—l)K =0

AK® = 0 by Theorem 3.2.1

K. For ]]AKm]‘ suffi-

ciently small, the convergence of the algorithm is given by
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the linearized equation. Also, for ||AK"|| sufficiently
small (i.e. X' in some neighborhood of X) Q" >0 so
that the subproblems are well defined. Thus, when

p(i;l- iz) < 1 , there exists a neighborhood about K such
that the algorithm converges Q.E.D. The gap between the suf-
ficient condition and the necessary condition arises because
for p(iil. Lz) = 1 , the nonlinear terms not included in the
linearized equation in AK™ govern the convergence.

It is important here to realize that it is the closed
loop matrix A that determines the convergence of the algo-
rithm in the neighborhood of K, and not open loop matrix A.
Therefore, the feedback may alter the natural separation of
modes in the physical system in either a favorable or un-

favorable fashion. Note, also that for systems that possess a

singularly perturbed form so that

= 1
3"21"821

_ 1w Ny
A22—— B

>

BZ=

™ |

21 '/ 22 7 2

™

there always exists an ¢ sufficiently small so that the al-
gorithm converges. This follows from the asymptotic behavior

o
* eklz and Koy = ekzz where klz and K have

of K 22

12
finite limits as ¢ - 0+ so that

Q > 0

and
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are readily verified from the fact that Kl

is the singular
perturbation approximation to K which is known to approach

K as e » 0 [23,29].
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3.6 Hierarchial Structure of the Algorithm

It has been mentioned before that singular perturbation
methods applied to control and estimation problems yield
hierarchically structured filters and controllers that are
asymptotically optimal [20,21,22]. The hierarchial structure
of the filters or controllers result from using the gains
computed from the singularly perturbed control and filter
Riccati equations and processing information hierarchically.
Information from the slow substate is passed to the controller
or filter, but not vice versa. However, this is not at all
the same hierarchical structure of the decomposition algorithm.
In the decomposition algorithm, the hierarchy is not divided
between the fast and slow subproblems, but between the co-
ordination scheme and the subproblems. The decomposition
algorithm which computes the gains to be used by the filters
and controllers is an off-line hierarchy, while the filters and
controllers represent an on-line hierarchy which process the
information of observations or outputs. In the decomposition
algorithm, the coordinator representing the supremal decision
maker guides the subproblem or infimal solutions to the global
solution. This is depicted in Figure 3.6.1 for the Riccati
equation and back in Figure 3.2.1 for the Lyapunov equation.

In terms of decentralization of information, the fast
subproblem requires the least information about the rest of

the system needing only A22 , the fast boundary layer model.
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Coordinator's

Problem
m “m _m.m
Q2 Q1-%,S
Fast ng K?l Slow
Subproblem ' Subproblem

Two-Time Scale
Decomposition Algorithm for
the Riccati Equation

Figure 3.6.1
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The slow subproblem requires the slow degenerate model
N -1 .
All = All - A12A22A21 and is uncoupled from the fast sub-
problem. The coordinator, however, needs information about
the total system or the full order model.

The basic novelty of this algorithm is the decomposition

of the global problem into subproblems

xl = Allxl + Blul

< T T ~m
J, = [ [Ixqujlt 05, st X
0

(Sm)T Rm u

and

X, = AgyoXy + Bou,

T.m T
(x2Q22x2 + quuz)dt

o
N
i
o “—38

with u = uy + u, on the basis of multiple time scales rather
than the usual weak coupling approach. This decomposition can
be viewed as two reduced order aggregate models of the overall
system. From this perspective, the slow or degenerate model
approximates the fast subsystem by its steady state, while the
fast or boundary layer system approximates the slow subsystem
by its initial value a constant. This approach could be
adapted to the case where the state dynamics are nonlinear or

the general two point value boundary problem of optimal control.
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CHAPTER IV

- WEAK COUPLING ITERATIVE DECOMPOSITION

. 4.1 WEAK COUPLING ALGORITHM FOR THE LYAPUNOV EQUATION
For large systems composed of smaller sybsystems that

are interconnected weakly, different decompositions are
practical [4,23,25]. Several variations of a weak coupling

algorithm proposed by Athay [25] for the Lyapunov egquation

will be described here.

Basic Weak>Coupling Algorithm

For the linear system

] X = Ax
where
- ™ q
| By Byp oo By
. A .
N 22 .

we associate the Lyapunov equation

ATk + kA + 0 = 0 )

 Conformably partitioning K and Q the Lyapunov equation is

Z(ATK + K, A .)=-0.. .

=1 mimj im mj ij
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The matrix AD represents the individual subsystems and
Ac represents the coupling among them. This splitting of
the system matrix induces a splitting of the Lyapunov operator

La defined by

AT

LA(X)—AX-I—XA .

Letting
4

>

L, (xX)

L, (X)
1 D c

L, (X) and L2(X)

the Lyapunov equation can be written in the following manner

Ll(K) +L2(K) + Q=0 .

If the coupling among the subsystems is weak LZ(K) should
be small compared to the contribution of Ll(KL so that the
approximate solution is given by

-1
K v L7 .

To include the effects of the coupling, we form the iteration

+1
Ly (KT77) = = Q = Ly (K"
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or

+1 -1 -1
Ko = = L7 (Q) - L« I &D .

Provided Lzl exists, the convergence of this iteration
occurs if and only if

-1
o (Ll

Ly <1

where p(*) denotes spectral radius. Alternatively, this

iteration can be written in the form
T +1 +1 m+l _ .
AiiKg(_lj + I{l;.‘j Ajj + Qij — 0 ] l"l’z'ooo’N

j=i’ i+l’ e oo ,N

where

N N
m+1 T
=Q.. + LAL.K® + »xta
Qlj Q | r=1 Tirj p=] ir ¥J
r#i r#]

which represents N(N + 1)/2 uncoupled generalized Lyapunov
equations (i.e. of the form ATx + xB + C = 0). Note that if
A;; 1is stable then LIl exists and the iteration is well

defined. Also, this iteration, if written as a linear vector

equation iteration will be recognized as a Jacobi iteration

[13,14].

Relation to Power Series Expansion

There is a direct relationship between this iteration
and the approximations found by using regular perturbation

theory [23,19].
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Consider the linear system

.

X = Ax

where
e -
Aip eRyy - - - ERgy
ehyy By eBoy
A= A(g) = . : . . = AD + gAc .
A1 w2 v 0 P

The Lyapunov equation for this system is

Ly (R(e)) + el,(K(e)) = = Q
or
_ -1, _ .-l
K(e) = - eL;7* Ly(K(e)) - L;7(Q) .

Differentiating this last equation successively and evaluating

the derivatives at ¢ = 0, we obtain

m
{a K(e)} Ml LT

1, m
o AR PO ¢ (DN
e=0

Hence, the sum of the first m terms of the power series ex-

pansion of K(eg) about € = 0 and evaluated at ¢ =1 is
m-1 _
=2 - -ttt
i=0

where K" is the mEE iterate of the basic weak coupling

algorithm.
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Gauss Seidel Variations of the Weak Coupling Algorithm

The Jacobi iteration can be modified to a Gauss Seidel
iteration by simply utilizing each K?;l as soon as it is
available instead of K?j in the basic weak coupling algo-
rithm (Jacobi iteration). Depending on how the indices i
and Jj are varied to select the different subproblems, it
is possible to form different versions of the Gauss Seidel
iteration. These versions may converge at different rates
since the order of updating the block matrices of K induces
a slightly different splitting of the Lyapunov operator and
hence may change the spectral radius of LIl- L2 .

Two possible orderings can be seen to be effective for
special forms of A , and seem to be likely candidates for an
algorithm to handle a general A matrix. To illustrate the

relationships of these variations, the 2 x 2 block case

will be shown.

Jacobi
T m+l 1, T
AT KT+ Kyp Ay = - [0y + ALK, + KA, ]

T
21522 * K1121,]

T _m+l +1
A} K] + Ko Ay, [Q,, + A

T _m+l +1, T
Ay Ky, + Kpy Byy = = [0, + Aj,K + Kyua, ]
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Gauss Seidel #1

T _m+l +1 T
A7, K]y * Kjp Ay = - [0 + By Ko, + KiAg]
T _m+l 1. T +1
A Ko+ Kig By, = - [0, + ALK, + KITTA,]
T ,m+1 +1 - T  m+l +1
Ay Koo + Kyo By, = = [Qy, + ALK + Kyl Al

Gauss Seidel #2

T m+l +1
A1 Ky + Ky Aqg

i

[Qy; + AT KR+ oA

+ 2T K@+ A

T . m+l +1 - -
B Koy * Koy By, = = 105, 12572 21512
T m+l +1 _ T _m+l +1
AT KT + Ky Agy = = [Qp, + Ay Ko0m + K T7A 1

In all of the above iterations Q is assumed to be symmetric
and hence K is symmetric.

For a block diagonal A (i.e. Alz = 0 and AZl = 0)
all three methods converge in one step. However, for a block
triangular A, the Jacobi iteration converges in three steps.
Note that it makes no difference what order the equations in
the Jacobi iteration are solved. For Gauss Seidel #1 itera-
tion, the method converges in one step for upper triangular
A (Azl = 0) , but takes three steps to converge exactly for

a lower triangular A = 0). The Gauss Seidel #1 itera-

(A1,
tion can also be written in terms of linear operators
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+1
L &) = - 1, -9

where T
LA(X) = A"X + XA

and
£

i

Li(R) S L, (R) ; L,(K)

1

L, (R)
)
with Al being upper block triangular and A2 being

strictly lower block triangular such that

A = Al + A2 .

Note that the case in which it takes three iterations to

converge could be reduced to one by requiring A to be

1
lower block triangular and A, strictly upper block tri-
angular with again A = A1 + A, .

For the Gauss Seidel #2 iteration, a triangular A
requires two steps to obtain the solution. This iteration
might be used in the general case where the coupling matrices
(A12 and AZl) are roughly the same "size". The Gauss
Seidel #1 iteration in one of its two forms might be used for
A matrices that came "close" to being block triangular.

One further comment on the Gauss Seidel #2 iteration is that
it is in the form of two uncoupled subproblems which are

Lyapunov equations for the All and A22 subsystems with a
coordination problem to calculate the effect of the coupling

in KlZ' This identification will be made again with the
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Riccati equation in a later section. The following diagram

(Figure 4.1.1) illustrates this particular identification

with the decomposition.

Coordinators
Problem
+1 m+1 m+1
Kl + 911 - 935
+1 +1
KIIICJL// %
+ +
QTll Q?zl
Subproblem 1 Subproblem 2
n+1 +1
K K3s
m+l _ T
Q1 =91 7 25 K51 * KigRg

m+1 T
Q55 = Qgp * ALK, + KA,

Gauss Seidel #2 Algorithm =~

Weak Coupling Decomposition for
Lyapunov Equation

Figure 4.1.1
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4.2 RELAXATION OF ALGORITHMS

To enhance the convergence characteristics of the vari-
ous algorithms, relaxation techniques [13,14] can be applied
to attempt to reduce the spectral radius of the iteration.

The spectral radius is the asymptotic convergence rate
and reducing it may or may not significantly improve the
average rate of convergence. Hopefully, the iteration
reaches its asymptotic rate quickly. All of the algorithms
for the Lyapunov equation in the previous sections can be

written in the following form,
L &™) = - @™ L, &™)+

where L(XK) = Ll(K) + LZ(K) + L3(K) and where Ly is a
linear operator that uses only the elements of K@*l which
have been computed previously in computing the elements of
L, &),

Solving for Km+1 we have

Km+l - - [L—

1 +1 -
1 L3(Km ) + L

I A R AR (1S

Applying relaxation to this iteration, we f£ind

oo w[LIl * Ly &y 4T

1 . -1,
1 Ly + LT

+ (1 - w)Km .

Here, w 1is a relaxation parameter to be selected to try to




-119-

reduce the spectral radius of the iteration operator

-

1

(L + wicle L

1 3)“l[(l - w)I - wL

. L2J .

For a Jacobi iteration L3 is zero so that the spectral

radius becomes

-1

{1 - wW)I - WLl

« Loyt = mixl(l - w) - wki(LIl. L,) |

-1 . .th . -1
where Ai(Ll . L,) is the i eigenvalue of L7~ L, -

Note, if w = 1, we are back to the original algorithm.

To calculate the spectral radius for the different itera-
tions, it is necessary to write the linear operatiors in
matrix form using the Kronecker product notation. However,
in actually using the algorithms, the computation will be done
from the standpoint of solving smaller Lyapunov and Sylvester
equations (generalized Lyapunov equations). In terms of

linear operators, this can be written,

Ly K™ = - win, @) + 1y @) + ol
+ (1 - WLy (K

where Ll(Km+l) is decomposed into a number of subproblems

so that Lzl is not formed.

Relaxation of Gauss Seidel Algorithms

Writing the relaxed algorithms in terms of the sub-

problems we obtain
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T +1 +1 m+1l
Bisfiy Kmij j3 7 Q3 =0
m+1 N T o B8 T Km Km
Q;5 =wlQyy BriKpy ¥ KipPrgl = 255K ~ K52y
r=1

where o and B take on the values m or m + 1 depending
on the ordering of the subproblems.

In the Gauss Seidel #1 iteration i = 1,2,...,N and
j=41i,i+1,...,N is the indexing scheme. For the Gauss
Seidel #2 iteration the indexing is i = 1,2,...,N and
j=1+%k where k=20,1,...,N-1.

This second scheme decomposes the original problem into
N coupled subproblems of Lyapunov type and N(N - 1)/2
coupled coordination problems (Sylvester equations). The
coupling, of course, is only produced by utilizing all infor-
mation as it becomes available, the basic difference between
the Jacobi and Gauss Seidel iterations, and does not arise

from the use of relaxation.

Operation Count for Algorithms

Let £f£(n) denote the number of operations required to
solve a Lyapunov equation order n and g(n) denote the
number of operations to solve the generalized Lyapunov
equation order n. Assuming Q is symmetric, there are N

subsystems of dimension n and

f(n) = an3 ; o constant
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g(n) = 5n3 ; B constant

B > o

the number of operations (multiplications) required per

iteration may be calculated.

Calculating Operations
m 3
N(N + 1)/2 Qij's N(N + 1)[2Nn7]/2
NN - 1)/2 Ks's N(N - 1) [8n3]/2
N K. 's N[an3]
ii

For o iterations, the total operation count T is
T = [NZ(N + 1) + N(N - 1) % + Na]nso

3

2+(1+§)N+(a-—§—)31\mc~ i

T = [N

—~—

For the decomposition algorithm to reduce the number of
multiplications required as compared with the subproblem

method

T < oc(Nn)3
or

0*[1+(,l+-§—)%']-+ m—'%)‘i:fl<o“

For most N this will approximately require that

g < o .
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However, suppose that Aij » 1 # 3 are sparse having only one
nonzero row, which may be a fairly common situation with large
scale systems. Then the number of multiplications required

to compute Q?j is only 2Nn2 instead of 2Nn3 . Then the

total operation count is
T = [ﬁ + (1 + §)N + ( - é)]Nn3 :
n 2 e - tiina

and to reduce the computations for most large N will

require approximately

=] [S]
A
Q

This shows if the size of the subsystems is appreciable, the
computations can be greatly reduced. Also, if Q is block dia-
gonal, it might be suspected that the resolution operation count
for Kij could be reduced. This unfortunately does not make a signi-
ficant difference since even if Q is block diagonal Qm

will not be block diagonal. Hence, even using saved real

Schur decompositions of Aij as in Bartels-Stewart algo-

rithm [30], the operation count is still order n3 for the
subproblems since Q?j is not sparse and must be transformed

at each resolution with an operation count order n3. Never-
theless, as will be seen later, the assumption that £f(n) = un3

may be changed to f(n) = unz for special cases and signifi-

cant reductions in computation will be possible. Therefore,
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we conclude, if only the approximate solution corresponding
to the first few terms in the Taylor series is needed, the
number of computations will be reduced even in the general
case. If sparsity is exploited or a particular canonical

form is utilized, the reduction of computation will be signi-

ficant.
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4.3 POWER SYSTEM MODEL AND NUMERICAL RESULTS

Power System Example

To gain insight into the computational aspects of solving
the Lyapunov equation, by the weak coupling aigorithm with
relaxation, a simple power system example was studied.
Solution of the Lyapunov equation may serve as a measure of
coherency between generators that form an interconnected
system [25,26]. This is important since machines that form a
coherent group tend to swing together under a major network
disturbance.

A linearized model of a three generator infinite bus
system was used, where each generator was represented by a
constant voltage behind transient reactance. The linearized

equations for this model are

M, Aw, + Awl/leO = - Y1151 + Y1262 + Y1363

§, = Wy
Mpdvy + Bwp/Rowy = ¥158) = ¥py6y + Ypyfy
§p = sz

MyAwy + Awg/Row_ = Y;36; + Y538, = Y58,

63 = Aw3

where
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Aw, = frequency deviation of machine 1
Mi = moment of inertia of machine i
61 = perturbation of machine 1i's rotor angle from

the operating point
Ri = droop of machine i

Y.. = transfer admittance between machines i and Jj

Y = gelf admittance .

Athay [25] adapted this model from Lee [26], who studied
the identification of coherent groups for transient stability
analysis, by adding the damping terms in order to guarantee
the existence of the solution to the Lyapunov equation. The
model used here is the same as the one used by Athay except
that a parameter was added to vary the coupling between gen-
erators, but keeping the admittance to ﬁhe infinite bus
constant.

This is represented as in Figure 4.3.1

machine machine
1 1Y124 2
Y13 ¥a3
3
Yloo machine Y2co
Y:,’c°
j ]

infinite bus Figure 4.3.1
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The per unit values used were

Y12 = ¢ o= 3
¥, = .9 AR
Y23 = 1.2¢ Y3°° = .2
LSS DR ST IR S &
Y22 = %3 T a2 T Yoz
Y33 = ¥3  * Y3+ ¥a,

M1 = .1326 Rl = .01
M, = .1592 R2 .01
My = .1194 R3 .01

Hére € 1is varried from one to zero. At ¢ = 1, the
model is identical to Athay's and the coupling between
machines is the strongest. Athay tried to solve the Lyapunov
equation for this case by using Jacobi iteration (i.e. w = 1)
or the iterative decoupling algorithm as he refers to it.

He found that the algorithm diverged because the spec-

tral radius of the iteration was greater than one. This
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happened because the generators were too tightly coupled as
verified later by simulation. However, using relaxation on
the Jacobi or Gauss Seidel iterations, it is possible to

obtain convergence.

Numerical Results

The effectiveness of relaxation techniques was evaluated
for both the Jacobi and Gauss Seidel algorithms by calculat-
ing the spectral radius for different values of the relaxation
factor w and different values of ¢ the coupling factor.

To obtain a visual estimate of the relative effects of the
variations in the coupling parameter ¢ , a simulation of the
system was done. Step inputs were applied to one machine and
the response of all three machines in rotor angle perturbation
and frequency deviation were recorded. The initial conditions
in each simulation were set to zero. These simulations yield
a comparison of the strength of the coupling and the conver-
gence rate of the algorithms.

Results indicate that convergence though slow, may be
achieved for even strongly coupled systems and as expected,

a better convergence rate for more weakly coupled systems.
Generally, the Gauss Seidel iteration converged faster if
the Jacobi converged, but diverged faster if the Jacobi
diverged. Also, for all cases examined in this example, the
optimum relaxation factor was always less than one and

greater than zero. For strongly coupled systems, it was the
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smallest and approached one the more weakly coupled the
system.

It should be mentioned that the spectral radius was
computed for the Gauss Seidel #11 iteration. The spectral
radius as a function of w and ¢ 1is tabulated in Table
4.3.2. 1In the plots that follow, a step input was applied
to machine #1. The units of time are in seconds and the
perturbation of rotor angle and frequency deviation are in

radians and radians per second respectively.
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WEAK COUPLING DECOMPOSITION EXAMPLE

Relaxation factor - w
Coupling factor - ¢
Spectral Radius - sr

Jacobi Gauss Seidel
w sr w sr €
1.0 1.44 1.0 2.79 1.0
1.0 1.24 1.0 1.97 0.75
1.0 .99 1.0 1.19 0.50
1.0 0.64 1.0 0.46 0.25
1.0 0 1.0 0 0
0.5 0.94 0.6 0.90 1.0
0.6 0.90 0.8 . 0.80 0.75
0.8 0.83 0.9 0.72 0.50
1.0 0.64 1.0 0.46 0.25

Three Machines Interconnected
Forming 6 X 6 System

Table 4.3.2
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4.4 Interconnected Single Input-Single Output Systems

To demonstrate the advantages of the weak coupling
decomposition algorithm, consider a large scale system com-
posed of interconnected single-input, single-output (SISO)
subsystems. One of the common representations for these
subsystems is the transfer function from which a companion
form state space realization is easily constructed.

Suppose the transfer function is given by

K(s™ + amsm—l +ooot s+ al)
T(s) =

- - S .
st o+ ansn l . .. +as+a uls)

2 1

This input-output relationship can be described in state

space form as

Xq 0 1 0. . .0 X 0
3 X, 0. 1 . X 0
’a"‘E . . = . . . 0 . + . u
x_ 0 0 o 1|[x 9
n . - . B nJ _K B
:al —az . - . . -an-

companion form

y = [aluz eee o 11 0x, 1 .




-139-

With each subsystem in the above form, the overall

large system matrix is of the form

A A A

11 12 1N
Aoy Ly i
A = * - L ]

where A is in the above companion form and Aij’ i# 3

is of the form

0 I ¢
: . » o 0
A,..=|" *l; s and t integers
Ple o 0 s<t
c c c

since the systems are interconnected only through their single
controllable input.
The weak coupling decomposition algorithm for the Lya-

punov equation is (in Jacobi form)

T Km+1 Km+1A + Qm+1 =0

11 ij ij 733 ij
m+1
Qij ZArl rj rz ir? rj Qij .
r#l r#j

Notice that only off diagonal block elements occur in

the computation of Q?;l and therefore, each term of the sum
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for a given r, is of the form

T -
(C°X + YD)r = zr

where C and D are zero except for their last rows. The

component equations can then be written as

o~~~
N
v

~
i

8 g
(2 c .x .+ 2 ¥y )

. XL . d_.
i3, 0 gy PiTRI g3 TipPig

)

(z..) = (ceixej + vy y

. d .
io oj

8,0 = values depending on the sizes of the
subsystems interconnected .

Thus, only the last row of X and the last column of Y
are needed to generate Z. Hence, in order to compute Q?;l
only the last row and column of K?j for all i and Jj is
required.

In an algorithm given by Molinari [27], the last row and
column of K?j is solved for given Q?j and the remainder
of K?j generated. The total operation count in evaluation
of K?j is 5 rs multiplications when K?j is an r x s
matrix.

Using this algorithm, the complete solution need only
be generated at the last step in the decomposition algorithm.

This allows all computations to be done with rows or columns

of K?j. Reducing the number of computations significantly,
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however,is due to the use of Molinari's algorithm.
For N subsystems of dimension n we have:
evaluation of‘Qij = 2n2(N - 1) multiplications
evaluation of last row and column Kij 7 1# 3

= 3n2 multiplications

3 .2

evaluation of last row and column Kii =70 multiplications.
For one iteration
Ei§7;~ll Qij's > nNm? - 1) multiplications
gigjf—il 'Kij's ;1 #F - % n?N(N - 1) multiplications
' 3 .2 s ,
N Kii s >Zn N multiplications .

Hence, the total operation count after o¢ iterations is

2
am)? + D 1an? 4 en - 7] < (w2 (2no + 1)

where the extra (nN)2 comes from generating the full solu-
tion from the last row and column of the final iterate.

When the algorithm is of the Gauss Seidel type and re-
laxation techniques are applied similar results in operation
counts can be attained with only a slightly higher number of
operations.

Here it is important to note that the overall system is

not in companion form, but only its interconnected subsystems.
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Hence, algorithms that take advantage of special canonical
forms are of interest even though the large scale system does
not exhibit the exact form required for the algorithm.

A general system matrix may be transformed into companion
form and Molinari's algorithm used to solve the Lyapunov
equation in 5n3 multiplication where n is the dimension
of the system. The existence of the companion form is gua-
ranteed if the system is controllable for some input B
matrix. However, the transformation to companion form is
numerically unstable and the roundoff error is too great for
even modest size systems.

Nevertheless, if the companion representation is already
available, this algorithm appears particularly attractive.
For multiple input-multiple output representations in stan-
dard controllable form [3] Molinari's algorithm may be
adapted and used in conjunction with the decomposition al-
gorithm. This is the case, since in sténdard controllable

form the system is represented as

— =
0 I o.. .0 A 7
m m m 0
m
0m om Iﬁ 0m om
A= * . . ¢ B = Q
. . . . ]
Om 0. .. .Om Im :
0
—alIm -azlm e o . amIm m
— - I
™
C = [RORl . oo Rn—ll
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where -1
R(s) = C(Is - A) "B

p(s) = s™ + ansn-l t...t ay,s +oa

p(s)R(s) = (R, + Rys +...+ R .8

and p(s) is the monic least common multiple of the denomi-

nators of the r..(s).
1]

For completeness, a brief sketch of Molinari's algorithm

follows.

Molinari's Algorithm for Companion Form Matrices in the

Solution of ATK + KB + Q = 0.

Suppose
0 i I
|
A = --———i ————————————————————— H
-al : -az -a3 .o - L] —an
|
0 ! 1
1
B = __......._...: _____________________
|
—bl i -bz _b3 . . - -bm

A n X n matrix
B mxm matrix

C nxm matrix .

Denote the characteristic polynomials of A and B by




Aa(s)

Ab (s)

= 8
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n -
s + a sPt
n

m 1

m—
+ S
bm

+...+ a

+...+ b

Writing the equation in component form

n m
Z arikrj * Zkirbrj =
r=1

r=1

For A = [aij] : B = [bij] we have
1 ; i#nand j= i+l
a.. = - a, s 1i=n
1i]J J
0 ; otherwise
l1 ;i#mand j=1i +
b.. = - b. ; i=nm
1] J
0 ; otherwise
Now
n Kic1,5 7 2
2 2rifrs =
r=1 - a
m ki,j—l - b
2 XirPry =
=1 - b
A

Defining k..
i3

0 if i =0

~

bt
~
e
J.

P

1

1

or j =

component form of the equation becomes

14

“1,2,...,1'1

then,

1,2,...,m

the




If all the component equations for which i + j

-1

im ~ Xi-1,3

stant are summed according to

8 .
3 (-1) % (a.k
i=g
where
1
O’ —
N+1-m
N ; N
e =
n H N

~e

.
14

the equations simplify greatly.

g (N)

45—

= q R

T ki,3-1 T iy

i=1,2,...,n

j=1,2,...,m

To see this, consider the sum letting p =1 -1

9 i
= Z (-1) (ki

i=g

g(N) = (-

S
1) ke,N—e

+

k

i,N-1

)

-1
=5 (-1)P* %

p=o-1

0 i
+ Z (~1) (ki,Nni)
i=g

+ (~1)%

o~1,N-og+1

con-

P:N"pl



-146-

Then
0 i N<mand N < n
N+1-
(-1) mkN—m,m i N>mand N<n
g(N) =
n -
(-1) kn,N—n i N<mand N > n
N+1~ n
(-1)". mkN-m,m + (-1) kn,N—n ; N>mand N > n
Define
8 i
(-1) di N+1-i N=1,2,...,m+n -1
h(N) = i=g .
0 ;s N=m+n

The Sylvester equation may now be written as

v i
2 DTk, g F Pyggogkyy) -9 = h@

This in turn may be written in matrix form by defining an

(n + m) x n matrix F(x,n,m)

[‘ —
b4
1 b 4
% 1
2 .
F(x,n,m) = : X2 . .
. : . .Xl
x -
n+1l x. .xz
n+1
Xn+l
— -——
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with x an n + 1 component vector.

Now, the Sylvester equation is

[F(c,n,m) : Fld,m,n)] [-A.] =n
: u
where
+

CT = ["alrazl--vr (-l)nan, (""l)n l]
T .
d - [bllbz’.'.,bm’l]

T _ X
A. — [knl]knzloo-,knm]

T _ _1yh
W= IekypeKons s (1) 7k

T

h® = [h(1),h(2),...,h(n + m)] .

This (n + m)-dimensional set of linear equations is
solved in 3mn multiplications using a special algorithm
that takes advantage of the structure of F . The remainder

of K 1is generated from the last row and column using

k

i
Q
+

i,j—l ij ajkim—Bkij H j=m,90n,2

or
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4.5 Decomposition Algorithm for the Riccati Equation [4]

The Riccati equation like the Lyapunov equation, for

the system
X1 A1 P2 |[* B1
. = + u
X3 Ay Bapdlx; B,
can be decomposed for a weakly coupled system. If A and

12
A21 are "small", the solution of the Riccati equation should

be "near" the solution of the Riccati eguation from the block
diagonal A made up of All and A22 . This suggests an
iteration, similar to the previously discussed weak coupling

algorithms for the Riccati equation.

Subproblem #1

AT, X]) * K[pA) + Ofy - K BiRUBIK] =0 .
Subproblem #2
A3,KDy + KjoRp, + 03y = KpBRUBIKD, = 0 .
Coordinator's Problem (Jacobi Iteration)
. (ay; - B R BRI TH TR, + KT, (3, - ByR TlEpK)y ) * QY = 0
* For a Jacobi type iteration
Q) = 3 * Aglngl + Kip1Ay - KipUB,R T IEyKD
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T m-1 1

Qo = Azlﬁgz 11 212
m o T m-l . .m-l, _ _m-1_ -1 T m-1
Qpp = Qpp + ByoKyp7 + Kyy ™Ry = Ky "BIR "ByKy,

must hold.
To change this to a Gauss-Seidel iteration, the coordina-

tor's problem changes to

Coordinator's Problem (Gauss-Seidel):

o p=l,T.m T m m 1Tyl _
(Ry; - BjR "BiRK ) 7Ky, + Ky = BR "ByK,,) + Q12 =0
i _ .7 _m m
Qra = Bp1Kyp * Kygdy,

and the subproblem remains the same, but must be solved befére
the coordination process. This is directly analogous to the
Gauss~Seidel #2 iteration for the Lyapunov equétion in the
weak coupling section.

In a region sufficiently close to the solution K, the
linearized equation governs the convergence rate of the

algorithm, as in the two-time scale case.




-150-

CHAPTER V
CONCLUSIONS AND FUTURE RESEARCH

Two decompositions for the Lyapunov and Riccati equations
have been presented. These decompositions make possible the
solution of problems not feasible by standard methods, due to
the large amount of storage required for manipulation of
arrays during computation.

'Using the decomposition algorithms, size of the arrays to
be manipulated is reduced and computational savings can be
attained when the number of iterations need be few or when
the subsystem possess a special canonical form which may not
be exhibited by the overall system. Finally, these algorithms
recommend themselves where the regulator problem need be
solved on-line,due to system parameter variations, by a number
of small computers no one of which is able to solve the

global problem.

Future Research

Much of the literature concerned with relaxation tech-
niques has been with matrices that arise from partial dif-
ferential equations that are discretized. These matrices
form a very different class of matrices from the matrices
that arise from state space descriptions of dynamical systems.

Hence, many of the theorems related to solving this

class of large linear systems are inapplicable because they
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depend on this type of special structure.

Specifically, the results on the selection of relaxation
parameters is difficult to adapt and possibly other criteria
such as a measure of the coupling might be substituted or
selection of a relaxation factor might be done dynamically
during the iteration. Also, other canonical forms besides the
companion form might be used in decomposition methods to

reduce computations.
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APPENDIX

Two Time Scale Decomposition Algorithm for Riccati

Equation

A.l Computation of Qm
Let _
L = BR lsT (A.1.1)
-1_T -1.T
R AN B,R 18]  BRT'B]
= (A.1.2)
-1.7T -1
Ly; Loy B,R "B  B,R B
o 0 olfa;; 2, 0 0
(K2 )TA = = (A.1.3)
-1 -1 -1
21 0dL3;; By K1 A11 Koy By,
T _m-1
0 AR,
ATKQ“Lafg"l)TA = (A.1.4)
_m-1 T m-1 -1
Koy P11 AyoKg Kp1 215
-1
0 07pl;; D[ K
(Km-l)TLKm—l -
2 2
-1
Kp1 04 LLyy Dy 0 0
(A.1.5)
0 0
0 e T

21 711712
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(Kg-l)TLKm_l -

-l gl

22

- -1 -1 .m-1
K?l%ﬂJ_Kgl L, || %3 K22

- -1 -1 .m-1 -1
I'5‘{211%‘111{1&1 +K§?L12K§1 K31 L1,K55

(A.1.6)

m-1F_ m-1 -1, 7., m-1 _
&L & TRl =

1
-1 m-1 _.m-1 -1
0 KTl Ly1K75 K15 Lp1K1s
-1 m-1, m-1 m—-1 -1 -1 _m-1 -1
Kp1 Lp1K17 +Kp1 LyoKpp  Kpy Ly Kio +Kp) L12%22
(A.1.7)
Since
o™ = o+aTr™ 1, (g0 1) T (x0-1) Tpgi=1_ =1y Tppm-1_ m-1,T, m-1
2 2 2 2 1 2 2 1
(A.1.8)
we see that
11 = 91 (A.1.9)
m o T m-1 _m-1 -1 _m-1. _m-1
Q1p = 01,*A 1K 5 ~Kyp Ly Kjp ~Kyp Ly K5 (A.1.10)
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n T m-1,_m-1, __m-1 ~1__m-1 -1__m-1 -1
9y = Qpp*A1pKl5 *+Kp1 Ay,Kyp Ly Kj5 -Ko) Ly1Ky5 K31 Ly,Ky,

(A.1.11)

Here, notice that 8?1 in (A.1.9) is different than
6?1 because of the coupling between the slow subproblem and
the coordination subproblem as yet to be taken care of, but

(A.1.10) and (A.l.11) are in the desired form.

A.2 Computation of ATK?+(KT)TA—(K?)TLKT+Qm =0

K11 Ko ][22 212
(K1) A =
| 0 Koo | | 221 225
(A.2.1)
[ g
11211 K 225, 1121 2K1 9855
- Kp2221 Ky2R22
AT (K T =
17 (%
T T T ;
Ay K) +K] B Ay Koy +RT A, A5 1Ky K 1A p+K] 5P,
T T m T
AlzK?1+Azng1+KzzA21 I S S
(A.2.2)
T -
(K§) LK? =
K1ab11 K ola K110 5%K 555, K11 0
(A.2.3)
KpaLa1 Ky2L22 K1 Xpy
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T —
(KT) LKT
m m m
KTlLllK?1+K12L21K11+K?1L12K§1+KT2L22K§1 K11512K22+K] 2 5K5 5
_ m
Kpala1K11+K5500,K9, Ky2L22K22

from this we can substitute in for I and obtain

K11011K71 %K) 2Tp1 K1 7K 1 By 9K #K] 500 0K

= Ky (LK) +0y 9K5y) + Ko (Ly KT 4L KD )
= K?l(BlR—leKT1+BlR—lB§K?1) * KTz(BzR—lBTKT1+BzR—lB§K§1)
= K] B R (B]X] +B3K ) + K],B,R T (B]K] +BJKD))
= (31K}, +B3KD ) TR B, K] +BKg; ) (A.2.4)
K] 012K +K pTgoKp, = (K]pBjR TB+K] B RIB) K],
= (B]K],+B,K0 ) TR™T (BJKD,) (A.2.5)
KpalpoKpy = KppByR 'BIKD, (A.2.6)
Let
G, = (B]X}, + BIXD) (A.2.7)
G, = Bgng (A.2.8)
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Now the algorithm may be written as

T g +x® A +aT g +8® A +0% TR 1. = 0  (a.2.9)

A1 Ry R 1By tRp Ky HR Ry 101G R TGy
T m T -1 _
A21K22+K?1A12+K?2A22+Q12—G1R G, =0 (A.2.10)
T m _ T -1 _
A22K§2+Kg2A22+Q22 GR™TG, = 0 (A.2.11)

We have both (A.2.10) and (A.2.11) in the desired form

only (A.2.9) is not as needed.

A.3 Slow Subproblem Derivation

Solving (A.2.10) for X©

12
- 1~To"1., _,T _ P L §
Kyp = [GIR "Gy=25 K3 -Ky A =07 187 (A.3.1)
. -1
K?z = X K?lAlezz (A.3.2)
_ T-1. _,T ,m _m . -1
x = [6]R Ya,-al x2,-q7 1a7] (A.3.3)
Looking at the terms of (A.2.9) we see
R -1
KigPp1 = XB,1-Ky A 2078, (A.3.4)
_ oA
K11A 14K pRgq = Kyp (A=A ,A00R, 0 )+XA,,
. (A.3.5)

= K7

11811 7%8

21
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T. -1 m

_ _ 1 1
21 = (GIR 7Gy-0Qy,

yasia__ -aT g™ aTla (A.3.6)

XA 22821721 R02890891

T m 1

XAZl =Y - A21K22A22A2l (A.3.7)
- To~1l., _~m -1
Y = (GlR G2 le)A22A21 (A.3.8)

AT X+XA.. = Y+YT-(aA

)T T _m
21 21

0 _
(Ao Ky tKyoR, 50 A,

1

2A21 (A.3.9)

-1
22221

. . . T ,m m
Now substituting in (A.3.9) from (A.2.11) for A22K22+K22A22

we have
T - T_,a=1, T,-Tp=1. _.m -1
A21X+XA21 = Y+Y (A22A21) (G2R G, Q22)(A22A21) (A.3.10)
Letting -1
A = AR, (A.3.11)
T _ AT -1, _m T-1. m
AL X+XA,, = AO(GZR Gl-Q211+(GlR G QlZ)AO
(A.3.12)
T, T.-1 m
= AJ(G5R TG,-0,)A
Now (A.2.9) may be written as
AT mo,om 2 m _T.-1, ,T. T -1 T T -1 T -1 _
A11L11+K11A11+QT1 GIRT"G -A G R "G, +ASG,R "G +G R G,A = 0
(A.3.13)
where
1 S T.m , _T.m __m
911 T Q117800080 R 0170 53, (2.3.14)

~

which is the required form for Q?l.

and G, in (A.3.13)

Factoring the terms

containing Gl
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AT o.m o, m o m T -1
AllKll+KllAll+Qll ('Gl GZAO) R (Gl GZAO) (A.3.15)
The last term in (A.3.15) is not yet in the form required.

From (A.2.7), (A.2.8) and (A.3.11) we have

_ .Tom , T.m __T.m ,-1
G,~G,A_ = BlKTl+BZK§1 BZK§2A22A21 (A.3.16)

and from (A.3.1) we get

Ky

0 = (at T[GiR'lG K2 A -aT g™ o™ ) (A.3.17)

22) 1 722721 12711 ~21

Substituting (A.3.17) in (A.3.16) and collecting terms

e L =l N Tm _Tom -1, =1 T
Gy=G,A = (By=A; A7 B)) "K' =B,Ky ASoA, = (B)0B)) Ko A,

(A.3.18)
-1 T ~Tp=l. _~m
+(Ay5B,) " [GoR 76, -0, ]
_arom T, ,.-1,T.n -1 -1.T, T _-1_ _m
G,-G,A, = B1K;-B,[(A33) KyptKyoR5512,, +(A55B)) [G3R Gy=0p,1
(A.3.19)
A 1. .T T -1
= BKy;~ (A55B,) " [Ky R ) +A0 KD, 1 (AR, )
-1.7T T.~-1 m
+(A,5B5) [GoR "G, -Q),]

Substituting from (A.2.11) again

_rm -1 T T -1, i ,, -1, _,.T.-1., _m
(Gy=G,A,) = BIK 1= (B33B,) " [(GRTG5=05,)A758,, - (R 6, -07) ]

(A.3.20)
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-1

_ LT T To=l,. _ m ., _.m
G, =GB, = 31K?1+(A2232) [GoR T (G]=G,A ) +0,,A -Q0,1  (A.3.21)
-1, \T.T,-1 _ _ oT -1, \T,m , _-m
[I-(255B,) "G3RTT1(6;=GyA ) = BUK) +(A7;B,) " (Q),A ~Q5)
(A.3.22)
G.-G.,A_ = [I-(A'lB )TGTR-l]_llgTKm +(A'1B )T g% o™ )1
17G2%, 22827 G; 111 (BB " (Q5A =Qny
(A.3.23)
Now
m _ T.m _.m -1
and -1
 rroa~ln \T.T-1
M = [I-(A55B,) GoR "] (A.3.25)
so that
_ AT m,T
(G1=G,A,) = M(B KI;]_-!-(S ) %) (A.3.26)
For
-1 _ -1 .T -1
MT = I-(a,;B,) K§232R (A.3.27)
we can substitute for ng from (A.2.11) to get
-1 _ . =l T T m..m T -1 -1 -1
M7 = I-(A55B,) " [-A, Ky, =00, +G,R TG,lAL B R
-1 _ -1 . T.m ,. -1 =1, o pn=lp (T To-1 -1 -1
M T = [R+(A,3B,) "0y, (AJB,) IR +[I-(A,5B,) GoR “1G,A,,B,R
(A.3.28)
with
m _ -1 T .m -1
-1 _ .m -1, -1, .=1_ _-1
M T = R'R +M “GyA - B,R (A.3.30)

T —_ ki o e e e i er i s e e e e o e e e e e
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from which

-1
A 1 1

- -1, -
Mt = ORI (T G,A55B,R ™) (A.3.31)

1

m -1 -
R (R—GZAZZBZ)

1

m - -1, \-1_-1 _ T -1
R (I-R "G,A ,B,) "R T = RM'M'R

or

MR M = (R (A.3.32)

Now from (A.3.26) we have

T,-1 _ _ o m, . T.-1 2 m, T
(G=G,A ) "R " (Gy=G,A ) = (KTlBl +s™MMIR M(KTlBl+S )

(A.3.33)

and

i

(& B, +% (@) L& 5. +s™T

T_-1
(G1=GxA ) "R T (G =GyA ) 1131

(A.3.34)

using (A.3.32) so that (A.3.15) becomes

AT NS I 2 pelly oMy =1 2 T _
A11K§1+K?1A11+Q11 (KT131+S ) (R (K?131+sm) =0 (A.3.35)

the desired result.
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