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ABSTRACT

Communication concentrators perform the basic network function of

merging many input flows into a- single output flow. This requires

formating the data and encoding side information about when messages

start, what their lengths are and what their origins and destinations

are.

This thesis examines efficient ways of performing these functions,

the objective being to minimize the average message delay, or some other

queueing theoretic quantity, like the probability of buffer overflow.

The work is divided in four parts:

encoding of the data;

- encoding of message lengths;'

- encoding of message starting times;

- encoding of message origins and destinations.

With respect to data encoding, an algorithm is given to construct

a prefix condition code that minimizes the probability of buffer overflow.

Next a theory of variable length flags is developed and applied to
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the encoding of message lengths.

For concentrators with synchronous output streams, it is shown

that the concept of average number of protocol bits per message is

meaningless. Thus, in order to analyze the encoding of message starting

times, a class of flag strategies is considered in which there is a

tradeoff between delay and low priority traffic.

The problem of encoding message origins and destinations is

attacked from two different points of view. Some strategies (variations

of the polling scheme) are analyzed and shown to be much more efficient

in heavy traffic than just using a header, as is usually done. A

simplified model is also developed. Its dnalysis suggests that there

exist strategies to encode message origins and destinations that are

much more efficient than everything considered until now.

Name and Title of Thesis Supervisor:

Robert G. Gallager

Professor of Electrical Engineering
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Chapter I

Preliminaries

1. Introduction

The last decade has seen a tremendous development of computer

networks. Numerous books and papers describing and analyzing systems

have appeared (see Section 2).

From the operations research point of view, the most studied

problems are those of modelling the queueing phenomena in the net-

works, of routing the messages so as to minimize some cost, usually

the average message delay, and of laying out the network in some

optimal fashion.

Computer scientists have been concerned with the architecture

of the computers in the nodes, and with the protocol, i.e. control

messages exchanged between subsystems of the network. This is related

to the problems associated with distributed computation.

Presently the most important consideration in the design of

protocols is to get a working system where no deadlock can occur.

Little attention has usually been paid to the effects of the overhead

produced by the protocol on the performance of the network. However,

taking a queueing theorist view of the problem, LKleinrock et al.,

1976] pointed out that the effect was significant in the ARPANET.

[Gallager, 1976 showed that information theory can be used to

produce basic lowerbounds on some of the information that is carried

in the protocol messages.
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Our goal is to obtain results similar to those of Gallager,

but under less restrictive hypotheses. In particular, we will not

assume an infinite number of sources and links of infinite capacity.

Thus we will take into account queueing effects and interactions

between sources. One will.find in this work concepts and methods

from the fields of queueing theory on one hand, and information and

coding theories on the other.

We do not plan to solve at once all the protocol problems in

a complete network. Instead, we pay attention only to the nodes, i.e.

the points in the network where different links join each other. From

our point of view a node can be decomposed in a "router".followed by

"concentrators" (see Figure 1.1).

The role of the router is to determine the destination of each

input bit and to send it, together with some associated information to

be described later, to the corresponding concentrator. The concentra-

tors merge the many input flows into one output flow.

We will not consider the structure or the optimization of the

router, instead we will regard it as a source, with known statistics,

to the concentrators.

Because their input is generally stochastic, concentrators

contain a buffer in which queueing phenomena occur. In addition to

transmitting the data they received, concentrators usually perform

other duties:

1° they reformat" the data. This may involve translating characters

from one code to another, merging packets into messages or

dividing messages into packets.
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Figure 1.1

Decomposition 'n N- Mode into

a Router and Concentrators

Input NODE _ Output

(11

Concentrator

_ Router ____
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20 they transmit service information to the downstream nodes:

- information about the line being idle or not;

- information about the origin and destination of the data.

30 they perform some kind of error control, typically implementing

an error detection and retransmission system in conjunction with

sending error detecting parity bits to the downstream node.

4° they send flow control information totfhe upstream nodes and/or

the router indicating that they are unable in some way to handle

the flow of data.

We will consider in this work only the first two functions; they

are related to what information theorists call "source coding," whereas

the third one is more like "channel coding." The fourth function should

be studied with the routing question and is not touched here.

Note that classical source coding theory is interested in

transmitting as little redundancy as possible. In computer networks

the goal is usually to minimize the average message delay. These two

objectives are not always compatible, as we shall see.

Note at this point that we consider all higher level protocol

messages, like "end to end" messages to set-up a "session," and like

flotw control and routing messages, as regular data that must be trans-

mitted by a concentrator to another node, together with information

about its origin, destination and some error check.

The plan of this thesis is the following: in Section 2 of this

chapter, we will review previous works of interest while we present in

Section 3 an outline of the original contributions of this work. The

next four chapters describe in deta.il the actual results. They are

organized as follows:
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In Chapter 2, we examine how the concentrator should encode the

data so as to minimize in some sense the message delays.

In practical systems the data are often transmitted in batches,

called "packets" or "messages." We analyse in Chapter 3 a very efficient

way of encoding the length of these batches. This will introduce an

encoding technique, using flags, which will be used extensively in the

next two chapters.

In Chapter 4, we study efficient ways of solving a seemingly

trivial problem: how should a concentrator indicate to the downstream

node when it transmits idle bits. This simple problem will introduce

some conceptual difficulties that appear more strongly in Chapter 5.

Chapter 5 treats the problem of encoding message origins and

destinations. It has two distinct parts: in the first part we use a

simplified model to see what issues are involved. In the second part

we examine and compare different practical strategies for encoding the

origins and destinations while not degrading too much the average

message waiting time.
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2. Review of Previous Works

We rapidly review previous works of interest, considering

mainly works that give general ideas rather than technical details.

These last references are mentioned in the text as they are needed.

Should a reader need general information about computer networks,

the books of [Davies and Barber, 1973], [Abramson and Kuo, 1973] and

[Schwartz, 1977] are valuable.

[Kleinrock, 19761 is an excellent reference on queueing models

for computer systems, while [Gerla and Kleinrock, 1977] present an over-

view of the problems of optimal static routing and network layout and

give a number of references. The subject of adaptive routing and

numerous references on related subjects appear in (Segall, 1977] while

[Gallager, 1977] offers an actual adaptive decentralized loopfree algo-

rithm.

Many of the ideas used in high level protocols today were born

during the development of the ARPANET; suitable references are [Crocker,

1972], [Cerf, 1977], [Kleinrock, 1976] and [Kleinrock and Opderbeck,

19771].

Of course the ARPANET is well known for sending data in packets.

Another network that functions in a similar way is the CYCIADES, [Pouzin,

1973]. Some networks do not use this idea, but transmit the data

character by character, e.g. see [Tymes, 1971] and [Vander Mey, 1976].

The references just mentioned describe the background of this

thesis, but have no direct impact on it. We now review some works
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that have a stronger relation to it.

The motivating paper behind this thesis is the one by [Gallager,

1976] which showed that there is a trade off between the delay

incurred by a message and the amount of information necessary to

indicate its origin or destination. However, the delay there is a

"voluntary" delay in the sense that the concentrator sometimes chooses

not to send a message although the line is available. We will examine

how "involuntary" queueing delays can be exploited to minimize the

amount of protocol.

Another paper along these lines is [Rubin, 1976]. Rubin notes

that if some rate-distortion function exists for the output of a source,

and if the output of the source encoder is sent over a link for which a

relation exists between rate and average delay, one can obtain a delay-

distortion relation. This approach is not very useful, because it

neglects the delays added by the coding process and it assumes that the

average delay on the link is only a function of the rate, and not of

other parameters of the coder output statistics. It is an unfortunate

fact that information theory is concerned only with rate.

A work that has a strong relation with this thesis is the one by

[Jelinek, 1968] and [Jelinek and Schneider, 1972]. They were the first

to show that a code with minimal redundancy is not necessarily optimal

as far as buffering problems are concerned. We will use some of their

ideas and extend their results in Chapter 2.
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The goal of this thesis is to find efficient ways for a

concentrator to perform the source coding functions described in Section

1, and divided in four main sections:

- encoding of the data;

- encoding of the message lengths;

- encoding of the idle times;

- encoding of the message origins and destinations.

The objective is to minimize the average message delay, or some other

queueing theoretic quantity, like the probability of buffer overflow.

We review briefly our contributions in these fields.

In Chapter 2, we present an algorithm to construct a prefix

condition code minimizing the probability of buffer overflow. It is a

generalization of Huffman's procedure.

Variable length flag strategies are studied exhaustively in

Chapter 3. We give coding and decoding algorithms using flags, analyze

their performance and sensitivity, and identify the classes of flags that

have some desirable properties. The main result is that if well chosen

flags are utilized to encode the length of a message, the expected number

of bits used is upperbounded by the entropy of the distribution of the

message length + .56

We study in Chapter 4 how to encode the message starting times to

minimize the average message delay. Unfortunately the best way of doing

this is still unknown. We were only able to show that the concept of

average number of protocol bits per message is useless when the line is

synchronous. We also analyzed a practical strategy, using flags, to
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encode the starting times. -This is a variation on the theme of the

M/G/1 queue.

Our main contributions are in Chapter 5, where we study the encod-

ing of the message origins. We first introduce a simplified model where

the objective is to minimize the entropy of the sequence of the origins

of the messages being transmitted. We also show that, at least for this

model, the traditional methods (e.g. forming packets or polling) are

far from being optimal. We give a lowerbound on the best achievable

performance and show how dynamic programming can be used to f'nd the

optimal strategy;

We also analyze four practical strategies to encode the origins.

They are based on well-known queueing strategies. Our main contributions

are a closed form expression for the waiting time in cyclic queues with

symmetric inputs, and a fast algorithm to compute the waiting times in

the asymetric case. We also solved the problem of optimal source

coding for an integer alphabet with Poisson distribution.
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Chapter 2

Source Coding to Minimize Delay

1. Introduction

We devote this chapter to the problem of source coding to mini-

mize delay. After presenting our model in Section 2, we consider briefly

in Section 3 how to find a code minimizing the average delay. The

problem of minimizing the probability of large delays or of buffer over-

flows is treated in Section 4. Finally, we review and generalize in

Section 5 the work of [Jelinek and Schneider, 1972], which is stronly

related to the topic of this chapter.

2. The Model

We propose the following model: an asynchronous memoryless

source emits symbols drawn from the alphabet {1,2,3,...,c} ; symbol

i has probability Pi . The time intervals between two source emissions

are independent random variables with distribution function A . An

encoder maps the source symbols into codewords which are placed in an

output buffer of size M from which one letter is removed every unit

of time (first in, first out). The output codewords are formed by

letters from an alphabet of size d and the codeword corresponding to

source symbol i has length m. . Without loss of generality we can

assume that c = d + k(d-l) for some integer k and that Pi > Pi+l L 0.

In the following sections we consider the waiting time and

delay of symbols that do not cause buffer overflows. The waiting
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time is defined as the time difference between the moment a symbol

arrives at the encoder and the moment the corresponding codeword

starts leaving the buffer. The delay is the waiting time, plus the

length of the codeword. We do not consider what to do when the buffer is

empty or overflows; this is treated in Chapter 4.

3. Minimizing the Average Delay

Unfortunately, for most interemission processes, it is not

possible to compute the average delay. Sometimes, though,it is

-Xt
feasible, e.g. if the buffer is infinite and if A(t) = 1 - e

t > O . In this case the average delay is equal to (this is a

M/G/1 queue)

X(Z m2 (Pimi -Pimi)+ z Pimi
E[DJ = pi -

1 - X Z Pimi

for all codes such that X Z pimi < 1 . However, even in this

simple case we are unable to find an algorithm yielding a code

that minimizes this expression. We can only make three general

observations valid for all problems.

First, Huffman codes, which minimize the average codewords

length, are robust for this application. They are optimal when

the load is light, because then the waiting time is negligable

compared to the average codeword length. When the load is heavy,

it is of primary importance to keep the system stable by mini-

mizing the average codeword length, i.e. utilizing a Huffman

code.
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Next, by a simple exchange argument, one sees that in an optimum

code mi > mi+ (because Pi > Pi+l )

Finally, as in Huffman codes, the codewords of the d least

likely symbols have the same length.

4. Minimizing the Probabilities of Buffer Overflow and of Long Delays

A. Introduction

IKingman, 1970] showed that for infinite G/G/1 queues with

interarrival time distribution A and service time distribution B ,

the stationary probability WC(x) that a symbol waits more than x

units of time is upperbounded by

-s x
C(x) < e

where s is the supremum of the values of s such that

A*Cs) B*C-s) < 1

Kingman's method yields the same result for finite queues.

From this, it is easy to upperbound the probability of buffer

overflow: denoting by w and b the waiting time and length of a code-

word we have

probability of buffer overflow = P(w+b > M)

= PCew > M-b)

< ECe- M -b)) 0 < s < s
-sM 0

=B*C-s) e 0 < s < s

By more complicated arguments, [Wyner, 1974] established that there
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-s°M
exists a lowerbound decreasing like K e

Applying these results to our model, we see that for every

code C , the probability of buffer overflow is of the order of
-sOB 
e , where s (C) is the supremum of the values of s such that

C sm.
F(C,s) := A*s) pie < 1 . Therefore it is desirable to find a

i=l 0
uniquely decodable code with the largest s . Before doing this, we

0o
will bound this largest s

B. Bounds on the Largest s

This section can be considered as an extension to asynchronous

sources of results obtained by jJelinek,-1968] and outlined in Section
C -m.

5 . For any uniquely decodable code Z d 1 < 1 [Gallager, 1968, p.
i=l -

-4 ], and by HUlder's inequality for all s > 0

( z Pi e1ln d + = )1In d + 

In d

>Cpc ln d + si=l

Thus for all uniquely decodable codes,

l In d In d s
c sm. c in d + s ln d

A*(s) Z pi e 1 > A*(s) Z pi
i=l i=1

with equality for a given s iff

In d + s c In d + s 
mi = mi(s) := - log1 / Z Pi

=which is rarely possible, because mi must be integer. However, forwhich is rarely possible, because mn. must be integer. However, for
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every s , there is a uniquely decodable code with

m.sS) + 1 > mi > 2m(s)

Thus we can conelude that the largest s° is upperbounded by s

defined as the supremum of the values of s such that

I " In'd''" n d + s
c In d + s in d

C pi <1A* s) (:i < )

and lowerbounded by the supremum of the values of s such that

In d ln d'+ s
eS ' c ln d + s In d
eA* Cs) i nd+s< 1

Further, sU is achievable if mi(su) is an integer for all i

Finally, we note that if we were encoding blocks of n input
A o
symbols, the largest s would still be upperbounded by su , and

lowerbounded by the supremum of the values of s such that

In d -Aln d +s

i=les(lyCs c In d + s In d )n
This supremum increases to su as n grows.

C. An Algorithm to Construct an Optimal Prefix Condition Code

In this section we present an algorithm to construct a prefix

condition code with the largest achievable sO . It is well known

IGallager, 1968, p. 49] that no gain would be achieved by considering

non prefix condition, uniquely decodable codes. The algorithm has two
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main steps that we describe first.
c sm.

Step I finds a prefix condition code minimizing Z pi e
i=l

for a given s > 0 by the following method. As [Huffman, 1952]

therenoticed a quarter of century ago,/is an optimal prefix condition code-where

the codewords corresponding to symbols c - d + 1 to c are the

longest and differ only in the last character. If c = d , this

specifies an optimal code; if c > d , this reduces the problem to

finding a prefix condition code of size c - d + 1 minimizing
c-d sm. c sm

1 s + Ce Smc-d+lPi e + (es c Pi) e . Again we can make the same
i=l i=c-d+l
observation and continuing we will eventually reach the point where the

code is completely specified.

One sees t¶at for s = 0 this algorithm yields a Huffman code,

whereas for s large enough, it assigns codewords of length Tlogdcl-l

to the
rlogd cl

d - 1

most likely symbols, and codewords of length flog d cl to the others.

By definition we will say that such a code is generated for s = o .

Note that, depending on the actual implementation of the algo-

rithm, many different codes may be generated for a given s . They all
c sm. /

minimize pi. e 1 but it may happen that all of them do not have the
i=1

same s .

Step II computes the so corresponding to a particular code.

Except in special cases this must be done by numerical methods, e.g.

the Newton-Raphson algorithm [Klerer and Korn,1967,p,2-59] . There are
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no special problems because the function f(C,s) , defined at the

end of Section A, is convex in s for all codes C

The main part of the algorithm is as follows: (see Fig. 2.1)

1 compute s

2 S := S

3 j :=1
c SS m

4 Loop use Step I to find a code minimizing Z Pi e l
i=l

denote this code by C.

5 use Step II to find the s° corresponding to C

denote this s° by sj

6 if s. = sy l then stop

7 else j := j+l

8 go to Loop

Of course, we must show that this algo3ithm will terminate after

a finite time, and that the last code generated is optimum. The proof

is simple. First we note-that sj+l > Sj j > 1 because

fCCj , sj) < 1 (line 5), thus (line 4) f(Cj+l , sj) < 1 so

sj+ : sup { sup : f(Cj+1 , s) < 11 > s . Secondly, we observe that

the maximum codeword length of any code generated by Step I is less than

c, so the number of codes that can possibly be generated by Step I is

finite. These two remarks insure that the algorithm will terminate in

a finite time.

0Let C* and s* be the last generated code and its s . We

must show that C* is optimal. If it is not, there will be a prefix
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FIGURE 2.1

Iterative Procedure to Find

a Code with Maximal so

f(C,s)

C2 C3 C 4

a _ '1/

lower bound

t * I * I

* s It I I I 'I. . * I
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condition code C' and a corresponding s' with s' > s, . Thus

O < S* < so f(CG,s*) = 1 . Also, by convexity of f(C',s)

f(C,,s) < 1 .

If f(C',s,) < 1 , C* may not be the last code generated by

the algorithm (lines 4,5,6).

If f(C',s,) = 1 and s* > 0 , by invoking the facts that

f(C*,O) = 1 , f(C*,s,) < 1 and the convexity of f(C',s) we can

conclude that f(C*,s) = 1 ss [O,s'] . By analyticity of f(C',s)

s > 0 (Laplace-Stieltjes transform of a probability distribution),

f*(C',s) = 1 s > 0 , so s' = X and a fortiori su = . From the

algorithm, C1 is the code described earlier that is generated by

Step I for s = " , If for C' the waiting time is 0 with probabi-

lity one (i.e. s = c), it is clear that the same will be true for

C1 , because the length of the longest codeword in C1 is no longer

that the length of the longest codeword in any other code. Thus

* = sI = s1 < s* , a contradiction.

If f(C,,s*) = 1 and s* = 0 , then, as noted earlier, C,

is an Huffman code, and as such minimizes - f(C,s) over all

codes. The fact that s* = 0 implies that d- f(C,,s) > 0 so
d ds f(C1,ss=0

d f(Cs)| > 0 and by convexity either s' = 0 = s, , which is a
dsI ,wi is

contradiction, or s' > 0 , f(C*,s)| = 0 . As in the previous

paragraph this leads to the conclusion that f(C',s) = 1 s > 0

and to a contradiction.

We have exhausted all possibilities and may conclude that C*

is optimal.
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Before leaving this section, we show that if one desires to find

a prefix condition code minimizing

Z Pi g(mi)
i=l

then the algorithm of Step I can be used only if g is linear or

exponential.

The following conditions on g must be met for the algorithm to

work:

-- g is non-decreasing,

so that if Pi > Pj , mi < mj in an optimal code;

-- g(m+l) = a gCm) + b

so that at every step the size of the problem can be reduced

by 1 , while the form of the problem does not change.

These conditions imply that f must have one of the forms

g(m) = am + 8 a > 1

or g(m) = am + a a > 0

D. Numerical Results

A listing of a Fortran IV program implementing the two main steps

of the previous algorithm appear in Appendix C. This program was used

to compute the optimal code for a 128 symbol alphabet. The symbol

probabilities are equal to the relative frequencies measured in an air-

line reservation system, and are listed in Table 2.1. We are

grateful to Codex Corporation for furnishing these numbers.

We used two kinds of interarrival time distributions: determi-

nistic and exponential. This last one is a realistic model of what

happens in practice, see [Fuchs anid Jackson, 1969], or [Lewis'and Hue,
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Table 2.1

Symbol Probabilities Used in the Example

1 0.208593E 00 44 0.543153E-02 87 0.434284E-03
2 0.413809E-01 45 0.532954E-02 88 0. 344279E-03
3 0.359989E-01 46 0.519072E-02 89 0.301999E-03
4 0.344146E-01 47 0.510923E-02 90 0. 282097E-03
5 0.341741F-01 48 0.495080E-02 91 0.281404E-03
6 O.310807E-01 49 0. 495080E-C2 92 0.240114E-03
7 0.2971C5E-01 50 0.431145E-02 93 0.227836E-03
8 0. 252622E-01 51 0.410917E-02 94 0. 125453E-03
9 0.250547E-01 52 0.410461E-02 95 0. 123671E-03
10 0.239848E-01 53 0.381984E-02 96 0.800050E-04
11 0.214987E-01 54 O. 373736E-02 97 0.207934E-05
12 0.205013E-01 55 0.371647E-02 98 0.376261-E-05
13 0. 204832E-01 56 0. 335328E-02 99 0.100006E-04
14 0.204295E-01 57 0.334189E-02 100 0.514884E-05
15 0.203151E-01 58 0.323951E-02 101 0.237639v-05
16 0. 185034E-01 59 0.321822E-02 102 0.237639E-05
17 0.170439E-01 60 O.289216E-02 103 0.891145E-05
18 0.141916E-01 61 0.279186E-02 104 0.376261E-05
19 0.134732E-01 62 0.271047E-02 105 0.257442E-04
20 0.126853E-01 63 0.261284E-02 106 0.360418E-04
21 0.126820E-01 64 0.252630E-02 107 0.192091E-04
22 0.126658E-01 65 0.219340E-02 108 0.514884E-05
23 0.126555E-01 66 0.213528E-02 109 0.207934E-05
24 0.120663E-01 67 0.181754E-02 110 0.308930E-04
25 0.115880E-01 68 O . 171922E-02 111 0. 171298E-04
26 0.114259F-01 69 0.168040E-02 112 0.960456E-05
27 0. 114121E-01 70 0.155020E-02 113 0.514884E-05
28 C.110366E-01 71 0.143781E-02 114 O. 297048E-06
29 0. 104807E-01 72 . 143712F-02 115 0.178229E-04
30 0.969496E-02 73 0. 142068E-02 116 0.236648E-04
31 0.957297E-02 74 0.13691 0E-02 117 0. 306950E-05
32 0.944445E-02 75 0.13179CE-02 118 0.554[493E-05
33 0.932216E-02 76 0. 123206E-02 119 0. 138622E-05
34 0. 881332F-02 77 0. 116750E-02 120 0.378241E-04
35 0.844231E-02 78 0. 942039E-03 121 0. 653506 E-05
36 0.831517E-02 79 0.912136E-03 122 0.306950E-05
37 0.826121E-02 80 0.865797E-03 123 0.930751E-05
38 0.809219E-02 81 0.767177E-03 124 0.116839E-04
39 0.753829E-02 82 0.719054F-03 125 0. 196052E-04
40 0.737234E-02 83 C.639347E-03 126 0.207934E-05
41 0.648664E-02 84 0.630138E-03 127 0. 116839E-04
42 0.645882F- C2 85 O. 94690E-03 128 0. 415867E-05
43 0.602760E-02 86 0.583007E-03
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1972].

The results appear in Fig. 2.2 and 2.3. We give some additional

information here:

the binary entropy of the alphabet is equal to 5.32 ;

the average codeword length of a Huffman code is equal to 5.35 ;

the number of iterations to reach the optimal code was generally

small (1 or 2) for Poisson arrivals, but larger (3 to 10) for.

deterministic arrivals;

the difference between the upperbound on s , and the performance

of the optimal code is extremely small (of the order of 1%) in the

Poisson arrival case. This is the reason why the upperbound does

not appear in Fig. 2.3.

The average codeword length of the optimal code behaves in the

expected fashion; being largest in light traffic, but close to the

average codeword length of the Huffman code in heavy traffic.
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5. Review and Generalization of Jelinek and Schneider's Work

Jelinek and Schneider considered the following problem: once

per time unit a memoryless source emits a letter from the alphabet

A: = {1,2,...,c} . Letter i in this alphabet has probability Pi>O

An encoder maps these source letters into codewords formed by letters

from the alphabet B := {1,2,...,d} . The mapping is as follows: a

complete and proper set of N prefixes c.j is defined for the

alphabet A (i.e. every sequence of letters from A starts with one

and only one c. ). Prefix c.j has length rj and probability qj ,

induced by the Pi 's. Every cj is mapped into one codeword d.

formed by letters from B . Codeword dj has length m. and the

N -m.
dj's are uniquely decodable, so that z d J < 1 (this is the

j=l

Kraft inequality see [Gallager, 1968, p. 47]). Each time the prefix

c. is recognized by the encoder, codeword dj is placed in a buffer

of size B from which one letter is removed every time unit. Jelinek

and Schneider address in detail the problem of what should be done

when the buffer is empty or overflows.

Their main result is the following: for every block to vari-

able length code (rj constant), or variable length to block code

(mj constant), there exists K1,K2 > 0 and s such that in the

stationary state, for all B > 1 ,

K1 d - B < Probability of buffer overflow < K2 d (1)
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where s is less than or equal to the supremum sU of the values of

s such that

dS > pl+s (2)

s u is positive if the entropy (base d) of the source is less than one

(this ensures stability) and is finite if c > d (otherwise there

need be no queueing effect). In the sequel, we always assume that s

is positive and finite so that su can be dfined as the largest root

of the equation

= [il ls l+s

They give algorithms yielding codes with exponent s arbitra-

rily close to su , and conjecture that the same result would hold in

ivariable length to variable length coding. We show now that this

conjecture holds.

To show that the theoretical limit on the exponent s° is the

same for the variable length to variable length codes as for the codes

considered by Jelinek and Schneider, it is enough to show that for

every code there exists a K1 > 0 such that for every B > 1

-s B
Pr (Buffer overflow) > K d u

Because we consider only the lowerbound, we can ignore the overhead
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associated with the recovery procedures that have to be used when the

buffer overflows or becomes empty.

Denote by

k th
m the length of the kth codeword placed in the buffer

(k = 1,2,3,...)

k
r the length of the prefix corresponding to the kth codeword

n the number of letters in the buffer after the kth codeword

has been placed in it.

k k
Note that m and r are strongly dependent, but are independent of

the mj ' s and r 's jI k

We have the relation

k k k-l k
n = Min [B, mk + Max[O, n - r ]J k = 1,2,...

k k-l k k
= Min [B, Max [m , n + m - ]]

and we assume n0 = 0

Now defining

0w =0

k k-l k k
w = Min [B, Max[O, w + m r ]] k = 1,2,...

we see that wk obeys the standard relation for the waiting time in

k k
a queue and that surely n > w k = 0,1,2,...

k
Thus the probability of an overflow for the process n is greater

than or equal to the probability of an overflow for the process w

The results of [Wyner, 1974] can be applied to this last

process, thus for every code, there are K1 > 0 and s such that

Pr [Buffer overflow] > K1 dsB where s° is the largest root of
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N s(Cm-rj)
Z qj d = 1

j=l 

N s(m.-r.)
( Z q d mj is the Laplace-Stieltjes transform (base d) of
j=l

the distribution of rn - mn , n = 1,2,...)

[Jelinek and Schneider, 1972] give a proof of the following

Lemma, attributed to Forney:

If su is defined as before, then for all complete and proper

set of prefixes, 1 Su
N l+sU j l+s
Z q Ud U=1

j=1

Now, HUlder's inequality yields

1 su 1 su
, suM i-i 1+U N m. +s N l+s- r. l+sN

E q d E - > Z qj 
N -m.

thus by the Lemma and the fact that Z d J< 1
j=l

N su (mj -rj )
Z qjd >1

j= -

with equality if and only if

N -m.
Z d 3 =1

j=l
and 1

d = (qj d urj) u

N s(m.-rj)
Now, the function Z qj d is a Laplace-Stieltjes transform

j=l
of a probability distribution, thus it is strictly convex (except in a

trivial case), and its value at 0 is 1. We have seen that its value

is greater than or equal to 1 at sU > 0 , thus it is greater than 1
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for all s > sU so s° < S for all variable length to variable

length codes.



Chapter 3

Flag Encoding Schemes

1. Introduction

Consider the problem of finding a binary Huffman code to jointly

encode a binary random variable, which is equal to 1 with probability

.15, and another random variable which takes the values (0,1,2,...,7)

with equal probability. One readily finds that the following code is

a solution:

(0,0) 000 (1,0) 111000

(0,1) 001 (1,1) 111001

(0,2) 010 (1,2) 111010

(0,3) 011 (1,3) 111011

(0,4) 100 (1,4) 111100

(0,5) 101 (1,5) 111101

(0,6) 1100 (1,6) 111110

(0,7) 1101 (1,7) 111111

This code has an interesting structure: all codewords corresponding to

(l,i) start with 111 , followed by the binary representation of i .

(0O,i) is encoded into the binary representation of i , except that a

0 is inserted in third position if the first two digits are 11 . The

same pattern reappears in the joint Huffman encoding of a binary random

variable and a random variable taking with equal probability anyone of

2n values.

This structure offers the possibility of doing the coding in two

steps: first encoding the messages, then modifying the codewords, either

by using a prefix, called a flag, or inserting an extra symbol to avoid

confusion, to encode the binary random variable. The receiver will

recognize if a flag is present, possibly recognize and delete the extra
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character, then decode the message.

Often in computer communication networks and elsewhere, one

needs to jointly encode messages, furnished by an outside source, and

binary information generated locally, like an "acknowledgement" or "end

of transmission." This can be done easily by eventually introducing a

flag, known to the receiver, at the beginning of a message, or at some

other point decided in advance, and inserting extra symbols to avoid

confusion, if necessary.

This strategy is attractive for many reasons: it is simple, does

not cause much delay, nor require much buffering because the message

is not truly reencoded and does not need to be known in its entirety.

It is optimal in some cases, as we have just seen, and can be made

adaptive, as we shall see later.

In this chapter, we will study this strategy in detail . We will

of
first give a very general algorithm that permits the use/any flag at any

point in a message. Next we will study the performances of this

strategy and see how it can be optimized. In the following section

we examine the use of adaptive flags to encode messages and batch lengths.

Finally we will see how reducing the class of allowable flags can improve

performances.

Before doing this, we introduce some definitions. By flag we

mean any finite sequence (al .a.v) of symbols from the alphabet

{O,l,..,d}; v is called the length of the flag (v > 1) while

(al...vla ) is called the root p (p is possibly empty). We denote

by S the symbol, different from av , that is inserted when necessary
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to avoid ambiguities, and we will call the sequence (a1 ' a2 a '' '

a-1 ' ) the antiflag.

Fixed-length flags are actually used in IBM Synchronous Data Link

Control to encode message lengths [Donnan and Kersey, 1974]. They are

analyzed in [Camrass and Gallager, 1976]. [Schalkwijk and Post, 1973]

used flags to encode data for transmission Qn the Binary Symmetric

Channel with Noiseless Feedback.
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2. General Flag Coding Algorithm

We considerthe following situation: a semi-infinite sequence

(the data) (u u , ... ) of d-ary symbols is furnished to an encoder,

1 2together with a sequence (v , v ,...) of binary symbols. We give

an algorithm to jointly encode these two streams using flags, i.e. the

1 2 toutput (x , x ,...) will consist of the sequence C..u t.) plus

some flags or inserted symbols used to indicate the values of the

tV 'S.

t t tWe denote by (l,...,a ) the flag to be used after u if

t t t tv = 1 , by p the root of this flag, and by t the symbol that

is to be inserted in case of possible confusion. We place no

restriction on the composition of the flags, except that of course

t t
Vt

Before giving the algorithms for coding and decoding we note

that they need the following features to be efficient:

a) we want to either use the flag corresponding to a v , or

to make at most one insertion;

b) if d > 2 we want to make an insertion only when it is

necessary, i.e. when the next symbol is the same as the

last flag symbol or the insertion.

We will illustrate these two points. Throughout examples 1

to 3 we use d=3 and

V1 =4 (al a 4) = (O , , 0 , 0) = 2

2 2 =2V2 = 2 (2 a2) (O 0) a 2



43

Example 1: Violation of requirement a)

1 2
u =1 u =1

=1 V2 = 1

1 2 3 4 5 6 7 8 9 10

1 0 0 2 0 0 1 0 0 .

1 1 1 2 1 1 2 2 2
u a1 a2 al3 a4 u a2 

There we insert a2 in the middle of the first flag to indicate that

we are not transmitting the second flag. We transmit the second flag

in x8 and x9 . We have thus used both the flag and the insertion.

The correct way of proceeding is illustrated below.

Example 2:

1 2 3 4 5 6 7 8 0
X X X X X X X X X

1 0 0 0 0 0 0 1

1 1 1 2 1 1 1 2
1 2 2 2 3 4 

We realize that if x4 is 0 , x3 and x4 will be interpreted as

the second flag. We then repeat a2 in x5 and continue the trans-

mission of the first flag, which will be decoded after the second.

1 2
If we had to transmit u =1 u 1

1 2
v =0 v 1

the output would be
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Example 3:

1 2 3 4
X X X x

1 1 0 0

1 2 2 2
u u a1 a2

We see that here the second flag appears after u2 . To insure that

the encoder does not repeat the second flag after u2 in example 2

we introduce in the algorithm below the indicator variable wt which

is initially set to 1 , then to 0 as soon as an insertion or a flag

corresponding to vt are transmitted. Once wt = 0 no more flag

or insertion corresponding to vt can be sent.

Let us look now at the peculiarities introduced by requirement

b). Here we use d=3 and

l 1 1 1
1 = 3 (al a2 a3) = (0 , O , 2) =0

2 2 2V2 = 2 (1 2) = ( , 0) = 2

Example 4:

1 2 3 4
u =1 u 0 u =0 u =1

1 2
V =0 v =0

x1 x2 3 4 5

1 0 0 1
1 2 3 4

U U U U

No insertion is needed, neither for v nor for v 2
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Example 5:

1 2 3 4
u =1 u =0 u =0 u =2

1 2v =0 v 0

1 2 3 4 5 6
x x x x x x

1 0 0 2 0 2

U1 u2 u3 3 2 1 U4

One sees that the change of value of u4 from 1 to 2 provokes the

appearance of two insertions. The point is that the decision to

insert 2 depends on the value of the next symbol, which itself

depends on the value of the next symbol!

The algorithm given below solves this problem by establishing

a first in first out stack of row vectors s =(sl,s2,s3) . Normal

flag or data characters occupy only the first element of the vectorAn

inserted character associated with vt is represented by the

triple (?, V t at )
t

In the previous two examples, the stack would be

22
s(l) = (?,S '"2) = (?,2,0)

s(2) = (?,E1 ,a3) = (?,0,2)

s(3) = (u4,-,-) = (1,-,-) Example 4

= (2,-,-) Example 5
normal

As soon as a / character enters the stack, the subroutine

"cleanstack" is called. Starting from the end it compares s(j)

with s(j-l) . If s1(j-l) = ? and (sl(j) = s2(j-1) or s3(j-1 ,

sl(j-l) is replaced by s2 (j-1) ; if sl(j-l) = ? but
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sl(j) # (s2(j-1) and s3(j-1l)) , s(j-l) is deleted and the stack

collapsed.

Thus in Example 4 the following transformation occurs

(?,2,0) (?,2,0) el,-,-)

(?,0,2) + (1,-,-) +

(1,-,-)

whereas in Example 5

(?,2,0) (?,2,0) (2,-,-)

C?,0,2) + ,-,-) + o,-,-)

(2,-,-) C2,-,-) (2,-,-)

The stack is then emptied to yield part of the output sequence.

Before giving the algorithms we make precise 2 syntactic points:

-) (0',.., t means the empty set if i > j

-) In a "do loop" of the form "For i := a step b until c do.."

no statement is executed if (sign b) a > (sign b) c .

Most of the notation has been explained above or is self

evident, except t(l,...0 ) . It represents the output of the

decoder. It is mimicked by the encoder. At every instant before

t" + t" + 1 , these sequences are equal in both encoder and receiver.

This, together with the fact that il,.f. t -1 is equal to

u ,...,ut 1 guarantees unique decodability of the (ut) sequence.

Unique decodability of the (vt) sequence is guaranteed because the

t tflag to be used after u appears if and only if v = 1
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Coding Algorithm

icl Set the binary variables w , i > 0 , to 1

v and w to 0

c2 Set the integer variables t , t' , t", stacksize to 0

c3 For j := 0 Step 1 until t' - 1 do

c4 begin

cS if O(t'-j+l, ) = ptt j and wtj = 1

c6 then

c7 begin

c8 wt'-j'= 0

c9 stacksize := stacksize + 1

clO if vt -j = 0

cll then s(stacksize) := (?,t , jt jj+l

c12 else

c13 begin

c14 sl(stacksize):= aj+1

c15 t' := t' - j

c16 cleanstack

c17 end

c18 end

c19 else continue

c20 end
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c21 t' := t' + 1

c22 if v =1 and w 1

c23 then a t

c24 else

c25 begin

c26 t := t + 1

^t I t
c27 u := u

c28 end

c29 stacksize := stacksize + 1

^t'
c30 sl (stacksize) = u

c31 cleanstack

c32 go to c3
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Clean Stack

cs! For i := stacksize Step -1 until 2 do

cs2 begin

cs3 if sl(i-l) = ?

cs4 then

cs5 begin

cs6 if sl(i) = s2 (i-1) or sl1 i) = s3ji-)

cs7 then sl(i-l) := s2(i-1)

cs8 -else

cs9 begin

cslO stacksize := stacksize - 1

csll for j := i-l Step 1 until stacksize do

s(j) = s(j+l)

cs13 end

cs14 end

else continue

cs16 end
t"+i

cs17 For i := 1 until stacksize do x = sl(i)

cs18 t" := t" + stacksize

cs19 stacksize := 0
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Decoding Algorithm

dl Set the binary variables v v to 0

w , , ... to 1

d2 Set the integer variables t' , t" to 0

d3 t'" := t" + 1

d4 For j := 0 Step 1 until t'-l do

d5 begin

d6 i (t'-+lu ) = and w = 1

d7 then

d8 begin

d9 wt- j = 0

dlO if xt =cati-
j+1

dll then

d12 begin

d13 v-j

d14 t' := t' - j

di5 go to d3

d16 end

d17 else

d18 begin

t" t'-jd19 if x =

d20 then t" ;= t" + 1

d21 else continue

d22 end

d23 end
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d24 else continue

d25 end

d26 t' := t' + I

d27 ui := x

d28 go to d3

A program implementing these algorithms has been written in

Basic. Data and flag compositions were randomly chosen in a ternary

alphabet, for t=l to 100 . The output of the coding program was

fed into the decoding program which decoded it correctly.

As final remark, we note that there is no reason for all

flags to be known in advance. All that is needed is that if the flag

t t+i
corresponding to v has length vt , the flag corresponding to v

must either be known at time t , or it must be known that its length

is greater than vt-i , this for i=l,2,...,vt-1 . This guarantees

that the transmission of the flag corresponding to vt will not be

interrupted because of the flag used to signal vt .
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A. Method

We will investigate in this section the performances of the pre-

vious algorithm, and see how they can be optimized; more precisely, we

will study how to minimize the total average number of symbols used (flag

and inserted characters) because of the possible presence of a flag at

time t . We denote by v the length of this flag, and by p the

probability that it will be used.

We have immediately that the average number of symbols used is

equal to pv + (l-p) Pr (insertion is needed).

We note that v > 1 whereas Pr (insertion is needed) < 1 , so

that a flag should never be used to indicate an event of probability

greater than .5 ; rather a flag should be used to indicate the

complement of this event. From now on we will assume p < .5

In general, Pr (insertion is needed) is a complicated function

of the data process statistics, of the flag composition and of the

compositions and probabilities of insertion of the neighboring flags.

To avoid this difficulty we use a trick dear to information theorists,

i.e. we will average Pr (insertion is needed) over the ensemble of flag

compositions and insertion symbols. If the flag is not used after time

t , an insertion due to this flag will occur if the symbols (xt" +l,

t"+v-l t"+vx , x ) are equal to the flag or the antiflag. If their

compositions are chosen randomly, the probability of an insertion is

2 d-V . We will therefore minimize on v the function f(p,v) defined

by f(p,v) := pv + (l-p) 2d-v . We will denote by vO(p) a value of

v that minimizes f(p,v)

We stress that the value of f(p,v) is an ensemble average over
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particular flag will perform as well. However, we are sure that for

every u and v processes there will be at least a flag composition that

will achieve this or a better result. Consequently, we do not claim

that v (p) is the length of the flag which causes the use of the mini-

mum average number of symbols, but only that there is a flag of length

v (p) which will use no more than an average of f(p,v (p)) symbols

for each given u and v process.

B. Optimization and Performance Analysis

If we allow v to take real values, one checks that for p

fixed f(p,v) is convex in v , and takes its minimum value

p(log ed) + log (2 d) d e) at v = log d -p + log( 2 loge d).

Of course, v (p) must be integer, and by convexity of f(p,v) one sees

that it must be equal to fv'(p)1 or Lv'(p)+lJ where v'(p) is such that

f(p,v'(p)) = f(p,v'(p) + 1)

This equation yields

v'(p) = logd 1__ + logd d-)

so
0o r p lo d 2(d-l) 1v (p) = °gd + l d

or Ilog d 1-- + logd 2(d-l)J

Moreover, for every p the value of f(p,v°(p)) (which is a piecewise

linear function of p (see fig.3.1J) will be lowerbounded by the minimum

value on v of f(p,v) and upperbounded by f(p,v'(p)) thus

p(logd logd d(2 log d) + d e) < f(p,v(p))
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l<p~log 1T2( d_ 1 d_~)
log d P+ log d d2( d

Specializing these results to the case d=2 , we see that vo(p)

= rlog2 LL-I or Llog2 1-p + 1J (figure 32) or equivalently ° (p)

is such that

2v
0(P) + 1 2 v(p)- + 1

and the value of f(p,v°(p)) is lowerbounded by p(log2 LP + 1.91393)

and upperbounded by p(log2 - + 2)

It is interesting to compare the average number of bits (counting

a symbol as log 2 d bits) used by this scheme to the binary entropy

H(p): = -p log2 p - (l-p) log2 (l-p) for the following reason: in

general H(p) is not a lowerbound to the average number of bits used

when a particular flag is utilized, because we are jointly encoding the

data and the fact that an event occurs. However if the entropy of the

data is log 2 d bits per symbol, and if

the only event to be signalled is the one we are considering at

time t , H(p) is a lowerbound to the average number of bits used by

any scheme to indicate the possible occurrence of the event. Because

f(p,v) does not depend on any hypothesis about the data on the other

flags, H(p) is a lowerbound to (log2 d) f(p,v)

From this remark and the bounds developed earlier, one finds

immediately:

Max(O, p(log2(2 loge d) + (log2 e)) + log2 (l-p))

< (log2 d) f(P, v°(p)) - H(p)
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2dl d
p(log2 (e ) + (log 2 d)(d-l

The last inequality uses the fact that log 2 (l-p) < -p log 2 e

In particular, for d=2 we obtain

Max(O, p(1l.91393) + log2 (l-p)) < f(p, v (p)) - Hi(p)

< 2p + log2 (l-p)

< .55730 p

For small p , for which log2 (l-p) - -p log 2 e ,

.47123 p < f(p, v°(p)) - H(p) < .55730 p . (1)

As p goes to 0 , f(p, vO(p)) H(p) oscillates between .47123 and
p

.55730 . These facts will be used later.

For d=2 , then, flag schemes are quite efficient, but they dete-

riorate as d increases: the lowerbound on f(p,v) - H(p) increases

like log 2 (loge d) while the upperbound increases like log 2 d

C. Sensitivity Analysis

We will investigate here the sensitivity of the performance of the

flag schemes. Two issues are at hand: First, how does a wrong choice

of v degrade f(p,v) for a given p ? Second, if p is imperfectly

known, how does an error in the estimate of p affect the choice of the

flag length? We will treat these problems for d=2 only.

The first point is easy to treat. If one uses a flag of length

v (p) + k in place of v (p) the penalty is equal to f(p, v (p) + k)

- f(p, v°(p))

= (k + 2- (v° (p)-l) _ 2-(
°0(p)+k-l)) (p1 

2v (p)+k + 1

k>O
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(2-(° c(p)+k-l) 2-(
(p )-l) _ k)( _ p);k < 0

P2 v p)+k+l

These are saw-toothed functions of p , and are plotted in figure 3,3

for k=l and k=-l . These expressions are exact but do not give much

insight, so we will derive simple upperbounds. We recall that f(p,v)

is a convex function of V , and that v'(p) < v°(p) < v,(p) + 1

Thus, by convexity, for k > 0

fCp,v° (p) + k) < k f(P,v'(p)+l+k)
- k+v'(p)+l-v (p)

+ v (p)+l-vO (p) f(p,v (p))k+' I(p) +1-o (p)

and

f(p,-v'(p)+l) < v'(P)+l-v°(p) f(p,v'(p)+l+k)

k+v'(p)+l-v °(p)

k+ .. f (p,v°(p))
(k+v' (p)+l-v C(p)

Adding these inequalities, one obtains

f(p,v°(p) + k) + f(p,v'(p) + 1) < f(p,v '(p) + 1 + k)

+ f(p,v (p))

or

f(p,vO(p) + k) - f(p,vO(p)) < f(p,v'(p) + 1 + k)

-f(p,v' (p) + 1)

Computing the right hand side member, one gets

f(p,vO(p) + k) - f(p,vO(p)) < (k + 2-k -1) p

Similarly, for k < 0 , one has

f(p,v° (p)+k) < -k f(p,v'(k)+k) + v (p)-v'(p)
- o (p)-v' (p)-k v0 (p)-v'(p)-k

f (p ,vo (p))
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f(v'p)) < V O(p)-v' (p) ( k)-k

V0 (p)-' (p)-k v (p)-v' (p)-k

f(p,vO (p))

Adding these inequalities, one obtains

f(p,v°(p)+k) + fCp,v'(p)) < f(p,v'(k)+k) + f(p,v0(p))

and thus

f(p,v (p)+k) - f(p,vO(p)) < (k +21k- l )- 2) p

These upperbounds are plotted in figure 3.3 for k=l and k=-l . The

penalty is always less then .Sp if one uses flag length too large

by one symbol, whereas it is less than p if the length is too small

by one symbol. The same pattern appears for larger Iki , the penalty

increasing roughly like kp for k > 0 , but like 2 p for k < 0 .

It will be important later to have an upperbound on f(p,2) - H(p)

for p between 1/3 and 1/2 , i.e. in the region where vo(p) = 1,

because flags of length 1 have some awkward properties, and we will

wish to use flags of length 2 instead. We want an upperbound of the

form ap > f(p,2) - H(p) . Because this function is convex, the tightest

upperbound of this form will equal it at p = 1/3 or p = 1/2 , so

a = Max (3 (f(1/3,2) - H(1/3)), 2 (f(1/2,2) - H(1/2))

.5 ( 2)

The second point, the sensitivity of the optimal length to an

error in the estimate of p is more difficult to assess, due to the

discontinuities in v (p) (figure 3.2). A good rule of thumb is

that when p is overestimated or underestimated by about a factor of 2,

the resulting flag length is too small or too large by one symbol.
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4. Adaptive Flag Stategies to Encode Batch and Message Lengths

We consider the following problem: a batch of messages must be

transmitted on a noiseless binary link. We denote by m the random

number of messages in a batch, and by bl,b 2,... the lengths (number

of bits) of these messages. Being motivated by the case whee a batch

would be the set of messages in a busy period of a G/G/1 queue, we

model the bi 's as independent identically distributed random

variables, but we let the probability of having pm messages in a

batch depend on the lengths of these messages as follows.

Let (Q,S,P) be a probability space.

blb 2jb be a sequence of measurable functions b.:Q++tN

m be a measurable function m:Q+IN++ {1,2. .

B. be the smallest a - algebra making bi

measurable

We require the bi 's and m to have the following properties:

the bi '5 are independent and have a probability

m
mass function B

E(I) (w)[ = E( (w))
m(w=)<i m(w)<i

bl and m have finite means

In words, the second property says that the knowledge of bi

does not give any information as to whether or not m is smaller

than i

Our problem is that not only must we transmit the messages, but

we must also indicate the number of messages in the batch and their

lengths. We assume the starting time of the transmission to be known
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to the receiver. We will examine different schemes to furnish this

information, and we will evaluate their performances. Before doing this,

we characterize precisely what we mean, and compute the entropy of the

information we are sending.

We want to specify to the receiver which event from the countable

set A of disjoint events, A: ={{w: m(w) = k, bl(o) = Xl,...,bk () =

Xk}: k, Xl,...,Xk N+ +} , occurred. Note that UA = Q . To obtain ak k

simple expression when computing the entropy of A , it is handy to

define the functions Rk, kdN++ , by Rk: N )k + R .

R( ) (w: m(w)=k, bl (c)=Xl,...bk (w)=k})
Rk(Xl,' ',xk) = k

i=l 1

kif m
if ]I Bm(xi) > 0

i=l

13 otherwise

In words, Rk(bl,... ,bk) is the conditional probability that the batch

contains k messages, given the lengths of the first k messages.

We often denote Rk(bl,...,bk) by Rk(b)

It is now easy to write the entropy of A as

m(W)
H(A) = E(-log2(Rmm() (b(w)) Tin B (bi(w))))

i=l

m(ow)
= E(- Z log2 Bm(bi(w)) - log2 Rm()(b(~)))

i=l
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= E(m) H(B) - E(log2 Rm( )(b(w)))

by the theorem proved in Appendix A, which holds because of the

conditions imposed earlier on the b i 's and m. H(B) denotes

c0

Bm (i) log2 Bm(i)
i=l

This can be rewritten

H(A) = E(m) H(B) - E Z Ri.(b(w)) log2 Ri(b(w))
i=l1

and can be put under the form

X0 R. (b(w))

H(A) - E(m) H(B) + E i Rc (b(w))H ( 3)

with RC'= 1

i
R.c = 1 - Z R. i > 1

1 1 -
j=l1

This form will be useful later.

We will refer to the second term in (3) as the conditional

entropy of the number of messages given their lengths. It is smaller

than the entropy of the number of messages which itself is bounded by

E(m) H(l/E(m)), [Gallager, 1968, pp. 25 and 507]. This upperbound

is achieved if m is geometrically distributed and independent of the

message lengths. Because E(m) H(1/E(m)) is approximately equal to

log2(eE(m)) the second term in (3) is generally smaller than the

first.

We go on to the analysis of some coding schemes to transmit the

information in A . From the point of view of minimizing the expected
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codeword length, the optimum would be to jointly encode the number and

lengths of the messages. This method uses at most one more bit than

the theoretical minimum, but is generally infeasible, and can lead to

large delays because all messages must be known to the transmitter

before the appropriate codeword can be found.

It would be easier to encode separately the number of messages

and their lengths, in such a way that a message could be transmitted

and decoded correctly before all messages in the batch have been pro-

cessed by the transmitter. We will examine three strategies in this

class, using flags.

The first two strategies have in common that they transmit

sequentially each message together with a codeword indicating its

length. If the codewords are well chosen, this will require an average

number of bits between E(m) H(B) and E(m)(H(B)+) .

To indicate the end of a batch, the first strategy transmits a

flag of length v after the last message, and makesappropriate

insertions in the other messages. By the usual random coding

argument, this will use an average of v+(E(m)-l)2 (V)= E(m)( , +

(1 - .(m)) 2 (-) bits, so that, as we have seen earlier, the optimum

v = v0° ( /E(m)) if E(m) > 2 . If E(m) < 2 , the flag should be used

after a message if it is not the last in the batch. We do not consider

this case any further. From previous studies this choice of flag

length will use at most an average of log2 (E(m)-l) + 2 bits, which

lies between E(m) H(l/E(m)) and E(m) H(l/E(m)) + .5S730. Thus this

strategy is efficient if the conditional entropy of the number of
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messages given their lengths is close to its maximum.

The second strategy, using variable flag lengths, is efficient

under all circumstances. The idea is that at the end of the trans-

th
mission of the i message, both transmitter and receiver know

blb 2 .. ,b i , and can compute R (b) and Rc(b) . The cost of using

a flag of length v to indicate that message i is the last one in

the batch, given there are more than i-l messages in the batch, is

Ri (b) Rc(b)
-v + - 2 2 . Thus V should be a function of

Rc c
R- (b) R i-(b)

b Ri(b)]
bl jb2..,bi: V =V c if R.i(b) < Ri l(b) , and the

1 2Ri_ c (b)

strategy should be changed as indicated earlier if Ri (b) > Rc_ (b)
- i-·

Given b this scheme uses less than

Ri(b) R. (b)
H i- -+ - .55730 bitsRc

Ri (b) Ri (b)

We will incur this cost if the number of messages in the batch is

greater than i-l , so the average total number of bits used is less

than
o0 R.(b)

E (Ri (b) 1 R i(b) .55730)
I{RC (b)]

X00 R.(b)
=E E R (b) H + .55730

iSl H(R (b)
(by comparison with (.3))

which/i As very efficient. Note that if R (b) / Rc (b) << 1 for all i,

we have from formula (1) that the average number of bits used is

larger than
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00 R.(b

E il R (b) H - + .47123 , approximately.
i=l --

The only problem with this strategy is that in general it does

not meet the requirement of the general flag coding algorithm of

Section 2 that-: if a flag of length v may be inserted at time t ,

flagsstarting at time t+i must either be of length greater than

v-i , or be known to both transmitter and receiver at time t . There

are two remedies to this: one is to assume that the message lengths

are larger than the longest flag, which often makes sense; the other

is to use a special class of flags developped in the next section.

They do not have this requirement, but two new problems arise then.

The averaging on the flag composition to get f(p,v) does not work any-

more, and this special class does not contain flags of length one.

These difficulties can be overcome: on one hand, if for all j all

messages of length j are equally likely, f(p,v) will still be an

upperbound on the average number of bits used by a flag of length v

from this class; on the other hand we have shown in (2 ) that the

upperbound f(p,v(p)) - H(p) < p .55730 still holds if one uses fla'g

of length 2 instead of flags of unit length, thus the penalty for not

using the optimal length is not unbearable.

To conclude the analysis of this variable flag length algorithm,

we note that it can also be used to encode the length of a message. It

is sufficient to replace the word message by the word symbol in the

previous description, and to use flags from the special class mentioned

above. If for all j all messages of length j are equally likely,

the conclusion that the average number of bits used will be less than
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the entropy of the message length + .55730 still holds.

The third strategy works only in the case where the messages

have a variable length. It is based on the observation by [Gallager,

1978] that any Huffman code can be modified so that a 2 symbol prefix,

say 00 , is not used, and so that the resulting redundancy is between

.41503 and 1. The strategy is as follows: transmit sequentially each

message together with a modified Huffman codeword indicating its length.

After the last message in the batch, send 00. The number of bits used

by this strategy lies between E(m) (H(B) + .41503)+ 2 and E(m) (H(B)

+ 1) + 2 . This strategy is indeed a flag strategy, so it must be less

efficient then the previous optimal algorithm, but it is extremely easy

to implement.
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5. Desirable Flag.Compositiom

As we have noted earlier, the algorithm given in Section 2 suffers

from the fact that insertions and flags may appear in the middle of

other flags, and consequently that the v 's are not necessarily

t
received in order, and that the flag corresponding to v may have to

be specified before time t . This complicates the algorithm and removes

some freedom in using adaptive flags.

The problem of flags appearing in flags could be solved at the

expense of making more insertions, but this can lead to more than one

insertion per possible flag use and the analysis of Section 3 breaks

down. We will not pursue this approach.

Instead we look at this in the context of Sections 3 and 4, where

the important parameter from the user's point of view is the flag'length,

not the flag composition. We assume that we have a class of flags

containing at most one flag of each length and we use only flags from

this class in the following algorithms. The main difference between

these algorithms and those of Section 2 is that flags are inserted at

once (c'19, c'20, c'21) whereas in Section 2 a check was made between

flag symbols to see if insertions were needed. Thus here no flags or

insertions will appear in flags. Of course these algorithms will not

work with all classes; we say that a class is allowable if the composi-

tio.ns of the flags in the class are such that the decoding algorithm

yields the correct output for all associations of flags in the class

t
with v
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Coding Algorithm

c¢l Set the integer variables t and t" to 0

c'2 Set the integer variable i to -1

c'3 For j := 0 Step 1 until i do

c'4 begin

c'S if (u t- j +l ,ut ) pt-j t+l t-j

t-j

c'6 then

c'7 begin

c'8 t" := t" + 1

c'9 xt-j

c'10 i j - 1

c'll end

c'12 else continue

c'13 end

c'14 t := t.+ 1

c'15 t" := t" + 1

t" t
c'16 x := u

c'17 i := i + 1

t
c'18 if v = 1

c'19 then

c'20 begin

c'21 for j=l Step 1 until i do

c'22 begin
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c'23 if (u t - j +l .u t). pt-j and a = t-j

t-j
or a

vt-j
c'24 then

c'25 begin

c'26 t" := t" + 1

c'27 xt = t-j

c'28 end

c'29 else continue

c'30 end

c'31 for j=l Step 1 until vt do

c'32 begin

c'33 t" := t" + 1

tit t
c'34 x :a= .

c'35 i := -1

c'36 end

c'37 end

c'38 else continue

c'39 go to c'3
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Decoding Algorithm

d'l Set the integer variables t and t" to 0

d'2 Set the integer variable i to -i

d'3 Set the binary variables v , i > 1 to 0

d'4 t" := t" + 1

d'5 For j := 0 Step 1 until i do

d'6 begin

d'7 if (Ut-j+l t pt-j

then

d'9 begin

d'10 t" t-jif x 

d'll then

d'12 begin

d'13 i := j-l

d'14 t" := t"+l

d i5 end

d'16 else

d'17 begin

d'18 if x tt =t-i
vt-j

d'19 then

d'20 begin

d'21 ,t-j

d'22 t : t-j

d'23 i := -1

d'24 t" := t"+l

d'25 end



d'26 else continue

d'27 end

d'28 end

d'29 else continue

d'30 t t+l

d'31 0t VT'

d'32 i := i+l

d'33 go to d'4
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Note that these algorithms are simpler than those given in Section

2, and the flags are inserted and received in order. This explains the

role of i : if the last flag or insertion were sent at time t-i , it

is useless to search for a root in lines c'4, c'15 and d'6 past t-i+l.

Thus the presence of i limits the scope of the search, and makes sure

that at most one insertion occurs for each flag.

We will now look at conditions for classes to be allowable. With-

out precautions, problems can arise in two cases because part of a flag

may be misinterpreted as another flag or an insertion

Case a)

.t . I . ii , i .. H i

if t t i t+i t+i t+i
i+l 1.i+v ' i or S ) , i > 1 , i+vt+i <- t

t+i
the receiver may detect that a flag has been used at time t+i , or t

when the flag is used at time t . The same problem occurs in

Case b)

I..P ____

Ot3E

t t t-i t-i t-i
(ae I. ..Aet -i) = (a +i .. ,a or - , i > , 1 < i-i < 
f t-a1 l+i' vt t-i 

If the flag compositions are such that these cases never arise, all flags
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and insertions will be correctly recognized, and thus also the data. So

a class is allowable if and only if cases a) and b) cannot occur. From

this we proceed to prove three results:

1) We give explicit conditions for a class containing only one flag

to be allowable, and we determine the number of such classes.

2) We show that no class containing a flag of length 1 and another

flag is allowable if d=2 , but many exist if d > 2

3) We prove that if d=2 there are only two kinds of allowable

classes containing a flag of length 2

To derive the first result, we note that if only one flag, (say

(al ... aj) with 8 being the possible insertion) is allowed in a

class, situation a) never occurs while situation b) will not occur for

j < 2 or if the following j-2 inequalities are verified

Ca I a2 ,' aj_1) # (a2 a j or )

(a , a2,,.j '-2) (a3,.., aj or a)

(al a2) (ajl, aj or 1) (4)

th
The it condition may be interpreted as "the flag does not have

period i" , because if it is not true, a = al+i

a2 = a2+i

aJ-i = aj or 8

A flag satisfying all these conditions will be called strong; another

flag will be called weak. To check if a flag is strong, it is enough

to check the last L2-1- conditions, for if a flag has period i ,to check the last2



75

1 < i < [ - 1, it has also period mi for some mi C {[J], ... 

j-3, j-2} .

It is of academic interest to know the number of strong flags of

length: j , We will compute how many among the dji 1 possible roots

satisfy (4) once a. and B have been chosen.

For pedagogical reasons we start by determining the number of

roots such that

(al ' ... ' ai) a (aj-l ' '' , aj 1) , i=1,2,...j-2 (5)

These roots will be called strong and their number denoted by dJ-ly(j-l);

the other roots will be called weak. If a root is weak, let i be the

least i for which (5) does not hold. Then as we have seen, i° < .
Then (i ) = j-i ) and is a strong root of a flag ofo o j -1-2i

length i +l . For every such root there will be d distinct
0

weak roots of length j-l (ai +l' " ' j-l-i can take all possible
0 0

values). Thus the number of weak roots of length j-l is equal to

2 j-l-2i
dj l (1 - Y(j-l)) = Z di y(i)d

i=l
or

y (k) = 1 - Z C6
i=l di

k YM
We see that y(2k) = y(2k+l) = 1 - Z ¥(i) and that y is a

i=l d

decreasing non negative function of k , thus it has a limit, y(c) say,

as k increases. We will bound y(c) , and show that it is positive.

From (6) one finds

y(4k+2) = 2 - (1 + ) y(2i)
i=O d
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so ¥ (o) = y(4k+2) - (1 + ) d2i
i=k+l d

and because y is a decreasing function

1 1
y(C) < y(4k+2) - (1 + -) y(¥) . 2i

i=k+l d

> "t " y(2k+2) "

Thus

y(4k+2) (d-l) 2 k+l y(2k+2) < y(co) < y(4k+2)

1 (7)
2k--1 y(4k+2)

(d-i) d +1

In particular, for k=O , using the fact that y(2) = 1 -

1 1 1 1
0 < d 2 < -(O) < 1 - ¥- 2 21

d d d2-d+l '

These bounds are extremely tight for d >> 1 .

We are grateful to Prof. Massey for pointing out that [Nielsen,

1973] obtained by a similar method but in a different context the

same expression for y(i) , and the same lowerbound for y(X) . A

strong root is called there bifix-free. Tables of numerical values

are also given; in particular for d=2 ,

Y(O) = 1

y( 2 ) = .5

Y(4 ) = .375

y(6) = .3125

y(8) = .2881

y(C) = .2678 whereas from (7) with k=2

.2675 < y(Xo) < .2690
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Now that we have seen the mechanics of the proof, we attack the

problem of finding the number of strong flags of length j , terminating

with a given aj and using a given 8 as possible insertion. We

define this number as dJ lS(j)

If a flag is weak, there is a smallest i {2,3,.. . , + j-l }

such that

(a1 ...,ai) = (j +l-i,... j or )

On the other hand from every strong flag of length i one can build

2 dj- 2i distinct weak flags of length j > 2i, say (a,... ,a')
-- '3

by choosing a, = al,",'la! = ai. or ,aL = a..., a! = a.i '
1 - = i ' ''' j i '

and choosing ai+l""'aj-i arbitrarily. From every strong flag of

length i such that al = ai , one can obtain the weak flag

(al'. '' ai-'i'a 2 ai) of length 2i-1 . Noting, by induction

on i , that the fraction of strong flags of length i that have

al = ai is 2/d , we can write in general

1+L-2 rj
dj- (1 - 6(j)) = 2 dj - 2i di-16(i)

i=2
thus 1 .

6(j) = 1 - 2 Z d 6(i)
i=2

As was the case for y , 6 is a non increasing function of i ;

6(2j) = 6(2j-1) = 1 + - 2 Z d 6(i) where 6(1) := 1
i=l

We can thus write

2 1 (2 i+l)
6(4k+) = 1 + - 2(1 + d) . d 6(2i+l)

i=0
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and

6(X) := lim 6(i) = 6(4k+3) - 2(1+d) Z d 2i+l)6(2j+3) Wk> 0
i+on i=k+l

As before this permits bounding 6(X) :

_ 1
6(4k+3) - 2k+2 6(2k+3) < 6 6(4k+3) - 2k+ 2

d (d-l)/2 1 + d (d-1)/2

6(4k+3) k> 0

Using the fact that 6(3) = 1 - 2/d2 :

2 1 2 1
(1 _ 2-)(1_ 1 ) < 6(X) < (1 - ))(1 d )

d d (d-l)/2 d 1 d (d-)/2

Of course for the binary case 6(i+l) = y(i)

This concludes the analysis of classess containing only one flag.

To show the second result mentioned above, note that situation a)

cannot be avoided if d=2 and if the flag used at time t has length

j > 1 while the flag used at time t+l has unit length. On the

other hand, if d=3 and the flags are 0, 02, 022 etc. with "1"

being eventually inserted, situations a) and b) never occur.

We prove now the third result: suppose that d=2 and that a

class contains a flag of length 2 and other flags. If the root of

the flag of length 2 is "0" , situation a) is avoided only by

having all symbols in the other flags, except the first and the last,

be equal to "1" . Because the flags must be strong, the first symbol

must be different from the penultimate. Thus we conclude that the

root of a flag must have the form (0,1,1,...,1) . If the root of

the flag of length 2 is "1"-, the same conclusion arises, with all

"0"s replaced by "1" , and conversely. In both cases, the last
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symbol can be chosen freely independently in all flags. One checks

that these classes are allowable.
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Chapter 4

Encoding Message - Starting Times

1. Introduction

We consider in this chapter a seemingly trivial problem, which

was mentioned briefly in Section 2 of Chapter2 . We will not be able

to solve it completely, but we will gain some insight into the peculia-

rities of making information theoretic and coding theoretic statements

in a queuing environment.

The model is the following: an asynchronous memoryless station-

ary source emits messages which are stored in an infinite buffer and

transmitted over a noiseless synchronous binary link with a capacity of

1 bit per unit of time. We assume that the interemission times and

message lengths are mutually independent random variables and that each

message contains a "codeword" indicating its length. By this we mean

that if the receiver knows when a message starts it will be able to

detect the end of the message from the information provided by the mes-

sage itself. This can be done by prefixing a message with a codeword

indicating its length, or by using flags as explained in Chapter 3 , or

simply by using messages that are codewords from a prefix condition code,

as in Chapter 2 . We denote an interarrival (service) time by a (b)

and by A (B) its probability distribution function, and assume

Ea > Eb > 0
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2. Discussion of the Problem

Because the arrivals and lengths are random, it may happen that

the buffer becomes empty. The line being synchronous, something must

still be sent out, and the receiver must be able to distinguish these

idle bits from the data bits. From another point of view, this is equi-

valent to recognizing when the line becomes busy, i.e. detecting the

message starting times. There are many possible strategies to do this,

the most obvious one being to transmit "0" 's when the line is idle, and

prefix every message with a "1" . Naturally one asks which is the

"best" strategy. We should first agree on the meaning of "best."

If we define as protocol bit a bit which is not a message bit (in

the previous example, the idle bits "0"C1 and the prefix bits "1" would be

the protocol bits), it seems reasonable to find the strategy which mini-

mizes the average number of protocol bits per message, i.e. the limit

(if it exists and is constant with probability one) as the time goes to

infinity of the number of protocol bits sent to the number of message

arrivals. Unfortunately this criterion is most useless, for all strate-

gies resulting in a stable system have the same average number of proto-

col bits per message, and this number is equal to Ea - Eb .This is so

because if the system is stable, the law of large numbers says that the

average total number of bits per message is Ea , and Eb of these are

message bits.

This result is thus trivial, although surprising at first sight.

Its information theoretic meaning is that although the amount of infor-

mation carried during an idle period may be small, it cannot be encoded
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efficiently. To give more sense to the concept of protocol bit, we can

do the following: suppose that we have at our disposition an infinite

reserve of "low priority" bits (chis could represent some kind of service

information) that we can transmit when we wish. Thus there is no reason

for the line to be idle, but we may still need protocol bits (defined as

bits that are not data nor low priority bits) to differentiate between

the two other kinds of bits. Note that, as before, for a stable system,

the expected number of protocol bits per message plus the expected

number of low priority bits per message equals Ea - Eb . We can now ask

the question: what is the infimum of the average number of protocol bits

per message? The answer is 0 , and this can be approached by the follow-

ing strategy: send 5 (meant to be large) low priority bits, then a

codeword indicating the number ,n of message arrivals since the last

such codeword has been sent, then the n messages. Repeat the process.

The average number of protbcol bits per message will be equal to the

expected codeword length divided by En. If the codewords are well

chosen, the expected codeword length will be smaller than (En+l)H(1/(En+l))+l
the

[Gallager, 1968, p. 507], thus/average number of protocol bits per

message is smaller than (l+l/En)H(lAEn+l))+l/En. Clearly, as 5 goes to c so

does En , thus the average number of protocol bits per message goes to

zero. The drawback of this strategy is that the average message waiting

time goes to infinity as ' increases.

A meaningful problem would thus be to find a coding scheme mini-

mizing the average message waiting time for a given average

number of protocol bits per message. We are unable to solve this pro-
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blem, or even to lowerbound the expected waiting time. We will be

content to study the following class of flag strategies:

Ye No
Is the buffer empty?

Send a message
+ . Send a flag

possible insertio1

Send some Send some

low priority bits low priority bits

Ideally we should let this scheme be adaptive, i.e. we should

allow flag and low priority bit sequence lengths to be functions of the

times of reception and lengths of the previous messages, flags and low

priority bit sequences. This is known to the receiver. In light of the

results of Chapter 3 and of the fact that this scheme sends flags when

the buffer is empty, which has a favorable influence on the message
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waiting time, one expects that the best scheme from this class must be

nearly optimal. Unfortunately this is still too complex to analyze, and

here we restrict ourself to the following scheme:

Yes No 
Is the buffer empty? N

.[ \Send a message 
(let b be its lngt )

possible insertion

Send So(b)

low priority bits

Send flag

of length v2 Yes
Is the buffer empty

Send 2 Send flag

low priority bits of length vl

Send l1

low priority bits

We have thus removed much of the variability of the flag and low

priority bit sequence lengths, allowing only the length Co(b) of the low
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priority bit sequence immediately following a message to be a function
length

of that message/and allowing the first flag and low priority bit sequence

in an idle period to be differentrcmnthe others in the idle period. We

assume that with probability one a message is longer than Max (vl,v 2) ;

otherwise some messages cannot be considered as being received when they

are fully transmitted!

To be able to obtain analytical results we will also model the

arrival process as Poisson. The analysis will proceed in steps: in

Section 3 we will study a general queueing model whose parameters will

be identified in Section 4 so that it represents the flag strategy we

want to examine. The main results will be given in Section 5, while the

optimal function go(b) will be looked at in Section 6. We will give

numerical results in Section 7.
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3. M/G/1 Queues with Overhead

A. Introduction

We analyze here the following problem: arrivals in a queue follow

a Poisson process with rate X: = 1/Ea and the service times have

distribution B' . The first customer in a busy period suffers an extra

delay with distribution F1 , while the services of the other customers

are increased by a random amount with distribution F2 . We assume that

the interarrival times, service times and extra delays are all indepen-

dent. We will study the stationary distribution of the number of

customers in the queue, the mean waiting time, and the joint distribution

of the busy period length and of the number of customers in the busy

period.

B. Stationary Distribution of the Number of Customers in the Queue

Let xn be the number of customers in the queue right after the

nth customer has left the system and let Tn be the probability mass

function of xn . We have the following recursive relation between the

th
X 's: Xn = Xn + (number of arrivals during n service) - I

th n-l>O
It is well known that the number of arrivals during the n service has

a generating function equal to F*(X-Xz)B'*(X-Xz) or F*(X-Xz)B'*(X-Xz),1 2

depending on whether or not x = 0 Denoting by T* the z-transformn-1 n

of Tn , we have immediately

H*(z) = H* (0) F*(X-Xz) B'*(X-Xz) + (IT* (z) - * (0))n n-L 1 n-i n-i

F*(X-Xz) B~*(X-Xz)2 z
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By classical methods [Karlin, 1975, pp. 96-102] one sees that the system

is ergodic if and only if X(Eb + Ef2) < 1 ; in this case the z trans-

form 1* of the stationary distribution t must be equal to

H*(O) B'*(X-Xz)(z F*(X-Az) - F*(X-Xz))
*CZ) =1 2

z - F2 xA-Axz) B'*(A-Az)

and H*(1) must equal 1 , so, using L'Hopital's rule as z + 1 ,

1 - XE (b'+f2 )

*(0) 1 + XE(f -f 2 )

B'*(X-Xz) F*(X-Xz) Cz--)
thus Il*(z) = (1 - XE(b'+f2j) z - F 2(X-Az) B'*(X-z)]

z F*(X-Xz) - *ACX-lz)

1 + iE(f -f 2 ) F(X-Xz) (z-i)

If f* F* the second factor in brackets ie equal to one, and we1 2'

obtain the Pollaczek formula for M/G/1 queues with service distribution

F* B'

H is also the stationary distribution of the number of customers

in the queue at an arrival time [ Kleinrock, 1975, p. 176], and, because

the arrival process is Poisson, also at a random time.

C. Average Delay

Combining the remark at the end of the last section with Little's

formula [Little, 1961], one obtains by differentiating l*(z) the fol-

lowing formula for the average message delay, where the delay is defined

as the difference between the times of service completion and message

arrival:
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2 2X(Eb' + 2Ef2 Eb' + Ef2) 1

E(d) -Eb' + Ef2 + 1 X(Eb + Ef 1 + X(Efl-Ef2 )

((E1 - Ef2)(1 - XEf2) + b X(Ef2 - Ef2))

2 2
X(Eb' + 2Ef2 Eb + Ef2 1

= Eb' + \ 1 - A(Eb' + Ef2 ) + 1 + X(Ef -Ef

2 2
(Efl + ½ X (Ef - Ef 2)) ( 1)

D. Busy Periods

Denote by g and m respectively the length of and the number of

customers served in a busy period. We will characterize the function

GM*(s,z): = E[zme-sg]

It is well known [Kleinrock, 1975] that if F1 = F2 , GM*(s,z)

theredenoted GM*(s,z),satisfies the relation

GM*(s,z) = zF*(s + X - XGM*(s,z)) B'*(s + X - XGM*(s,z))a 2 a a

We will express GM*(s,z) in terms of GM*(s,z) as follows: let
a

bl and fl be the lengths of the first service and extra delay, and n

be the number of arrivals during bl and fl . We then have

n1
E[zme-Sglbl,fl,'nl ] ze- (fl b l )( G

a( s,z))1

because the n1 arrivals will generate n1 independent busy periods

characterized by GMa . Averaging on nl, bl, and fl, one obtains

GM*(s,z) = z F*(s + X - XGM*(s,z)) B*(s + X - XGM*(s,z))1 a a
F*(s + X - XGM*(s,z))

a GM*(sz)
F*(s + X - XGM*(sz)) a(sz2 a
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One obtains easily the moments

Ef + Eb'

E (g) = - X(Ef2+Eb')

1 + X(Ef - Ef2)
E (m) = 1 X(Ef2+Eb') (2)

4. Identification of B', F1 and F2

In the analysis of the queueing system of the previous section we

have obtained expressions that involve the Laplace-Stieltjes transform

B'*, F* and F* . We will identify them from the previous description

of the coding scheme.

B' will be the probability distribution function of b': =

b + o (b) , i.e. b' is the sum of the lengths of a message and of the

low priority bit sequence that immediately follows it.

f2 will correspond to the extra delay for a message in the middle

of the busy period. In our scheme, f2 will be equal to O or 1 ,

depending on whether or not an insertion is needed. So F* = 1 + 2

(e- s - 1) if the first Vl-l bits of all messages are equally likely and

-2 (-1) (3)Ef=Ef = 2
2 2

It is harder to compute F* . We start by solving the following
Let

problem./ the times O,tl,t2,... form a renewal process, the probabi-

lity distribution function of t1 being C1 (C1 (0- )=O) , and the distri-

bution of ti - ti_1 being C2 (C2 (0-)=0) , i=2,3,... At a random

time t , independent of the renewal process and with distribution function

1Xt1 _ e t > 0 , a "supervent" occurs. We wish to find the Laplace-
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Stieltjes transform of the distribution F1 of the random variable fl

defined as follows:

f = min (tn-t) + dl t l t + d2I >t
n I2 (tl>t)

t >t

where dl and d2 are random variables independent of the renewal process

and of t , with distributions D1 and D2 respectively. In other words,

fl is equal to the time between the occurrences of the superevent and the

following event, plus a random variable whose distribution is D1 if the

superevent occurs before the first event, and D2 otherwise.

We have immediately:

s(tl -t)
F*(s) = Pr(t < tl) E[e it < tl] D*(s)

-s min (tn-t) 4 
+Pr Ct > t !) E[e n n t > tl] D(s)

t >t
n-

We compute now:

-At
Pr (t > tl) = e d Cl(tl ) = CC(%) ( 5 )

-s(t1-t) 1 -t
E[e-~t-~l t] 1-:h r/ dCl(tl) £ol dat Xe-xte-S(tl - t

C*(s) - C*(X)
m 

I 
1

A-s 1 - C*(X)

Similarly, because t is "memoryless,"

-s(t -t) X C*(s) - C*(X)
E[e n tnIt < t t < t n> 1 =2 2n-l - n' X-s 1 - C*(A)

The right hand side member is independent of n , given n > 1 ; thus
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-s min (tn-t) C*(s - C*(X)
E[e I>X 2 2E[e t >t t >-s 1-s

Plugging these results into C 4 ), we obtain,

c*(X)
FI (s) - A-S [(C1 (s) - C (X)) D(s) + C (C (s)

-. C*(X)) D*(s))]

and by differentiation,

C*(X)E 1
Ef1 Ec + 1 1-C(X) Ec2 + (1 - C(X)) Edl + C (X) Ed2

Ef%2 = 2 2- Efl + EC + 2EclEdl C() (EC2 + 2EC2Ed2)

Ef2 2 2 C 1(X) 2

EfC + 2EclEd + 1C (E2 + 2Ec2Ed2)· X 2~~~~

+ (1 - CI(X )) Ed + C(X) Ed 2 ]

We will need later the fact that

Pr(t > tn) = (X)(C(X))nl n=1,2,... ( 6 )

for te same reason as ( 5 ).

In our coding scheme, the "superevent" will be the arrival of a

message. C. will correspond to the distribution of the flag of length
-sV.

V. plus the low priority bit sequence of length Ei. Thus C.* = e
1 1

-s i.
e 1 i=1,2 . dl and d2 will be equal to zero, except if an insertion
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is needed in the first message of a busy period, so D = D =

-2 +j. S- 2 -1 ) 1 +2 (e -1) , and Edl = Ed2 = Ed =2 , under the usual

assumptions.

Thus,

eEf1 =-1/k + / 1 + vl + -X(~2+v2) [v2 + + 21 -e (7)
and

Efl + Ef = X(v + 1 + 2 (v + 1 2

-~(vll+1 )
e 2 - (2-v12 2

; X(V +Y) ((v 2+I 2) + 2(v 2+~2 ) 2
1 - e

- (v2-1) ( 8 )
+2

5. Main Result

Putting together all the results of the previous sections, we

obtain a formula for the average message waiting time as a function of

S (b) ' 1 ' 52 ' vl and v2 : from (1), (3), (7) and (8)

X(2 +22 (Eb + E o) + E b ' 2 )
Ew: = ~E ~w = -~~ - (Vl 1)

1 - X(E b + E 0o + 2 )

e
(v1+ 1) +i(v 1 ) 2vl+l) 2 

iv2+ 2·

.+ + e' ( 2+ 2)
1 -e
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2 ~-(92-l) -(v2-(v-)
((v 2+2)2 + 2Cv 2+ 2 ) 2 ) + 2 - 2

~~~~2 2(~ 2 )~~ 2~~ ~(9)
2 - 2

We also obtain the average number of low priority bits per mes-

sage, which, after a little moment of reflection, must be equal to

Eo + E(number of low priority bits in an idle period)
o Em

where m has been defined as the number of messages in a busy period.

By substituting (3 ) and ( 7 ) in ( 2 ) one obtains

e 2 1
(6 +V3 + e -X(2+2) (+2+v2) + 2 

i e
Em = -

i - X(E b + E G0 + 2 )

In the parlance of Section 4, the number of low priority bits in an

idle period is equal to 1 + i 52 if the superevent occurs between t i

and ti+l . Thus its expected value is equal to

-X(V1 * 1 )
+ e (v 2 2

1 - e

as can be seen by using (6 ).

The expected number of low priority bits per message is thus equal to

~2 i 
El + _ e(v2+ 2 ) X +-1 Eb - E - 2 ( )

- e
E i + X(vCl0)

e ([2+v2) -(v2-) - V-)
+ VI + -Xv 2+ 2) +2 -2

2 -21-e
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What is left to do is to try to minimize E(w) oin o (b) E 1 ,

v2'V1 and v2 while keeping the expected number of low priority bits per

message fixed. In the next section we will gain some insight into the

problem of optimizing on o(b) for EgO fixed. This will reduce the

problem to optimizing on Ego ' 51 ' and v2 ' which will require

numerical computations.

6. Optimization of Co(b)

We decided to let the length E0 of the low priority bit sequence

following a message be a function of the length b of this message.

Denoting b + EOTb) by b' , we see from formulas ( 9 ) and (10 ) that

the average message delay depends on E b' and E b'2 while the

expected number of low priority bits per message depends on E b' . The

question then arisesof how o(b) should be defined so as to minimize

E b' for given E b' and B

We will solve this problem for the case where o0 may take non

integer values. This will give some insight and a lower bound for the

interesting case when E0 takes only integer values, which is an infinite

dimensional non linear integer programming problem.

We must find

min f Cb + (b))2 dB(b)
(b) 0 0

subject to the constraints:

(b ) 0> 0

0o o(b) dB(b) > E(o )> 0 (11)
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We start by defining a as the only root of the equation

(x-b) dB(b) = ECo)

This root exists and is unique and positive because the function

fX (x-b)dB(b) is continuous (left and right derivatives exist every-
0

where), is equal to 0 at x=O , is increasing if it is not equal to

O , and goes to - as x increases.

We have

fo(b+o (b))2 dB(b)= f (b+o (b))2 dB(b) + f (b+E (b))2 dB(b)

a 2 co 2 E dBb
> (b+ (b))2 dB(b) + f' b2 dB(b) + 2a f~ o(b) dB(b)

by non negativity of 0o

fob + o b) dB(b)) 2 b)dB(b)
0 + f0 b dB(b) + 2a f ao (b)dB(b)

f0 dB(b)

by the SchWarz inequality

(a fa dB(b) - E( o)+ fo (o(b) dB(b)) 2 2
o "'Osr d 0 + f b dB(b)

f dB(b)

+ 2a r7 50(b) dB(b)

by the definition of a

(a. o dB(b) - J o(b) dB(b)) 2

fo dB(b) a

+ 2a f C&o(b) dB(b)

> a2 f dB(b) - 2a fc o(b) dB(b) + fa b2 dB(b)
- 0 a. 0 a.
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+ 2a ra o (b) dB(b)
a 0

a 2 o dB(b) + o b2 dB(b)

This lower bound is achieved if

b + Co(b) = b < a

b b> a

i.e. if Co(b) = a-b b <a

0 b> a

This o0 satisfies (11) with equality because of the definition of

a and is thus optimal. This result is intuitively pleasing.

As noted above, the constraint that o0 must have integer

values makes the problem much more difficult, except if a happens

to be an integer. In general, constraint (11) will not be satisfied

with equality by an integer solution if Co(b) is a deterministic

function of b
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7. Numerical Results

Many of the results of this chapter have limited. practical

interest. This is due to the fact that generally there are no low

priority bits to be sent. However, the analysis of Lhe previous section

is relevant as far as the use of flags is concerned. We will briefly

consider how the flag lengths should be chosen to minimize the average

waiting time when no low priority bits are sent. (Formula (9) with

o = 0 l = 52 = .)

We recall that we use a flag of length v1 to indicate the end

of a busy period, while flags of length v2 are sent during the residue

of the idle periods.

From numerical computations it appears that the choice v2=2 is

never worse than v2=1 , and is in fact optimal in light traffic. In

heavy traffic the second flag is rarely used, so its optimal length

increases somewhat to reduce the probability of an insertion in the first

message of a busy period. The effect on Ew is relatively negligeable,

as illustrated in Table 4.1.

v2 =1 v2 =2 v2=3

XEb = .5 1 = 3

Ew = 1.733 1.975

XEb = .95 v = 9

Ew = 80.971 80.724 80.646

Table 4.1

Influence of v2 on Ew

Eb=8 Eb =64
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The situation is much more complicated as far as vl is concerned.
- (V -1) -(V - 1-)

The presence of the expressions 2 Eb and X2 respectively

in the numerator and denominator of the first term of the right hand

side member of (9) makes the optimal vl an increasing function of Eb

and AX . Contrary to the case of v2 Ew is quite sensitive to the value

of Vl , especially when the load is heavy:

if Eb = 8 Eb~ = 64

V2 2

XEb = .95

then Ew = 92.89 for vl=5

= 80.72 for v1=9

We illustrate in Tables 4.2 and 4.3 the behavior of the optimal

value of V1 as the load increases for two different message length

statistics.

2
a) Eb = 8 Eb = 64

b) Eb = 5 Eb2 = 30

The first case represents the transmission of single characters without

special source encoding, whereas the second is representative of the

message length statistics when some source coding (see Chapter II) is

performed. Note that we did not take into account the effects that occur

when flags are longer than messages.

We do not give exampleswith larger average message length:

except in very heavy traffic the improvement in performance brought by

the use of optimal length flags do not warrant the increased complexity.

It seems more sensible to send "0" 's when the line is idle, and to

prefix every message with a "1".



Table 4.2

Optimal V1 as a Function of the Load

Eb=8 Eb =64 v2=2
2

optimal Ew for Ew for Ew for
X/Eb V1 optimal l V =2 VY=10

.05 3 1.73 1.74 1.95

.10 3 1.99 2.01 2.43

.15 3 2.28 2.31 2.92

.20 3 2.61 2.65 3.43

.25 3 2.97 3.04 3.97

.30 3 3.40 3.50 4.55

.35 3 3.89 4.02 5.18

.40 4 4.45 4.65 5.87

.45 4 5.11 5.41 6.64

.50 4 5.90 6.33 7.52

.55 4 6.87 7.50 8.55

.60 4 8.09 9.00 9.79

.65 5 9.66 11.02 11.34

.70 5 11.69 13.88 13.36

.75 5 14.55 18.23 16.13

.80 6 18.81 25.67 20.24

.85 6 25.83 41.26 27.01

.90 7 39.71 94.71 40.48

.95 9 80.72 X 80.84
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Table 4.3

Optimal V1 as a Function of the Load

Eb=5 Eb2=30 V2 =2

optimal Ew for Ew for Ew for
X/Eb V optimal V1 V1=2 V =10

.05 3 1.69 1.69 2.05

.10 3 1.89 1.90 2.59

.15 3 2.12 2.14 3.13

.20 3 2.38 2.41 3.66

.25 3 2.67 2.72 4.20

.30 3 3.00 3.09 4.74

.35 3 3.39 3.52 5.30

.40 3 3.85 4.04 5.89

.45 3 4.39 4.66 6.52

.50 4 5.03 5.44 7.22

.55 4 5.79 6.44 8.02

.60 4 6.75 7.76 8.97

.65 4 7.99 9.60 10.15

.70 5 9.62 12.30 11.67

.75 5 11.84 16.71 13.75

.80 6 15.19 25.17 16.83

.85 6 20.61 47.92 21.91

.90 7 31.26 321.00 32.02

.95 9 62.36 X 62.42
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Chapter 5

Encoding of Message Origins

1. Introduction

In the previous chapters we have examined ways to encode the

message contents and lengths, and to differentiate between idle and

message bits. We will study here how to encode message origins and

destinations in a simple case. The model is as follows:

S1 \ / R

S R\

m n

Figure 5.1: The Model

Messages are sent from the asynchronous sources Si , i=l1,2,..m , to a

concentrator containing an infinite buffer. From there they are trans-

mitted over a noiseless binary synchronous link to a "deconceTtrator"

which sends the messagesto their destinations, Ri , i=1,2,...n . We

observe that in general the destinations must be indicated by the sources

to the concentrator, the origins and destinations must be indicated to

the deconcentrator, while the origins alone need to be indicated to the
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receivers.

To simplify the model, we can associate a virtual source and

receiver with each source-receivear pair, as in the following figure.

S11 R

Sln N Rln

S R
l~mn Figure 5.2: Simplified Model

Each source sends messages only to the corresponding receiver

so it is enough to indicate to the deconcentrator the message origins.

We will consider only this reduced problem.

2. Basic Idea.

Assume now that there are M independent sources, and that

messages from source i arrive at the concentrator in a Poisson manner

at rate X , so that, as seen by the concentrator, the probability that

the next message comes from source i is 1/M . Does this imply that

we need at least an average of log 2 M bits per message to indicate the

origins to the deconcentrator? The negative answer to this question

justifies the existence of this chapter.
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If the messages were sent out by the concentrator in the order

they were received, log 2 M would be a lowerbound to the average number

of bits per message. However, although in general messages from a

given source must be sent in the order they were received, to insure the

intelligibility of the sequence of messages, there is no reason for

messages from different sources to be transmitted in this fashion. It

is precisely the possibility of reordering the messages that permits a

decrease in the amount of information. We will illustrate by two

examples how easily this can be done.

In both cases we assume as in Chapter 4 that each message contains

a codeword indicating its length, that the sources are ergodic, that the

mean interemission time of source i is E(ai) , and that the mean

length of messages from source i is E Cbi) In both techniques we

queue the messages in a special buffer according to their origins.

In technique I we transmit a "0" if buffer i is empty; if not,

we transmit a "1" followed by a message. We go then to buffer

(i+l) mod M and repeat the process.

In technique II we still transmit a "0" if the buffer is empty;

if it is not empty we transmit all messages present, prefixing then with

a "1" . We go to buffer (i+l) mod M and repeat the procedure.

In both cases, if the receiver is initially synchronized and if

there is no transmission error, the receiver will be able to recognize

the origins of all messages.

By a reasoning similar to the one in Section 1 of Chapter 4, we

obtain the result that the average number of protocol bits (the "O"s and
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the "l"s) per message is equal to

M
1 - Z E bi/E a i

i=l
M
z 1/E a.

i1i=l

for all techniques resulting in a stable system. One sees that in heavy
M

traffic ( Z E b./E ai 1) this quantity will be very small. We
i=l 1 1

recognize that amongst the protocol bits, some indicate that the line

is'idle" (all buffers are empty), while others effectively indicate the

origin of the messages, but the receiver is incapable of differentiating

between these two kinds.

The conceptual difficulty of defining a "protocol bit" that we

met in Chapter 4 reappears even more strongly here. We could try to

reintroduce the concept of "low priority bit" from Chapter 4 but this

does not appear to lead to very useful results. We will rather use two

other approaches: in Section 3 we will modify the model and neglect

completely the idle bits, concentrating on the study of how the reorder-

ing of the messages can decrease the amount of information necessary to

specify their origins. In Sections 4 to 7 we will analyze some strate-

gies to transmit the messages and their origins in an efficient manner,

the goal being to minimize the expected message delay.
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3. A Simplified Model

A. Introduction

To avoid the difficulties associated 'with the presence of idle

times in the usual queueing model, but still be in a position to study

the influence of the reordering of the messages on the amount of

information necessary to specify their origins, we study the following

model where we keep the number of messages in the queue constant.

B. Notation and Description of the Model

At time 0 a buffer contains N-1 messages, of which m. came

from source j , j = 1,2,...,M

At time i + , i = 0,1,... , one and only one new message

enters, it comes from source j with probability pj independently of

the initial content of the buffer and of the previous arrivals. We

denote its origin by X.
1

3
At time i + T one and only one message is removed from the

buffer. We denote its origin by Yi1

We denote by Si the state of the buffer at time i , i.e. Si

is a M-tuple (ml, m2,...,mM), i mj = N - 1 , where mj is the number
j=l 

of messages from source j present in the buffer at time i . One sees

that the number of possible values of Si is N-1[Feller, 1968,

p. 38], which we denote by a . We index in some way the values of Si

and denote them by sl, s2,...,sa . The probability distribution of SO

is known a priori. We denote it by the row matrix H , whose jth
component is equal to Pr(S

component is equal to Pr(S = sj).
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Similarly, S+ denotes the state of the buffer at time i + 

N messages are present in the buffer at that time, so that S+ can
1

+ IN+M-l' + + +
take a _ N 1) different values denoted s, s,...,s+ .

Very often we will need to deal with sequences of inputs and

outputs. X[ij ) denotes the sequence (Xi, X...,X ) and we

define Yij) in a similar fashion.

It will prove useful to define a function U (for Unordering)

whose domain is the set of sequences X[i,j ) and Y[i,j) and whose values

are M-tuples. The kth component of U(X ) is the number of X
[i,j) n

in Xrij) that are equal to k

We can use U immediately to verify the relation

Si + U(X[i ))- U(Yij)) Sj i < j (1)

If a suitable probability distribution has been defined, H(Y [ij))

denotes the entropy of Y[ij) i.e.

H(Y ) Pr= (Y[ij)= Y[i,j)) log2(Pr([i,j) [i,j)
Y[ij)

To avoid the introduction of more symbols, we also use H in the

following sense: if c is a s-tuple, c = (cl,C 2,...,c 5) , with non

negative components, we define H(c) := - Z ci log2 c i . The meaning
i=l 

of H(.) will always be clear from the context.

C. Objective

The problem we wish to study is to find an "optimal" way of

making the Yi 's known to an observer watching the output of the buffer.

This involves two distinct points: first, at time theThis involves two distinct points: first, at time i + the
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transmitter must decide what message to send out, i.e. the value of Yi.

There is a constraint on Yi : one can only send out a message that is

actually in the buffer. Mathematically this translates into the

statement: "all components of Si+l must be non negative," and was

implicitly taken into account when we determined the number of states.

Second, the receiver must be able to recognize Yi . To that effect we

allow a binary codeword of (variable) length n. to be transmitted in

front of every message, and we require that the knowledge of the code-

3
words transmitted at time j + T, j=0,1,2,...,i, and of Y oi)

uniquely specifies Y.
1

Our objective will be to minimize the "expected number of protocol
T-1 ]

bits per message," h := lim sup E T n. over all possible encoding
T- _ T i=O ij

strategies, i.e. the choice of the message to be sent next, and the

choice of the codewords indicating what message is sent.

We will give some examples in Section D and a lower bound in

Section E. Finally we show in Section F how dynamic programming can be

used to find the "optimal" choice of the message to be sent next.

D. Examples of Strategies

The end of the previous section may be made clearer by consider-

ing the following strategies.

STRATEGY I

We transmit the messages in the order they entered the buffer;

this is the only choice if N=l . The probability that (Yi=k) = Pk '

i > N , thus the best we can do is to use a Huffman code to indicate the

message origins, and the average number of protocol bits per message, h ,
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will be bounded by

H(p) < h < H(p) + 1

where p := (p1, P2 '''" PM)

STRATEGY II

We do the following: at time .75 we send a Huffman codeword

specifying So ; at times .75, 1.75, ..., N -.25 we transmit in some

prespecified order (e.g. all messages from source 1, followed by messages

from 2, etc.) all messages present in the buffer at time .5 . Note that

no codewords are needed at times 1.75, 2.75, ..., N - .25 . At time

N + .75 we transmit a codeword specifying S+ and repeat the procedure.
N

The probability that Skn = ml' m2' ''., mM) ' k > 1 , is equal to

N! m1 m M
m t -l m!M ' ... , PM , m. > 0 , j m. N, thus

H(p'N) H(p N) + 1 *N
N < h < H(p where H(ppN ) denotes the entropy of the multi-
N N

nominal probability distribution.

It is of interest to examine how this expression behaves as N

increases. We pan write

H(*N M 1 1 M N N m N-m

..p ) = - Zp log N! + P.(l-p) log2N! + m
j=l N N =l m=l m 1

To ,get a lowerbound we use the log-convexity of the gamma function to

obtain

*N M M
1 1p

N ) - jl Pj log2 Pj - N log2 N! + Z log 2 r (1 + Np )
N -- ~~~l~sj=lN

The use of Stirling's formula [Feller, 1968, p. 52], tight if Nj*< > 1

log(r(l+x)) > log 2/Et + (x +) log x - x log e
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(*N M
HN ) M2N1 log 2 (2TrN) + 2 log 2 pj (2)

j=i

To obtain an upperbound, we use Stirling's formula for log m! together

with the inequality

m - Np.
log m < log Npj + log e

Npj

This yields

'NNp. 2
l og m! < log2 log m

2- e e 2Npj +pj
e J

This does not hold at m=O when Npj < .43 but is otherwise satisfied.

Using this in the formula for H(p * N) , and using Stirling's approxima-

tion for log N! , we obtain

Hp N M-1 1 M
N 2N log 2 (27reN) + 2N Z log 2 Pj

j=l

We can thus conclude that for this strategy, the expected number of

protocol bits per message is equal to 2N- log 2 N + 0

STRATEGY III

Here we note that at time i + 2 there is at least one source

N+M-1such that N M 1 messages from it are stored in the buffer. We send

N+M-1the binary representation of the index of this source, then the L M 1

messages. The average number of protocol bits per message is bounded by:

log 2 M (log 2 WI)+ 1
N+M- h N+M- 1iN+M- I--l M IM l

Here for large N , h is approximately equal to M+N 1lg2 M

which is better than in Strategy II. However, for small N , II may be
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better.

The two following strategies will be studied r the case M=2

and P1 = P2 = .5 . A comparison of all strategies for this case appears

in Table 5.1

STRATEGY IV

Strategy IV is essentially polling: one transmits as many

messages from source 1 as possible, until none remains in the buffer.

One transmits then a run of messages from source 2, then 1 again, etc.

The end of a run can be indicated by a flag as studied in Chapter III.

If N=l , each run has a geometric probability distribution. In

general, the probability distribution of a run is the distribution of the

sum of N independent geometric random variables, and thus a Pascal

distribution:

Pr (run = n) = n=N, N+, ...

Its mean is equal to 2N , so we can bound the expected number of proto-

col bits per message by

Entropy of run < h < Entropy of run + .56
2N 2N

The upper bound holds if the assumptions made in Section 4 of Chapter III

are satisfied.

We now turn our attention to evaluating the entropy. This can be

done numerically; results appear in Table 5.1. To obtain asymptotic

results we note that the entropy is equal to 2N - E log
n-N 11°g2 n-N'

Writing log log n-N+i) - log (N-l

eWriting log f= log (n-N+i) - log (N-l)! we see, from the

convexity of log (n-N+i) , that - lognl is concave. By Jensen's
In-1iscnc a e yJne'
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inequality we can lowerbound the entropy by 2N - log2 [2N-1 and, using

log 2 44N
Stirling's approximation, by 2 Writing

log [n-N = log (n-l)! - log (n-N)! - log (N-1)!, using the convexity of

the first term, using Stirling's approximation together with the formula

loge x < x-l for the second term, and Stirling's approximation for the

third, one can upperbound the entropy by (log2 4re2N)/2 . Thus, for

log 2 N
Strategy IV, h behaves like + 0 . This is about twice

4N

as good as Strategy II.

STRATEGY V

As mentioned earlier, we study this strategy only for M=2 with

P! = P2 = .5 . Suppose that at time i + .5 we know that only messages

from source J (j = 1 or 2) are in the buffer. We can then send N of

them without any codeword, and the distribution of SN+ i will beN+i

binomial. We then alternate between messages from 1 and 2, until this

becomes impossible because the buffer contains only one kind of message.

We then signal the end of the run, e.g. by a flag.

The expected number of protocol bits per message is thus bounded

by

Entropy of run < h < Entropy of run + .56
N + E(run) - N + E(run)

The upperbound holds if the assumptions made in Section 4 of Chapter III

are satisfied.

It is of primary importance to study the statistics of the run.

Assume that we try to send a message from source 1 at odd times, and a

message from source 2 at even times. Si performs a non-stationary
1
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random walk: with probability .5 , S+ Siwhereas with probability

.5 , i +l + (-1, 1) if i is odd, and S = S + (1, -1) if
1+l 1i+

i is even. A run stops if S+ = (0, N) with i odd, or (N, 0) with
1

i even. However, we note that as far as the statistics of the

remaining time in the run is concerned, being in state = (k, N-k)
1

at time i is equivalent to being in state S+ (N-k, k) at time
i+l

i+l . We can thus describe the process by the (N+l, N+l) transition

matrix

1 0

1 1
2 2

o 1 1
2 2

1 1
2 2

11 0
2 2

corresponding to the stationary process:

r - W - ,~~.
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It is entirely feasible to compute the distribution of the time

until trapping in state O0,N) if the initial probability distribution

of the state is binomial, by classical Markov chain methods e.g. [Howard,

19;1, vol. I]. Results appear in Table 5.1. Fortunately, the mean time

until trapping has a simple form. Denoting by g(ml, m2) the mean time

until trapping if the initial state is (ml,m2) one finds the relations

g(0, m2) = 0

g(ml, i2) = 1+ 1 (g(m2+1, m1 -1) + g(m2, mi)) m > 0

The solution to this system of equations is

g(ml, m2 ) = 2m1 (2m2 + 1)

Averaging on the binomial distribution of the initial state, one finds

that the expected run is equal to N2 . It is now easy to upperbound

the entropy of the run: by [Gallager, 1968, p. 507] it is upperbounded

by (N2 + 1) H[ 2 1 3 where H is the binary-entropy, i.e.
by (N2 ~ N + 1) 2+

H(x) := H((x,l-x)) . This bound is extremely close to the actual value

(the relative difference is less than 1%), indicating that the

probability distribution of the run is nearly geometric. From the

results of Section 4 of Chapter III, fixed-length flags will be almost

optimal.

Because x HIf < log 2 ex , h is upperbounded by

log2 (e(N2 + 1)) + .56
h < 2

N + N

The presence of N2 in the denominator makes this scheme markedly

superior to all others. Note that it is the combination of two features

that makes it efficient:
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-- the fact that it does not attempt to send a message for N time

units after detecting that no such message is present;

-- the fact that it alternates between sources.

Strategy IV (polling) has the first feature, but not the second; we have

seen that the expected run is equal to 2N . If one uses pure alternat-

1 1
ing, the expected run will be equal to 1 + 2 go + 2 gl = 2N , instead

of N+N2 when both features are present.

There are strategies for which h behaves like (k log(N))/N 2

+ 0 (--) even when M > 2 . We describe now such a strategy for the
N

1
symmetric case (P M ' i=l,2,...,M) . It is a generalization of

Strategy V.

One removes one message from each source in cycles (say 1,2,3,...

M,1,2,....) until this becomes impossible. One transmits then M-1

codewords indicating the number of messages from each origin remaining

in the buffer, and those N messages. This being done the distribution

of the buffer state is multinomial and we start the procedure again,

removing one message from each source in cycles. We call the number of

messages transmitted during the cyclic part of this strategy a run

If one uses a flag strategy as described in Section 4 of Chapter

III to indicate the end of a run, h will be upperbounded by

log2 (e(E(run) + 1)) + .57 + (M-l) [log2 N]
h <
<- E(run) + N



115

2
If one can show that E(run) is proportional to N the desired

result will be obtained. E(run) can be computed as in Strategy V. If

g(mlj,...,mM) denotes the expected run length if the initial state is

(ml,... ,m) , one has the relations

g(0, m2 , ... , mM ) = 0

g(mlm2V , , iRAI) = 1 + M (g(m2 +l, m3, ...,ml-1)

+ g(m 2, m3+l,...,m l-l) ... + g(m 2, m3 . - m 1))

ml > 0

This can be solved numerically. For M=3 we obtain the expression

3m1 (3m2 + 1)(3m 3 + 2)

g(ml' m 2' m 3) = 3 (m + ) + 1 E(run) is equal to the2'3 3 (m 1 + m2 3) + 1

average of g(.) over the multinomial distribution of the initial state.

If M=3 we obtain E(run) = N(N2 + 1)/(3N + 1) , which is approximately

equal to N /3 for large N , as desired.

We are unable to solve this- system of equation for all N , but

can lowerbound E (run) by the following method.

Let (m , ml, ..., i) denote the state of the buffer at time

j + .5 . Assume that at time .5 the state distribution is multinomial,

and start removing the messages in cycles. In order to obtain the
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bound we remove the constraint that the mi 's must be non negative.

Thus the buffer state performs a non-stationary random walk and

Pr(run < j) = Pr ( min (mk+lmod M < 0) j=0,1,...
0<k<j

M
i+kM-1

_ Pr (min (mi. ) < 0)

i=l kC.lN :O<i+kM-l<j

j=0,1, ...

We recall a version of Kolmogorov's inequality [Karlin, 1975,

p. 280]: If al, a2 , ... form a martingale and have a mean Ea > 0

Var(a
then Pr (min (al, a 2, ' aa) < 0) < . Here for each i

(Ea)

i+kM-1 N+i-1
the m. 's , k=0,1,..., form a martingale and have mean M

and variance (N+i+kM-l) M(1 -) .M M

Thus

(N+j) 1 -

Pr (run < j) < M j=0,1,

and Pr (run > x) > max (0, N- (N+x) M(M-1)) x > 0
N2
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E(run) = f0 Pr(run > x) dx

1 (N - M(M-1)
> M(M--) N > M(M-1)

This shows that E(run) increases at least proportionally to N for

large N , as desired.
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Strategy

II III IV V

N=i 1 1 1 1

2 .75 1 .678 .599

3 .604 .5 .519 .390

4 .508 .5 .423 .274

5 .440 .333 .358 .203

6 .389 .333 .312 .157

7 .350 .250 .276 .126

8 .318 .250 .248 .103

9 .292 .200 .226 .086

10 .271 .200 .208 .073

11 .252 .167 .192 .063

12 .237 .167 .179 .055

13 .223 .143 .167 .048

14 .211 .143 .158 .043

15 .200 .125 .149 .038

16 .190 .125 .141 .035

Table 5.1

lTir T H{YO,T)) as a function of N

M=2 P 2 = .5
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E. A Lower Bound on h:

We have shown in Section D that simple strategies (i.e. II) can

make h decrease like M+ ; more complicated strategies (i.e. V)
M+N-1

log 2 N
yield a decrease proportional to 2 . We will show here that h

N 2

cannot decrease faster than ((M-1)/(M+N-1)) . We will use in the

sequel many standard relationr between information theoretic expressions;

they can be found in [Gallager, 1968].

Assume that we have decided on a feasible strategy. We have that

for all T ,

T-l 1
i 1
TE Z n. > H(Y[r))

-i=O T ')

thus

h > lim sup T H(Y[O0T))

n-l1 1(Y
!im sup 1 E t=1,2,3,...

n t [it,(i+l)t) Y[Oit)n->w i=0 '

Cin fact we have equality, but this requires a little proof)

n-l

> lim sup 1 n lY 1-- s n £t H(Y[it,(i+l)t) Y[0it)' Sit)

t=1,2,3,... (3)

We now lowerbound H(Y IY
[it, fi+l)t) [0,it)' it

We have H(Y I1 I(X ;Y
We have T H(Y[it,(i+l)t)Y [O,it)' Sit) -> I( [it,(i+l)t);Y[it,(i+l)t)

IY[O,it)' Sit)

where I(A;B) := H(A) - H(AIB)

= H(B) - H(BIA)
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I C C(Xit,(i+l)t));U(Y[it,'(i+l)t))

[[0,it)' it

by the Data Processing Theorem

[Gallager, 1968, p. 80].

= (H(U(X[ot'))) - H(U(X[it, (i+l)t))

[U(Yit,(i+l)t) Y[O,it) Sit))

by independence of the X. 's.

Repeating relation (1)

U(Xit,(i+l)t )) (i+i+l)t + U(Y[it,(i+l)t)) it

and remembering that S(il)t can take a different values, we see

that for every U(Y[it(i+l)t)) and Sit , U(Xit (i ) can take at

most - different values.

Thus H(U(X )jU(Y Y S lo•Thus H(U(X[it,(i+l)t))lU(Y[it,(i+l)t))' [O,it)' Sit) log 2

Writing H(U(X[it (i+l)t))) = H(p* ) as in Section D, and replacing in

(3) one obtains

h > max (H(p*t) -log2 v) (4)
t=1,2,..

This can easily be computed.

We are interested in an asymptotic relation for large N . Using

(2)

H(p*t) > M-l 1 2t + log2 P

t-- 2 + i(j=l

with t = in (4)
27r Mp

p1
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one obtains (neglecting the integer constraint on t)

2Trog 2 e) II Pu

e M2/M-1e a

For M=2 , o=N ,

27 (log 2 e) P1 P2
so h >

e N2

.834 1
~2 ~if Pl P2 =

N2

One can show that

(N+M-2)< [e M+N-2 M- 1

SO 1

27r(log 2 e) H pJ 
j=1 M- 1

h > ]3 +N-2
e

F. "Optimal" Strategy

As explained in Section C, a strategy consists of two parts:

-- a rule to determine the value of Yi ;

-- a code to indicate the value of Y.

The first part is the most interesting. We will gain some insight

into it by assuming that non integer codeword lengths can be used subject

only to the Kraft inequality [Gallager, 1968, p. 47]; in that case it is

very easy to solve the second part.

Let's assume that one has decided how to select that Yi 's; then

for all encoding strategies
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Z n. > HCY[o,T)
i=0

T-1

i T - Pr(Y [Q,i)=Y[O i) [I Pr(Yi=Yi
i=0 Y[0,i)

IY[o,i)=Y[o,i)) log 2 (Pr(Yi=YiIY[o,i) Y[O0i)))

This lowerbound can be achieved by using at time i a codeword of length

-log 2 (Pr(Yi=Yi Y [ O, i ) Y[ o , i ) ) )

if Yi=Yi and Y[O,i) Y[O,i)

This codeword provides just enough information to enable the receiver to

recognize Y. . A consequence of this is that the conditional probabi-
1

lities

Pr(Si=sj Y[, i)=Y[oi) and codewords transmitted between 0 & i)

= Pr(Si=s j IY[0,i) Y[o,i))

Note that this is not true for all encoding strategies: in Strategy II,

the codeword transmitted at time .75 specifies not only Y0, but also

S . Thus in general Pr(Sl=Sj IY=k , codeword transmitted at .75)
o

7 Pr(Sl=sj Yo=k)

Now that we have "solved" the second part of the problem, we can

turn our attention to the first part: how should we choose the Y. 's

so as to minimize

T-1
lim sup H(Y[o T)) = lim sup - T Pr(Y

T-' 5 [0,T)' TY' i=O y [0, lo, )
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It turns out that this can be done by dynamic programming.

Unfortunately we need first to give some more definitions:

Zs denotes the unit simplex of R s

i denotes a column matrix of suitable dimension (depending on the

context) with all components equal to 1 .

ek denotes a row matrix if suitable dimension (depending on the

th
context) with all components equal to 0 , except the k

which is equal to 1.

th
Hi(Yyo,i)) is a M-tuple whose j component is equal to

PrCS =s j IY[ o,i)[o,i))·

Similarly,

Hi(Y[o i)) is a a -tuple whose th component is equal to

iP(S =s Y[oi)Y[oi)) .

By independence of the Xi , one can write:

i(Yo,i) Hi(Y[O,i)) P

where P is a (o,o') stochastic matrix whose element Pij = Pk if

s3 s. i+ ek , and 0 if there is no such k.

EXAMPLE: M.= 2 N = 2

0=2 a =3

if s = (1,0) s 2 (0,1)

s = (2,0) s 2 = (1,1) s3 = (0,2)

then

P 0 PtP P2 I**
policy l P2be defined later)

A policy c , a=l,2,...T (x will be defined later), is charac-
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terized by a (a+,M) policy matrix Aa with the following properties:

1) A. = 0 or 1
ij

M
2) z A.= 1

j=l 1J

3) A.i = 1 only if the state Si contains a message from source j

The significance of this is that if at time k+.5 the state is s. , one

will choose Yk := m such that Am = 1 . Properties 1) and 2)

guarantee that a unique such m exists, and 3) guarantees that only

messages that are actually in the buffer may be sent.

Matrix Aa has the following additional properties, which are

easy to verify

1) As is stochastic

2) If policy a is used at time i , the conditional probability

th
that Y = k given Y[O,i) = Y[0 ,i) is equal to the kth

component of H+i( toi))A , or (by (5)) of Hi(Y i))P A[s

EXAMPLE: M = 2 N = 2 as before.

There are only two policies, 1 and 2, with

P3 = {1 0 A2 [ 1 ]

In both cases, one transmits a 1 in state (2,0) and a '2 in

state (0,2) (there is no other choice); policy 1 transmits a "1" in

state (1,1) , whereas policy 2 transmits a "2."

If Hi(Y[oi)) = (P, P2) , and if policy 1 is used,

{{r(YiD ={V Y l1 } )=Y' Ps (Yi Do {V O i)= V _ ,i)A
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= Fp1P 2 o Jfi o1

10 P P2 10 1

(P1 + P2 pl' P2 P2 )

Note that the number , T , of policies can be quite large: if

messages from k origins are present in state s. , the jth row of

a policy matrix can take k distinct values. The number of states with

messages from k origins present is in turn equal to {) N-kl)

(with 0b = 0 if a < b ), where the-.first factor is the number of

distinct choices of k origins, and the second factor represents the

number of ways of distributing N messages between k origins, in

such a way that each origin receives at least one message. This last

number is equal to the number of ways of distributing N-k messages

M rM~ ~N-Ij

between k origins. Thus there are H k distinct policies.
k=l

EXAMPLE:

We have seen that if M=N=2 , there are 2 policies. In the

seemingly innocuous case M=4 , N=8 , there are about 6.22 1073 policies.

Associated to policy a we define M (a ,a) transition

matrices Ba'k k=1,2,...,M, by

B.a'k = 1 if and only if

+
Xij i sj =s i -e k

iAok =1

L0 otherwise
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These matrices have the following properties;. they are proved by direct

examination.

1) B"ak u =kth column of Aa

2) If policy a is used at time i , Pr(Yi=klY[ ,i)=Y[0 ,i))

= +(YtO ) Bk' u
1 lo,i)

3) If policy a is used at time i ,

H+ (Y[O, Ba,k

i+l((Y[ti)'k)) ) (6)

1 (Y[o,i)) u

Cthis is Bayes' rule).

Property 2) justifies the appellation of "transition matrix." Using (5),

(6) can be written as

Hi (Y [o )) P Ba, k
1ii+ l (( y [O,i) )k ) )

Hi y [ 0,i) P B'k u

EXAMPLE: M = 2 N = 2 as before.

Associated to policy 1 (defined earlier), we have the: matrices

1, 1 = 0O B1l 2 =O O

1,1As an illustration, B2 2 = 1 because state (0,1) can be obtained from2,2

(1,1) by removing (1,0), and because if policy 1 is used, a "1" is trans-

mitted if the state is (1,1).

Say policy 1 is used at time i ,

Hi (Y[o,i) ) = (P, P

i(Y[0,i) (l' P2 P3) = (PlP1' PlP2 + P2Pl' P2P2)

Then if Y. = 1
1
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P, p2 ;J

Ii+l ( ( Y [O,i ) 'l ) ) = + + + 

Pl + P2 P1 + P2

plPl 12 2P
P1 + P2P1 P1+ P2 P 1

whereas if Y. = 2

Hi+l ((Y[ 0,i)2)) = (0,1)

Similar expressions result if policy 2 is used. ***

Although we are interested in minimizing lim sup 4 H(Y[O T) )
T-*o0

it is easier to first minimize + H(Y[ ) for some fixed T.
?I+l [0,T+1)

We have from (4)

T

HY[0T+)) i= -O Pr(Y[O,i)=Y[O,i)) CT-i(Y[O,i))
i=0 Y[0,i)

where CT-i ( [O,i)) = Pr(Y=yi lY[ 0,i)= Y [O i ) ) log2 (Pr(Yi=Yi
Yi

IY[O,i)Y[0,i))) is called the expected immediate cost at time i,

given that Y[O,i) = Y[O,i)

Defining DO(Y[O,T=1)) 0

Di+l(Y[O,T-i)) Ci(Y[O,T) (YT-i=YT-i
T-i

IY[0,T-i)=Y[O,T-i)). Di((Y[O,T-i),YT-i) ) (7)

We have that H(Y[0, T+) = D D. is called the cost to go at time

T-i+l . Using Bellman's principle of optimality [Bellman, 1957] we see

that this expression can be minimized by going backward in time: at

time T-i , for every sequence Y[O,T-i) I we should find a strategy

such that the resulting values of Pr(YTi=kIY[ 0,Ti )=Y[O,T-i)) ,
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k=1,2,...M , minimize Di+l(Y[O,T-i)) 

In a first step we will minimize H(Y[0,T+l)) over all strategies

consisting of using at time i a policy a(Y[,i)) . We will show

later that nothing is gained by using more general strategies.

At time T the receiver has computed HTCY[0,t)) . If the trans-

mitter, which can also compute HT(Y[O,T)) , decides to use policy a

one checks that

CO(Y[O T)) = H(IT(Y[OT)) P A )

One sees that there is a policy aO(HT(Y[O,T))), depending on Y[O,T)

through HT(YIO,T)), that minimizes H(HT(Y[OT)) P Aa) over all

policies. We denote the minimum by Vl(lHy[O,T))) . Thus V1 (called

the minimal cost to go at time T) is defined by

V1 ( ) := min H(H P A )

= H(l P AaO( ®)) (8)

It is aesthetically pleasant to define VO(H) := 0 (9)

EXAMPLE: N =2 M = 2 as before

Let I(YEO,T) ) = (Pl, P2)

If policy 1 is used,

P1 P2 ° 1 O0

= H(P2 p 2)

whereas if policy 2 is used

CO(Y[O,T)) =H(p1PI)

One sees that policy 2 minimizes the expected immediate cost if

P1 < P02
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As we have:seen earlier, the number of policies can be enormous.

We show now that at most M! policies need to be considered when one

minimizes CO(Y[0,T))

THEOREM I

Let a0 be a policy minimizing the expected immediate cost

H(H P As ) for a given H in Sa . Denote the i t h component of HP by

Pi ' Let C(T1 , 2''''' TM) := H P A

For the given H , for all i such that Pi > 0, define the

relation > on 1,2,..,MI by:

. I a
if A. ° = 1 , then j > k for all kij such that s

contains a message from k

Then > is a partial ordering of {1,2,...,M}

Proof:

We must prove that if i >j2

jn-l > j n

then it is not true that jn > jl ' Assume to the contrary that jn > j 

Without loss of generality, assume that state s. contains

messages from ji and i(i mod n)Fl i=1,2,...n , and that Aij. 1 .

Because a0 is optimal

-Ij gog Tj T P<logfT -P9 -Tj +l)logj 2 (Tj +P) (10.a)T'log 2 Tj - T (T. - +o
1 1 2 2 1 1 2 a 2

otherwise H-(HPAa) - would be reduced by making A 0 = 0 and

A° 1 .
lJ2
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Relation (lO.a) can be rewritten as

j 1-P1)lo02 -( P log 2T. < t)log 2t ( +pl ogjT2 ±P1)(Jl 1 2J 1 ° lg2J 1 -- J2 J2 (jJ 2 p
(JO.b)

The function x log2x - Cx+p)log2 gx+p) decreases with increasing x for p>O,

so (10.b) implies

i 1 1-> .j

Similarly

.o - p. > T. i=l,2,...,n
Ji i -1 (i mod nyl

Adding these inequalities one obtains

n
_ pi > o
i=l

which is a contradiction.
Q.E.D.

Because a partially ordered finite set can be totally ordered,.

we have the following theorem:

THEOREM II

There is a policy a minimizing H(H P As) which has the form

-- define an ordering > on {1,2,...,M}

- ~~~~~~a ~ ~+ ^
-- A.. = 1 if j is represented in s. and if j > k for all

kij represented in s.
1

There are at most M! such policies. QE.D.

An algorithm that comes naturally to mind, but which does not

quite work, to define the ordering > is the following:

-- for j=1,2,...,M compute from H the probabilities pk 

k=1,2,...,M , that at time i+.5 the buffer contains at least one
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message from source k , but none from sources kl,k 2,...,kj 1 .

Let k. := min {k : pkP m=1,2,...,M}

-- Define > on {1,2,...,M} by kl > k2 > ... > k M .

The idea behind this algorithm is to send a message from the origin that

is the most likely to be represented in the buffer. If this is impossi-

ble (because no such message is in the buffer), we try the next most

likely origin and so on.

Here is a counterexample showing that the resulting policy is not

necessarily optimal.

EXAMPLE: N = 2 M = 3

P1 = .2 P2 = .6 P3 = .2

s I = (1,0,0) s2 = (0,1,0) s3 = (0,0,1)

H = (.475, .05, .475)

S1 = (2,0,0) s = C1,1,0) s3 = (1,0,1)

s4 (0,2,0) s 5 = (0,1,1) s6 = C0,0,2)

One finds

T = (.095, .295, .19, .03, .295, .095)

1 1 1
p1 = .58 P2 .62 p = .58 ki = 2

2 2 2
285 P2 = P3 = .285 k2 = 1

3 3 3
1 =0 P2 = 0 p3 = .095 k3 = 3

P1 3

so 2 > 1 > 3

The resulting HC.)= -.62 log 2 (.62) - .285 log 2 C.285) - .095 log2(.095)

= 1.26
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However, the ordering 1 > 3 > 2

results in the cost

HI(. =-.58 log2 (.58) - .39 log 2 (.39) - .03 log2 (.,03) = 1.13

At time T-1 , or more generally at time T-i , i=1,2,...,T ,

the receiver has computed HT-i(Y[o,T-i)) . The transmitter must find

a policy a(Y[O,T-i)) minimizing (from (7))

M

Ci(y[O,Ti)) + Z Pr (YT-i=klY[0,Ti)=Y[O,T-i))k=l 

Vi(HTT-i+ ((Y[0,T-i), )))

We have seen earlier that if policy a is used

Ci(Y[O, T i )
) = H(HT_ i ( Y [ 0 ,T-i)) P A')

Pr (Y T-i=klY [O,Ti)=Y[O,Ti)) T-i(Y[, T-i)) P Bk u

1T-i+l((Y[O,T-i) ) ) T-i
11T-i (Y[0,T-i)) P B' k u

Thus policy (y[T)) must minimize

M

H(I T-i(Y[O,T-i)) P Aa) + k1 T-i (Y[Ti P B' u

V T-i(Y[O,T-i) ) P B ,k

1 ffT-i(Y[OT-i)) P B' uJ

Clearly there is an optimal policy, ai( [0Ti))) which depends

on Y[OT-i) only through HT-i (Y [0,T-i)). We define Vi+1 (H) ,

the minimal cost to go at time T-i , by



Vi+ C) =min (H(H P Aj + nP B u V. 11 Bk 
i+la k=l 1 i P B 'k U 11)

= H ( P A ) + n P B i u V. V PBj
k=l 1 LPBi ) ,k

At this stage we have done the following: we know how to mini-

mize H(Y[O0T)) in a recursive fashion-over all-;strategies consisting

of using at time i a policy a(y[O i)) We have seen that in fact

there is an optimal policy that depends on Y[o,i) only through

HIi YOi) . We will now prove some properties of the V. 's.

THEOREM III

V. iI) is a continuous function of .

Proof:

By continuity of H(.) and induction on i
Q.E.D.

THEOREM IV

Let A be a (s,t) stochastic matrix.

Then: n u H g[) is a concave function of H for H in the set of

s-tuples with non-negative components.

Proof:

Let H1 and H2 be two such s-tuples;

1 1
let (q1, := H1 A

2 2
(q1, ... qt := H2 A

Then: for Xs[0,1]



XH1 t u 1H + (l-X) H2 u H (2 _

+( (1-X) H2)A

- (A1l + (1-X)T2) u H ( 1 + (1-X)2)u

'1 2.
t q Aqj + (1-X) q
e C q e log2

j=1 l 1 t 1 2

t 2 i1 11

Q.E.D..

If s=t and A is the unit matrix, this gives the well known

result that H(H) is a concave function of I for T in' i

COROLLARY IV.l: Let A be a (s,t) stochastic matrix and C be a

(r,s) nonnegative matrix.

s-tuples with non negative components.

Proof:

The components of IC are non negative and the composition of

a concave function and a linear- function is concave.
Q.E.D.

COROLLARY IV.2: For all (s,a) non negative matrix C , for all i > 0,

TICu ViH Cu is a concave function of n , for T in the set of s-

tuples with non negative components.

Proof:

By induction on i :
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V0 = 0 thus V0 is concave

Vi+(.) min H(.PAa ) + Z -PB u V, .P
i+l I 1pBk

a _kk=lP U

i Hso =lCu min iHCu H t[HC + Z HCPBB 'k u V 'CPB

The terms in the right hand side member of this equation all are

concave by the previous corollary and induction on i . The minimum

of a set of concave functions is concave.
Q.E.D.

We are now in a position to prove that nothing is gained by

using more general strategies than what we have considered until now,

i.e. strategies where at time T-i one uses a policy determined by

Y[o,i)

THEOREM V

Denote by Di+l(Y[O,T i)) the cost to go at time T-i if one

uses a given causal strategy (i.e. Pr(Yi-kjY[Oi)=Y [, i),X[O i)=X[Oi)'
) = Pr (Y kjlY [ Leti)[,i) [,,i),

[)=x[l)=X iT+l) Pr(i=kY[o,i)=Y[o,i)X[o,i)=X[o,). Let

Do := 0 .

Then: Di(Y[O,T-i+l Vi il(Y[,T-il))) i=0,1,2,...,T+l

Proof:

By induction on i

0'- VO

-- Suppose Di > Vi , then from (7)
1~~~~~~~~~~~.
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Dl (Yr ) C. (y .)+ E Pr(Y =kC Y YY.).
Di+lY[O,T-i)) Ci(YO,T-i)) +1 r(YT-i=k [0,T-i)=y[O,T-i)

Di((Y [O,T-i) )
M

i (Y O,T-i )) + k Pr(YT-i=k lY ,Ti) Y[O,T-i))

Vi (T i+l ((Y[,Ti),k))) (12)

Let the Ca+,M) matrix A* be defined by

A*. Pr(Y i=jl ST nY[Ti)YOTi))
nj YT- T -i snYOT-i)=YOT-i)

An instant of reflexion will convince the reader that A* can be

written as a convex combination of policy matrices:

Tr T
A* = Z c A , c > 0 c 1

a a=l a= l

Defining similarly the M (,) matrices B k=1,2,...

*,k
by B := Pr(S i+l=S Y =klSi=Sn'Y[,Ti) Y[,Ti)

one has that Bk = ca Bk
a=1

As before PrCYy k =lY TI+ )B*' k 
s before rT- i k[O,T-i) Y[O,T-i) Ti(Y[O,T-1))B u

and by causality =Ti(y[O,T-1))P B* k u

*k
ji nTi(YL[,T- i ) PB *'k

and,and, ~T-i+l((Y[O,T-1)'k)) T- [O ,T-l) u
'T-ii(Y[O,T-1)) P B*' k

'rThus from (12)

( yTi 1lt- O=1 a T-i-[oT-i)-P As)

+ Z Z c ( (yB[0jc T )jP B u) T )PB 
k=l ~=l c a r-i(YLO,T-i) )PB u,

k I~~~~l~ i' cc

1..~~~~~~~~~~~~~~~~pc'u
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By Theorem IV and Corollary IV.2, the right hand side is a concave

function of (c1,c2,...,c.) , and thus takes its minimal value at a

vertex of ET , say e 

Thus

M
Di+l(Y[OT-i)) > H( T-i (Y [0 ,rTi)) ) + l )p B ,ku

k=lOTi)

T-i (Y o, T-i) )P kt T -i [O,T-i)

V T-ij(Y[O,T-i))P B iku

> Vi+l(IT-i(Y[o,T-i))) by (11)
Q.E.D.

Vi(H) is naturally a nondecreasing function of i ; the next

theorem says something about the behavior of the increase.

THEOREM VI [Odoni, 19691

min (Vi+( 1 H) - Vi ()) > min (Vi ( IT) - Vi I ())

i+l - 1i i-lmax (V i+l ) - Vi(1)) Max (Vi(n) - V (lO)

Proof:

From (11)

ai (II) M ca. (I) ,k 1 ai()PB
Vi+l () = H(T P A ) + Z HPB u Vi ai()k

k=l IPB u

M a.i( n),k B i( ),k 

Vi ~(H) H( A1 ) + . HPB u V. PB
vi(n) < H(H P A k=l ai (H,

1k=l k i-J~PB i ' IHPB u

so V. (H) Vi (H) > Z HPB i u V. TIPB v HPBi+l1I 1 a. (),k i-l a c) -V k
k=l ~HPB u ' HPB u



138
and Min CV i+l ) - Vi(fl)) > Min (Vi (n) - Vi I(H))

The other statement is proved by replacing ai(T) by ai1() .

Q,E.D.

Because the V. 's are increasing, it is inconvenient to work

with them numerically. We note that ai(H) will still minimize the

right hand side member of (11) if V. (H) is translated by a constant.
1

This leads to the definition of v. and v. as follows.
1 1

vo (11I ) := O

M
Vi Flu) '= min kH ) +E u HpBC a,k '1'H(HPAI) m + M P ' k [-B ~ Pi=0,1.,...

a k=l 1 PB xku
(12)

vi+ (11) vi+1 (11) - vi+ 1 (el)

One checks by induction that vi+l () = Vi+l() -Vi+l( , and that

vi (el) = 0 for all i

v. i() can be interpreted as the relative cost of having a state

probability vector H at time T-i+l

Theorem VI can be rewritten as

Min (ivi(H) - vi (n1)) <mi (v () v. () v (e <)

H< max (vil() - vi (H))

<-max (v.(n) - v. 1 (r ))

We turn now to the discussion of the infinite T case. It is

natural to assume that there exists functions a and v , and a

constant g , such that

lim a. = a

lim v. = v
i-o 1
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iin vi (el) = g
i+~i

Then one would expect from (11) that the following relation holds:

g + v(H) = min H(PA + Z PB u v (13)
a k= B '

a()=M aB (H),k IPB
kc IT + TIBulv IiPB ,kJ (13)= H(IPA + k + L PB ]

The optimal strategy would be to use the policy a (Hi(Y[o,i))) at all

times i , and one expects lim T H(Y[ T)) = g

This is made precise in the following theorem.

THEOREM VII

If there exists a bounded real valued function v* , a function

a* and constants gl and g2 such that for H in . .

g + V* (I) < min H(LHPA) + M HPB 'ku v PBa k
-- ~ k=l 11PB a ;

aH*(A M a*(n),k [;a* (n),k 
HCTIPA ) + Z HPB u v, (14)

k=l a* (). 
k1LPB u

Then: g2 + v* (H)
Then:

-- the entropy Ha(Y[0,T)) of Y corresponding to using policy

a*fII i(Y i))) at all times i has the property that

1 1
gl < lim inf T Ha(Y[o T)) < lim sup T H (Y ,T)) 2 (15)

and 0T- ,)

and
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-- g lim inf T Hb (Y ,T ) ) (16)

where Hb(Y[O,T)) results from a causal strategy.

Proof:

Let Q := sup v(nH) - inf v(n) .

We define Do (I) := 0

a* () M (I),k
D i+l() := H(PA ) + Z HPB u

k=l

a* (TI), k
IIPB

Di HpB~. (n) ,k
IIPB u

From (7): H a(YO,T) = DT(O) .

We have the relation

D0(I ) < v*(ll) - inf v*(n)

and by induction on i and (13)

Di(IL) < i g2 + v*(iH) - inf v*(n) i=1,2,...

We can conclude that

DT(o ) Q

T g2 + T

thus proving that

lim sup T HY[OT) < g2

i.e. the right hand part of (15).

We also have the relation

v*(n) - sup v* (n) < V0(n)

and by induction on i and (14)
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i gl + vCH) - sup v,(H) < Vi(I) i=1,2,...

We can conclude that

i g - < Vi(n0) (17)

Now, if (16) is not true, there is a strategy such that

1
gl limT inf T Hb(Y[,T)) + 2E E>O

But there is a T > such that

1 rH(Yr1
T CYT)) < lim inf T (Yfo ,T) ) + e

For that T ,

T gl > Hb(Y[o,T)) + + 1

L VT(%0) + 2 + 1

which contradicts (17).

Thus C16) is true, and the left hand part of (15) follows.
Q.E.D.

This theorem asserts that if one can find functions v* a*

and constants gl and g2 , e.g. by using algorithm (12), one can bound

the optimal performance, and one can find a strategy performing within

g2 - gl , of the optimum. Theorem VI guarantees that g2 - gl does

not increase as one progresses in algorithm (12). Note that convergence

can be hastened in (12) by damping [Schweitzer, 1971], i.e. defining

vi+1 (n) := X(vi+ l(l) - i+1 (el)) + (l-X) vi(n) for some well chosen

X in CO,l] 

COROLLARY VII.l: If there is a bounded real valued function v , a

function ac and a real number g such that (13) is satisfied, the

strategy consisting of using policy ac(Hi(Y[oi))) at all times i
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is optimal, and limnH(Y T)) = g

T-+ '

Proof:

Make- g = g2 = g in Theorem VII.
Q.E.D.

Note that nothing in this corollary guarantees the existence of

an optimal strategy.

Note also that if a policy a(Hi) is used at all times i , the

Hi 's themselves form a stationary.Markov Process in the simplex of

R , and the probability distribution of Hi can be computed. Our

problem can be seen as a Markovian decision theory problem with obser-

vable state (i.e. Hi ) . These problems have been extensively studied

especially in the finite dimensional case (see [Kushner, 1971]).

Contrary to what is usually done, the proof of Theorem VII carefully

avoids the use of the stationary distribution of the Ii 's, which is1

not guaranteed to exist, because the hypotheses are not very restrict-

ive.

EXAMPLE: M = 2 N = 2 as before

Let II (p 1P2 )

Equation (12) takes the form, where we use v(p 1) in place of

v ((pl,p2)) :

g + VY(pl) = min H(pl+plP2 ) + (1P 1 )P 2 ) +(p+plP 2 ) lP

tHP1 i) + p 1p1 v.(l) + (l-plP 1) v, 1 P (P2 P1)

The first argument in min(.,.) corresponds to policy 1, the second

to policy 2.
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We have solved numerically this example for different values of

P1 by discretizing the unit simplex of IR (51 points) and using the

algorithm (12 ). Results appear in Table 5.2.

Table 5.2

g := lim H(Y ) corresponding to an optimal strategy
g· :liT [0,T)

M=2 N=2

pi g

.5 .60

.6 .58

.7 .51

.8 .41

.9 .25

.95' .14

In all cases, an optimal strategy turns out to be:

use policy 2 when Pl 1 .5

Note that, if P1 = .5 , this is exactly what Strategy V of Section C

does.

For P1 ¢ .5 this result shows that the strategy of always mini-

mizing the expected immediate cost is not optimal.

It would be pleasant to prove analytically that the strategy

described above is optimal. In the case P1
= P2 = .5 ,this would

involve finding a bounded function v, and g verifying

0 1 1 1
g + v(P 1) H (2i) + v(l1) + 1(2-P) 

for P < .5 , and a similar expression for P >' .5 . By symmetry one
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expects vcc(x) = vo(l-x) , so vc and g must satisfy

P l Pilg+V H1 1 1g (P H)+ = vi )2 ) + 1-+(2 V 1 2-p 

< .5

In this expressions, all the arguments of v. are between 0 and .5.

Once this function is found, one should prove that it satisfies (13).

Before closing this section, we make a brief historical review.

Our problem is essentially the problem of controlling a Partially

Observable Markov Process. We solve it by working in the simplex of

IRa , where the H. 's form a Markov Process if a policy ai(Hi) is

used at times i . The problem is thus "reduced" to a Markov decision

problem with observable state. The idea of doing this has become

classical starting with [Drake, 1962]. One can find more references in

Section 4 of [Platzman, 1976]. This last work is an attempt to control

Partially Observable Markov Processes without making the transformation

to the H space, and is also an excellent review of the state of the

art.

We should point out that the Partially Observable Markov

Processes studied in the literature are simpler than what is considered

here, because their immediate cost is only a function of the state of

the original process, and the policy. Thus the expected immediate cost

at time T-i if policy a is used has the form

Ci(Y[O,T-i)) nT-iY[O0,T-i))
· qc

for some column a-tuple qa

This compares with Ci(Y[OT i))= H(T)i(Y[0,T _i)) P A ) in our case.

However the nice properties of cortinuity and concavity of the functions
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Vi(g) in the simpler problem are conserved here. [Platzman, 1976]

gives sufficient conditions on the matrices PBe'k for an optimal

solution to exist in the simpler case; it seems that these conditions

would still be sufficient here. However, they are extremely cumbersome

to verify.

G. Suggestions for Future Work.

Although it is not of immediate practical use, it would be

worthwhile to prove that an optimal solution exists, that it verifies

(13), and that v is continuous and concave.

It would be especially interesting to find analytic expressions

for v and a , at least for simple cases. We conjecture that

v(ek ) = v(el) , k=l,2,..., , i.e. that the relative values of perfect

state knowledge are the same, regardless of the state.

One should try to prove or disprove the possibility that an a. (T-)

always belongs to the special class of policies considered in Theorem II.

Finally, we assumed until now that the Pi 's were known. One

should find robust strategies (e.g. a minintaxstrategy) that could be used

when the source statistics are. imperfectly known.
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4. Analysis of Practical Strategies

A. Notation and Organization

Throughout Sections 4 to 8 we will consider a model where source

i , i=1,2,.. M , emits messages in a Poisson manner with rate
M

Xi : /Eai,XT := Z i where every message contains a codeword
i=l

indicating its length and where the lengths of the messages from source

i have a probability distribution Bi . We assume that the message

lengths and interarrival times are independent random variables. We

will attempt to compute the expected message waiting time for different

strategies indicating the message origins.

In Section B we will quickly study the equivalent of strategy I

of Section 3.B: the concentrator transmits the messages in the order
es

they were received, and prefix/each of them with a codeword indicating

its: origin.

In Section 5 we analyse some variants of Strategy II of Section

3.B; periodically the concentrator sends a codeword indicating the

state of its buffer, then empties it. This will lead to a source coding

problem of independent interest that will be treated in Section 6.

Section 7 will see the computation of the average message

waiting time in cyclic strategies, where the concentrator serves all

messages from source i present in the buffer, then all messages from

source i+l , and so on. Finally we will discuss all results in

Section 8.
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B. Analysis of the First-In-First-Out Strategy

We send the messages in the order they were received, prefixing

a message from source i with a codeword of length ni . We must

also specify what to do when the line is idle. In that case we use

the same policy as in Section 2 of Chapter 4 , i.e. we insert a flag

of length v1 at the end of a busy period, then flags oflength v2

if no arrival occurred during the transmission of the previous flag.

Note that the flags and the codewords must be chosen jointly, so that

the probability of an insertion in a message will depend on the origin

of the message. We denote by pi the probability that the flag of

length v. causes an insertion in a message from source i

We will use the formulas developed in Chapter 4 to compute the

average message delay with the following identification:

b' = 0 Cwe include the message lengths in fl and f2)

f2 = message length + codeword length + possible insertion

due to the flag of length vl

thus

Ef 1 (b + n i ) + 1
2 XT i=l i i

Ef = TX E Xi(E(bi+ni) + Pi + 2piE(bi+ni))
T i=l

fl will be defined as in Section 4.4 with

C. = V. j=1,2.

dl = d2 = message length + codeword length + possible inser-

tion due to the flag of length v2
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X1 e 1 1
thus Ef1 X+ -X X i(Ebi + ni + Pi

T l T2 T i=l
l-e

M2 2 2

M z B( X.(Elb.+n+) 2 + 2 2piE(b.+n.i)T i2 1 1 1 i -l 

and one obtains2 from formula (1) of Chapter that the average messageT 2

1 -1 Z %i( E(bi+ni)i -+ 2pE(b+ni
X 1 1122 M

Ti + l Ti -TiT1eTe 2 V 2 2+1 1ii +M p l+2 PiEb+n)T i=l XT i=l1 2-e

Z X·(p~ - pj)
1 X

1 2

1 M 2

T i=l

-1 C4)
i=l T
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It is of interest to see how E(d) behaves in light and in

heavy traffic. In light traffic, the second term is negligible, so one

sees that the codewords should :ome from a Huffman code,so as to
M

minimize Z Xni.. V1 and V2 should be small, say V =V2=1 , or
i=l

V1=v2=2 , as we will discuss in Section 4.7. If all Xi 's are more

or less equal,

-~1
E(d) ETT X.i Ebi + log 2M + 1.5

and increases with log2M

In heavy traffic the second term will dominate, and it will be

of primary importance to maximize its denominator, thus again using a

Huffman code, and using a large Vl . If all Ai 's are more or less

equal, we can have stability if X.i(Ebi+log2M) < 1 . Thus if Ebi is

of the order of log2M or smaller, the maximum throughput of the system

will be much reduced by the presence of the codewords.

5. Strategies Indicating the Buffer State.

A. Introduction

We study in this section a class of strategies where periodically

the concentrator samplesthe buffer, makes known the state of the buffer

to the deconcentrator, then transmits all the messages that were present

in the buffer at the sampling time.

In addition to the notation introduced in Section 4.A, we call

the time intervals between two sampling points the scanning times, and

iwe denote them by si , i=1,2,.. We denote by m. the number of
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arrivals from source j during si , and by vt the (variable) length

of the codeword used to indicate the state of the buffer, i.e. the m±'s

j=1,2,..M at the end of si . Note that si is known to the receiver.

Thus an interesting problem is to find a code minimizing E(4 si).

This code will be very complicated, because it will jointly encode the
since

's. However,/the mj 's are conditionally independent given si

nothing will be lost by encoding separately, except some redundancy.

i
If we encode the m. separately, the problem is to find a minimum

average codeword length code for a Poisson random variable. This is

still challenging because the number of codewords will be infinite, so

that Huffman's procedure [Huffman, 1952] cannot be applied directly.

We solve this problem in Section 6.

Here our goal is to find the average message delay, and we pro-

ceed to do so.

B. Statistics of the Scanning Times

Because the arrivals are Poisson, the scanning times form a

Markov chain which is irreducible because,for any value of si, there

is a non zero probability of no arrivals during s i .

We have the relation

- x s . i i i '
iEle mi m1,m2M 2 Msi) = E(e_ ]mlm2 ... ,mMlsi)

M m.
in (B(x)) x > (5)

j=l J

Of course we want to average this, which is possible analytically only

if E(e Tml ...msi ) has a sufficiently simple form. In particular
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it is not possible if vT results from the algorithm of Section 6. We

-x r i i
will restrict ourselves to strategies where E(e Ml . Si)

has the form

M m.
I Vj(X) (VX lj(X)) 6)

j=l
M

We will also require that Z E V > 0 . Otherwise infinitely many
j=l 

scanning times could take place in no time. Without causing any
S.

difficulty we could add a factor (V*(x)) 1 in (6) , but this would

be fruitless. We will examine codes that have the above property after

finishing the analysis of the scanning times statistics.
the

We can now average (5 ) on m i ,/number of Poisson arrivals

during si , to obtain

XsM M
E i+l 1 Ljl vj( x) exp[si Xj(Vj(x)Bt(x)-l)

r -xs.] Re x > 0 (7)
Denoting E e i by S*(x) we have

j=1 j=:S*.(x) : = I V*.( Sx. j '(1 - Vlj(x) Bj*.x))J Re x > 0

M
Defining V*(x): = II V* (x)

0 j=l 0j

fO (x): = x

1 M
f (x): = Z Xj(l - Vj (x) B(x)) Re x > 0

j=l 

fi (x): = fl (fi- (x)) i > 1 Re x > 0

We can rewrite (1,) as
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St.(x) = j V*(fJ(x)) S*(fiCx)) Re x > O 152

j=0

M
We will show now that if PT:= X(Evlj + Eb) < 1 and if

j=1J

lim II V*(pT x) = 1 , then, for x real, S*(x) := lim S*(x) is
+O i-*o 1i

independent of S* and is continuous at 0 . Thus [Feller, 1966, p.

4311 the process s. is positive recurrent and S* i's given by

00

S*(x) = Tn V*(fJ(x)) Re x > 0
j=o

which is suitable for numerical computation. The proof is simple: by

convexity one has immediately that f (x) < jl x j[-(v (y)B* (y)) x1 M y=1
j=l dy lj jJ=

i i
PT x . Thus f (x) < PT x and lim f (x) = 0, so lim S*(f (x)) = 1

i+*O i--O

co

To be able to use the reference just mentioned we need lim II V*(fJ(x))
x+o j=l

= 1 , which is insured by lim E V*(pJx) = 1 , because V*(x) is
x+o j=o

decreasing and upperbounded by 1 for x > 0 . Note that this condition

and the continuity of S*(x) at 0 are guaranteed if E v° < X but

this is not necessary.

Note also that if T = 1 , fi(x) = x + o(x) ; thus if I V*(fj(x))
PT = 1 ' f0o

j=0

converges to a number different from 0 S* will depend on S* , where-
0

as if S*(x) = 0 x > 0 , S* is not the Lapalce-Stieltjes transform of

a probability distribution. At any rate, the process s. is not

positive recurrent if pT = 1

From (5), if the process is positive recurrent, S* satisfies the

relation
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M

S* (x) v* (x) s* X (1 V (x) B*(x))(8)0 j=1
and is a decreasing function of x , as is V*

0

Thus ( 8) implies that

M
x > Z X (1 - V* (x) B*(x)) x > 0

j=l l- j J

Dividing by x and taking the limit as x+o , we have that PT < 1 .

We can conclude that PT < 1 is a necessary condition for the

Si process to be positive recurrent. We are unable to prove that it

is sufficient; we still need a condition on V* . From now on we will
M 0o

assume that pT < 1 and Z E voj < . , and we will consider only
j= 0

the stationary system (i.e. S* = S*)
0

Taking the values at x=O of the derivatives of S* in (8 )

one finds
M
Z E v

j=l o jE s = j=l

1 - Z X.(E v1 . + Eb.)
j=l J

(9)
M 2 M

(Es) Z X E(vlj + b.) + Z var (v oj)
E S2 (Es)2 + ~~ j=l j=l 0

M 2
1- Z X (E vlj + Ebj)

j=j

C. Description of the Code

A coding scheme that satisfies ( 6) is to use a unary code to

i -x
encode each m.. In that case V* (x) = V i(x) = e Note that3 01~~~~~~~~~~~~~~~~~~
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it is not necessary to transmit all the codewords at the beginning of

the scanning time. We can trarmmit first the codeword specifying mi ,

then the m1 messages from source 1, etc. A more efficient form of

the same code is to prefix every message with a "1", and to transmit

at "O" when all messages from source 1 have been transmitted. This

has a favorable effect on the message waiting times.

We will consider a generalization of this strategy, using

flags. We transmit first all messages from source 1, then a flag of

length vl , then all messages from source 2, etc. Under the usual

assumptions (see Chapter 3)

V* (x) = exp(-xvj) Vj (x)= 1-2 (1 - ex)

j=1,2...M

D. The Waiting Time

If the service discipline for each source is first in first out,

the waiting time wi of a message arriving from source i u units
z

of time before the end of a scanning time of length/is equal to u

plus the sum of the lengths and insertions of the messages from sources

1,2,...i-1 that arrive during z , plus the sum of the lengths and

insertions of the messages from i that are already in the queue, plus

the flags 1,2,...i-1 plus a possible insertion. Thus

E(e eu,z) B exp h (l -V (x) B(x.

i-l
exp(-(z-u) i(l - V(x) B(X)). V* (x).V* (x) Re x > 0

1 1 1 j=l 0
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u is uniformly distributed between 0 and z , because the arrivals

are Poisson, so

-w xI i-i i-i
E(e |1z) = HI Vj(x) exp(-z r Xj ( - V (x) B(z)))

=1 j= (l 3

exp(-zXj(l J Vl jV ( exp(-z i (1 - Vi(x) B.(x))) - exp(-zx)
V· 1

z(x + Xi(V*j(x) B*(x) - 1))

Using the statistics of z developed in Appendix B one obtains:

i-l i
TI V (x) S* _z x(l - V* (x) B*(x)) --xwi)0jjlV jlx)

W(x): = E(e 1
Es(x + ti(V i(x) B*(x) - 1))

S*Ix + Z I (l - V*j(x) B$(x))

Differentiating one obtains the moment

i-l E .2 1 + pi i-l

Ew. j E s 2 jl + E vli Clo0)j=l j=l

where Pi: = Xi(EVli + Ebi)

One can find from this an expression for the average message waiting

time, Ew := 1 . Ewi . In general this expression is quite long
T i=l

to write and depends on the ordering of the sources. The only state-

ment that we are able to make about the ordering that minimizes the
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average waiting time is that if ELoj = EVoi and Pi = Pj one should

have -
> 2 > >2M ' or equivalently, + Eb EVll+ Eb < 2 + Eb2 

. < EvlM + EbM , as expected.

that
If Xi = X EVoi = Ev 0 and Pi = P and Evli=Evl, one checks /

Ew Es2
2 2E ( 1 + PT)

2 2
If in addition E(vlj + bj) 2 0 and var v0j = a , we can use (9)

and (10) to obtain

O MEv XT;TO +I o2/Es
0+ + +Ev (11)

Ew - 2-(v-l) +_ My T(Eb2 + 2Eb 2-(v-l)+ 2 -(v-l)

2 1 -XT(Eb + 2 () 1- T(Eb + 2

One sees that in light traffic the first two terms will dominate,

especially when M is large. In heavy traffic, the presence of the

protocol does not affect the capacity of the line if one chooses v

large enough.
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For finite source alphabets, the Huffman coding algorithm

[fluffman, 1952] yields a minimum expected codeword length code

satisfying the prefix condition. Although it cannot be applied

directly to countably infinite alphabets, its optimality can be

used to develop optimal codes for these sources, as [Golomb,1966]

and pallager and Van Voorhis, 1975] did in

the case of geometric probability distributions. We show that for

a large class of probability measures, including those whose tail

decreases faster than geometrically with a ratio equal to .618,

the coding problem can be reduced to a finite one, to which Huffman's

procedure is applicable. This result hinges on the observation

that if the tail of a probability measure decreases monotonically,

no matter how fast, the codeword lengths of an optimum code must

not increase faster than linearly, with slope 1, for otherwise

some prefixes will not be used. This leads to the coding procedure

developed in Theorem 1.

Theorem 1

Let p(.) be a probability measure on the set of nonnegative
Assume

integers. / there is a nonnegative integer m such that for all

j > m and i < j , the following hold:

p(i) > p(j) (la)

co

p(i) > Z p(k) (lb)
k=j+l
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Then a binary prefix condition code with minimum average codeword

length for the alphabet consisting of the nonnegative integers with

the above probabilities is obtained by the following procedure:

Consider the reduced alphabet with letters 0,1, ..., m+l whose

probabilities are

Pl(i) = p(i) i <m

m
pl(m+l) - 1 - z p(i)

i=O

Apply Huffman's coding procedure [!Iuffman,1952] to this reduced

alphabet. Denote by Cl(i) and 1 (i) respectively the codeword and

codeword length for letter i (Cjli) is a sequence of Zl(i) binary

symbols) 0 < i < m+l.

From there, construct the codewords C(i) for the original

alphabet by

C(i) = Cl(i) i < m
(2)

C(i) = {C1 (m+l),(i-m-l)*O, } i > m

where n*0O denotes a sequence of n O's.

Moreover, with this procedure the average codeword length T

for the original alphabet is given by
m

= E(i) + l(mm+) - m (z (i) - (m+l) + ml - i)p(i)
i=0

where ECi) = Z ip(i) < m+2
i=O

Proof

It is a simple matter to check that T is as given, and that)

because of hypothesis (lb)l E(i) is finite:
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E(i) = E E p(k) + E Z p(k)

i=O k=i+l i=m+l k=i+l

m X0 00
< Z E p(k) + E p(i-l)

i=0 k=i+l i=m+l

< m+2

The codewords C1(i) satisfy the prefix condition, so it is clear

that the codewords C(i) also do. We show now that this code has

minimum average length, using the same technique as Gallager and

Van Voorhis [3].

Let the letters 0,1 ..., m+r of the "r-reduced" alphabet have

probabilities:

Pr(i) = pCi) i < m+r

Pr (m+r) = E pCi)
i=m+r

The hypothesis ensures that, as long as r is greater than or equal

to 1, the smallest probabilities are Pr(m+r-l) and Pr(m+r).

Applying Huffman's procedure to the r-reduced alphabet, one verifies

that the codeword lengths of the first m+r letters in this

alphabet are the same as the lengths of the corresponding code-words

given in (2). So, denoting by r the average codeword length for

the r-reduced alphabet, 7- converges to T as r grows.r

Let C- be the minimum average codeword length for the original

alphabet, the minimum being taken over all uniquely decodable codes, so

that Z > R. We claim that r < Q because we can obtain a uniquely
-0 r- O

decodable code for the r-reduced alphabet by taking as codewords for

letters 0 to m+r-l the corresponding codewords in the optimum code,
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and choosing as codeword for letter m+r the shortest remaining code-

word in the optimum code. The average codeword length of the code so

obtained is not larger than Qo , and is not smaller than kr , since

Huffman's procedure yields an optimal code. We conclude that

kr< ZO , but Zr converges to 9 as r increases, so t < Qo'

Recalling that > -O , Z = Qo . Q.E.D.

The question then arises: how rapidly must p(.) decrease in

order to satisfy the hypothesis? A sufficient condition is that it

satisfies p(i) > p(i+l) + p(i+2) for large i ; a weaker condition

i 1
is that it decreases at least as fast as g where g = -2(5-1)=.61803

i
If p(i) = p(i+l) + p(i+2) , then p(i) = p(O) g , and hypothesis

(lb) is satisfied with equality for all i and j = i+l

In particular, the coding procedure developed in Theorem 1 is

optimum when the probability measure is Poisson:

i -X
p(i) = i=O,1,...

The only problem is to find the smallest suitable value for m (as

defined in Theorem 1). One checks easily that p(i) increases with

i to a maximum value of p(r) , where r = [X1-l , and then decreases

([xl denotes the snallest integer not smaller than x). If n is the

smallest positive integer such that p(n) < p(O) , the smallest we can

hope m to be is n-l (a smaller m will not satisfy hypothesis (la)).

Fortunately, this is so, and we can upperbound this m by [eXl - 1

as the following theorem will show. The size of the reduced alphabet

for which we must execute IIuffman's procedure and maintain a codeword

table is thus a reasonable function of X . In tableS.3we present X as a



161
upper limit of X upper limit of X

for that m for that m

0 1.0000 15 6.8004

1 1.4142 16 7.1770

2 1.8171 17 7.5531

3 2.2133 18 7.9289

4 2.6051 19 8..3043

5 2.9937 20 8.6794

6 3.3800 21 9.0542

7 3.7643 22 9.4287

8 4.1471 23 9.8030

9 4.5287 24 10.177

10 4.9092 25 10.550

11 5.2888 26 10.924

12 5.6676 27 11.298

13 6.0458 28 11.671

14 6.4234 29 12.044

Table 5.3

Relation between X and m for Poisson distributions
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function of m for small values of A . In particular, if X < 1 , then

m=O so that the optimum code is unary and its average codeword length

is equal to 1+X

Theorem 2

i -Xtie-
If p(i) = i!i=,,...

and m is the smallest nonnegative integer such that p(m+l) < p(O) ,

then

a) [2X1] - 2 < m < [eXl - 1

b) p(i) > Z p(j) i > m
j=i+l

and thus (1) is satisfied by this m

Proof

a) We will first upperbound m . By Stirling's inequality [Feller,

1968, p. 52]

i! > [!ji (2wi)½ > i=1,2,3...

If i > eX , then i! > Xi , so that p(O) > p(i) and thus m+l < f[e].

(A more careful analysis shows that, when X is large, m is approxi-

mately equal to eX - ½ log 2weX - 1 .)

To lowerbound m , we note that the logarithm function is

i+l = i
concave downward so that log -i log Z j > log j =

j=l j=l

1 1
- log i! If p(i) < p(O) , then i log i! > log X so that

log -i->2 log X , (3)

m+2and thus
and thus -m- > .

2 -
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b) j=i+l i! +l (i+l)(i+2) + 

2 
3

<p(i) i+1 2 
j i+ l) (i+2) +

= p(i) [ +

i1 i+l
From inequality (3), if p(i) <p(O) , - and < 

i~l -2 i+l

This yields the desired result.

Q.E.D.
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7. Analysis of Cyclic Strategies

A. Introduction

We give in Sections A to F a complete analysis of the average

message waiting time for two important cyclic queueing systems. No

explicit reference to the application of these systems to the encoding

of message origins is made before Section G.

Communication and computer systems in which a single server is

shared among several queues are common. For example, in a concentrator,

messages arriving from many sources must be sent on one output line. In

time-shared computer systems, a central computer must provide service

to several users. The queueing models presented here may be useful in

the analyses of these and similar problems.

Consider a node with M incoming communication links and one

outgoing link. Digital messages arriving on link i are queued in a

buffer i of infinite capacity. Periodically a "server" empties the

queues and transmits the messages on the outgoing link. We will study

the average waiting time in each queue under two service disciplines.
the

In the first, referred to as/"please wait" discipline, the server

serves only those messages already present in queue i when he arrives,

then switches to queue i+l , which takes a random time, and goes on in
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cycle, visiting each queue once in a cycle. In the second discipline, the

"exhaustive service" discipline, the server empties queue i completely-,

then spends a random time switching to i+l and continues the cycle. The

random time between queues can be viewed as being'used for transmission

of protocol.

In both cases the ith queue is characterized by a Poisson input

with parameter Xi messages per time unit and a service time with mean

~, time units per message and second moment 0i . The switching times to
i 1 2

queue i have mean v. time units and variance G . We assume all
1 1

interarrival, service and switching times to be independent.

Approximate studies have been made by [Leibowitz, 1961] and

[Kruskal, 1969]. [CooPer and Murray, 1969] and [Cooper, 1970] studied

both disciplines in the case of zero switching times. [Eisenberg, 1972]

considered a more general configuration for the:-server cycle and allowed

non zero switching times. He solved the problem of the exhaustive ser-

vice discipline . [Konheim,and Meister, 1974] solved the discrete-time

equivalent of the exhaustive service problem in the case where the queues

are identical. In addition, numerous authors referred to in [Eisenberg,

1972] studied the system of queues when M=2

This research was pursued before the publication of [Carsten et

al, 1977], which analyzes the "please wait" case by a method similar to

ours. The rate of convergence of the algorithm presented in the paper

just mentioned is not as claimed there, as will be shown in Section F.

Our solution differs from previous studies in the fact that we

use a direct approach, without trying to find the Laplace-Stieltjes

transforms of the waiting time distributions. We will show that we can

find all average waiting times by solving a single system of about M2
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linear equations and we present a practical method of doing so. We

remark that our results can be applied to the case of zero switching

times and have a very simple form when the queues are identical.

In many communication systems, like computer networks, beside

transmitting messages, one must also convey their origins or destinations.

This can significantly increase the incurred delay. We will show how

the previous queueing disciplines can be applied to reduce this over-

head.

In Section B we present some relations valid for both disciplines.

The "please-wait" case is treated in Section C and the "exhaustive-

service" discipline in Section D. In Section E we present the simple

modification that must be made to the previous results when the arrival

processes are compound Poisson processes. In Section F, we propose to

use an iterative algorithm to solve the system of equations and show

that it converges. The application described above will be treated in

Section G.

B Some Relations Valid for Both Disciplines

Results in this section are very general. They hold not only for

the two service disciplines we consider, but also for many others, e.g.

if one limits in some way the number of messages that can be served in

one scan, as long as the system of queues remains stable.

We consider the system as being in the stationary state and the

server as undergoing an alternance of switching periods of length ci

(-o < i < A) and service periods of length ti , the ith service period

being spent in queue i mod M. (See Fig.5.3) From there we define the
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th
i scanning time by

i-1
si:= tiM + Z (Ck + tk) + Ci

I i-M k=i-M+l k k 

i-1
(tk + Ck+l) (1)

k=i-M

and the ith intervisit time by

i-1
v.i:= Z I(ck+tk + tk) (2

k=i-M+l

- 5. - t.
s1 i-M

In the steady state, we have the following relations between the means

and variances of the service period lengths:

Etti] = E[ti mod M()

var Cti) = var (ti mod M)

and similarly for the switching, intervisit and scanning times. From

(3) the average of (1) is independent of i , and

E[si] = Ets]

We can find the value of E[s] by the following reasoning. Let T be

the time for n scanning times relative to queue M to take place.

in
Say T = sM + s2M + ... + snM . Denote by mj the number of messages

arriving in queue j during T , by mju t the number of messages

leaving queue j and by jl j2 ... outthe lengths of these
j 1 ' "j2 Jhlngh
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messages.

We then have

j -l j+~-) out 
M n m.

T i 1 '

n j=l n i=1 il ni 1

out

Zj 1 Z C. l i t j - Zr

j=l n =l n T in out i=

Let us see what happens as n goes to infinity. We show in Section

H that if

M v
p. <1 p. :=

the queueing system is stable and the process {siM, i=...-1,O,1}

1 nis ergodic; thus mgoes to Ensy ith pr one as nincreases. By the law of large numbers, Z c goes to
n i=l j+M~i-1)

out
rin m1

v 3 to \. and out . to - , all with probability
T out

3
out
m.

one. goes to 1 if the system is stable. So we obtain:
in

m.

M
E V.

ECs] =j=l I(4)

1- 2 p.
j=l

This expression is meaningful only if Z i < 1 , as expected.
i=l
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One finds similarly that

Evj]= (i- j mod M) E[s]

and

Eltj] =j mod M E[s]

M M
From now on we will assume Z Pi < 1 , Z v. > 0 and we will use

i=l i=l

the index j where we should use j mod M

C Waiting Times for the "Please Wait" Discipline

We proceed in three steps. First we will express the average

waiting times as functions of the moments of the scanning times. We

find then a relation between the moments of the scanning times and those

of the service period lengths. Finally we show that these are related

to the solution of a certain system of linear equations.

Suppose we observe a message entering queue i and we note

that it arrives u units of time before the end of a scanning time

(relative to i) of length z and that it finds n messages in front of

it. u , z and n are random variables. For a first in first out

service,and conditioned on n , u and z , the Laplace-Stieltjes trans-

form of the distribution of the waiting time of our message is

-w.x

E(e 1 in,u,z) = (BI (x))n eux

where BV is the Laplace-Stieltjes transform of the distribution

function of the service time of a message in queue i
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We will now remove the conditioning. Averaging on n , the

number of Poisson events in a period of length z-u , we obtain

-w.x I c ·0 (X z u ) )
n -X (z-u)

E(e 1 Cuz)) e e
n=O n! 

-i (Z-U) [Bix) -1] e-ux
= e

The arrival process being Poisson, u is uniformly distributed between

O and z so

-w.x kiZ [Bi (X)-l] x
E(e =1 jz) e - e

z x + XiB*(x) - Xi

If the scanning times relative to the ith queue have a distribution

function Prls.<x] = Si(x) with Laplace-Stieltjes transform S* , we

show in Appendix A that Pr[z<x] = fx y/g[s] dSi(y) (this would be a

well known result of renewal theory if the scanning times relative to

the ith queue were independent);from there

S( iXi(l-VBi(x))) - S*i(x)

W1 E[-s]x + X.Cx) - X

Differentiating one finds the average waiting time in queue i :

E[s 2] (1 + pi.) (. (+.pi ) var(s)i)

E[wi] = _ _ _ = Els] +

2 E[s] 2 2E[s]

(5)

Let us find now a relation between var(si) and var(ti) . If ni is

the (random) number of messages present in queue i when the service
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starts, ti is the sum of n. independent service times,1

so E[ti [ ni=n] =

2 1 2'l
Eti | ni=n ] n[Oi '2 +n 

ni in turn is the number of arrivals in queue i during s.

so E[n i lsi=s] = AiS

. 22Elni si=s] = Ai +X.s

and

Eftilsi=s] =pis (6)

var (ti) = Ai.O E[s] + p2 var (s (7)
1 1 1 var (s)(7

As announced we now reduce the problem of evaluating (S) to

solving a system of linear equations.

From (1) we have

var (si) i-i i-i
1 k (8)

E[s] k=i-M j=i-M

E[(ti + ci+l)(tj + Cj+l)] - E[ti + ci+ll Etj + Cj+l]
where R.ij := s]

9)

clearly R.. = R..13 Ji

Ri = Ri+kM,j+kM Clo)

but in general R.ij Rij+M1) J+
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The reason for dividing by E[s] in (8) appears before formula (16).

From (9) and then (7) and (8) we obtain

var (ti) var (ci+l)

R.ii= IEls] + E[s]

2 iZ i+l
11 1 Pi jk

j=i-M k=i-M +

If i > j Rij = Elti (tj + cj+)] - E[t E[tj + c j+ 1

E Et i ltk, {Ck+l} , k <i ](tj + cj+l)]

- Ef E[til{tk} , iCk+l , k<i]] E-tj + Cj+l ]

The outside expectations are on the tk ' s and ck+l 's , k < i

By (6) and (1)
i-i

R. - E[Pi Z (tk + Ck+l)(t j j+iR. k=i-M kjil

i-1

Pi kzM E[t k + Ck+l] E[tj + cj+ 1]k=i-M

i-1
=-p. 1 Rj. i > j (12)

1 k=i-MJ

If we define the set I as {(i,j) EZ2 : 1 < i < M , i-M+1 < j < i}

we can obtain a system of M linear equations in the M unknowns

R.. (i,j) E I by rewriting (11) and (12) as
1i]

2 lii-1 j-1 2
R. =2 2 M C:4-1

iji i[Z R.. +2 Z R k ] + 'E+1
1j=i J3 j=i-M+1 k=i-M jk (1

(13)
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j i-l (i,j) c I
R..ij i .C R + M jk )kj i . j (14)

k=i-M jk k=j+l1

and using relation (10) where necessary.We present in Section 6 a

practical way of solving this system.

From (5), (8) and (11) we obtain for the average waiting time in queue

E[s](l + p.) (1 + pi) C2
E[wi] = + 2 Ri - (Xii + (15)[Rii 11 (IS)2 2p2

i = 1,2, ... M

For example when M=2 we have the system

2 ..
11 1 R 1 1 + R + 2R10 ÷xo 211 1 I11 22 10 1 1 Es]

a 2

2 1cr
R22 = Rll + R22 + 2R213 + !202 +

R10 = P1 [R2 1 + R22 ]

R21 = P2 fR1 0 + R1ll

which yields

2 2

Rla .R.B= [s (l E[s +2+2

and11 -- P2) (l+P+P 2 + 1P 2 (1+ 1+P 2+2plP2 ))

and
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2 2
C .r a2 2 3 a'1

l+P 1 [L ( 1 1 -) (1 PlP2+ 2P2+ 2 P +2 P2 ) + (X20 2 +-) (1-PP 2 +2p)
E [s (l+pl) ... ..... .. .E[s] E[...... ... .... F s] ...

2 2 (l-p1-2)()+l+p1+p 2+lp 2(l+p1 +p2+21+2 2))

2 In the case of vanishing switching times so that E[s] and

-1 become null, the system (13), (14) remains valid and

Ewi] = 2 [Rii - xiRi] i = 1,...,M (16)

2Pi

In the important case where the queues are identical, or more
2 . 2

precisely if = p and xiDi + aT O = A = 1,2 ,...M we

find that for (i,j) C I

. .R..
R.. = ll i#j

ij 1-(M-l)p

and ...2
(1- (M-1)p) [tA+ E-T' ]

ii (l+p) (1-Mp) 2
M2

so that 2(1-Mp) l+p+X)+ 2

(l+() M 2
Etwin = Ets] 2 +2(1-Np) [AO + aE s] / i=1,2,..,M (17)

The vi's need not be equal for relation (17) to hold. We see that

the part of the delay due to the switching times is equal to

2 2
Els. (lsp) M N a Mv(l+p) +2

Es] 2 2(1-Mp) Es] 2(1-pM) + 2v

If the queues are not identical, the overhead is more difficult to

assess. However, if the va's are all zero, one deduces from formula

(15) that the existence of switching times causes an extra delay
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E[s] (lpi) th
2 1 for messages in the i queue. Other moments, like the

average queue lengths and the means and variances of the number of

customers served in one scan can easily be computed from the previous

results.

D. Waiting Time for the "Exhaustive Service" Discipline

The method used in this section is very similar to the one used

in Part C.

The customers present in queue i when ti starts have

arrived during vi . [Avi-Itzhak, Maxwell and Miller, 1965] and

[Eisenberg, 1972] found an expression for the average waiting time in

queue:

iOi ..Evi] XiO i EviJ .var (vi)
E[w.] i + - - + .vv)(18)

2 (1-Pi) + 2(1-i] 2 + 2E[v (18

If n customers are present in queue i when service starts we can

regard ti as composed of n independent "M/G/1 busy periods"

. 1. I ...Oi 
[Takacs, 1962] each with mean and second moment

(1-Pi)s

Using this observation and a reasoning similar to the one used in Part

C, one finds

Eft =Pi v (19)
Pi

%ii Pi 2
var Ct) E(s]+ 1 var Cv) (20)

Cl-Pi)1
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Let us now find the system of equations:

from (2)

var (vi) i-i i-1 02
- 1E
Es j=i-M+l k=i-m+l k + (21)

E[(ti.+ ci)(t j + cj)] - E[ti + ci] E[tj +cj]
where K..:= Ets]

1] Els]

and has the same properties as R.. in (9) (10).

Using (20), (21), (19) and (2)

2 2
pi cr. c.

1.._Pi- 1 i

K 0 + 2 2 K.k

Cl -pi)2 1 Ets] (- pi) j=i-M+l k=i-M+l J

(22)

and by (19) and (2)

K P .i i-.

'ij '-pi k=i-M+l j i > j 23)

Defining the set J by J = {(i,j) £ Z :1 < i < M , i-M+2 < j < i}

We obtain a system of M(M-1) linear equations in the iunknown K.

(i,j) e J by rewriting (22) and (23) as

~~~~~~~~i -1-------------------
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2

K.. = 2 [riOi + -i ]
_pi) 2 E[s]

2
+i M i-i j-1+ ,[ 2 K.. +2 2 K

(1-pi) 3 j=i-M+2 k=i-M+l
j l

j i-1
K.. E [~ Kjk + ~ K1K.] i > j (25)
Kij 1-Pi jk=i-M+l k=j+l

From (18), (21) and (22)

BEwi] = 2 + 2 2 2[iOi + -]
2 2p 2pi Els]

ii

i=l ... M

As in part C this solution remains valid when the switching times vanish.
2
y. 2

When Pi=p and i+ O +i we obtain for (i,j) £ J

PKii..

Kij =1-(M-l ) > 

2
(l-(M-l)p) [AX + CT

Kii (1-p) (1-Mp)

so that

M .2
E[wi] = E[s] ( + M [AO + ] (26)2 2(i-Mp F,)T

i = 1,2,..M

The difference between the result for the "please wait" discipline (18)
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and this one is PE[s] . This corresponds to the fact that the fraction

of messages arriving in a queue that the server is emptying, i.e. p

is delayed an extra scanning time in the "please wait" case.

E. Generalization to Compound Poisson Processes

To be complete, we investigate here the simple modifications

that must be brought to the previous theory when the arrival processes

are modeled as compound Poisson processes. This is sometimes a

realistic model when data sources emit messages in clusters separated by

th
long idle periods. In this case the ith queue is characterized by the

following statistics: clusters of messages arrive in a Poisson manner,

at a rate of Ai clusters per unit of time. A cluster is composed of

a random number of messages. Let the mean number and mean square number

of messages in a cluster be Ei and Si respectively. The message

lengths and switching times have the same means and variances as in

previous sections, and we assume all interarrival, service and switching

times, and the number of messages in a cluster, to be independent.

If we consider the set of messages present in a cluster as a

supermessage, with mean length and mean square length of Si/~i and

iOi + 12 (Fi-i) [Karlin and Taylor, 1975, p. 13] respectively, the
Pi

supermessages will arrive in a Poisson manner so that the analysis of

sections 2, 3 and 4 remains valid, as far as the scanning, intervisit

and service period lengths, and the waiting times of the supermessages

are concerned. All we need to do is replace 1 by - and 0 i by
'Pi 'Pi
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SiOi + !-c (Ci - ii) in all formulas.
Pi

The average waiting time of a message is equal to the average

waiting time of the corresponding supermessage, plus a term taking into

account the average time necessary to serve other messages in the same

cluster. The average extra delay suffered by the nth message served in

a cluster is equal to (n-l) 1 , so the average sum of the extra delays

suffered by all messages in a cluster contianing exactly n messages is

equal to n(n-1) Averaging on n and dividing by the average number
21pi

of messages in a cluster yields an average message extra delay of

2.i - .
1i 1

F. Properties of the Systems of Equations

In the first part of this section, we present alternate forms

for the systems of equations (13) (14) and (24) (25). These new systems

contain more unknowns but have a simpler structure, which is useful when

the time comes to solve them numerically. In the second part we show

that all systems considered in this paper can be solved by an efficient

iterative algorithm.

Using equation (12) we can rewrite (11) as

R.. = R. + + i+l C27)
Rii Pi j ij + XiOi +E-TI 27)

DI j=i-M'1 1 Els]

, 2Defining the set I' by I':= {(ij) g Z 1l < i < M , i-M < j < i} we



181

-can obtain a set of M(M+1.) equations in the unknowns R.. (i,j) £ I'
1)

by rewriting (12) and (27) as

j i-i a. C+l
R k=i-M = jk i ( + Z R + E[s] (28)

k=i-M k=j+l Rkj

(6ij =1 if i=j
0 otherwise)

and using relation (10) when necessary.

Similarly the equations (22) (23) can be rewritten as

Pi j i-i
K. i = Z K + Z K]
i l-pi k=i-m+l jk k=j+l K kj

2

+ 6ij (!pi)2 [Xii. + (29)

or 2
j i cT.

K.. =pi [ K + Z K + 6 1 i +
k=i-M+l jk k=j+l k j ij 1-p i

+- ]

for (i,j) such that 1 < i < M, i-M+l < j < i

(30)

The system (28) can be rewritten in matrix form as

R = AR + B (31)

where R is a column matrix formed by the Rij , (i,j) I' . A

straightforward computation of the solution of (31) can become quite

lengthy, A being a M(M+1) by M(M+l) matrix. Instead, the form of

th
equation (31) suggests an iterative procedure, wherein the n estimate

of R,R , is expressed in terms of the (n-l) th estimate by
n 1
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R = AR + Bn nl

By inspecting equation (28) one checks that each iteration requires

32 2
only M +M +M additions and M +M multiplications. The variables that

need to be stored are the elements of Rn and R+l ' together with the
2

Pi's and the sii + Ei s , i.e. a total of 2M(M+2) variables. A

variant to the algorithm exists (see the specialized texts, e.g. [Varga,

1962]) that reduces this number to M(M+3) . In either case this is far

from the M 4 that one could expect. It is known that R converges

to the solution R when the norms of all eigenvalues of A are less

than 1 . Fortunately, this is the case when the system of queues is

stable, as we shall see.

If Pi > 0 i=1,2 ... M, one can check that the matrix A is

an irreducible nonnegative matrix in the sense that all its elements

are nonnegative and it cannot be rewritten as

A 0
A = (with Al and A2 square)·- i AA1 A2

by any permutations of rows followed by the same permutations of

columns. Among the numerous properties of this type of matrix

[Gantmacher, 196O0 Ch. 13], we use the following: the eigenvalue of A

with the largest norm, a , is real, positive, and bounded as follows:

(A)kR (A)kR
min < a < max R32)
k - - k

for all non zero vectors R with elements > 0

We denote by (A)k and (R)k the kth row of A and R. Now, if we use

I~ .~k IC --- 3-~---C---C-··----k k- 
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in (32) a vector R with its elements Rij set equal to Pip j , we

find that

M
a= E P. < 1 (33)

i=l

If some Pi 's = 0 , one verifies easily that relation (33) still

'holds. A similar algorithm can be used to find the solution of the

systems (13) (14), (24) (25), (29) (30). One finds by the same method

the following relations about the dominant eigenvalue a

Systems Relations

M M 2

(13) (14) 1 > i p. > a Pi
i=l 1 ~ i=l

M M

M . i iPk . i k
i=l

(24) (25) 1 > Z Pi > max > a > minm
ii=l k 1-k - kkj

Pk#O

M M

M pi-p k Z i-Pk
iM =l1 i k

(29) 1 > Z Pi > max > a > minli=l 1 1 1- Pk
i=l1 k 1-k k k

Pk#O

M
(30) 1 > Z p. = 1

i=l 1
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G. Application to the Encoding of the Message Origins

In the light of the strategy used in Section 5 it is clear how

the cyclic strategies developed here can be used to indicate the message

origins. It suffices to queue the messages from origin i in a special

buffer that is emptied in a cyclic fashion, and to indicate the end of

the service with a flag of length vi . If the probability of insertion

is known, it is possible to apply the previous results to compute the

system performances.

In particular, if the queues are identical and the probability

of insertion equal to 2
- (v- ) one obtains from (17) and (26)

(v) Mv(l + (Eb + 2-(v-l))) XT(Eb2 + 2Eb 2-(v-) +
Ew = 2- ( v - l ) + +

2(i -
2(1 - MX(E + 2-( 2(1 -

2-v-1))

MX(Fb + 2-( ))

for the "please wait" discipline, and

_ (V-) XTGO + 2Eb 2- 1 + 2 -
Ew = 2-(v-1)+Mv(l - X(Eb + 2 (v-l)) +

2(1 MA(Eb + 2 -(v-l) 2(1 - MA(Eb + 2
-(v-1))

for the "exhaustive service." The firstterm takes into account the

possible insertion in frontof a message. Here b refers to the length

of a message, exclusive of any insertion.
two

We note that in light traffic the first/terrn will dominate in

both cases, whereas the presence of the protocol does not affect the

capacity of the link if long enough flags are used.
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H. Condition for Stability

We show here that if £ Pi < 1 , the queueing system is stable,and

the process {sjM+i, j=...,-l,0,l,...} formed by the lengths of the

scanning times relative to queue i is ergodic.

To keep the argument short, we will prove these results only in

the case where, with probability one, all service and switching times

take only a countable number of values, so that the state spaces of the

Markov Processes defined below are countable.

We define dk:= (tk , k+l , tk+i .. tk+M- Ck+M) The

dk 's form a non stationary Markov Process and by (6)

o0 \ 00 1

o 0 0 0 1

Eldk+lldk=d] + d

0 1

| O | Pk. Pk Pk k
Vk 0 \0 Q 0

for the "please wait" case. If the'bxhaustive service" discipline is

used, the expression is similar except that the first Ok in the

square matrix above is replaced by 0 , and the others by pk/(l-Pk)

(by (19)). In both cases we can write

EIdk+ll dk=d] = Bk + Ak d
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We consider now the process di+k. , k=...,-1,0,1,... for i

fixed. It forms a stationary Markov chain, all values of the form

(0 , ci+l +M , where the c* 's have non

zero probability, are accessible in one step from all states, so the

process is either recurrent or transient. One finds that

E di+(k+l)Mldi+kM = d = Ci + Ai+M_l Ai+M 2 ... Ai d

for some Ci . If the eigenvalue of Ai+M_- Ai+M-2 *.. Ai with the

largest norm, a , is less than one, for any initial conditions,the

mean of di+kM is uniformly bounded, so the process is positive

recurrent. Using the same technique as in Section F, specifically L
formula (32) with test vector (Pi, O i+l 0, 0-Pi+M-l' , one

checks that a is < , = , > 1 with Z p. 
j=l ]

If the di+k are ergodic, then, a fortiori, so are the

S Mi+kM 

d 'S.
i+kM
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8. Comparison of the Practical Coding Schemes

In the previous sections we have analysed four different

practical coding schemes. Which one is the best? If the input

statistics are known, the performances can be computed and the various

parameters optimized. Only then can one decide. It is however

possible to make some general statements, as we will do here. For the

sake of simplicity we assume that all sources have the same

statistics, that all flags have length v

and that the probability of insertion is 2 (v ) .

For convenience we reproduce here the formulas for the average

waiting time:

I. First In First Out: (formulac3 &-40f Section 4 )

Ew = v+ 2 -(v-l) En + (E(b+n)2 + 2 E(b+n) 2 -(v-l)+ 2
- (v-1))

2(1 - MX(E(b+n) + 2-(vl)))

We recall that n is of the order of log 2 M

II. Sampling: (formula 11 of Section 5 )

Ew v + 2-(v-l) + M

2 1 - MX(Eb + 2Eb 2( + 2

MX(Eb 2 + 2Eb 2 -(v-l) + 2-(v-1)

2(1 - MX(Eb + 2-(v-)))

III. Please Wait: (formula 5 of Section 7 )

Ew = 2
- (v-1) + Mv(l + X(Eb + 2- (v -1 ))

2(1 - Mx(Eb + 2-(-)))
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+ MX(Eb2 + 2Eb 2-(-l) + 2
-(v- 1))

2(1 - MA(Eb + 2
-(v -l ))

IV. Exhaustive Service: (formula 26 of Section 7 )

Ew = 2-(v-l) + Mv(l - X(Eb + 2- (v-l)

2(1 - MX(Eb + 2-(v-1)))

+ X (Eb2 + 2Eb 2-(v-l) + 2-(v-1)

2(1 - MX(Eb + 2-(v-1)))

One sees immediately that, when the different origins have the

same statistics, strategy III is better than II if M > 1 , but not as

good as strategy IV. The relative difference between III and IV is

generally small. If IM > 1 , the overhead in strategy II is double

the overheads in III and IV. If M=l , II is equivalent to III.

In light traffic, strategy I is better than IV, because

V M
- + log M < However, strategy IV performs better in heavy traffic;2 2 -

if v is large enough,the presence of the protocol does not diminish

the traffic that strategy IV can handle. All of this is consistent with

what was said in Section 3: in light traffic it is hardly possible to

reorder the messages, thus strategy I must be almost optimal. In

contrast, strategy IV works well when many messages from each origin are

served in every scan, because -he flag is used only once for each batch.

Note that as indicated in Chapter 3 , strategies II, III and IV would

work better if the flag lengths were allowed to vary from message to
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message in a batch, according to the probability (as computed by the

receiver) that the batch will terminate after the present message.

The observation that Strategy I works well in light traffic

and Strategy IV in heavy traffic suggests a hybrid scheme, similar to

what [Hayes, 1976] and [Capetanakis, 1977] use in another context.

The idea is to group the M origins in M' groups (M' < M), say

origins 1 and 2 in group 1, 3 and 4 in group 2, etc. Strategy IV (or

II or III) is used to differentiate between the groups, while prefixes

are used to indicate the origins inside of a group. In the example

just mentioned, messages from odd origins would be prefixed with a

"0", the others with a "f1". By varying the size of M' one obtains

a continuum of possibilities, ranging from M' = 1 (optimal in light

traffic) to M' = M (best in heavy traffic). The performances of

this scheme can be obtained by modifying in a trivial fashion the

results for Strategy IV (or II or III).

Another point that we will investigate is the relation between

the average message waiting time and the average number of protocol

bits per message, denoted by h , which is equal to 1/MA - Eb (formula

(1) of Section 2). To be able to compare these results with those of

Section 3 we will rather compute the relation between the average number

of protocol bits per message and the average number of messages waiting

for service, Em , which by Little's formula [Little, 1961] is given by

Em = M X Ew .

As we have noted earlier, some of the protocol bits convey

information about idle times, and some about message origins. In Section

3, all protocol bits transmit information about the origins. The
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comparison with Section 3 will still be meaningful in heavy traffic,

where the encoding of the origins uses up most of the protocol bits.

This is clear in the case of Strategy I.

There,

Em + MX2-(<-v) + MAEn
2 +

+ M(E(b+n)2 + 2E(b+n) 2
- + 2- ( V - ) )

2(h - En - 2 -(v-l))

or

h = En + 2-(v-i) + (E(b+n)2 +Ebn) 2-(v-l) + 2-(v-l))
Em2- v 2(v-l) En

The first term represents information about the origins. As Em

increases, so does the optimal v and h tends to En , as should be.

In the case of Strategy II, the third term in the formula for Ew

will dominate in heavy traffic. We will thus have

MV
Em -

h - 2 -(v-l)

h - 2-(v-) + M
Em

Optimizing on v and neglecting the integer constraint-, one finds that

the optimal v is given by v = log 2 (2 loge 2 Em/M) . This value of

v justifies the approximation of Ew by the third term in the formula

above. Using this value in the formula for h , one obtains

h Mlog (2e(log2 2) e

which has exactly the same form as what was found for Strategy II of

Section 3.D, except that a factor 2 is missing here. This is easy to

explain qualitatively: the only difference between the situations

in Section 3.0 and in this section is that the number of messages
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served in one scan is variable here, which causes a loss of efficiency

because log x is a convex function.
x

The cases of Strategies III and IV are similar, we treat IV only.

The second term in the expression for Ew will eventually dominate.

Neglecting the term 2-C v- 1) in the numerator, we obtain

- Mv(l - XEb)Em
2Ch - 2 - ( v)

or

h 2V-1) + M (1 - XEb)

The optimal v is given by

[4(log e 2) Em]

v = log2 - XEb M J

and the resulting h is equal to

Cl - XEb) M 4 e(loge 2) Em
h = 2 Em log 2 (1 - XEb) M

This is about twice as efficient as Strategy II, but less efficient

by a factor of two than the comparable strategy of Section 3.D.

We can-thus conclude that although in heavy traffic strategy

IV is the most efficient of the strategies we analyzed, it is probably far

from being optimal, · as indicated by the results of section 3. Nevertheless

enormous gains can be realized by using it in heavy traffic, as illustrated

in the following numerical example.

Fixed length messages arrive at a
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concentrator in a Poisson manner, at a rate X on each of M input

lines. We want to transmit on a noiseless binary, synchronous output

link not only the messages, but also their origins.

Usually this is done by prefixing messages with an address. In

some cases this scheme significantly increases the average delay

incurred by the messages, as a numerical example will show.

Let us use as time unit the interval necessary to transmit one

bit on the output link and..let us take M=16 , the length = 50 and
....

X = 1000 ' If we naively forget about the addresses, we obtain from the

formula of the mean waiting time in a M/D/1 queue:

A A (1)2
M I(-)

1 1 100
EIw] 2 (-Mp) 100

If we use a 4 bit address and prefix all messages with a "1" to

distinguish them from idle periods during which we transmit "101 's, the

length becomes 55 (a 10% overhead) but the delay becomes

E t ] 1000
E 2 16 16 55202

1 1000

(the term .5 takes into account the synchronous nature of the output

link). The presence of the addresses doubles the mean waiting time in

queue.

Another simple way of transmitting the origin of the messages is

to use the cyclic, exhaustive service discipline. We queue messages in

a buffer corresponding to their origin, prefix them with a "1" so that
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their length is now 51 bits, process every queue in turn and when it is

empty transmit a "0" . Our "switching time" has thus mean V = 1 and

variance o2 = 0 . From formula (26) of Section 7.

1 16 i1 (1 - 51/1000) 1 16 1/1000 (51) 2

Ejw] = _ 16 51 + = 154.Iw]T = 2 I 16 51 2 1 16 51
I 1

1000 1000

The improvement is due to the fact that this way of transmitting the

address is naturally adaptive. When many messages are waiting in queue,

few bits per message are needed to indicate the origin. Of course, this

strategy works well only when the traffic is heavy, but this is precisely

the time when it is worth reducing queueing delays. As the traffic

growth heavier, this scheme works better and better.

9. Suggestions for Future Work

We have shown in Section 8 that the "sampling" and "polling"

strategies behave in the same way in the fixed length queue and variable

length queue cases. Unfortunately we know from Section 3 that they are

rather inefficient. One would expect that the efficient strategies for

the fixed queue length case will also perform well in a variable length

queue environment. Their analysis is not easy, because they introduce

much memory in the queueing system, but should be attempted.

On a more abstract level, the state of a queue can be regarded

as forming a partially observable Markov process when the input process

is Poisson. One should be able to use the same method as in Section 3

and determine a strategy that minimizes the entropy of the output sequence,
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Appendix A

A. Theorem about Random Sums

We prove here a theorem that is used in Section 4 of Chapter 3.

Let (C , S , P) be a probability space. We recall that if

x : R + R is a measurable function, Elxl<o ,and if B is a a-

algebra included in S , E(xlB) is defined as a B-measurable

function such that 7B E(xIB) dP = 7B xdP for every B in B . One

can show [Doob, 1953, pp. 16 and 32] that E(xlB) exists, that any

two versions of it are equal almost everywhere, and that if z is

a B-measurable function with Elxzt<c , E(xz[B) = z E(xjB) almost

everywhere. These facts are used below.

Let m - be a measurable function m : -+ IN

bl'b2,... be a sequence of measurable functions

E(lbl < i IN'+ b. +IR
1

Bi be the smallest a-algebra for which bi is

measurable

Bi be the smallest a-algebra for which b

bi+2,... are measurable

B(i) be the smallest a-algebra for which

bl,b2,...,bi are measurable

then

Iv~ III Am IV -= = V I

VI' l V
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where

I E b. = a if P(m > i) > 0 i IN+

m is independent of the b. 's

II the bi 's are mutually independent

E b. = a if P(m > i) > 0 i e IN

{~ : mn() = i} £ B Ci )

i.e. m is a Markov time

III E bi = a if P(m > i) > 0 i e IN"

E(Im=i lB
i ) = E(Im=i) a.e.

i.e. the event m=i is independent of bi+l,bi+ 2,...

IV E b. = a if P(m > i) > 0 i C IN

E(Im<i lBi) = E(Im<i) a.e.

i.e. the event m<i is independent of bi

V E(bi Iai) = a E(Im>i)
1 m>i m>i

VI E i b = a E(m)

VI' i=

VI' E bil <

VI' is a technical condition to insure that E b i is

well defined.

Proof

I ==III this should be clear;

II =---III it is enough to show that

B ' Bi B E(Im=i) dP = I dP'M= B m=i
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or P({ : m(U) = i})P(B) = P({ : m(w)=i}nB)

This follows from the fact that B B i , and

that by II

{j : m(W) = i} c B )

and the bi 's are mutually independent.

I~r IV E(Im<i m Bi)

i-1
= Z E(Im= jlBs)
j=l

i-1
= Z E(Im=j) by III because B C BJ for j<i

j=l m1

E(Im<i )

I 3V E(bi Im>i)= E(E(b i Im>ilBi))

E(b i E(im>i B i
) )

= E b i E(Im>,i) by IV

=a E(Im>i) by IV

m>i

= E(b i Ir>i) by VI'

= Z a E(Imi) by V
i=l

= a E(m)

Note that we do not need to assume E(lbil)<c and

VI' if P(bi > O) = 1 i IN ++ , and if we allow
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the value .

If the b. 's are independent and identically distributed, and

some technical conditions are met, it is well known that I =VI,

while II=I=VI (also known as Wald's theorem) is proved at different

places in [Feller, 1966]. [Doob, 1953 ]proves that II==VI

The theorem given here is very simple, and its hypothesis

minimal; that IV=SVI is somewaht surprising, we give an example

illustrating it.

prob. m bl b2 b3

3/16 1 0 -1 2

1/16 1 16 7 2

1/16 2 0 -1 0

3/16 2 0 7 0

4/16 3 0 -1 0

4/16 3 0 -1 2

We have E b E b2 E b3 = 1

E m = 9/4

P(m < 21b 2 = -1) = ¼ = P(m < 2)

P(m < 31b 3 = 2 ) = ½ = P(m < 3)

Thus,surely enough,

E 3 1 + 1 3 4 4
E Z b 0 + 16 + -- -i) + 7 + -- (-1) + =1i 16 16 16 l 167 16 l 16

i= = 9/4 = Em Eb

= 9/4 = Em Ebl
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although

P(m=21b3=2) = 0 # P(m=2) = i ,

thus hypothesis III is not met.
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Appendix B

We prove here a theorem used in Sections 5 and 7 of Chapter 5.

The method is similar for both cases, we will give the details for Section

5 and sketch the proof for Section 7
M

We know that if PT < 1 and if z E Voj < o , the process
j=l

{si.mj} , i=0,1,... (j fixed) is Markovian and positive recurrent, thus

ergodic; E s. and E m. are finite. For x given, consider the random
1 J

variables

i. i
zi~sism~): = mi I

The zi process is also ergodic, because if a set A of sequences

i i{zi} is shift invariant, so is the set A': = {{si,m j} : {zi(si,mjI}e A}

A' has the same probability as A, i.e. 0 or 1.

Theorem

The limit, as the time increases, of the fraction f(t) of

messages from origin j that arrived in the queue during scanning times

of length less than or equal to x is almost surely equal to

E(s)1 J Y dS(y)

Proof: Denoting by o(t) the number of complete scanning times up to

time t , we have that
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at)-l i a Mi'
Z m. I Z M I

i=O j Is.<x j s.<
l-- < f(t) < 1--x

a(t (t) -lI
Z m. Z m.

i=O i=O

By the strong ergodic theorem, the ratio of the numerators over a(t)

goes with probability one to E m. IS <x = x y dS(y) while the ratio
i1-

of the denominator to a(t) goes with probability one to Xj Es

Q.E.D.

Note that this would be a well known result of renewal theory

if the scanning times were independent, and if the arrivals did not

interact with the lengths of the scanning times.

The proof for Section 7 goes along the same lines, the main

difference is that the process {mj,S i } must be replaced by a process

of larger size, similarly as we did for the di process in Section

to retain the Markov property.
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Appendix C

This appendix contains the listing of FORTRAN IV subroutines

MOHUFF and LSEQ1 which implement respectively Steps I and II of the algo-

rithm presented in Section 4.C of Chapter II.

MOHUFF is a straight translation in FORTRAN of the algorithm

given in Step I. It works best when the symbols are listed in order of

decreasing probabilities.

LSEQ1 computes the largest root of the equation A*(s) B*(-s) = 1,

using the Newton_ Raphson algorithm [Klerer and Korn, 1967, p. 2-59].

Because this algorithm works best with functions whose ratio of the second

derivative to the first derivative has small absolute value, the sub-

routine computes the largest root of the equation log A*(s) + log B*es)=O.

In lines 14 to 18 the program searclvsfor a starting point larger

than the largest root. Because the Laplace-Stieltjes transforms of pro-

bability.distributions are log-convex, the sequence of values produced by

the algorithm from this starting point will converge monotonely to the

largest root. The algorithm itself occupies lines 19 to 28.

Function evaluations take place in lines 33 to 66. Subroutine

INTTIM, which must be provided by the user, computes log A*(s) and

ddd- log A*(s) . If IND = 1, B*(s) is set equal to the lowerbound devel-

oped in Section 4.B of Chapter II, and the program computes s . If

smi
IND = 2, B*Cs) = pi. e , and the program computes the corresponding

i=l

s . When m. is constant, the same objective is attained more

efficiently by setting IND to 3.
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