
August, 1976 Report ESL-R-678

LOAD SHARING IN A COMPUTER-COMMUNICATION NETWORK

BY

Eberhard Frank Wunderlich

This report is an extension of a thesis supervised by
Professor John M. Wozencraft submitted to the Department of

Electrical Engineering and Computer Science in partial fulfillment

of the requirements for the degree of Master of Science, September,
1975. This work was supported by a Sloan Research Traineeship, a
Vinton Hayes Fellowship and the Advanced Research Projects Agency

under Contract N00014-75-C-1183.

Electronic Systems Laboratory
Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

-2-

ABSTRACT

This study investigates load sharing in a system of computers

interconnected by a store and forward communication network. The

problem is analyzed by modeling both computers and communication

channels as queues and evaluating system performance on the basis of

the steady state expected time to process computer jobs in the system.

Upper and lower bounds on this performance criteria are developed and

used to define regions of operation for a network using load sharing.

Two techniques for load sharing are then presented.

The first technique, called statistical load sharing, consists of

sending a fraction of the jobs arriving at overloaded computers to

underloaded computers by random sampling. This technique is analyzed

by a network of queues model. It is shown that the general formulation

of statistical load sharing is a nonlinear multicommodity flow problem

which can be solved by an efficient computer algorithm. The improvement

in system reliability due to the ability of load sharing to provide

emergency backup in case of computer failure is also studied.

The second technique for load sharing, a type of dynamic load

sharing, makes job assignments to computers on the basis of the computers

not busy at the time of assignment. This technique is analyzed by an

approximation to the hypercube queueing model.

-3-

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation for the assistance

of my thesis supervisor, Professor John M. Wozencraft. Numerous dis-

cussions with him contributed greatly to the completion of this work.

I would also like to acknowledge the contribution of Joe Defenderfer,

who is largely responsible for the general formulation of statistical

load sharing as a multicommodity flow problem and who implemented the

computer algorithm used to solve this problem.

-4-

TABLE OF CONTENTS

Page

Title Page 1

Abstract 2

Acknowledgements 3

Table of Contents 4

List of Figures 6

Chapter I Introduction 9

1.1 Description of Problem 9

1.2 Background 10

1.3 Summary of Results 14

Chapter II Mathematical Models for Computer-Communication

Networks and Bounds on System Performance 18

2.1 Model of a Computer 18

2.2 Model of a Store and Forward Communication

Channel 20

2.3 System Performance Measure 24

2.4 Lower Bounds on System Performance 25

2.5 Upper Bounds on System Performance 28

Chapter III Statistical Load Sharing 41

3.1 Network of Queues Model 41

3.2 Analysis of Fully Connected Networks with

Simple Load Imbalances 45

-5-

TABLE OF CONTENTS (Continued)

3.3. Formulation of the General Statistical Load

Sharing Problem 67

3.4 A Heuristic Load Sharing Algorithm for Ring Net-

works 77

3.5 The Effects of Failure in a Load Sharing System 81

Chapter IV Dynamic Load Sharing 86

4.1 Dynamic Load Sharing Using a High Capacity

Communication Network 86

4.2 Dynamic Load Sharing Using a Low Capacity

Communication Network 108

Chapter V Conclusion and Suggestions for Further Research 110

5.1 Conclusion 110

5.2 Suggestions for Further Research 111

Appendix A Queueing Formulas 114

A.1 The M/M/1 Queue 114

A.2 The M/M/N Queue 115

A.3 The M/Ek/N Queue 116

Appendix B Proof of the Applicability of the Network of Queues

Model to Statistical Load Sharing 117

List of Symbols 122

References 124

Distribution List 127

-6-

LIST OF FIGURES

Number Page

1.1 The Concept of Load Sharing 11

2.1 Sample Distribution of CPU Time per Computer Job . . . 21

2.2 Lower Bounds on System Performance for a Three

Computer System.. *. 26

2.3 Bounding Models 29

2.4 The Multiserver Upper Performance Bound 32

2.5 Upper Bounds on System Performance for a Three

Computer System 35

2.6 Upper Bounds on System Performance for Various

Size Systems 37

2.7 Regions of Load Sharing 39

3.1 Statistical Load Sharing . . .* . * 42

3.2 Probability of Sending a Job in a Three Computer

System with A1:A2:A3 = 2:1:1 . . . * . * 48

3.3 Expected Job Time in a Three Computer System with

A1:X2ti 3 = 2:1:1 * 49

3.4 Expected Job Time in a Three Computer System with

A1:A2:13 = 2:1:1 and 1/r C = 10/p C 56

3.5 Probability of Sending a Job in a Three Computer

System with A1:A2:A3 = 2:1:1 and 1/vrC = 10/ppC . * * . 57

3.6 Expected Job Time in a Three Computer System with

A1:A2:A3 = 4:1:1 59

3.7 Probability of Sending a Job in a Three Computer

System with A1:X2:A3 = 4:1:1 60

3.8 Expected Job Time in a Five Computer System with

A1:A2:A3:A 4:A = 2:1:1:1:1 61

-7-

LIST OF FIGURES (Continued)

Number Page

3.9 Probability of Sending A Job in a Five Computer

System with 1:2 :3:X4: 5 = 2:1:1:1:1 62

3.10 Expected Job Time in a Ten Computer System with
A :i = 2:1 i = 2,3. . .10 64

1 i

3.11 Probability of Sending a Job in a Ten Computer
System with X 1Xi = 2:1 i = 2,3 . .. 10 65

3.12 General Formulation of Statistical Load Sharing 68

3.13 A Ten Computer Load Sharing Example (AT = 7 jobs/unit
time) . 75

3.14 A Ten Computer Load Sharing Example (AT = 4.2 jobs/

unit time) 76

3.15 Flow Chart of a Heuristic Load Sharing Algorithm for
for Ring Networks 78

3.16 A Four Computer Load Sharing Example79

3.17 Expected Job Time for Four Computer Example 80

3.18 Expected Job Time in a Ten Computer System with Computer
Failure -. 83

3.19 Expected Job Time in a Four Computer System with Com-
munication Failure 85

4.1 First Approximation Model for Dynamic Load Sharing . . 89

4.2 First Approximation of Dynamic Load Sharing Performance

in a Three Computer System 91

4.3 Hypercube Approximation Model for Dynamic Load Sharing 94

4.4 Probability of Sending a Job Using Dynamic Load Shar-

ing in a Three Computer System 102

4.5 Expected Job Time Using Dynamic Load Sharing in a Three
Computer System 104

-8-

LIST OF FIGURES (Continued)

Number Page

4.6 Expected Job Time Using Dynamic Load Sharing in a

Five Computer System 105

4.7 Expected Job Time Using Dynamic Load Sharing in a

Ten Computer System 106

-9-

CHAPTER I INTRODUCTION

1.1 Description of the Problem

Computer-communication networks are a major area of technological

development today. The main reason for the current interest in computer-

communication networks is that such networks are able to provide system

capabilities that far surpass the capabilities of a single isolated

computer. Some of the system capabilities that combined communication

and computer systems can provide are:

1) Remote, interactive access to time-shared facilities.

2) Sharing of computer data bases.

3) Sharing of specialized computer resources.

4) Load sharing among computers.

5) Emergency backup in case of computer failure.

Ref. [341

The purpose of this study is to quantify some of the load sharing and

emergency backup benefits that a computer-communication network can

provide.

The specific problem studied is load sharing in a system of computers

interconnected by a store and forward communication network. The problem

is analyzed by modeling both computers and communication channels as

queues. This model is of interest because it is mathematically tractable.

It allows one to evaluate the performance of a system of computers in

terms of the steady state expected time to process a computer job,

which is the performance measure used in this study. The time to pro-

cess a computer job includes the computation time plus any communication

time the job may require if it is processed at a computer other than the

one at which it was submitted. This concept of load sharing is illus-

trated in Figure 1.1.

This study shows that one of the possible benefits of load sharing

is a lower expected time to process jobs in the system. A second benefit

of load sharing is increased system reliability due to the ability to

provide emergency backup. A more detailed summary of these results is

given after the following brief discussion of the use of store and for-

ward communication networks to interconnect computers and previous

studies of load sharing.

1.2 Background

This study considers store and forward (message switched) communi-

cation networks since the queueing model used to represent such networks

makes the load sharing problem mathematically tractable. Moreover, much

recent progress in the area of resource sharing among computers using

packet switched communications, a form of message switching in which long

messages are divided and sent as several packets, has been made by the

Advanced Research Projects Agency (ARPA) Network. The ARPA Network is

a distributed packet switched system which ties together many of the

1. A computer job is submitted to a busy or
overloaded computer. The decision is
made to process the job at Computer B.

Computer A

Queue

2. The computer program is
sent over a communication
channel to Computer B.

Communication
Channel Queue

3. The computer job
is processed at
Computer B.

4. The results of the computer
job are sent back to the point
or origin. Computer B

Queue

Figure 1.1 The Concept of Load Sharing. This figure shows
the sequence of events that occur when load sharing is used
in a computer system.

-12-

major research computer facilities in the United States. The goal of

the network is to make every local computer resource, both hardware and

software, available to any user in the network without degradation. In

attempting to meet this goal economically, it was found that a distributed

packet switched network was an attractive design choice, as has been dis-

cussed by Kahn [Ref. 151 and Roberts and Wessler [Ref. 30].

One of the reasons that packet switched communication networks are

appropriate for computer communication is that computer traffic tends

to be bursty in nature. [Refs. 7 and 13] Packet switching allows one

to make good use of communication facilities when the traffic handled is

of this type. This is because in a packet switched system, there is no

need to switch communication circuits between source and destination

before and after each burst of traffic. Instead, the communication

circuits in the network can be shared by messages with different desti-

nations without incurring circuit switching delays which tie up the

circuits while not allowing data to be transmitted over them. [Ref. 28]

The ARPA Network experience has brought about the serious consider-

ation of packet switched communication networks as the design choice for

future computer-communication networks. This supports the study of load

sharing using a store and forward communication network.

Load sharing in a network of computers has previously been studied

by Bowdon [Refs. 1 and 2]. The study considered a network of computer

centers in which jobs of different priority classes were processed. The

-13-

computers within each center were modeled as queues with finite length

buffers, making the system a system with loss. For this network of

computer centers, a load sharing algorithm to improve network through'

put was proposed. The dispatching algorithm was to balance the load

in the network so that, for each priority class, the expected waiting

times at all computers would be equal. A quantitative measure of the

improvement in system performance achieved by using the load sharing

algorithm was not given.

Roome and Torng [Ref. 31] have studied a type of dynamic load

sharing in a computer-communication network where jobs are assigned

to computers for processing on the basis of the expected time to pro-

cess them at the various computers in the system. They have shown by

way of simulation that improvements in expected job time in a distribut-

ed computer system can be achieved by this technique.

Another study of load sharing in a computer network has recently

been done by McGregor and Boorstyn [Ref. 27]. Their study developed a

model for load sharing operation in which both computers and communication

channels were modeled as queues. Computer jobs were dispatched to various

computers by random sampling and a modified gradient algorithm was used

to find the load sharing policy which minimized the expected job time

in the network. This problem formulation is identical to what is called

statistical load sharing in this report. The McGregor and Boorstyn study

was done prior to and independently of this report. There is substantial

overlap in the two studies and where such overlap occurs, the results

agree. This report studies some of the characteristics of statistical

-14-

load sharing in greater detail than the previous work and shows how one

can apply an existing efficient algorithm for solving multicommodity

flow problems directly to the load sharing problem.

McGregor also studied the problem of how to design optimum computer-

communication network topologies in which load sharing was to be used

[Ref. 26]. Heuristic algorithms were presented for the design of tree

topologies which minimize the weighted sum of network cost and expected

job time, and the design of connected topologies which maximize through-

put subject to a network cost constraint and a maximum expected job

time constraint.

1.3 Summary of Results

The queueing models used to represent computers and store and for-

ward communication channels, along with the validity of the modeling

assumptions, are discussed in Chapter 2. Upper and lower bounds on sys-

tem performance in terms of steady state expected job time are then

developed as follows. Upper bounds are developed by considering sys-

tems with an infinite capacity communication network and an instanta-

neous global controller. The performance of a system of computers with-

out intercommunication is used as a lower bound on performance. The upper

and lower bounds are then used to define two regions of load sharing op-

eration. The first region represents an improvement in expected job

time due to the correction of average load imbalances in the system.

Operation in this region can be achieved by a technique that is called

statistical load sharing, which is investigated in Chapter 3. The

second region of improvement is due to the benefits of using a large

system, rather than many small individual systems, when job assignments

are made on the basis of the system state at the time of the assignment.

Operation in this region is called dynamic load sharing, a limited

technique for which is investigated in Chapter 4.

Statistical load sharing improves system performance by sending

a fraction of the jobs that arrive at overloaded computers to under-

loaded computers by random sampling. The analysis of this load sharing

technique in Chapter 3 starts by considering a number of specific ex-

amples to show some of its main operating characteristics. It is shown

that the correction of load imbalances by statistical load sharing can

significantly improve the expected job time in the system at high loads.

Most importantly, load sharing using an adequate communication network

can increase the maximum possible system throughput with a load imbalance

in the system. After considering the specific examples, it is shown

that the general formulation of the statistical load sharing problem is

a nonlinear multicommodity flow problem that can be solved by an efficient

optimization algorithm. The algorithm has been implemented [Ref. 6] and

examples are given of its use.

The final topic investigated in Chapter 3 is load sharing operation

with failure in the system. It is shown that load sharing can increase

-16-

system reliability by making the system fail soft, i.e., if one computer

in the system fails, the system can continue to operate at reduced cap-

acity. Operation at this reduced capacity, however, can increase the

expected job time considerably and this degradation must be accounted for

in system design. It is also shown that the failure of a communication

link in a load sharing system can increase the expected job time sig-

nificantly.

Statistical load sharing can improve system performance only by

balancing average loads. It is possible to achieve performance gains

beyond those attainable by such load sharing by making job assignments

to computers dynamically on the basis of which computers are available

at the time of assignmentt rather than by random sampling. Chapter 4

presents a way of doing this by operating the system using a global con-

troller that assigns jobs on a first-come-first-serve basis. Jobs are

assigned to the computer at which they were submitted, if it is not

busy, or to the first available computer in the system according to a

preference list, if the computer of origin is busy. This load sharing

technique is analyzed by an approximation-to the hypercube queueing

model which represents such operation. It is shown that using a com-

tThe dynamic load sharing technique studied here differs from that
studied by Roome and Torng.

-17-

munication network of sufficient capaicty, dynamic load sharing can

provide gains in expected job time beyond those achievable by statis-

tical load sharing.

-18-

Chapter II MATHEMATICAL MODELS FOR COMPUTER-COMMUNICATION
NETWORKS AND BOUNDS ON SYSTEM PERFORMANCE

2.1 Model of a Computer

The model of a computer used in this study is the simplest model

of a computer operating in a batch processing mode. This model is the

single server queue with a Poisson input stream of jobs and a negative

exponential service time distribution (M/M/1 queue) [Ref. 201]. The

specific assumptions that are made when using this model are:

1. The input stream of jobs is a Poisson process with mean

arrival rate X.

2. The number of operations required per job is distributed

as a negative exponential with mean 1/k.

3. The computer performs R operations per unit time. This

means that the service time per job (not including wait-

ing time) is distributed as a negative exponential with
mean 1/LR.

4. Jobs are processed in a first-come-first served manner.
If the computer is busy when a job arrives, it is queued

in an infinite buffer.

The validity of these assumptions depends of course on the specific

system being studied, there being a wide range of computing systems in

use today. For example, the inputs to the computer could be batch pro-

grams read in through a card reader, inputs from an interactive terminal

or inputs from a remote sensor. The assumption of a Poisson input

stream may or may not hold for the system under consideration. For the

case of inputs from a teletypewriter-like terminal, Fuchs and Jackson

-19-

[Ref. 7] have shown that the interarrival time between user inputs often

fits a gamma distribution which can sometimes be approximated by an ex-

ponential distribution as required for the input stream to be Poisson.

The assumption of an exponential service time distribution is an

important one to examine. It is important because the performance

evaluations made in this study are based on an expected job time criteria,

and the service time distribution of a queue has a direct influence on

this parameter. The well known Pollaczek-Khintchine formula gives the

expected number of customers in a single server queueing system with

Poisson input and general service time distribution as: ~

2 A2a2

L = P +
2(1-p)

where p = X/L R

and a is the variance of the service time distribution. [Ref. 8]
s

By applying Little's formula [Ref. 24]

L = XW

it follows directly that the expected time to pass through the system,

W, depends on the mean and variance of the service time distribution.

In particular, if the variance of the actual service time distribution

in a system is greater than that of the exponential distributionthen

the M/M/l queueing model will give an expected job time which is less

-20-

than the actual expected job time. There is reason to believe that the

service time distributions of computers are sometimes high variance

distributions. Figure 2.1 shows an example of such service time (CPU

time) statistics. While the statistics shown have the general shape

of an exponential distribution, they have a very long tail which gives

then a high variance.

There are, however, also studies in which the exponential service

time assumption gave results that corresponded closely to actual sys-

tem statistics. An example of this is the study of the Michigan Terminal

System by Moore. [Ref. 29]

The assumption of an infinite buffer makes the system a no loss

system. This assumption is realistic if the system has a buffer of

such size that overload occurs with extremely small probability.

2.2 Model of a Store and Forward Communication Channel

The model used for a store and forward communication channel is

also an M/M/1 queue. As such, basically the same type of assumptions

are made as for the model of a computer. The discussions about the

Poisson input and infinite buffer assumptions carry over almost directly.

The service time assumptions need to be examined separately however. For

the communication channel it is assumed that

1. The length of messages in bits is distributed as a negative
exponential with mean 1/1p for programs (computer inputs)

and mean 1/pr for results (computer outputs).

Percentage of Total
Number of Jobs

80

60

9 .. o

I
~0 :_ . _. _:_.;._:. :_......._ .. . ,,.:__........ 1 ._..... [L;' 7 .. --'!. ['; ' . i .7 .i---t

.2 4 .6 .8 1.o

CPU Minutes

Figure 2.1 Sample Distribution of CPU Time per Computer Job.
Source of data: M.I.T. Information Processing Center, Job
Processing System Income Distribution Report, March 1975.._.__ ._._.~.__~~_~~-·-- --- ----------- - -- ----

-22-

2. The communication channel has a capacity of C bits per
unit time so that the time to transmit a message is
also distributed as a negative exponential with mean

1/PpC or 1/prC.

3. If a message passes through more than one communi-
cation channel, its length is chosen independently
at each channel through which it passes.

The queueing model of a store and forward communication channel

has been extensively applied to the analysis of the ARPA Network by

Kleinrock [Refs. 18 and 19]. In these studies the analytic queueing

model with its exponential service time and independence assumptions

gave an accurate representation of the basic performance characteristics

of the network. However, in order to match the analytic results more

closely to simulation results of network operation, it was found that

the expression for average delay through the network needed to be

modified to include delays other than those due to the finite time

required to transmit a message over a finite bandwidth channel and

those due to the resulting queueing. Delay terms to account for ac-

knowledgement traffic, propagation delays and message processing delays

were added to the analytic model. In this study those delay terms will

be assumed to be zero. The result is that the system being analyzed is

an idealized system in which communication delays result only from the

limited capacities of communication channels and the associated queue-

ing delays.

The independence assumption for messages that pass through more

-23-

than one communication channel is necessary to remove the statistical

dependence between the interarrival times and message lengths of adja-

cent messages in the network. With this dependence, an analytic solu-

tion to the queueing network problem does not exist. This independence

assumption has been studied in detail by Kleinrock [Ref. 17].

Another way in which the M/M/l queue model is an idealization of

actual implementations of message switched networks is that the model

assumes that each message is transmitted as one block of data. In

actual systems, long messages are often divided into packets, each of

which can have its own routing through the network. The queueing

theory for message delay when messages are divided into packets has

been studied by Rubin [Ref. 32]. This study of load sharing assumes

that messages are transmitted as one unit.

In modeling load sharing operation, it is important to examine the

relationship between l/}p and l/pr, the mean lengths of computer programs

and computer results, respectively. There is evidence that the mean

length of computer results is often an order of magnitude greater than

the mean length of input programs. [Ref. 13] It is, however, also

quite possible to think of systems where the input data and the output

data are more nearly equal. An example is a control computer used to

process many inputs to produce a single decision. In light of this,

both the case of a ten to one and the case of a one to one ration of

output to input will be investigated in the analysis that follows.

-24-

One final point that needs to be made is that the distribution of

the message lengths of programs, the number of operations they require

and the message length of results are assumed to be independent. While

there is no physical basis for this assumption, it is required to make

the problem mathematically manageable.

2.3 System Performance Measure

The measure used to evaluate the performance of a computer system

in this study is the steady state expected time to process a computer

job submitted to the system. The expression for this system expected

job time is

N
E[T] = V I T PT(Trenter at i) Pr(enter at i) dT

t-O i=l

N

- Pr(enter at i) w T PT (TIenter at i) dt
i=l T=O

N X
= i A E;Ti] (2.1)

.T
i=. T

The time E[T.] is the expected time to process a computer job

which enters the system at the i th computer. This expected time in-

cludes the computation time required by the job and, if the job is pro-

cessed by a computer other than the one to which it was submitted, it

also includes the communication time to send the program to the proces-

sing computer and the time to return the results to the point of origin.

-25-

The times E[Ti] are weighted by the probability that an incoming job

is submitted to the i th computer, which is the mean rate of jobs sub-

mitted to the i th computer (Ai) divided by the total input rate to

the system (AT). These terms are summed over all N computers in the

system to give a system expected job time.

The next two sections examine upper and lower bounds of system

performance based on expected job tome.

2.4 Lower Bounds on System Performance

A lower boundt on the performance of a system of computers using

load sharing is their performance without any load sharing. With

each computer modeled as an M/M/1 queue with mean service time 1/gR.

the expression for E[T i] is (c.f. Appendix A)

1
E[T.] = < .< R.

1 ZR. -- 1 1

Substituting into Equation 2.1 gives

1 N
E [T] A Xi=l R (2.2)

T i=1 1 1

Figure 2.2 shows several plots of Equation 2.2 for a system of three

Note that a lower bound on system performance is an upper bound on
expected job time and that an upper bound on system performance is a
lower bound on expected job time. Whenever the terms upper and lower
bound are used in this study, they refer to system performance.

-26-

a)

~4.Q)

43
a a,~~~~~~~~~~~~~~~~~~~~~~04

k a~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~0 a II 043 II - . -...... . .. a.

r,< ai, rl i tL. i

f--- - -- -4 C)· e- -< 4- - .

- .. i · - - - : o: 0
_ _i _ -- * o3i

EU) U__ · · - .~----0k mn·--- 1 c · ~~~~~~~ ~ -< '' - 4Ju

'< I-1 sI \

~0 0

......... B,.. ./E -o

rv~ 0 ~

~~~~~~~~~~~~~~~~.- - -!-- -- -"0 4.-) 'I'aa'/;T~- i I, 00'> 01 0 

4-)~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~/

04~~~~~~~~~~~~~~~~~H0 43 043 ~ -------- -- - I- - - I. 

CD- I9
a) -CI%4r4

x ------ i-- - - .. _ 

o 0 0 0 0o C

4 S 4 4 4

u, dr c3 <V~~~C4 



-27-

equal capacity computers. t The three curves shown in this graph are

lower bounds on performance for three different load balances in the

system. They illustrate the two basic characteristics of this lower

bound function which are 1) that the function has a pole at AM;

o < XM < R. where N is the number of computers in the system
i=l

and 2) that the more evenly the load is distributed in the system, the

better the lower bound on performance.

The pole in the lower bound function occurs when one of the

xi = kRi. This is because for a steady state to exist at each of the

computer queues, each A. must be less than ZR.. If A. > XR. then the

queue at computer i becomes infinite and so does the waiting time,

causing the system expected job time to be infinite as well. Figure 2.2

shows how a load imbalance can thus severely degrade system performance.

In the case of a load imbalance where the ration Ai:A2:X3 is 5:1:1, the

system pole occurs when Al = 1. The total system load at this point is

only AT = 1.4. As will be analyzed in the next chapter, the correction

of such degradation of system performance due to imblanaced loads is

one of the main benefits of using load sharing in a computer-communication

network.

For the case of equal capacity computers, the best lower bound on

performance is achieved when the computers are equally loaded. In

general, the best lower bound can be found by minimizing the expression

tIn this figure, 1/ZR is taken to be one unit of time. This convention
will be followed throughout this study whenever all computers in the
system have the same processing rate.



-28-

for expected job time (Equation 2.2) with respect to X. subject to the

N

constraint i = XT by using Lagrange multipliers.
i T

2.5 Upper Bounds on System Performance

Upper bounds on system performance for a system of computers can

be obtained by using bounding models which represent the best possible

use of the computing resources available. With each computer resource

modeled as a single server with an exponential service time distribution

of mean 1/ZRi, there are two possible upper bound models, depending on

the type of system operation one allows. The first bounding model is

a multiserver queue with N servers, each with an exponential service

time distribution of mean 1/ZR.. The second bounding model is a single

server queue with an exponential service time distribution of mean
N

1/ i ZR.. These two upper bound models, along with the lower bound
i=l

model, are shown schematically in Figure 2.3.

The multiserver queue bounding model assumes that all jobs arriv-

ing in the system are served in a first-come-first-served manner. Their

service starts instantaneously using the largest capacity computer

available in the system. Each job is processes by only one computer

at a time, but whenever a job leaves the system, the remaining jobs are

reassigned so that the largest capacity computers are always the ones

being used. If all computers are busy, jobs are queued up in order

and the service of each job in turn starts as soon as a computer becomes



-29-

AN !-ii "

Lower Bound Model: N Independent M/M/1 Queues.

TUpper Bound Model Assuming No Parallel Processing: M/M/N Queue.

Upper Bound Model Assuming No Parallel Processing: M/M/N Queue.

N

Upper Bound Model Assuming Parallel Processing:
M/M/1 Queue With Mean Service Time 1/NZR

Figure 2.3 Bounding Models



-30-

available for it. This model is an upper bound model in that it assumes

there exists an infinite capacity (zero delay) communication network

for sending programs and results from one computer to another if a job

is processed by a computer other than the one to which it was submitted.

It also assumes that there is a global controller in the system which

instantaneously makes job assignments.

The single server upper bound model also assumes an infinite

capacity communication network and an instantaneous global controller.

The difference in operation between it and the multiserver bounding

model is that the single server runs only one job at a time. In order

for a distributed computer system to operate like this single server,

each computer job that enters the system must be divided into N parts

which are processes in parallel using all N computers in the system at

the same time. In this way each job would be run at a rate defined by

the combined capacity of the computers in the system.

The expected time to pass through either of the upper bound models

is the same performance measure as system expected job time. If all

computers have the same capacity, the expected time to pass through the

multiserver queue is given by

Po(XT/R)N (XT/NLR)
E[T] = 2 + 1/2R

N!(1 - XT/NXR) kT



-31-

N-1 (T/ Q( R )( 1 -1
where P = + o n N! 1- XT/NR

< X < N

as given in Appendix A. The expected time to pass through the single

server queue is

N
E(T] = o < X T < i £R.

i=l

If one is interested in a network of computers of unequal capacity,

the expected job time for the multiserver queue bounding model can be

derived as follows. Since the arrival stream of jobs is Poisson, all

job lengths are exponentially distributed and jobs are always processed

on the largest capacity computer available, the system can be represent-

ed by a Markovian State diagram [Ref. 10] as shown in Figure 2.4. The

states for this system are the number of customers in the system. The

stochastic differential equations which describe the dynamics of these

states are

aPo(t) = P(t) + 1 Pl(t)

at



-32-

©/

_1/ ZR 11//R 2

1/QRL< 1 R2 l c1/kR3 1/kR3

a.) A 3 Computer Example

XT i T T

1 R1 2 R1 + MR2 El + 3 1R1 + RR2 +2 R3

b.) The Corresponding State Transition Rate

Diagram

Figure 2.4 The Multiserver Upper Performance

Bound for a System of Computers With Unequal Capacities



-33-

aPl(t) = X Po (t) - P P (t) + P2 P (t)
at T 0

aP2(t)

at T n-(t ) (X+P2) P2(t) + V3 P3( t )

n = kT Pn-1(t) - (X+P3) Pn (t ) + V3 Pn+l (t )

at

n = 3, 4, 5 ...

where P (t) = P [system in state n at time t] and p1 = R;
n r

"2 =R + R2 ; p3 = kR! + QR2 +mR3'

Since a steady state result is desired, the above equations are

DPn( t)

solved with t - 0 for all n, in order to obtain recursive

relationships between the steady state occupancy probabilities P n. Us-

ing these recursive relationships it is possible to write all P as a
n

function of P and one can then apply the requirement that

co

Z· P = 1
n

n=-o

in order to solve for P . Once one has solved for all P in this manner,
o n

the expected time to pass through the queue (W) can be found by first

calculating the expected number of jobs (L) in the system



-34-

L = n P
n=o

and then applying Little's formula L = XTW. [Ref. 24)

Figure 2.5 shows a plot of the two upper bounds for a system of

three equal capacity computers along with the best lower bound on

system performance. Note that the expected job time for the multi-

server queue at AT = 0 is 1/kR, the same as for an independently

operating system of computers. For the single server queue, however,

the expected job time at XT = 0 is 1/NkR. The single server model

gives this better performance because whenever any job enters the sys-

tem, all the computer resources are used to process it. In the multi-

server model, if there are less than N jobs in the system, part of the

computer resources are not being used. In a study of resource sharing,

Kleinrock [Ref. 21] has shown that if it is possible to combine all sys-

tem resources into a single server, this gives the best performance

achievable with those resources. An important question to consider is

if the combining of the computer resources of separate computers, as

envisioned by the single server queue bounding model, is feasible. As

stated before, in order for a distributed computer system to operate

as efficiently as a single server queue, programs must be divided into

N parts which can be processed in parallel by separate computers. Be-

cause of the many difficulties in achieving this sort of system operation,



-35-
r-

>1

0 a).~go 4-. )

4 0 r -o 0
~ -0 - 0

a4 E i4 _11 U)mm . 0)

o ' ' ' ! i~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-- ---- 4--CN~~~~C

_ _ __ __ _ __ .... )3~~~~~~~~~~~~~~. o N~~~~~~. 

c:.~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~~~~Q ,.rd7 o - ,U)- U) Y4

ro 0 Ena~~4 0ara

OH.-~~ q)-

II L iJ~ II:La

4-H . . .. I- ra ',< ... I ...
4JU~~~~iI ~~t .......

H......... .03 ......................- --......... ::

0 0 0 0 0

CN) ji HoC d

r-4 -

M 0~~~~~~ 

C) C)~~~~~~~~~~~~~m PQ

m ~~~~~~~~~~C -



-36-

the upper bound on system performance will be taken to be the perfor-

mance of the multiserver queue model.

It is of interest to examine this upper bound on performance as

a function of system size. Figure 2.6 illustrates the upper bound for

various size computer systems consisting of equal capacity computers.

The bound is plotted as a function of system utilization factor,

p = AX/NkR. Also plotted is the best lower bound for all of the sys-

tems. The best lower bound, plotted as a function of system utilization

factor, does not vary with system size.

In Figure 2.6 it can be seen that the upper bound improves with sys-

tem size. The amount of improvement is greatest in going from small sys-

tems to medium size systems and decreases as a function of system size.

As an example, if one considers going from a system of two computers

operating at a utilization factor of 0.7 to a system of ten computers

operating at a utilization factor of 0.7, the gain in the bound on ex-

pected job time is approximately 0.8/ZR. In going from a system of ten

computers to an infinitely large system, also operating at a utilization

factor of 0.7, the gain in the bound on expected job time is less than

0.1/ZR. This suggests that, unless the system is to be operated at an

extremely high utilization factor, there may be little to be gained in

terms of expected job time by increasing the size of the system beyond

about ten to twenty computers. An important point to remember, however,

is that the multiserver bounding model assumes a Poisson input stream of



-37-

,) 4-

r ,

C)o ;

O· ,. . . U]m0 1 e4 E\r
a )a

a)

04

IZ· .)

i n N.. . . 0 ...... : ~ ~ ~ 4-: \ lC 4

! ---

(1) 4 ' ';t .i ............. ........ \ . . . . . . . .4 r 
ot * , ___ ____ _ _ '4 0 44

4J-Hn~~~~ i '' ' ' '' ' " - ! \ . _ r (1

4ii~~~~~~~~~~~~ 4i0 *4040 S 0 0 

o o o o o o Oo O "O

-H
Q) o E~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~T



-38-

jobs. This means that the Poisson input streams of the individual

computers which are combined into the input stream of the upper bound

model must be independent of each other. If this does not hold in the

system under consideration, the upper bound on system performance may

not be as good as predicted by the multiserver queue model. In this

study the required independence is assumed to exist.

With the upper and lower bounds on system performance that have

been developed, one can identify the benefits in terms of expected job

time that can possible be provided by load sharing in a computer-com-

munication network. There are two general regions of improvement as

depicted in Figure 2.7. The first region of improvement, region A, is

the region between the lower bound on performance for an unbalanced load

system and the lower bound for a balanced load system. Given an initial-

ly unbalanced load, operation in region A can be achieved by simply send-

ing a fraction of the jobs arriving at the overloaded computers to the

under loaded computers in the system. Which jobs to send can be deter-

mined by random sampling. This technique for load sharing will be called

statistical load sharing. It is analyzed in detail in Chapter 3.

The second region of load sharing operation, region B, is the region

between the best lower bound and the upper bound. Starting with a load

balanced system of computers, it is necessary in order to achieve op-

eration in this region that job assignment to computers be on the basis

of the system state, i.e. which computers are available at the time of



-39-

0

ci)

' - - t'H~--. ~~-,-- --.-----.----- :--- . .... ~ ........... .. ....... .t.. ... ... . r

__ -_ -_-_-_-- -- f - - 1 - ._

___ t t, ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ....... .... ............... -- t-

/-- .. b .EC f) 04 b/ - -- --O --- I +---m -t- -o

. .. 0 0 0 0 0 

u< ib .i ~

O . ... 1--......... 4., . . , 

.04:: < _ _ T a_ __ -....... I .--. t * :_ .,.............. . ..... .... ..... .- ...................... _ .......... ! t o r '--: --- ---- - - . . ........... ... ..-- -7 - \ . jC , O ' 

I,

U) er;N r -4d ii~~~~iQ) CI (d -·I· i ----- E m o ~ I:
~~c~~~· ~ ~ ~ cu :::1: t-~~~~~~~~~~~~~.~~~.... i ... O~~~~~~~~~~~~~ fl1.



-40-

the assignment. A random decision rule such as statistical load shar-

ing cannot improve system performance beyond the best lower bound.

The achievement of system operation in region B will be called dynamic

load sharing. A limited technique for dynamic load sharing will be

analyzed in Chapter 4.



-41-

CHAPTER III STATISTICAL LOAD SHARING

3.1 Network of Queues Model

In Chapter 2 it was shown that for a system of independently

operating computers, system performance in terms of expected job time

improves as the total system load is more evenly distributed among

the computers. Therefore, if a system of computers is operating in an

unbalanced load situation, there is the possibility of improving sys-

tem performance by simply sending a fraction of the jobs that arrive

at overloaded computers to underloaded computers, by random sampling,

in order to balance the load. This technique of load sharing in a com-

puter-communication network, called statistical load sharing, is ex-

amined in this chapter.

A typical example of statistical load sharing operation is shown

in Figure 3.1. In this case, Computer 1 is loaded more heavily than

Computers 2 and 3 and therefore a fraction of the jobs which arrive at

Computer 1, 20, are sent to be processed at the underloaded computers.

In order to evaluate the expected job time in this example, one must be

able to determine the steady state expected time to pass through each

of the computer and communication queues. This can be done by applying

the following result for a network of queues due to Jackson [Ref. 12].

The result derived by Jackson applies to a network of M queues in

which



-42-

Communication
Channel

Computer 2

1 -PPC %2 Leave System

1/- rC

(1-2B) Computer 1
1P PC e AX' Leave System

Computer 3

Random Sampling 1/kR
To Determine
Destination of Job.

3

1 2CFigure 3v1 Statistical Load Sharing. In this example it
is assumed S1 > 2 3



-43-

1. Customers from outside the system arrive at each
queue as a Poisson stream with mean rate X .

m

2. Once served at queue m, a customer goes (instan-
taneously) to queue k (k=1,2,3. . . M) with pro-
bability Okm. With probability

M

1 - Y 0km the customer leaves the system.
k=l

3. Customers arriving at queue m (from inside or
outside the system) are served in a first-come-
first-served manner. The service time at each
queue is distributed as a negative exponential
with mean 1/im.t

The network of computer and communication queues meets all of these

requirements as discussed in Appendix B.tt

For a network of queues as described above, let r (M=1,2,. .. M)

be the average arrival rate of customers at stage m from inside and out-

side the system. Then in steady state, the following relations must

hold

M
r = + k k (m-1,2,3 . . M)
m m k=l mk K

Now let K be the number of customers waiting and in service at
m

queue m. The state of the system can then be defined as the vector

tEach queue can be a multiserver queue. In this analysis, however, it
is assumed that each queue is a single server.

Ittf computer jobs must pass through more than one communication channel
in succession, the independence assumption for communication service times
discussed in Chapter 2 must be used.



-44-

(K1,K2,. . . KM) and the following theorem due to Jackson holds.

THEOREM. Define PK (m=l,2,. . . M, K=0,1,2,. . . )
as the steady state probability of there being K
customers in a M/M/1 queue with mean input rate r
and mean service time 1/ m11 i.e.

m

PK = (1 -rm/U m ) ( rm / um ) KK m mm

Then the steady state distribution of the state of the above defined

system is given by the products

P(K1'K2' . i) = PK K . . . PM
K1 K2' KM

provided rm < pm for m = 1,2,. . . M.

This theorem states that in steady state, the system behaves as

if the queues in the network were independent with inputs rates r .

This result allows one to analyze the network of queues model for

statistical load sharing by merely determining the mean input rates to

each of the computer and communication queues.

In the next section, this approach is used to examine statistical

load sharing in a fully connected symmetrical communication network

with simple load imbalances. This is followed by a general formulation

of the problem that applies to arbitrary communication topologies and

load imbalances.



-45-

3.2 Analysis of Fully Connected Networks with Simple Load Imbalances

In this section, statistical load sharing in a fully connected

symmetrical computer communication network with one computer overloaded

and all others equally underloaded will be studied. Analysis of this

special case allows one to gain insight into the basic operating

characteristics of statistical load sharing. The approach used in

this section is to start by considering a three computer system with

a given load imbalance and analyzing it in detail. The operating

characteristics observed will then be analyzed as a function of system

load imbalance and as a function of system size.

A Three Computer Example

As a first example, consider a system of three computers in which

Computer 1 is loaded twice as heavily as each of the other two computers

(X1 :X2:X 3 2:1:1). The system is assumed to be symmetrical, i.e. all

mean computer service times are equal as are all communication channel

capacities. This results in basically the same situation as shown in

Figure 3.1. In order to achieve statistical load sharing, some jobs

arriving at Computer 1 are sent to Computers 2 and 3 for processing.

Jobs are sent to Computer 2 with probability B and also to Computer 3

with probability a. With probability 1-2 , jobs arriving at Computer 1

are processed there.

Using this load sharing strategy, the expression for system ex-

pected job time is



-46-

N

E[T] = i (.i/AT) E[Ti]
i=l

--E 2 3
= 7 E[T1] + - E [T2 ] + E[T 3]

T T T

= +[ (1 20) (R - (1- 2a) X )
T

· a+ T1iC -a 1 2R - ( +ax1) lC - )
2/ 1 1 1-a c - 3x

+ T LR - (A2 + a i+ XT L R - ( + 

(3.1)

The expressions for the E[Ti] are obtained by determining through

which computer and communication queues a job must pass. Since in

steady state each of these queues behave as if they were independent,

the formula for the expected time to pass through an M/M/1 queue can

be applied directly.

In this example, the mean average length of programs and results

will be assumed to be equal 1 = = C By also noting
that equals , Equation 3.1 can 

that A2 equals A , Equation 3.1 can be simplified to
3



-47-

E (T] T (1- 2) ZR -(1 - 2(3) 1 )

+,C ZR- (A2 + a1j

T 2__ - (A2 + ax 1) (3.2)

For a given load level in the system, the 3 used for load sharing

is the 1 which minimizes Equation 3.2. Figure 3.2 shows a graph of

this value of B for several different mean communication channel service

times. A graph of the associated values of system expected job time is

shown in Figure 3.3. While the graph of expected job time shows the

performance gains due to statistical load sharing, greater insight into

the load sharing operation can be gained by examining the graph of

3 vs. system load first.

The graph of B vs. system load shows three basic characteristics

of statistical load sharing operation. These are that 1) there is a

threshold of load sharing operation, 2) using communication systems with

sufficient capacity, there is an asymptote which the probability of

sending a job approaches and 3) for inadequate communication systems,

this asymptote is not reached. Each of these characterists will now be

examined separately.



-48-

0

4J
o3Ca

En03I~~~~~ ~ -· (v)t·- ·- - 4-i
.... =: 1 I '

v4

0~~~~~~~~~~~~~~~~
-- ~~~~~~i~ '-K 2 - --'-'~~~~I ' / i n Ea)104 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ J0

-r o

* 0U) U1

0 1:~~~~~~L E-4 a--i04 r-III -

0

· n j ·

a) C)

.4-)~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~TCa - --- - -- c

Q,~~~~~~~~~~~~~~~~~~~~~~~~~~. rd ~c%
0WI I - _ _ _ _ _C a c::f

CIo C/2
4. -,·

CNI H H 0:E C
0t 0Q 0] 0

r9 O rl~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~a



-49-

r;

A; -

t .......... _ . _-

- X.. . .\...l- 0--4 -17 1 1Z j- .. t

.- = ,t -- M -- - -\

0

. ~1;-< . .1---t I -- :- - -ctD- -- . : 4 
.0 n _ , - I j f ~ -~(- U ) ,U

i i a),,o
. ...... rt*1-- .. ...... . I

C C).. o C ,r
LAo\~~~~~~~~ mP:~~~~~~~r (================== t;:: -- :::''-"!:-'-:: :; :--:i'_'' i_.



-50-

The Characteristic of Threshold

The threshold of load sharing operation occurs when the expected

job time of a system of independently operating computers is equal to

the expected job time of a system using load sharing in the limit as

B + 0. In this example, the expression for the expected job time of

the system of independently operating computers is

N A.

E (T] = X E[T.]
i=l T 2

1 1 12 1 3 1
+ +

XT QR- 1 XT R- X2 XT R - X3

(3.3)

The threshold condition for load sharing can be found by equating

Equation 3.3 with the limit of Equation 3.2 as a + 0. Rearranging

1 1 1
terms and using the fact that XA = A3 and that C C gives

2 3C -· gives
r p

limA [ 1 1- 2 S*lim l Z R-- X1 1- (1- 2a) 1 ,/1

+ 2A2 1 - 12

2 1[R - X2 ZR - /2 += lim 2 + 1
-0* pC- +1 TR- (2 + ax1)

(3.4)



-51-

Taking the limit of the right hand side of Equation 3.4 gives

jim A F 1 1- 213 1
lima 1 1 R - 1 1 - (1 - 20) 1 ]/ 1

+ 2X 2 [ 1 1 26X
2 R - X R - (X + ) /

(t~~~~~2 + 1
2 1

TC ZR + A2

(3.5)

The left hand side of Equation 3.5 is an approximate expression

for the derivatives with respect to X of the expected times to process

jobs at each of the computers in the system. Therefore at threshold

1 1
ZR - A ZR - X

A uti 3. s e +-h + 2 t (3.6)
1 ax1 PC XR- 12 ax2

Equation 3.6 states that the threshold of statistical load sharing

operation occurs when the incremental decrease in expected job time at

Computer 1 due to load sharing is equal to the incremental increase in

expected job time at Computers 2 and 3, due to the jobs sent there from

Computer 1, plus the expected time to process a job by sending it to

another computer. The expected time to process at another computer is

the expected communication time under no load conditions (2/UC) plus

the expected job time at the other compuer 1/(ZR - A2). The weighting



-52-

of the derivative terms is due to the form of the system expected value

expression.

Note that the important characteristic of the communication system

is not just the channel capacity, but the mean service time which is

a function of both the channel capacity and the mean message length.

For this reason, the cases studied are examples of various rations of

mean communication channel service times (1/vC) to mean computer service

time (1/2R).

The Characteristic of an Asymptote for the
Probability (a) of Sending a Job

A second characteristic of statistical load sharing operation is

that the optimum probability (B) of sending a job from the overloaded

computer to each of the equally underloaded computers by random sampling

sometimes approaches an asymptote. The asymptote is the value of

which would distribute the load evenly in the system, since this is

the condition that gives the best expected job time. This can be seen

in the example under consideration by examining Equation 3.1. The

asymptote is approached when the terms representing communication delay

in Equati6on 3.1 are small with respect to the terms representing com-

putation time. If this is the case



-53-

E([T] - T R - (1 - 2B)X (2 + 1
T [ - 2

+ R R- (X3 + $X1) + AT R - (A2 + o

3 A 1 1

+ T L R - (X2 + ax1) 

1(1 - (20)1+ -

T MR - (1 - 20) Xl

ax1 A2 + J
AT R + (X2 + X1) T 2 1

+ X R + (XA + ax1)

T 3 + ~[ ZR+(A3 +8A 1 )

Equation 3.7 is exactly the expression for the expected job time

of a system of independently operating computers with mean input rates

(1 - 2B) A1 AX2 + OA1 and A3 + 81A. Therefore, the best expected job

time is obtained by choosing B so that the loads will be equal at all

three computers. For th4s example this means

(1 - 2S) A1 = A2 + oA1 and X1 = 2 3

which gives B = 1/6 = .167 as shown in Figure 3.2



-54-

Figure 3.2 also shows that for some communication systems the

asymptote is not approached. This occurs when the expression for

system expected job time with the optimum B has a pole at AT < NLR.

In physical terms this means that at the overloaded computer, the

computer queue and all the associated communication queues used for

load sharing saturate at a system load XAT less than NLR. For the three

computer system considered here, this occurs when a communication net-

work with 1/VC = 5/kR is used. In this case the overloaded computer,

Computer 1, can process LR = 1 job per unit time and there are com-

munication facilities for sending another 2(.2kR) = 0.4 jobs per unit

time to be processed elsewhere. This means that all facilities at

Computer 1 saturate at X1 = 1.4 or AT = 2.8 < NZR = 3.

Note that if the probability B of sending a job approaches the

asymptote, the expression for expected job time using statistical

load sharing does not have a pole at XT < NMR, whereas the expression

for the expected job time of a system of independently operating computers

with a load imbalance does have a pole at AT < NXR. This results in a

significant gain in expected job time, when AT is large, by using

statistical load sharing. More importantly, the statistical load shar-

ing allows the system to operate at higher throughput rates with a

load imbalance than is possible without load sharing. This can clearly

be seen in Figure 3.3



-55-

Figure 3.3 shows that the expected job time using statistical load

sharing improves with a decrease in mean communication service time, as

one would expect. It also shows that for the system under consideration,

a mean total communication time (2/pC) less than the mean computation

time (1/kR) gives statistical load sharing performance that closely

approaches the performance of a balanced load system.

The Case of Different Mean Lengths for
Computer Input and Output

As discussed in Chapter 2, in some computer systems, the mean

message length of results is an order of magnitude greater than the

mean message length of programs (inputs). If this relationship is

assumed to hold in the three computer system with 1:X2:X3 a 2:1:1,

Equation 3.1 is still the expression for the expected job time, but now

1/r C = 10/p C. Graphs of expected job time and the probability of

sending a job for this case are shown in Figures 3.4 and 3.5 respective-

ly. These graphs have the same general characteristics as those in the

previous example. The main difference is that the communication delay

incurred in the system is essentially all due to delay in returning the

results to the computer of origin. Note particularly that when the sys-

tem saturates at AT < NMR, it is the overloaded computer queue and the

communication queues for returning the results that saturate.

It is of interest to examine statistical load sharing operation as

a function of load imbalance and system size. Operation as a function

of load imbalance will be examined first.



-56-

0

~ --... .1..H....C.. : ...... ....H_.=-+-i . _........ .... I-K..... ... 777_I__ _ _ _d----·------ · -- ·-- · i i i 8)~~~~~~~~~~~~~~~~~~~------ --

--- ~- ·--- ~--- -- ~ 'r --t H

k···-- 7 3 ·--'1 Hc

-3, -ll~~~~~~~~~~~~~~~~~~~~~~~-......~~~~~tn -.......... : ... . . k

HI K _ _ _ ___ __s *H Q

E- 4-3oc
C) C0~~~~~~~~~~~~~~~~~~~~~~~~~~~~04-)

Q)

C>Z C~~~~~~~~~0 lrcl,.--t ~ . ' 4~~~C0 rolp: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~3 .c:
- fj I - 0 C~~~~~a -H

CN HO c

r-4il~ ~ ~ ~~~~~~~~~r ~ G

H Hd
- Q (.... E-ii .......

II~~~~~~~~~~~~~~~~~~~~~~~~~~~~~L
E-l ~ O cv ;. ~1 -- u .-~ ~ . ----- ........- i- ~-- -' --~· . . . . . . " "-- - ~\\ td~i- . . ........ ---- - -- -- -·-- i-- --- : - -\ - -~-II

cr~~~~~~~~~~~~~~~~~~~~~~~~c -< ~r

x l - ·- --- -;-------- --------- i ---·---- t - -- ------- ------ --- ----- ItE~ ~ ..... .. 0 ....m' 1

~cv
G ) 4J~e -\J ' ~', ~ . . . . . . . . .-4J -,-,I ............ , ..........i ................................. rO (~"r

N ,-- ........~ ....... ..........i ................................... ~ ,-



-57-

r-4H
0

o~~~~ 4J

i E~~~~~~~~~~~~~~~~~E>1c

E-403 071111< I __ - .I~~~~~~~~~~~~~~~~~~~~~~~m .U)urt-~~~~~~~~ i- -C-------' 4 ')

43

0)

T. .~~~~~~ 0)

,i '- -~ 0 
--.- ------.------.-- i---- ---~-- --- -j U.

K~~~~~~~ll 1 ~~~~~~~~~~~~~~~~~-<~~~~~ 07

rd~~r... i .... 

0 a) 0) r
_ _ _ _ _ _ _ _ _ _ _ *~~~~~~~~~~~~~~~~~~~~~~~~~~~~. >1 )rd d 4

ClU~~) H 0x 0aj44>1 >,-I r!

r-q CN- C

E: ~~~_____._. ~ ~ ~ -__ ____ __ ___ S.~1~r=

03: I - 0*

q~~~ ~ ~~~~~~~~~~~~~~~~~~--I -,-i --- .... ·-- "

Ln c4 C4 r-4 (d 4

~w ___________ _______:_ ___ 1;_ !_:_1_1__` ' ~___________ --- . 0,------·--i--·--· a~. ................... I
~~~~~~~·r~~~~~~~~~~~ _I__...~.~~_.._... ir ~

tc! (N H

1 I.......... t .. .~.. : ' ~ ' ·' -:o - 'o o - 'o
O O O 'O O~~~~~~~~~~~~~~~:

-58-

Operating Characteristics as a
Function of Load Imbalance

Consider a three computer system as before in which the load

imbalance is X1 : A2 : X3 = 4:1:1. It is assumed that 1/PrC = 1/ipC =

1/pC. Graphs of expected job time and the probability (a) of sending

a job for this case are given in Figures 3.6 and 3.7 respectively.

By comparing Figures 3.3 and 3.6, one can see that usually the great-

er the load imbalance in the system, the greater the range of system

load AT over which statistical load sharing can provide improvement

in expected job time. This can also be seen by comparing Figures 3.2

and 3.7 and noting that the thresholds of load sharing operation are

lower in the more unbalanced system. One exception to the increase in

the useful range of statistical load sharing with increased load im-

balance is when the communication system is such that a pole occurs in

the expression for expected job time at AT < NLR. If this is the case,

the greater the load imbalance, the smaller the value of AT at which

the system saturates. This can be seen by examining the case of 1/pC =

5/RR in Figures 3.2 and 3.7.

Operating Characteristics as a

Function of System Size

Statistical load sharing operation in a fully connected symmetrical

computer-communication network will now be investigated as a function of

a system size. Examples of five and ten computer systems will be ex-

amined. Figures 3.8 and 3.9 show graphs of the expected job time and

-59-

0

U 4-4)i~ _

~1I- _ _- i ' __.2 _ _ _ ... -

E-4~4J
- a

0, -- K 0-4 ---IJU,~~~~~~~ ~~~~~ I----- ·- · ·i------- i 0

-H~~~~~~~~~~~~~~~~.... ____ ___ -0 - ~~~~~~ -~~~~E-II~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ o

i-Hri~~~~

E-4 0j0 -X -

t-D ~ ~ ~ ~ ~ ~ ~ I-
'4. -i

I4! : * I
...

oo c) '.

0 -LO~~~~~~~~ s-

4-)~~~~~~~~~~~~~~~~~~~~~~~-
04.~~~~~~~~~~~~~~

rd 4
OT4

-60-

2- -- ------- -- --- --- -!

_ . 1. i ^, : ! ~ '

-~r--t ·i4~~-, 13

114_ , i--\---1 N--1 -1 i °

:__ f \T._ X....._ o,' Io 0I 'I

.Hn lm I
,.0 03- - . ' \ ' \ \ - i " .E-4 i

_ _____ _ __ ,~ ,_
4

c

4- 4 4-

Ir--d --tx -_

-H~~~~~~~~~~~~~~~~~~.

g:0) t i , 0 H Eq °r<E

o -IQ . r --t

-P
,, . , ,;. -i - -~0)

Hcl2L: .___ ______________

,-3u i- . ..~(N H 0

i a E~~~~~-

.;.....~~~~~~~~~I Itf a,~~~~~rZ

~'~~~~~~~~~~~e .,- 4-)
-61-

4J0.)~~~~~~~~~~~~~U

-* : ~ ~ ~ ~ ~ ~ ~ ~ ~ - *. C.) (.b 0

_ _ _ _ _ _ _ _ _ _ _ _ _ -'133'*-~., ~ ~ ~ ~ ~L , ',.- .. *

II 0 ~-- . (,En

.IJ~ .-iJ' . 'o rC-4
itc

E-H
-- ------ a -) II ~ ~ -O-? 4 t#

C) ~~:: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 0464~~~~~~C

'.40

-H3rq 4

-62-

\ >D

wP -~ - -- - i''',o E o : K) C wo r <

,1-0~~~~~ --- - ... O H

-~1 O . -. A 1 :t . . j . . . C Q~~~~~~~CN I>1~~~~~~ '°r) H.q O
... .,,... .,.. .. ,. .. ,--*

.. , . . , 0 ,.

fo t o

0' * O4

>1 .I)~~~~) --02 >i**

H c i 2 _ _ _ _ _ _ _ _ _ _ _ _ _ _ *) H+J ~~~~1 -c-, ru~~~~H.

r-4 HHl H· rl~~~~~~~~~~~~~~~~~~c ,c-
**Q 4d ctS

a~~I 0s ..0.d

Hi 0~ (NV
* o

5-4
-Hl

-63-

the probability of sending a job in a five computer system with a load

imbalance of A1:X 2:3:X4:5: = 2:1:1:1:1. As in the three computer

system, load sharing is accomplished by sending a fraction (B) of the

jobs that arrive at Computer 1 to each of the other computers.

Figures 3.10 and 3.11 show graphs of the expected job time and the

probability of sending a job in a ten computer system. In this system,

Computer 1 is also loaded twice as heavily as each of the other computers

in the system. Again load sharing is achieved by sending a fraction (B)

of the jobs which arrive at Computer 1 to each of the other computers.

The main effect of system size is that as a system grows there

are more computers to share the overload with and so a smaller fraction

of jobs needs to be sent to each underloaded computer. As a result, the

communication channels in a large system are less loaded, reducing the

delay per job through them and improving system performance in terms of

expected job time. In the examples considered here, the expected job

time in the large system is further reduced by the fact that a smaller

fraction of the jobs submitted to the system are submitted at the over-

loaded computer. As a result, even relatively slow communication net-

works, such as the case 1/pC = 5/ZR, provide performance that is quite

good in a ten computer system.t

The increase in size of the system also improves the operation of

statistical load sharing with slow communication networks by moving the

It is important to note that the size of a fully connected communication
network as considered here increases as N- where N is the number of com-
puters (nodes) in the network.

-64-

i. ~ ~ ~ ~ ~ ~ ~ ~ ~ 0
I

>

Nt~~~~~~~~~~~~~~~~~~~~~a a)
'o E - q - U--2t~~~~~~~- .l ,G O o ,- 4J

G 0 00~. 00- U

II '. i ~ rO ·

a): '--I--.---- ... 0 ~~~~~~~~~~~~~~~~~~~~.-Ir IIc

- -i

a)L"19 _I \ \~~~~~~~~~~~~~~~~~~~~~~~~~~~~_~~~~~~ tqt~~~~~~~~n E-4

....--..... . i -------..·- · IIU, E Qf~~~~~~C4 D rlEi

I-D ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~~~~~~~- o r44O(-H··-- ! t ttJ- - - ! ;- - .! 0 Y Q
GI ::) G---.--- (, t !~J ~L C 1 O -~

$4

rt4

-65-

0

, -~- ~o 1 C

* .

r , - .

11---! -- E~.. ~.. \ \ ' ~ ~ ~a. .o4-·______ . -·* a) 0-.

44 ~L~~~~i~~~~- ~ ~ ~ ~ O t~~~~- -

d _t____ _- - _-

O 4 --' 1 ''' 1 4 r0 I
>uri~ Q, ~i-i -a<... i -t (. -,. I

,_M e > ' I _
, i 1 ..- <

.Q0

P O - - - -- - - -- --C - E

Q).- -..... ----- ;.. . Q.....

.

-66-

system pole to AT = NQR. This can be seen for the case 1/iC = 5/kR.

In the three computer case with a load imbalance of 1:Xk2:X3 = 2:1:1,

such a communication network gave a system pole at AT = 2.8 < NkR.

In the five computer case with the same load imbalance such a communication

network (1/UC = 5/ZR) does not give a system pole at AT < NkR. This is

because as stated before, with more computers with which to load share,

each communication channel in the fully connected network carries a

smaller amount of traffic.

Summary of Operating Characteristics
of Example Networks

Together, the previous examples have served to show some of the

basic operating characteristics of statistical load sharing in a fully

connected symmetrical computer-communication network with simple load

imbalances. In summary these characteristics are

1. Statistical load sharing can provide significant
improvement in expected job time performance for
large system loads by correcting load imbalances.
Most importantly, the system can operate at higher
throughput levels than are possible without load
sharing.

2. There exists a threshold of load sharing in the
system which is a function of the mean communication
time and the system load imblance.

3. There exists an asymptote that the optimum probability
of sending a job approaches if the capacity of the
communication network is such that the expression
for system expected job time does not have a pole at
AT < NkR. This asymptote is a function of system
size and load imbalance.

-67-

4. The asymptote will not be approached if the capacity
of the communication network is such that the ex-
pression for system expected job time has a pole

at XT < NMR.

While these summary points apply to the specific examples considered,

similar characteristics will be found in the general case of statistical

load sharing which will be formulated in the next section.

3.3 Formulation of the General Statistical Load Sharing Problem

In this section, the general statistical load sharing problem is

shown to be a nonlinear multicommodity flow problem which can be solved

by an efficient optimization technique. The examples of statistical

load sharing given in the previous section were restricted to fully

connected symmetrical computer-communication networks with simple load

imbalances. The general formulation given here allows for arbitrary

communication networks, arbitrary load imbalances and different rates

of services (Ri) at each of the computers.

It is easiest to understand the equivalence between the statistical

load sharing problem and a multicommodity flow problem by considering an

example. Figure 3.12a shows a three computer system with a partially

connected communication network. The logical flows of jobs that can

occur in the system are shown in Figure 4.12b. Each computer is thought

of as having two nodes, an input node and an output node, connected by

a directed are representing computer service. Jobs arrive at the input

node of a computer at rate X1. There is a requirement that the jobs

-68-

Computer 2

m tR2 1

a) Three Computer system with a partially connected
communication network.

2

f f

p2 f

rlf3

f 1' fr2

2 ffr4

b) Logical flow of jobs in the network.

Figure 3.12 General Formulation of Statistical Load Sharing.

-69-

arriving at input node i receive computer service somewhere in the sys-

tem and leave the system at output node i'. The jobs can be processed

either at the computer to which they are submitted, or the programs can

be sent to another computer input node. The possible flows of computer

programs are represented by the flows f in Figure 3.12b. The sub-

script j identifies the communication channel over which the actual

flows would occur. If a job is processed at a computer other than the

one at which it was submitted, the results must be sent back to the

computer of origin. The possible flows of results are the flows frj,

the subscript j again referring to the communication channel over which

the actual flow occurs.

In order to assure that jobs submitted at input node i leave the

system at output node i', all jobs are identified as to their origin.

This means that the return route of a computer job is fixed once it has

been processed. In the network of queues model, this fixed routing

based on the job origin is equivalent to the random sampling used to

determine the flows in the various routes through the network. As

discussed in Appendix B, this is because the identification of jobs

in a Poisson stream consisting of two Poisson substreams with different

origins is equivalent to random sampling of the combined job stream.

In terms of the logical flows in the network, the statistical

load sharing problem is now a multicommodity flow problem. The flows

-70-

required are for computer jobs to flow from node i to node i' at rate

Xi.. Note that in the logical flow network, this requirement can be

met only by having each computer job pass through a computer once and

only once, as required by the load sharing problem.

The multicommodity flow problem is to determine the optimal flow

through a network subject to a well defined convex objective function

and a set of convex constraints. In the load sharing problem the

objective function is expected job time. Assuming that the message

lengths for programs and results are equal (p = r =) the ex-

pression for the expected time to pass through the logical flow network

is

E[T] = I EIT through arc i] Pr [pass through arc i]
all arcs

N f. NC f + f
=- 1 2R. -_ 1 f + pj rj f (3.8)
~R -C - (f + fT i=l 1 i j =1 j Pj rj

where N = number of computers

NC = number of communication channels
N

XT = E Xi total input rate of jobs to the system
i=l

f. = flow of jobs per unit time through computer i

f = flow of jobs (programs) per unit time through
communication channel j.

tThe formulation for Vp # Pr is given by Equation 3.10.
p r

-71-

f = flow of jobs (results) per unit time through
communication channel j.

The expressions for the expected times to pass through each of the arcs

in the logical flow network are the expected times to pass through M/M/1

queues with the appropriate mean service times and input rates.

There are two types of constraints that go with the expected job

time objective function. There are flow requirements which specify a

flow of Xi jobs from node i to i' and there are capacity constriants

which require that fi < LRi (i=1,2,... N) and that f .+ f . < I.C.
i 1 Pj r] j

(j=l,2,. . NC). The capacity constraints serve to bound the region

of feasible flows through the network with boundaries that represent

infinite values of the objective function. The flow requirements and

capacity constraints together define a convex feasible region which

will be denoted by F. This fact, together with the fact that the

objective function is convex because it is the sum of convex functions,

allows one to apply the multicommodity flow algorithm developed by

Cantor and Gerla [Ref. 4] directly to the problem at hand. This algorithm

solves for the optimum flow of jobs (f*) through the logical flow network

which minimizes E[T] subject to f e F. The optimal flow solution

determines the sets f. (i=1,2,. . . N) and f and f . (j=1,2,... NC)
z p r .

which, together with the inputs Xi (i 1,2,. . . N) determine the optimal

statistical load sharing policy and the system expected job time.

-72-

Carrying out the solution of the optimization problem described

above requires a computer implementation of the Cantor and Gerla

algorithm. A particularly efficient implementation of this algorithm

has been developed by Defenderfer [Ref. 6]. The optimization algorithm

is based on the efficient generation of extremal flowst of the region F

and the subsequent optimization over the region described by these extremal

flows. The algorithm does this as follows. One starts with an initial

set of extremal flows (V1' c2'- . . ~j) called a basis. Using this

basis, a flow f is found which is a convex combination of the basis

elements, i.e. f = a 4 i where a.. 0 and ai = 1. In
i=l 1 1 -i 1

particular, one finds the f that minimizes E[T] (ai i)

i i-l
s.t. i = 1 and ai > 0. This flow will be denoted f*, called the

current estimate of the solution to the problem minimize E(T](f) subject

to f c F. This flow may only be an estimate because not every element

of F can be expressed in terms of the current basis elements.

One now tests if f* is the solution to the main problem minimize

E[T](f) s.t. f e F by checking if there exists an f c F such that

Cost (f) = E(V T](f*), (f - f*) < 0

where <, > is the usual inner product in Euclidian space and V denotes

the gradient. If no such f exists, f* solves the main problem. This

tAn extremal flow is an f c F which cannot be expressed as a convex
cohmination of any other flows in F.

-73-

check is performed by minimizing Cost(f) subject to f e F. Solving this

minimization gives a new extremal flow 0j+l' If Cost(j+1) X 0, then

f* solves the main problem and the algorithm stops. If not, *j+l is

added to the set of extremal flows and the algorithm repeats the initial

minimization over the new basis. Further details of the algorithm, such

as how to find an initial basis point and how to decide when to termi-

nate if an optimal solution has not yet been found, are given in Reference

6.

When solving a statistical load sharing problem, if it is true that

in the optimal solution any given communication channel carries either

only programs or results, one can write the expected time to pass through

a communication channel as

r p

E[T] (r (3.9)
comm C-(f + f)

r p

since f and f will not both be nonzero. In this way one can ac-
p r

comodate problems in which the average message lengths for programs

and results are different. When this is done, the general formulation

for statistical load sharing becomes

f:. f
rj + pj

N f. NC 'P
Minimize E[T] (f) = + C

s tR - f.
~~T i~ j=l Cj - (frj + fp)

s.t. f E F (3.10)

-74-

In the previous section, the characteristics of threshold and

asymptotic load sharing policies were shown to exist in specific sym-

metric examples. These characteristics are found in general statistical

load sharing problems as well. Figures 3.13 and 3.14 show two load shar-

ing operating points for a ten computer network. In this network, the

odd numbered computers have a capacity such that L = 0.5, while the
ZR

even numbered computers have a capacity such that = 2.0. All com-
ZR

munication links are full duplex and the channel capacity is such that

1TC = 2.0. In both figures the load imbalance is the same, i.e. computer

2 is the overloaded computer. The difference between the two cases is

that in Figure 3.13 the total network load is greater. In fact, in

Figure 3.13 the network is near saturation and one can clearly see the

asymptotic nature of the solution. The load is fairly evenly distributed

among computers of equal capacity even though they are at varying dis-

tances from the overloaded computer.

Figure 3.14 shows the network in a lightly load situation in which

not all of the load sharing flows have reached threshold. Note that

this means that there is a "radius" over which load sharing occurs. In

large networks, one may want to confine the load sharing to small regions

and this example shows that in some cases this may yield an optimal

solution.

-75-

Overloaded Computer
.014 Flow of Programs/

\- Unit Time

.312

.02 " ; 3312

.015

.01

.015 .014

Initial Load Distribution (Jobs/Unit Time)

1 2 3 4 5 6 t7 t8 9 10

1.0 1.0 1.0 0.25 1.0 0.25 1.0 0.25 1.0 0.25

Final Load Distribution (Jobs/Unit Time)

1r r2 r 3 r4 r5 r6 r7 r8 r9 r1o

1.312 .376 1.312 .225 1.039 .221 1.029 .221 1.041 .224

Figure 3.13 A Ten Computer Load Sharing Example

(IT = 7jobs/unit time)

-76-

Overloaded Computer

.162 Flow of Programs/

_W Unit Time.

Initial Load Distribution (Jobs/Unit Time)

k1 k2 3 4 5 6 7 8 9 10

.6 .6 .6 .15 .6 .15 .6 .15 .6 .15

Final Load Distribution (Jobs/Unit Time)

r1 r2 r3 r4 rs r6 r7 r8 r9 r10

.762 .277 .762 .15 .6 .15 .6 .15 .6 .15

Figure 3.14 A Ten Computer Load Sharing Example.
(AT = 4.2 jobs/unit time)

-77-

3.4 A Heuristic Load Sharing Algorithm For Ring Networks

It has been shown that the characteristics of threshold and

asymptotic load sharing policies are generally found in statistical

load sharing problems. This section uses these characteristics to

develop a simple load sharing algorithm for symmetric ring networks

(symmetric in the sense that all computers have equal capacity).

The basic idea behind the algorithm is to first test if neighbor-

ing computers are above or below the threshold of load sharing. If they

are above threshold, the load they are servicing is distributed evenly

between them. This is done since even division of load is the asymp-

totic load sharing policy for equal capacity computers.

Figure 3.15 gives a flow chart for the algorithm. The list of all

possible load sharing pairs of computers enables one to keep track of

the load sharing decisions already made as the algorithm proceeds. In

this way one can avoid inconsistencies such as load sharing both ways

between two computers. The equation used to determine if two computers

are above or below threshold is a straightforward modification of Equation

3.6. Clearly, if A1 > ARmload sharing action must be taken if possible.

As an example of the use of the algorithm, consider the network

shown in Figure 3.16. In this network, computers 1 and 2 are overloaded

and computers 3 and 4 are underloaded. Figure 3.17 shows the system

expected job time for the example when 1) no load sharing is used, 2)

the heuristic algorithm is used, and 3) when the Cantor and Gerla

algorithm is used. It can be seen that while not optimal, the heuristic

algorithm works well. This is particularly significant since the algo-

rithm is so simple. While the algorithm is simple for symmetric ring

-78-

Start

List all possible load sharing computer

pairs (neighbors in the ring)

Pick computer pair

with greatest load. imbalance

a ZR-X.

(largest X. a A or . > ZR)
1 t 1. i-

and test to see if

a ~1 ~a 1
___________X~ a1 £R-X 2

_ _R-1 > 2 + R + 2
a t 1 -HC2 2 2-

no

where 1 > 2

yes

1 2
Set X1 2 2 And remove the computer

pair from the load sharing list

No Load Sharing

list empty?

yes

STOP

Figure 3.15

Flow Chart of a Heuristic Load Sharing Algorithm for Ring Networks

-79-

2 Communication Channels

Cormputer

1/ZR = 0.5 For all computers

l/t)C = 0.5 -Forf*all communication channels

Load Imbalance A: A2 : A3 : A = 4:2:1:1

Figure 3.16 A Four Computer Load Sharing Example

-80-

cE

4-

0

0)

clH~~~~~~ ID

C1 \ O H:N N:

I \ < _ H~~~~~~~~~~~ r$4

E-N4-)~~~~~~~~~~~~~~~~~~~~~~$

NZ \ ~~~~~~~~X

a \ X~~~~~~~~~~~~~~~~~~~~~~a0 U* D | , , I 4

0rJ)

1~~~~~~~~~~~

VV Nu~~~~~~~~~~~~~~~~~~~~~ Ln en N 0N Ic 0
U, E-4 0~~~~~~~
Z~~~~~~~~~~~~~~~~~~~~~~~~~4

C)

*r4

'dli~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~r

0 rl

rto m) 04 H

-81-

networks, however, it is not trivial to extend the underlying ideas to

arbitrary networks. This is because the order in which one tests

thresholds and makes load sharing decisions is critical if one wants

to avoid inconsistencies as mentioned earlier.

3.5 The Effects of Failure in a Load Sharing System

The reliability of a distributed computer system can be improved

by load sharing capabilities because load sharing can allow the system

to continue to operate at reduced capacity in the event that some of

the distributed computers fail. This section considers what happens to

system performance when such events occur. This section also shows

how system performance can be degraded by the failure of communication

links used for load sharing.

Systems in Which Only Computers Fail

In a distributed computer system in which computers are subject

to failure, but the facilities for sending jobs to other computers for

processing are perfectly reliable, jobs can always be sent to other

computers in the system as long as not all of them have failed. Since

computer failure in this type of system produces a special case of load

imbalance, it is appropriate to consider the performance of statistical

load sharing in this situation.

As an example consider a ten computer system which has a fully con-

nected communication network with 1/UC = 1/2LR. When a computer fails

-82-

in this system, the jobs submitted at the down computer are all sent to

be processed elsewhere. If the system load was balanced before the

failure, the best policy is to distribute the jobs from the down computer

evenly among the computers which are still functioning. Figure 3.18

shows the performance of the ten computer example when this is the case.

It can be seen that statistical load sharing allows the system to

operate at a reduced capacity and performance when computers fail in the

system. In the example considered here the system can operate up to

AT = N QR, where NW is the number of computers working in the system.

This is because the communication facilities at each computer are suf-

ficient to service all jobs that arrive at down computers. If this is

not the case, the system will saturate at XT < NE R. This issue of the

saturation of the communication facilities before the saturation of all

computer facilities is the same as discussed in Section 3.2.

It is important to note that there is a reduction in system

performance as well as system capacity when computers fail. This is

because of the communication delay incurred by jobs submitted at down

computers and because the computers still operating are now more heavily

loaded. If expected job time is critical for the system under consider-

ation, the system may be considered inoperable even when there is still

enough computer capacity to process all jobs submitted to the system.

-83-

o

:. i - ' . 't ' , ' ' '5 -! 4JE-1

~ I,~~~~~~~~~~~~~~~~~~~~~~~~~~~~..I

, .O O- ,,

oo (4

rcl ID) O r) .- a) Dc.4-) . 4-)o 04 4r\

_ (u Q) co\ . O c0~'-' 0 0 04
O O .H

0s 0 0 0 0Orl ~~~~~r a O~~~
13 rn o cr U~~~i,,

-84-

The Effects of Communication Channel Failure

The performance of a load sharing system can be degraded by com-

munication channel failure, as well as by computer failure. If the

channel which fails carries a significant amount of load sharing traffic,

this failure can substantially increase the system expected job time.

As an example of this, consider the network shown in Figure 3.16 and

assume that the communication channels between computers 1 and 4 fail.

The system can continue to operate with this failure, but the system

expected job time is increased as shown in Figure 3.19.

In communication networks that are not perfectly reliable, there is

a finite probability that not every computer node will have access via

communications to every other computer node. This issue related to the

reliability of the communication subsystem must be taken into consider-

ation when analyzing the failure characteristics of computer-communication

networks. A good survey of the literature on the topic of reliability

of the communication subsystem is given by Wilkov [Ref. 35].

-85-

·.,

-'-4 4

0~gaJr rt4 -

-H \II! ·l0..

u sr fo tY H~~0 0 O

4 ,4

Ln o 4JI-
O X

~ E~

4tO ,-4 I I I 0~~~~~~~~~~~~~~~~~~~r

H

-86-

CHAPTER IV DYNAMIC LOAD SHARING

4.1 Dynamic Load Sharing Using a High Capacity Communication Network

In Chapter 2 it was shown that there is a region of load sharing

operation, called the dynamic load sharing region, where one achieves

improvements in expected job time beyond those attainable by balancing

average loads such as was done with statistical load sharing. In order

to achieve such gains it is necessary to use a load sharing technique

that assigns jobs to computers on the basis of which computer is the

most desirable to use at the time of assignment. This section-investi-

gates one such technique which can achieve dynamic gains, starting with

a load balanced system, when the communication network being used is a

fully connected network of high capacity.

Description of the Dynamic Load Sharing Technique

The dynamic load sharing technique considered here operates with

a global controller that uses an instantaneous communication network

for control purposes which is separate from the communication network

used for load sharing. The controller assigns all incoming jobs to

computers on a global first-come-first-served basis. If a job arrives

at a time when the computer to which it was submitted is busy, it is

immediately assigned to the first available computer according to a

preference list. If all computers are busy, the job is queued at the

-87-

computer at which it was submitted and is assigned to the first computer

that becomes available.

When a job is assigned to a computer other than the one at which

it was submitted, the computer to which it is assigned is reserved for

it during the time the program is sent to that computer as well as dur-

ing the time the results are being returned to the computer of origin.

This assures that once a job assignment is made, the job will find the

computer available when it arrives to be processed.

The performance of this dynamic load sharing technique will now be

analyzed by first considering a simple approximation to its performance.

This approximation will then be improved by an approximation developed

by Larson [Ref. 23] of the hypercube queueing model which describes

queueing systems in which servers and customers are identified by spatial

locations.

A First Approximation To Dynamic
Load Sharing Performance

The dynamic load sharing technique under consideration operates in

a manner that is very similar to a multiserver queue. The difference is

that in the load sharing system, both arriving jobs and computers are

distinguishable as to their spatial location. This means that there is

a preferred computer for each job that arrives. It also means that some

jobs must undergo a communication delay while others do not.

-88-

One way to develop a first approximation of the performance of this

dynamic load sharing technique is to consider the performance of a par-

ticular multiserver queue that must clearly perform worse than the load

sharing system. Such a multiserver is shown in Figure 4.1a. In this

multiserver job assignments are made dynamically as in the load sharing

system, but it is assumed that every job must undergo a communication

delay, whether or not it is processed by the computer at which it was

submitted. Clearly, the performance of this multiserver must be worse

than that of the actual load sharing system. In order to analyze this

multiserver bounding model, one must first determine the service time

distributions for each of the computer and communication stages in the

queue. The computation time is of course distributed as a negative

exponential with mean 1/LR since once a job is assigned to a computer,

it is assured that the computer will be available when the job arrives

to be processed. The time to pass through a communication channel,

however, involves both waiting time and transmission time. Because the

system under consideration has a fully connected communication network,

there is only one situation in which queueing occurs in a communication

channel. This situation is depicted in Figure 4.lb. A job submitted

to Computer 1 was assigned to Computer 2 because Computer 1 was busy

at the time of assignment. Before Computer 2 finishes processing this

job, Computer 1 becomes available and a job arrives at Computer 2 which

is assigned to Computer 1. This means that a computer program is being

-89-

Communication

Service (programs) Computer Communication

Service Service (results)

XT
T

Probability Density
Functions For
Each Stage

a) M/G/N Model.

Computer Job

Computer --- '-,Resultsl Computer
J 1 ' " - i94 2

b) Contention for communication channel. Program

Figure 4,1 First Approximation Model for Dynamic Load Sharing

-90-

transmitted to Computer 1. Meanwhile, Computer 2 finishes the job it

was processing and wants to send the results back to Computer 1, but

the communication channel is busy. The situation could also have

occurred in the reverse order, the results being sent before the program

and the program therefore having to wait to use the communication channel.

This contention between one program message and one result message is

the only queueing in the communication channel that occurs when a fully

connected communication network is used with the dynamic load sharing

technique presented here. In consequence, one way to assure that the

performance of the first approximation model is indeed worse than that

of the actual system is to assume that every message must wait for one

other message. The distribution of the time to pass through a communica-

tion channel is then a second order Erlang distribution of mean 2/UC (the

convolution of two negative exponentials of mean 1/GC). This is shown

in Figure 4.1a.

The first approximation model for dynamic load sharing is now a

well defined multiserver queue with a general service time distribution

(M/G/N queue). The general service time probability density function

of this queue is the convolution of the density functions of each of

the computer and communication stages. Because analytic results do

not exist for an M/G/N queue, it is necessary to approximate its per-

formance by the performance of a multiserver queue for which results

tThe queueing referred to here is queueing after a job has been assigned
to a computer.


~~~~~~~~~~~~~~~~~-91-

C)

a4,... _. ..... .... j.

0/''''' ~~~r.''.4 0

0o 0a · 4

, -_ _ I > - -- .... . . - v 1,o rH I = 04

II_ . . . . .. . D . , .- tv | U z -
' -i 0...- m.

,~ . . . . . . . . , ~ . . . . . . . _ 

- ......... ....N ,---I' W , .' ... ....

...... .. . .. . .. .. . . o ·· I4 4-3 ~ ~ ~ ~ ~ ~ ~ cb~ "21 O O at~~~~~~~~~~~~i

r4 ·c4 rX4



-92-

are available. The multiserver queue which will be used is a queue

with Poisson input and a second order Erlang service time distribution

(M/E2/N queue). Using an M/E2/N queue, with the same mean service

time as the M/G/N queue it is approximating, it is now possible to

estimate the performance of the dynamic load sharing technique under

consideration. Figure 4.2 shows a graph of this estimate for two

different mean communication channel times in a three computer system.

Also shown are the upper bound for dynamic load sharing and the per-

formance of a load balanced system of independent computers. The

region between these two curves represents operation that is achieving

dynamic load sharing gains.

It can be seen that both the computer-communication networks con-

sidered achieve dynamic load sharing gains for some values of total

system load AT . The network with a mean communication channel time

1/iC = 1/100ZR, does so over a wide range of XT and it closely approaches

the upper bound, as one would expect for a very high capacity communica-

tion network. The network with 1/1C = 1/10OR, however, achieves only

very small dyanamic gains over a very small range of AT. The reason

for this: is that the first approximation model assumes that every job

must undergo a communication delay that involves queueing and trans-

mission time for both programs and results. As a result, for a network

tThe M/E2/N queue is discussed in Appendix A.



-93-

with 1/iC = l/lOQR, the mean service time for the corresponding ap-

proximation model is 1/9R + 4/vC = 1.4/QR. This gives an expected

job time of 1.4/XR at XT = 0 and a system pole at AT = NZR/l.4, which

means that only minimal dynamic load sharing benefits are obtained.

As stated above, the reason that the first approximation model

for a network with 1/GC = 1/lOR does not achieve signficant dynamic

load sharing gains is that it is assumed that every job incurs a com-

munication delay. In actual system operation this is obviously not

true, since some jobs are processed by the computer at which they were

submitted. The first approximation of dyanamic load sharing performance

will now be refined by using an approximation to the hypercube queueing

model to determine the probability of a job being processed at a computer

other than the one at which it was submitted. The probability of not

sending a job elsewhere to be processed, 1 -Pr (send), will then be

used to modify the first approximation model as shown in Figure 4.3.

The probability of not sending a job has been included as an impulse

at the origin of the density function of the communication service time,

representing the fact that if a job is not sent, it incurs no communic-

ation -delay.

Determining the Probability of Sending a Job by an
Approximation to the Hypercube Queueing Model

The hypercube queueing model is a multiserver queue which has iden-

tifiable servers and customers. It has been used mainly to analyze the



-94-

Communication Computer Communication
Service (programs) Service Service (results)

XT

1-P (send) 1 P (send)

Probability Density

Each Stage

Figure 4.3 Hypercube Approximation Model for
Dynamic Load Sharing.



-95-

operation of urban emergency service systems in which police cars or

other emergency vehicles are the servers and calls for assistance

represent customers. Both the servers and customers are identified as

to their location. This is analogous to the load sharing system in

which jobs and computers are identified as to their location.

The following approximation to the hypercube model is based on the

work of Larson [Ref. 23]. It has been modified slightly to fit the

load sharing problem. t

In the computer-communication network model, one is interested in

determining the probability that a job submitted at Computer i (i=1,2,

. . . N) is processed by Computer j (j=1,2,. . . N). Job assignments

are made according to the rule that a job is processed by the computer

at which it was submitted, if that computer is not busy. If the computer

of origin is busy, the job is assigned to the first available computer

according to a preference list and if all computers are busy, the job

is queued and assigned to the first computer that becomes available.

The probability of sending a job from Computer i to Computer j

in a system like this is the probability that in a random sampling

without replacement one would find Computer i busy and Computer j free.

$ The hypercube model assumes that travel time to a customer (equivalent
to communication time) is part of the customer service time (equivalent
to computation time). The modification that has been made here is that
communication time and computation time are considered to be separate.
This is accomplished by using the additional communication stages in
the multiserver model which makes the system an M/G/N queue. The standard
hpyercube approximation model is an M/M/N queue.



-96-

In general, in assigning a job, one samples computers in order of pre-

ference without replacement until a free one is found. For a system

in which each computer is equally loaded, t the probability that a job

is sent to the jth preference computer and that the job was not queued

is

P(B1B2 . Bj=lFj )

where

B. event that the jth server selected at random
is busy.

c
Fj - B. - event that the jth server selected at random

is free.

By using conditional probabilities, one can write

N-1

P(B 1B2. . . BF) = P(B1B 2 . . BFj+l I SK) P(SK)
K-=

j=l,2,. . . N-1

tFor a system in which each server is equally loaded, the probabilities
P{B1B2. . . B. F.} can be taken directly as probabilities of sending a
job because wAiie the events B. and F. refer to servers chosen at random,
each server appears to be the same if each is equally loaded. Therefore
the probability of finding a particular combination of computers busy
and free is the same as finding a random combination busy and free. This
is not the case if the servers are unequally loaded. The case of unequal
loads is treated by Larson [Ref. 23] and Jarvis [Ref. 14] for emergency
service systems in which travel time (equivalent to communication time)

is not considered separate from customer service time (equivalent to
computation time). The analysis presented here does not extend directly
to the case of unequal loads.



-97-

where

SK - event that exactly K servers are busy.

But,

P {B1B2. BjFj+l I SK } = P{Fj+l I B1B2 j· BK

P{Bj B B1B2 . . . Bj_. SK}.

.. P{B 1 | SK} (4.1)

The conditional probabilities on the right hand side of Equation 4.1,

are now easily found. For example P{B1 ISK} is the probability that the

first server selected at random will be busy, given that K servers in

the N server system are busy. Clearly,

P{B 1 | SK} = K/N

Similarly, given that the first selected server is busy and that a total

of K servers are busy,

P{B BS K- 1
P2 I B1SK N-1



-98-

In general,

P{B. B B K B S i i = 1,2 . . . K + 1
P{B ! B.1B 2 BilSK} =12 ' - K N- (i-i)

= 0 ifi > K+1

Similarly,

N- K
P{Fj+ BB * * * BjS = N- j = 0,1, . . . K

= 0 if j > K

Therefore,

N-i
N{B-1 BF K K- 1K- (j -1) N- K

1{ 2 * j j+1 Kj K N N-1 N j- N j KPS)

j = 1,2, . . . N-1

Assuming that one can solve for the probabilities P{SK in the system

under consideration, one can easily determine the probabilities

P{B1B2 - . . BjFj+l} which give the probability of sending a job to

the j+l preference computer and that the job was not queued before

assignment. If the job was queued before assignment then all computers



-99-

were busy when it arrived and it is assigned to the first computer

which becomes available. The probability of a job being assigned to

any particular computer in this case is 1/N in steady state. The total

probability of a job being sent to be processed at a computer other

than the computer of origin is then

P{send} = P{send I no queueing delayl P{no queueing delayl

+ P{send I queueing delay} P{queueing delay}

N

= i P { send to jth preference computer and no queueing
j=2 delay

+ N l .P S> NK

N

= 2 P B1B2 . . Bj Fjj=2

+ N ] P] pS> N (4.3)

Since the probabilities P{B1B2 . . . Bj_ Fj } were derived from an

approximation S to the hypercube queueing model, they must be normalized

tThe exact solution to the hypercube queueing model is obtained by solv-
ing the equations of detailed balance for the continuous time, finite
state Markov process which describes the behavior of the system. For
systems described by M/M/N multiservers with distinguishable servers,
close agreement has been found between the approximation and exact results.
[Refs. 23 and 14].



-100-

by the condition

N

I P{B1B2 *-- Bj_lFj} + P F SK <= P<S < (4.4)
j=2

where

N-1

P{F1 SK N = I P{F 1 I SK} P{S K }
K=0

N-1 N K

N { K

A good technique for accomplishing this normalization is to simply scale

each of the P{B B .. . B. F so that Equation 4.4 is met. When this
.2 j-1

normalization technique is used one can substitute

N N-1

P{B1B2 . . Bj_lFj = P{SK < N} - P{F1 SK P{SK
j=2 <K=0K

into Equation 4.3 giving

N-1

P{send} = P{SK < N - P{FF 1 SK} P{SKI
K=O

[N - P{SK N} (4.5)
N K>N



-101-

The probability of sending a job can now be easily determined. As

stated previously, one can then include the probability of not sending

a job, 1 - P{send}, as an impulse at the origin of the density function

for the service time of the communication stages as shown in Figure 4.3.

This improves the approximation of dynamic load sharing performance by

reducing the expected communication time. The improved approximation

will now be used to examine several examples.

Examples of Dynamic Load Sharing Performance

The following are examples of the previously described dynamic load

sharing technique used in computer-communication networks where the

average rates of inputs at all computers are the same. The preference

list for dynamic assignments is such that this balance is maintained.

The networks considered are all fully connected communication networks

so that the previous discussion about queueing in communication channels

applies.

Consider first a three computer system in which the mean communication

time for one channel is 1/PC = 1/10R. A graph of the probability of send-

ing a job vs. system load for this case is shown in Figure 4.4. Note that

near AT = 0 the probability of sending a job is zero because the computer

of origin is always available when a job arrives. The system also has

a pole, at which point P{send} = N - 1 This is because, at system
N This is because, at system



-102-

40

i-_ k~~~~~~~~~~~~~~~: , ~ .: >0

40-- ·--- t----~---..j- I;--------- C)I.. a

. 4.I
...... _ __ __ _ __ __ _ 0 

~0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~- Pc ,- - - -- - -� 0)rtCN 34

'u, ._ ~ ~ ~ ~ ~ ~ ~

i~~~~~~~~~~~~~~)- *Ha)

i-~ ~ ~ ~ ~ ~ ~ ~ ~ -. .

o < r4,. -- ........ i 
0~~~~~~~~~~~~~~~

~_.__l__. ____i_ __.__.__.____ .__. __...__.____.- ____. t·--- ·___---1---- --

0 .. . . . ......0rn . r ~~~~~~~~~~~~~~i ', "

P; ).... _ . 4 4

,." ( 0 r-Iro i . C .I E

r-4

Z= . i fo O~~~~~~~~~~~~~~~~~~~~~~~~~~~~~4 
· 1~~~~~~~~~~~~~~~~~~~~~~~~ E~~~~~~~~~~~~~0~
a rt a ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~1~P P

C 4rC

rX44



-103-

saturation, a job is queued whenever it arrives and when this occurs

the probability of sending a job is (N - 1)/N. The system pole occurs

when the system utilization factor, p, equals 1. At this point the

mean service time is 1/2R + P{send}(4/ZR). This means that saturation

occurs when AT = NZR/[1 + .4P{send}].

A graph of expected job time vs. system load for this three computer

case is shown in Figure 4.5. It can be seen that use of the hypercube

approximation to determine the probability of sending a job, puts the

1 1
performance curve for a system with = well within the dynamic

load sharing region. As explained above, the system still has a pole at

AT < NMR, but for load levels less than AT = 2.1, dynamic gains are clear-

ly indicated.

Examples of five and ten computer systems will now be considered

in order to show how our estimates of dynamic load sharing gains vary

as a function of system size. Figures 4.6 and 4.7 show the performance

curves for five and ten computer systems respectively. As before

C = 1 These examples show that as system size increases, better

dynamic performance is attained at load levels below the system pole.

This is because as the size of the system increases, the probability

that a job will be queued before being assigned to a computer decreases.

Figures 4.6 and 4.7 also show a slight shift of the system pole as

the number of computers in the system changes. The system pole for

dynamic load sharing occurs when



-104-

0

0 040~~~~

$4 

9) -P~~~~~~~~~~U

O~~~~~~~~~~~~~~~~~~L

>1~~~~~~~~> :4~~~~~~~~~4U)

04

0q uo o

ri) 4- E-4

Q>- 04~~~~. C) . .
0..r4 0-4 An

04~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~rdla tIJ 

X r-1 _ _ _~ ~ ~ ~~~~~~- - - - $4- ·~~~~~~~~---- ..i.... .. ~ m

0~~~~~ ,c 0 ,. 00L()~~~~~~~~~~~~~~~~~~~~~~~~~~~~r· ~~~~~~~~~~~~~ '
4J-4(D4.J~~~~~~~~~~~~~~~~~a a~ E-m

' i .... i - , - lra c'

Ln C~~~~~~~~~~~~QC3~:::)~~~~~~~~~~~~~~~~~~~7 ....

a· ~~~o

E~~~ · · m · · ,a,



-105-

..4 ..1o

..... o: H1 ,::-l ', \ > 

r-'uC] ( O.

.·_I . E-. . H00~ ~ ~ ·0 *.,. _ ,_ _ X _ \ . W O 04 -,* 

C) C) -- -' -, S ' - - \ ' o

d) > . . .. ...4 V) ,\ 

*I * ** 

U) o 



-106-

O) V

m C

4. a) -- .
o 04 a

0 E-4 H
D .-. -,1 4

U) (U

I \ 0 o .'

-- a - '-:)

o n U
.O ....

~U 4



-107-

T t= N/[mean service time] = N /
at saturation

4P{send} at saturation 1

pC

N= 1 + 4(N - 1)
R 1Sii~NpC

Therefore

AT at saturation 1

NZR { + 4(N - 1) ZR

Since the term (N - 1)/N varies slowly as a function of system size,

the system pole location relative to NZR changes slightly as system size

changes.

Equation 4.6 can be used to examine the system pole location as a

function of mean communication service time. The location of the system

pole is determined primarily by the ration ZR/pC. For high capacity

communication systems, this ratio is small and the system pole is there-

fore close to XT = N R. As communication capacity decreases, the ratio

2R/pC increases and the system pole moves toward the origin. For this

reason, the dynamic load sharing technique described here is effective

only with high capaicty communication networks.

The reason that the dynamic load sharing technique presented here

requires a high capaicty communication network is that if a job is sent

to be processed at a computer other than the one at which it was sub-



-108-

mitted, the computer used to process the job is reserved for it during

the communication time required to send the job. This is done so that

the job is assured of finding the computer available when it arrives to

be processed. This works well for a high capacity communication net-

work, but for a low capacity network it means that computers are reserved

for large amounts of time during which they provide no service. This

moves the system pole towards the origin as communication capacity is

decreased (communication delay is increased). Therefore, a dynamic

load sharing technique used with a low capacity communication network

must eliminate the reservation of computers during communication time,

as is discussed in the next section.

4.2 Dynamic Load Sharing Using a Low Capaicty Communication Network

As shown in the previous section, when using a dynamic load sharing

technique in a low capacity communication network, one cannot afford to

reserve computers during the time jobs are communicated to them. This

means that when a job is sent to be processed at another computer in a

low capacity system, it may incur a queueing delay at the processing

computer in addition to the significant communication delay it incurs.

One must therefore consider the policy of queueing a job at the computer

of origin when that computer is busy, even if there is another computer

that is not busy in the network.



-109-

If one considers queueing jobs at busy computers while others are

not busy, one is faced with the question of how many jobs to queue

before it is better to send a job elsewhere to be processed. Since the

hypercube model does not allow this type of operation, one must seek

other techniques of analysis. Conceptually, one way in which to analyze

a system which allows this type of operation is to model each of the

computers and communication channels as queues operating in discrete

time with finite length buffers. The system operation is then described

by a discrete time, finite state Markov process which could be analyzed

for various dynamic load sharing policies. At present, however, it is

not feasible to use this analysis because of the extremely large state

space required by the problem. The analysis of general dynamic load

sharing techniques therefore remains an area open for further research.



-110-

CHAPTER V CONCLUSION AND SUGGESTIONS
FOR FURTHER RESEARCH

5.1 Conclusion

This study of load sharing in a computer-communication network has

shown that load sharing can provide improvements in the expected time

to process jobs in a distributed computer system. Upper and lower

bounds for this performance criteria were developed and two techniques

for load sharing were investigated using queueing models. Specifically,

it has been shwon that statistical load sharing can be used to improve

expected job time by correcting load imbalances. Most importantly, the

correction of these load imbalances allows the system to operate at high-

er throughput levels than is possible without load sharing. To obtain

improvements in expected job time beyond those possible with a simple

technique such as statistical load sharing, it is necessary to use a

dynamic load sharing technique. One such technique was investigated

and shown to give significant dynamic gains if used with a high capacity

communication network. It was also shown that load sharing capabilities

can improve system reliability by making the system fail soft, at the

expense of degraded performance.

Computer-communication networks today are increasing the capabilities

of computer systems by providing the means for remote access to time-

shared computer facilities, data base sharing and the sharing of unique

computer resources. Because of the definite improvements in system

expected job time and reliability that load sharing can provide, provisions



-111-

for load sharing should be given serious consideration in the design of

future computer-communication networks. A study of the performance

curves for statistical load sharing and dynamic load sharing shows that

it is most important to balance out severe load imbalances. The per-

formance improvement that is gained by simply balances. The performance

improvement that is gained by simply balancing the average load is far

greater than the additional improvement gained by doing dyanamic job

assignment. This indicates that in actual implementations of load

sharing, it may be sufficient to make load sharing policy decisions on

a periodic basis to balance average loads, rather than to make a decision

based on system state for every job. An important result of this study

is the identification of the load sharing problem as a multicommodity

flow problem. This means that as progress is made in solving the problem

of dynamic control of other multicommodity flow problems, such as

message routing in a packet switched communications network, the results

can be applied to the load sharing problem.

5.2 Suggestions for Further Research

The upper and lower bounds on system performance, that were

developed in Chapter 2, provide a frame of reference within which to

evaluate load sharing techniques. It would be of interest to examine

load sharing techniques other than those presented here, such as the

dynamic technique of Roome and Torng [Ref. 31], within this frame of

reference.



-112-

In order to achieve a better understanding of the benefits of load

sharing, it would be of interest to obtain a more complete statistical

description of performance than just expect job time. Higher moments

of job time distributions, or even better, complete job time distributions

would be of value.

Since a computer-communication network is a dynamic system, it is

important to understand its transient operation as well as its steady

state operation. A transient situation that is of particular interest

is the system response to a temporary overload at one of the computers.

As suggested in Chapter 4, another idea for further study is to

model each of the computers and communication channels as queues

operating in discrete time with finite length buffers and to use a

discrete time, finite state Markov process analysis to study general

dynamic load sharing techniques. In order to use this approach, one

must first find ways to handle the problem of the extremely large state

space generated by this model.

Another suggestion for further research is to consider reliability

improvements using load sharing techniques in systems where the com-

munication channels are subject to degradation rather than total failure.

An example of such degradation is a change in signal to noise ration in

a radio channel.

A final suggestion for further research is to investigate dynamic

load sharing operation using control schemes that do not assume a global

controller using an instantaneous communication system separate from



-113-

the communication network used for load sharing. It is quite likely

that in actual implementations of load sharing, there would not be a

separate global controller and that control information would be sent

via the same communication network as the computer programs and results.



-114-

APPENDIX A OUEUEING FORMULAS

This appendix gives the basic queueing formulas used in this

study. Derivations of the formulas in Sections A.1 and A.2 can be

found in standard references on queueing theory such as Cohen [Ref. 5]

(M/M/1 queue only), Gross and Harris [Ref. 8], Hillier and Lieberman

[Ref. 10] or Saaty [Ref. 33].

A.1 The M/M/l Queue

The M/M/1 queue is a single server queue with a Poisson arrival

process with mean arrival rate A and a negative exponential service

time distribution with mean service time 1/p. The queue has a steady

state solution only when the utilization factor, p = A/p, is less than

1. If this is the case, the steady state disbritubion of the number

of customers in the system is given by

PK = (1 - p) pK K = 0,1,2. . .

where p = A/p < 1

Using this steady state distribution, it can be shown that the

distribution of the time to pass through the M/M/1 queue is also

exponential with mean

E[T] =
'a-A



-115-

A.2 The M/M/N Queue

The M/M/N queue is an N server queue, also with Poisson input

(mean arrival rate A) and exponential service time (mean service time

1/p). The steady state distribution of the number of customers in the

system is given by

K! PB if 0 < K < N
K

PK =

( A/" K P0 if K > N

N! NK - N

where

I! N-1 (A/)n (X/)/N 1

P = l/ 1Po n ! N! 1 - (X/N)

By solving for the expected number of customers in the system and

applying L = AW, it follows that the expected time to pass through

the system is given by

P ( A/) p 1
E[T] = + -

A N! (1 -p)2

where p = A/NP



-116-

A.3 The M/Ek/N Queue

The M/Ek/N queue is an N server queue with a k th order Erlang

service time distribution. The technique used to analyze this queue

is given by Heffer (Ref. 9]. The distribution of the number of

customers in the system and the resulting value of the expected time

to pass through the system are not given by convenient closed form

solutions. Numerical results, however, are available in Hillier and

Lo [Ref. 11]. These numerical results were used to perform the

calculations in this study.

In order to calculate performance curves for the hypercube

approximation model, the sequence of calculations that one follows is

1. Given the value of the total system utilization factor,
calculate the probability of sending a job.

2. Using the probability of sending a job and the system

utilization factor, calculate the total system load

XT at which this utilization factor occurs.

3. Calculate the expected job time by using Little's formula

L = XA [Ref. 23] where L is the expected number of customers

in the system at this system utilization factor and W is the
desired job time.



-117-

APPENDIX B PROOF OF THE APPLICABILITY OF THE

NETWORK OF QUEUES MODEL TO STATISTICAL LOAD SHARING

The analysis of the network of queues model for statistical load

sharing was made possible by a theorem by Jackson [Ref. 12] which states

that in steady state, the probability distribution of the state of the

network can be written in a product form. The terms in the product are

the distributions of the state (number of customers) at each queue in

the network considered as a separate independent queue with the appropri-

ate input rate. The purpose of this appendix is to show that the statis-

tical load sharing problem meets the requirements of the Jackson theorem.

The requirements of the Jackson theorem are that

1. Customers from outside the system arrive at each queue
as a Poisson stream.

2. Once served at queue m, a customer's destination is
dXermined by a random sampling. With probability

0 he goes (instantaneously) to queue K (k = 1,2,

* . . M) and with probability

'M

i- Z KM
k=l

he leaves the system.

3. Each queue has an exponential service time distribution

and serves all arriving customers (from inside or out-

side) in a first-come-first-served manner.t

The third requirement is clearly met by the statistical load shar-

ing problem, since both communication channels and computers are modeled

A first-come-first-served discipline is sufficient, but not necessary.
[Ref. 22].



-118-

as exponential servers. The other two requirements, however, need to

be examined more closely.

The requirement that customers from outside the system arrive as a

Poisson stream is met by assumption at all computer queues which do not

send jobs on to be processed elsewhere. At computer queues where some

of the jobs are sent elsewhere, customers arrive as a random process

which is a random sampling of a Poisson input stream. This is also

true of communication queues which are used to forward jobs arriving

from outside the system (computer programs). Therefore, in order to

show that the first requirement of the Jackson theorem is met, it is

necessary to show that a random sampling of a Poisson process yields

another Poisson process. Such a proof is given below.

Proof that a Random Sampling of a Poisson
Process Yields Another Poisson Process

A Poisson arrival process with rate parameter X is a renewal process

for which the interarrival times are exponentially distributed with mean

1/ X [Ref. 16]. Therefore, for such a process, the Laplace transform of

the interarrival time distribution is

co

L {fT(t)} = f eSt f(t)dt = r e-te- dt = s+
Tt=-0oT t=0

tAs noted in Chapter 3, the independence assumption [Ref. 17] for
communication channels may be required.



-119-

Now consider a random sampling of this process in which arrivals are

counted with probability 0 and not counted with probability 1 - 3.

Then the Laplace transform of the density function for the time L between

successive arrivals which are counted is

L {f ( = L{f (w1 )} B + L{fw (W2)}g( 1- B) + L{f (w )} a(1-) 2 +

co

n-1
I- l L {fW (wn)} (1-)

n=l n

where W is the sum of n interarrival times in the underlying Poisson
n

process.

Since the transform of the density of a sum of statistically independent

random variables is the product of the transforms independent random

variables is the product of the transforms of each random variable in

the sum, the expression becomes

co
k n n-1 Bk

L {f ( )} = I )n (ls )n-l X)

n-l

Therefore L is distributed exponentially with mean 1/XA. Since succes-

sive interarrival times in the sampled process are also statistically

independent, the sampled process is Poisson with rate parameter OX. Q.E.D.



-120-

The final requirement that the statistical load sharing problem

must meet is that, once serviced at a queue, the destination of a job

is determined by random sampling. This results in a random routing

through the network of queues. In the statistical load sharing problem,

the routing of a job is random until it has passed through a computer

queue. Once it has passed through a computer queue, it must be returned

to the computer of origin before it can leave the system. This deter-

ministic routing in the statistical load sharing problem must therefore

be shown to still meet the requirements of the Jackson theorem.

Consider a computer queue which services both jobs submitted to it

directly (arriving at rate Al) and jobs sent from an overloaded computer

(arriving at rate A2). At the output of this queue, it must be decided

whether a job leaves the system (if it was submitted to the computer

directly) or if it is to be sent over a specific communication channel

(if it came from the overloaded computer). Assume that the decision

is made on the basis of a tag which identifies the origin of the job.

In order for this decision to meet the requirements of the Jackson theorem,

it must produce output streams of customers that appear as if the decision

was made by random sampling.

When a random decision rule is used, the output streams from the

computer queue are both Poisson. This follows from the fact that the

output of an exponential server with Poisson input is Poisson, as has



-121-

been shown by Burke [Ref. 3]. This property of exponential servers makes

all job streams in the network of queues Poisson when a random decision

is used. The statistical load sharing problem must therefore also

generate Poisson streams at all points in the network.

As stated before, the routing decision at the output of the computer

under consideration is made on the basis of a tag which identifies the

origin of the job. The sequence of decisions that are made at the out-

put of the queue are generated by the order in which jobs arrive at the

input of the computer becuase all jobs are served in a first-come-first-

served manner. In a sequence of routing decisions, the probability

that the next job is of origin 1 is the probability that, in the input

stream, the job which arrived immediately after the job whose routing

has just been determined was of origin 1. This probability is

A}Jl 1 + A2 ), independent of all previous outputs because jobs arrive

at the input of the computer as independent Poisson streams of rates

Ai and A2. The sequence of decisions made at the output, therefore

appears to an observer at that point to be a purely random sequence and

the resulting output streams with different destinations are therefore

Poisson as required by the Jackson theorem.

Another way to show that the statistical load sharing problem meets

the requirements of the Jackson theorem is to apply the idea of a job

routing determined by an Nth order Markov chain as has been done by

Kobayashi and Reiser [Ref. 22].



-122-

LIST OF SYMBOLS

N: number of computers in the system.

XT: mean total arrival rate of computer jobs in the system.

Ai: mean arrival rate of computer jobs at the i th computer.

1/Z: mean number of operations required per computer job.

R.: rate at which the i th computer performs operations.

1/pp: mean message length in bits for computer programs.

1/rp: mean message length in bits for computer results.

C.: channel capacity in bits per unit time of the i th

communication channel.

E(T]: system expected job time.

E[Ti]: expected time to process a computer job which enters the
system at the i th computer.

p: utilization factor of a queue.

f: probability of sending a job which arrives at an overloaded
computer to a specific underloaded computer using statistical
load sharing.

f.: flow rate of computer jobs through the i th computer.
1

f .: flow rate of computer programs through the i th communication
channel.

fri: flow rate of computer results through the i th communication
channel.

NC: number of communication channels in the network.

'P{send}: probability of sending a job in a dynamic load shating system.

P{Bi}: probability of finding the i th computer sampled in a dynamic
load sharing system to be busy.



-123-

P{Fi}: probability of finding the i th computer sampled in a dynamic
load sharing system to be free-

P{SK1: probability of there being k customers in a dynamic load
sharing system.

L: expected number of customers in a queueing system.

W: expected time to pass through a queueing system.



-124-

REFERENCES

(1) Bowdon, E.K., Sr., "Modeling and Analysis of a Network of Computers",
Ph.D. Thesis, Dept. of Electrical Engr., Univ. of Iowa, 1969.

(2) Bowdon, E.K., Sr., "Dispatching in Network Computers", Proceedings
of the Symposium on Computer-Communications Networks and Teletraffic,
Brooklyn, N.Y.: Polytechnic Press, 1972.

(3) Burke, P.J., "The Output of a Queueing System", Operations Research,
Vol. 4, 1956, pp. 699-704.

(4) Cantor, D.G. and Gerla, M., "Optimal Routing in a Packet-Switched
Computer Network", IEEE Transactions on Computers, Vol. 23, No. 10,
Oct. 1974, pp. 1062-1068.

(5) Cohen, J.W., The Single Server Queue, Amsterdam: North Holland,
1969.

(6) Defenderfer, J., "Comparative Analysis of Routing Algorithms for
Computer Networks", M.I.T., Dept. of Electrical Engr. and Computer
Science, (Thesis in preparation).

(7) Fuchs, E. and Jackson, P.E., "Estimates of Distributions of Random
Variables for Certain Computer Communications Traffic Models",
Communications of the ACM, Vol. 13, No. 12, Dec. 1970, pp. 752-757.

(8) Gross, D. and Harris, C.M., Fundamentals of Queueing Theory, New
York: John Wiley and Sons, 1974.

(9) Heffer, J.C., "Steady-State Solution of the M/Ek/C ( FIFO)
Queueing System", CORS Journal, Vol. 7, 1969, pp. 16-30.

(10) Hillier, F.S. and Lieberman, G.J., Introduction to Operations
Research, San Francisco: Holden-Day, Inc., 1974.

(11) Hillier, F.S. and Lo, F.D., "Tables for Multiple-Server Queueing
Systems Involving Erlang Distributions", Stanford University
TR-149, June 1972.

(12) Jackson, J., "Networks of Waiting Lines", Operations Research,
Vol. 5, 1957, pp. 518-521.



-125-

(13) Jackson, P.E. and Stubbs, C.D., "A Study of Multiaccess Computer

Communications", Spring Joint Computer Conference, AFIPS Con-

ference Proceedings, Vol. 34, 1969, pp. 491-504.

(14) Jarvis, J.P., "Optimization in Stochastic Service Systems with
Distinguishable Servers", M.I.T. Operations Research Center

TR-19-75, June 1975.

(15) Kahn, R.E., "Resource Sharing Computer Communications Networks",
Proceedings of the IEEE, Vol. 60, No. 11, Nov. 1972, pp. 1397-

1407.

(16) Karlin, S., A First Course in Stochastic Processes, New York:
Academic Press, 1969.

(17) Kleinrock, L., Communication Nets: Stochastic Message Flow and
Delay, New York: McGraw-Hill, 1964.

(18) Kleinrock, L., "Models for Computer Networks", Proc. of the
International Communications Conference, Univ. of Colorado

Boulder, June, 1969, pp. 21-9 to 21-16.

(19) Kleinrock, L.,"Analysis and Simulation Methods in Computer Network
Design", Spring Joint Computer Conference, AFIPS Conference Pro-

ceedings, Vol. 36, 1970, pp. 569-579.

(20) Kleinrock, L., "Scheduling, Queueing, and Delays in Time-Shared

Systems and Computer Networks", Computer-Communication Networks,

Abramson, N. and Kuo, F. Eds., Englewood Cliffs, N.J.: Prentice-

-Hall, Inc. 1973.

(21) Kleinrock, L., "Resource Allocation in Computer Systems and Com-

puter-Communication Networks", Information Processing 74, Proceed-

ings of the IFIP Congress 74, Amsterdam: North Holland, 1974,

pp. 11-18.

(22) Kobayashi, H. and Reiser, M., "On Generalization of Job Routing

Behaviour in a Queueing Network Model", IBM Research RC 5252,
Feb. 1975.

(23) Larson, R.C., "Approximating the Performance of Urban Emergency

Service Systems", preprint to appear in Operations Research,
Operations Research Center, M.I.T. PIP03-74, Feb. 1975.



-126-

(24) Little, J.D.C., "A Proof of the Queueing Formula L = W"
Operations Research, Vol. 9, No. 3, May-June 1961, pp. 383-387.

(25) Martin, J., Design of Real-Time Computer Systems, Englewood Cliffs,
N.J.: Prentice-Hall, Inc., 1967.

(26) McGregor, P., "Load Sharing in a Computer Network", Ph.D. Thesis,
Dept. of Electrical Engr., Polytechnic Institute of New York,
June, 1974.

(27) McGregor, P. and Boorstyn, R.R., "Load Sharing in a Computer Net-
work", International Conference on Communications, San Francisco,
June 16-18, p. 41-14 to 41-19, 1975.

(28) Metcalfe, R.M., "Packet Communication", Project MAC Report TR-114,

M.I.T., Dec. 1973.

(29) Moore, C., "Network Models for Large-Scale Time-Shared Systems",
Ph.D. Thesis Dept. of Industrial Engineering, U. of Michigan,
April 1971.

(30) Roberts, L.G. and Wessler, B.D., "Computer Network Development to
Achieve Resource Sharing", Spring Joint Computer Conference, AFIPS
Conference Proceedings, Vol. 36, 1970, pp. 543-549.

(31) Roome, W.D. and Torng, H.C., "Modeling and Design of Computer
Networks with Distributed Computer Facilities", Proceedings of

the 1974 Symposium, Computer Networks: Trends and Applications,
IEEE Computer Society, 1974.

(32) Rubin, I., "Message Path Delays in Packet-Switching Communication

Networks", IEEE Transactions on Communications, Vol. 23, No. 2,
Feb. 1975, pp. 186-192.

(33) Saaty, T.L., Elements of Oueueing Theory, New York: McGraw-Hill,
1961.

(34) Strom, C.A., Jr. and Walker, R.K., "Distributed Computer-Com-
munication Networks", Proceedings of the Symposium on Computer-
Communication Networks and Teletraffic, Brooklyn, N.Y.: Poly-

technic Press, 1972.

(35) Wilkov, R.S., "Analysis and Design of Reliable Computer Networks"
IEEE Transactions on Communications, Vol. 20, No. 3 Part II, June
1972, p. 660.



-127-

Distribution List

Defense Documentation Center 12 copies

Cameron Station

Alexandria, Virginia 22314

Assistant Chief for Technology 1 copy

Office of Naval Research, Code 200

Arlington, Virginia 22217

Office of Naval Research 2 copies

Information Systems Program

Code 437

Arlington, Virginia 22217

Office of Naval Research 6 copies

Code 1021P

Arlington, Virginia 22217

Office of Naval Research 1 copy

Branch Office, Boston

495 Summer Street

Boston, Massachusetts 02210

Office of Naval Research 1 copy

Branch Office, Chicago
536 South Clark Street

Chicago, Illinois 60605

Office of Naval Research 1 copy

Branch Office, Pasadena
1030 East Green Street

Pasadena, California 91106

New York Area Office (ONR) 1 copy

715 Broadway - 5th Floor

New York, New York 10003

Naval Research Laboratory 6 copies

Technical Information Division, Code 2627

Washington, D.C., 20:375



-128-

Dr. A. L. Slafkosky 1 copy

Scientific Advisor

Commandant of the Marine Corps (Code RD-1)

Washington, D.C. 20380

Office of Naval Research 1 copy

Code 455

Arlington, Virginia 22217

Office of Naval Research I copy

Code 458

Arlington, Virginia 22217

Naval Electronics Laboratory Center 1 copy

Advanced Software Technology Division

Code 5200

San Diego, California 92152

Mr. E. H. Gleissner 1 copy

Naval Ship Research & Development Center

Computation and Mathematics Department

Bethesda, Maryland 20084

Captain Grace M. Hopper 1 copy

NAICOM/MIS Planning Branch (OP-916D)
Office of Chief of Naval Operations

Washington, D.C. 20350

Mr. Kin B. Thompson 1 copy

Technical Director

Information Systems Division (OP-91T)

Office of Chief of Naval Operations

Washington, D.C. 20350

Advanced Research Projects Agency 1 copy

Information Processing Techniques

1400 Wilson Boulevard
Arlington, Virginia 22209


