
March 31, 1976 Report ESL-R-656

THE NETWORKING OF INTERACTIVE BIBLIOGRAPHIC RETRIEVAL SYSTEMS

by

Richard S. Marcus
J. Francis Reintjes

The research supported herein was made possible through the

supported extended by the National Science Foundation through
Grant NSF-SIS-74-18165.

Electronic Systems Laboratory

Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

ABSTRACT

Research in the networking of heterogeneous interactive biblio-

graphic retrieval systems has been continued. The concept of a virtual

retrieval system has been studied. Such a virtual system would be created

through a translating computer interface that would provide access to the

different retrieval systems and data bases in a uniform and convenient

way, even for the inexperienced user. An experimental interface, called

CONIT, has been built to test the virtual system concept. Initial evalu-

ation of CONIT, which connects four retrieval systems, suggests that the

virtual system approach could be cost effective. Particular attention was

focused on the requirements for a common command language, ease of use,

and message interpretation and protocols in a networked interface.

ACKNOWLEDGEMENT

This report constitutes the final report for Grant NSF-SIS-74-18165,

entitled "Research in the Coupling of Interactive Information Systems."

The project was supported by the Division of Science Information of the

National Science Foundation and covered the period July 15, 1974 through

November 31, 1975.

We wish to acknowledge the cooperation extended to us by the

National Library of Medicine, the Lockheed Corporation, and the Systems

Development Corporation in conjunction with our use of their respective

online retrieval systems.

We acknowledge the efforts of Mr. Joseph J. Passafiume, Staff

Mermber in our research group, who, since he joined the project, has made

a major contribution in the area of computer programming and systems

analysis as related to networking.

ii

CONTENTS
Page

1. INTRODUCTION 1

1.1 The Developing Information Transfer Scene 1

1.2 Status of Computer Resource Sharing 3

1.3 Problems of Utilization of Retrieval Systems 6

1.4 The Interface Approach to Connecting Systems 9

1.5 Outline of Work and Report 14

2. CONIT: THE EXPERIMENTAL INTERFACE 16

2.1 Instructional Features 16

2.2 System Selection, Connection, and Detaching 17

2.3 Response Translation 20

2.4 General Retrieval Command Translation 21

2.4.1 Database Selection 22

2.4.2 Search Commands 23

2.4.3 Index Browsing Command 24

2.4.4 Naming and Combining Retrieved Sets 25

2.4.5 Output Commands 26

2.4.6 Saving Output 28

2.4.7 News and Status of Retrieval Systems 29

2.5 Systems Analyst Functions 29

2.5.1 Translation Tables 30

2.5.2 Dialog Modes and Language 30

2.5.3 CONIT Status Reporting 31

2.5.4 System and TIP-Port Connection and Detaching 32

2.5.5 Connecting and Disconnecting CONIT 32

3. USER/SYSTEM INTERACTION: GENERAL PRINCIPLES 34

3.1 Importance of the User/System Interface 34

3.2 Classes of Users 34

3.3 Instruction: Computer-Assisted and Other 36

3.4 Computer Techniques That Aid Learning 36

iii

4. A COMMON LANGUAGE FOR RETRIEVAL 41

4.1 English as a Common Language 41

4.1.1 Advantages and Disadvantages of English 41

4.1.2 The Ambiguity Problem 43

4.1.3 Elements of English that are Desirable and Practical 47

4.2 Desired Structure and Features of Interactive Languages 49

4.3 Specific Plans for a Retrieval Language/Protocol 54

4.3.1 General Considerations 54

4.3.2 Retrieval Language Structure 57

4.3.2.1 Commands/Arguments/Delimiters 57

4.3.2.2 End of Message Signal 58

4.3.2.3 Command Terminator 58

4.3.2.4 Bracketing 58

4.3.3 Dialog Control 59

4.3.3.1 Input Editing 59

4.3.3.2 Interrupting 59

4.3.3.3 User Prompts and Status 60

4.3.3.4 VERBOSE, TERSE, and Other SPEAK modes 62

4.3.3.5 Renaming 64

4.3.4 System and Data Base Selection and Connection 65

4.3.5 Search and Related Functions 67

4.3.5.1 Basic and Other Search Aspects 67

4.3.5.2 Selection of Data Bases, Files, and Search 68

Elements

4.3.5.3 Term Selection, Combinations, and Matching 70

4.3.5.4 Results: Naming, Combining, and Re-searching 74

4.3.6 Output and Related Functions 78

4.3.7 Instruction and Status Review 81

4.3.8 Saving, Sharing, and Reviewing Results 83

4.4 Summary 84

iv

Page

5. MESSAGE INTERPRETATION AND PROTOCOLS IN AN INTERFACE 86

5.1 Simple Model 86

5.2 Limitations of Simple Model 89

5.2.1 Interface/Systems Dialog Unmediated by User 89

5.2.2 Indefinite Nature of Systems Response 90

5.2.3 Unexpected or Unpredictable Messages 91

5.2.4 Overlapping of Messages 92

5.2.5 Multiple Simultaneous Retrieval Systems 93

5.3 A More Comprehensive Characterization 93

5.3.1 Communicants and Communications 93

5.3.2 Communicants as Rule-Governed Processes 94

5.3.3 Structure and Timing Considerations 96

5.3.4 Message-Handling Rules for the Interface 98

5.3.5 Message Formats, Timing, and Segments 99

5.3.6 Rule-Matching Criteria 102

5.4 Retrieval Protocols in Cooperating Networks 103

6. EVALUATIONS 110

6.1 Physical Interconnections 110

6.2 Effectiveness of Interface Approach 110

6.2.1 The Dimensions of Effectiveness 110

6.2.2 The Common Retrieval Language 112

6.2.3 The Master Index and Thesaurus 114

6.2.4 Common Bibliographic Data Structure 115

6.2.5 Costs and Benefits 116

6.3 Logical Interconnections 117

6.4 Areas Requiring Further Work 119

6.5 Conclusions 121

7. PROJECT BIBLIOGRAPHY 123

8. REFERENCES 124

v

Page

APPENDIX A. Sample User/CONIT Dialog 128

B. CONIT Instructional Messages 148

C. CONIT Translation Tables 152

D. Suggested User Protocols for Access to a Computer 159
via a Network

LIST OF FIGURES
Page

1. Logical Diagram of Virtual-System Interface 10

2. Sampled Relationships among Terms as Maintained in Master Index 12
Thesaurus

3. Common Bibliographic Data Elements and Structure for the Indexing 13
Category

4. Computer Interconnections for CON.IT Experimental Interface 19

5. Logical Structure of User Statement 53

6. Time Diagram of User/System Message Flow for Simple Sequential 88
Operations

7. Time Diagram of Message Flow with Interface Process for Simple 88
Sequential Operation

8. Time Diagram of Typical Message Flow for General Interface 97
Situation

9. Model of Message Interpretation and Response Components in 100
Interface

10. Diagram of Retrieval Network in which Interface is Distributed 106
in User and Server Programs

11. Schematic Diagrams of Server Components 108

vi

1. INTRODUCTION

1.1 The Developing Information Transfer Scene

1,2
In the preceding 10 years there has been a rapid development

in techniques for achieving transfer of information among individuals

representing a common community of interest, such as in a scientific

discipline or technical field. Many of these new techniques have

centered on, and depended upon, the rapidly growing technology of

the digital computer, especially in its online, interactive, time-shared,

and networked aspects. Thus we have seen the growth from experimental,

to prototype, to operational stages of online computer-based systems

that provide rapid simultaneous access, for dozens of users on widely-

distributed terminals, to information in data bases containing up to

106 or more records with 109 or more characters.

For the coming 10 years we can predict with a fairly high degree

of confidence that this trend toward systems of increasing capability

will continue. Of course, one aspect of this growth will likely be an

increased capacity for these information systems in terms of number

and size of data bases and the numberof simultaneous online users.

Another aspect of development will undoubtedly be reduced cost; while

the exponential increase in capabilities for a given cost in such com-

puter system components as CPU, storage, peripherals, and data trans-

mission that has marked the past 10 years cannot be expected to con-

tinue indefinitely, there is no indication that the rate of improve-

ment for these cost factors will slacken in the near future. A third

aspect of development that can be predicted with some degree of assur-

ance for interactive information systems is improved computer-assisted

instructional capabilities that will make these systems easier to

learn and use by the average, non-computer-specialist user. A fourth

area of development for these systems will likely be their continued

refinement in terms of improved functional capabilities within the

functional areas of the individual classes of systems: thus for ex-

ample, retrieval systems may be expected to have more flexible search

-1-

and output capabilities.

The fifth and, perhaps, most challenging area for development

in the near future is one that might be given the dual heading of net-

working and integration. Integration refers to bringing together for

a user the many diverse information transfer functions. Besides

bibliographic information retrieval -- where systems are now well de-

veloped for retrieval of references to documents -- there are now, at

least in an experimental stage, many other capabilities, such as

computer techniques for storing and retrieving numerical data and full-

text alphanumeric information, alerting users on a periodic basis to

new information that has entered a data base which is relevant to their

profile of interest (selective dissemination of information -- SDI),

identifying persons who can help answer questions and, generally,

facilitating interpersonal communication. Other potentials for com-

puterized information transfer services include techniques that facilitate

"publication" (perhaps, entirely in an electronic medium), enable process-

ing of retrieved information of all types and, finally, techniques that

actually enable the answering of general questions posed in natural

language or other formats and presentation of the answers in whatever

format is most effective. Examples of various forms of presentation

include natural language, numerical, graphic, oral, or combinations

of these.

Systems of the far future may ultimately incorporate all these

functions into one master information transfer system. The possibility

of such a master system is one area for current research. However,

for the near and intermediate future -- say, the next 10 or 20 years,

it is likely that there will continue to exist separate systems for

at least some of these functions. Therefore, enhanced user access

to these separate systems through computer interfaces is another vital

area that needs substantial attention at present.

Such interfaces are possible only in a computer network environ-

ment. Such an environment, if designed adequately, permits the inter-

connection of different systems. It also permits the interconnection

-2-

of different components of the same system, so as to make effective use

of distributed computer-system components. The ability to do resource-

sharing in a distributed computer network may well, then, be the key

not only to increased effectiveness through functional integration

but also to increased economy through efficient utilization of system

components. The overall status of the general area of computer resource-

sharing will be described next.

1.2 Status of Computer Resource-Sharing

The sharing of hardware and software resources in a single com-

puter has been accomplished through the development of time-sharing

systems like those pioneered at M.I.T.'s Project MAC and elsewhere.

With suitable digital communication links, such systems can extend re-

source sharing by providing access to users at remote locations over

dedicated or switched telephone channels. A variety of systems soft-

ware and hardware enables a user to select any program in the system.

This program, in turn, can call on other programs to perform computation,

transfer of data into or out of the system, and other kinds of processing.

In the time-sharing environment users and programs can share these

computer resources simultaneously.

Generally speaking, each computer program to be used in this kind

of shared environment must be carefully designed to fit into the specific

operating environment of a given computer and, in particular, its input/

output characteristics must be well known to any using programs. Where

these preconditions of cooperation and compatibility hold, the extension

of the concepts of sharing to multiple computer systems and their as-

sociated resources is quite possible, although, of course, not without

the resolution of substantial technical questions. However, a partic-

ularly vexing situation arises in the common case where one must con-

tend with computer systems that have been independently and heterogeneously

designed.

A partial solution to the problem of sharing resources from

independent computers is found in terms of those telecommunications

-3-

1.2

networks which interconnect user terminals to different computers. One

such network is that of the Tymshare Corporation (called TYMNET 4) which

interconnects users from a variety of terminals through "satellite" mini-

computers to a dozen or more different computer systems. Networks of

this type provide enhanced access to multiple, heterogeneous computer

systems in that they enable terminals having different character sets

and speeds to call a local telephone number (in most metropolitan U.S.

areas and in some foreign areas) and get connected to widely dispersed

and different computer systems. Thus, access is made easier in that

the user does not have to contend with multiple telephone numbers and

terminal connection protocols. Also, communications cost is lower in

such a network than for separate direct-dialed or even leased-line

connections, especially for the casual or infrequent user.

It should be noted, however, that terminal access per se is

just one component of the process of sharing use of multiple, hetero-

geneous computer systems. At least two other components must be present

for the effective sharing of heterogeneous computer resources. One is

the ability of different computers and programs within the computers

to transfer data to each other. A second needed component is the ability

for either a program or human to make convenient and effective use of

the various facilities once access itself is attained. In this regard

it is desirable that existing programs and systems be usable as building

blocks for other programs and systems.

The interconnection of and transfer of data among heterogeneous

computers -- including those having different manufacturers as well as

differing operating systems -- has been an activity undergoing vigorous

development in recent years. Several regional computer networks that

can be mentioned as examples of this development are: the Michigan

Educational Research Information Triad (MERIT), the Triangle Universities

Computation Center of North Carolina (TUCC), and the State of Georgia

University System Computation Network. Perhaps the most well-known

computer network currently in operation is that of the Advanced Research

-4-

1.2

Agency (ARPANET).6 ARPANET is the prime representative of a class of

networks featuring packet-switching technology. A commerical version

of the ARPANET, call Telenet and developed by the Telenet Communications

Corporation, has recently become operational. These networks provide

the necessary uniformity and/or compatibility through hardware and

software interfaces and communication channels and protocols so that

data transfer and process control are enabled among the computers and

programs.

Providing convenient access to the facilities within these net-

works has been the goal of a series of developments involving satellite

minicomputers analogous in function to those mentioned above for the

TYMNET network but attempting to provide more extensive and flexible

capabilities. Many of these developments have been directly involved

with improving access to ARPANET facilities. These include (1) the

ARPANET Terminal Interface Message Processor (TIP) developed by Bolt,

Beranek, and Newman, Inc.; (2) the ARPA Network Terminal System (ANTS)

developed at the University of Illinois; (3) the ELF "front end" system

developed by the Speech Communications Research Laboratory; and (4) the

"Network Access Machine" (NAM) developed at the National Bureau of
11

Standards.

In addition to these attempts at providing more convenient access,

many other developments have been taking place which seek to provide

more effective means for the separately created and distributed computer

programs to communicate with each .other using the basic data transfer

protocols so as to integrate for users the capabilities of dispersed

resources. A few examples may be given to indicate the trend of these
12

developments. Crocker et al explained how protocols exist at differ-

ent levels: low-level communications protocols are used by higher-

level, "function-oriented" protocols whose primitives are more closely

related to the substantive functions users require. Some examples of

high-level protocols that have been developed for ARPANET use include

(1) the TELNET protocol by which a user at a terminal controls a process

in a remote host computer as if he were a local user of that host; (2)

a File TRANSFER Protocol for transfering "raw" text files (means to

-5-

1.2-1.3

transfer structured files are currently under development); and (3) a

Remote Job Entry (RJE) protocol.

Another major development in resource sharing has been the bringing

together in one system of several different functions which get executed

by invoking previously created programs on different computers. Such a
13

system is the Resource Sharing Executive (RSEXEC) developed at Bolt,

Beranek, and Newman, Inc. RSEXEC is a distributed, executive-like system

that enables ARPANET users to obtain, using a common command language,

various services from different ARPANET host computers such as providing

status information sending messages, and performing certain file-maintenance

operations. A second example is found in a current project of the Ad-

vanced Research Projects Agency called the National Software Works 14, 38

(NSW). The purpose of NSW is to bring together within one system the

means to generate and test computer programs so that, for example, a

program can be written using an edit program on one computer, combined

on a second computer, and run on still a third computer.

1.3 Problems of Utilization of Retrieval Systems

One area in which a sharing and interconnecting of computer

facilities would be particularly useful is that of interactive biblio-

graphic retrieval systems. It is in this area that the research reported
15

on here has concentrated. As McCarn has pointed out, uses of these

systems have increased significantly in recent years. This appli-

cation is thus starting to fulfill its early promise as one of the im-

portant applications to be served by the growing field of computer-based

time-shared systems. Tens of thousands of searches are performed monthly

by a number of different systems which have access, in the aggregate,

to dozens of data bases containing, in total, more than five million

references to documents of many different types -- e.g., books, reports,

journal and news articles, etc. -- in a wide range of subject areas

in science, technology, and the arts. There has been a steady rise in

these statistics over the last few years as new systems and data bases

have come online and more and more users have learned of their existence

and retrieval effectiveness.

-6j-

1.3

The very success of these systems has tended to aggravate the

problem of convenient use because of the difficulties faced by users in

learning how to interact with the multiplicity of heterogeneous systems

and data bases. A potential user of different retrieval systems is

faced with a series of obstacles right from the start: the necessity

to discover these systems in the first place, to enter into separate

procedures to gain access and reimburse costs, and possibly -- if the

systems are not interconnected through a common network, as described

above -- to make actual access via different terminals and separate

locations. Other obstacles face the user once the initial access is

made: different commands languages, retrieval functions, indexing

vocabularies, and output formats. Even within a given system, access

to different data bases is often frustrated by the differences in

catalog record fields and indexing methods that the system may only

partially compensate for. It is little wonder then, that currently

access to these systems is primiarly through a professional intermediary --

a specially trained librarian, for example, rather than by the user him-

self.

It might be thought that a single system and database should

satisfy a given user. It has been our experience at M.I.T. with the
16 17

Intrex and NASIC systems, however, that a single user generally

needs access to many different bases, if not for a given search, then

over a period of time as his needs change. Furthermore, in a community

of professionals with heterogeneous interests, access to a multiplicity

of resources pertaining to several disciplines is required. These

resources are better stored as separate data bases rather than aggregated

into a single huge data base.

These differences present substantial difficulties even to
17

experienced users. In the NASIC at M.I.T. program , where librarians

have been trained as information specialists to assist end users in

searching online data bases, we have found that several weeks of train-

ing and continuing practice at the terminal were needed by the specialists

-7-

1.3

to get to a high level of proficiency and to maintain that level. A

significant part of the learning difficulty was caused by the differences

among data bases and systems. Even the specialists have found it de-

sirable to specialize in a small number of data bases and, sometimes,

in only one or two systems, at least partly for the reason of the

heterogeneity of data bases and systems. Another reason, of course,

is that existing systems have not yet realized the full potential of

computer-assisted instruction.

In a study of current users of online bibliographic retrieval

systems performed by the Systems Development Corporation under sponsor-
18

ship from the National Science Foundation it has been reported that

a sampling of users surveyed by questionnaire indicated in the main

that they were not having "major" difficulties in using different

systems and data bases. However, over half of respondents did report

"some" difficulty and the users surveyed constitute a biased sample

in that they have already spent the effort to master the various

systems and tend to be the heavy, intermediary-type users who would

have less difficulty maintaining competence. Also, the results of this

study are based largely on users' own evaluations without correlation

with how well the user is operating the systems. In any case, a fuller

evaluation of these recent results needs to be performed to see if it

really is at variance with the more generally-accepted notions of

difficulty as expressed above.

The end user may not have to master as many data bases and

systems as the specialist searcher, but this contraction is more than

offset by the fact that, in general, the end user has neither the time

nor the inclination for training or practice. In fact, it is for

this reason NASIC and others have decided that it is unrealistic in

the present information-retrieval environment to expect end users

to do their own searches, especially when the computer time -- as well

as the user's time -- is such a costly commodity.

-·8-

1.4

1.4 The Interface Approach to Connecting Systems

In order to investigate means to surmount the obstacles hinder-

ing convenient and effective use of the multiplicity of heterogeneous

interactive retrieval systems, the M.I.T. Electronic Systems Laboratory

has undertaken a research program to examine the feasibility of inter-

connecting interactive retrieval systems through computer interfaces.

The computer interface would achieve compatibility among systems of

heterogeneous hardware and software components through use of, or trans-

lation to and from, common retrieval protocols. (See Fig. 1.)

From its early stages our research program has emphasized an

approach in which the interface is, in effect, a common system into

which and from which requests and results are translated automatically

as they flow between user and serving systems. This approach has the

virtue that a user attempting to retrieve information, when entering

through the access mechanism provided by the common interface, sees

a single virtual system in which all the complexities of the different

retrieval systems and data bases are hidden and only a single uniform

system is apparent. In this way the goal of convenient use of hetero-

geneous computer resources is achieved, at least for the particular

application of interactive bibliographic retrieval systems. Two aspects

of our approach that characterize our attempts at the application of

networking are (1) the use of existing, major, stand-alone interactive

systems without modification; and (2) an emphasis on serving the

ordinary end user -- that is, a user experienced neither in computer

programming, general computer usage nor in the use of interactive

retrieval systems, in particular.

Our initial analysis of the requirements for a common inter-

face pointed to the need for three main kinds of logical components for

an effective virtual bibliographic retrieval system: a common command

language, a means for converting among indexing vocabularies and a common

bibliographic data structure. Our review of these components, and of

techniques likely to be useful in their implementation, is summarized below.

-9-

1.4

i ' 1 !
<vII BI I

1 1 e , I
) L O _ .,1<w~~ W~U~~~ 3~Z U I ~L

I_ ' ' I <~vz LnI 0 IIz I '-I
< 0 -- , '~ w t

LL

II

i ooX ~oc o I-U

II L

0~-0I -

I l~z i u I

amZ WG~~ LL W
IIz!D'

1.4

The Common Command Language

The common language should be a language in which all the func-

tions for information retrieval operations can be conveniently expressed

by users. One goal of such a language is to break the functions into

the smallest components that find any different application in any two

systems so that any function in any language can be expressed as a

combination of common language functions, i.e., a macro function in

the common language.

Indexing Vocabulary Conversion

We believe that a good basis for an intermediary language for

indexing vocabularies is natural English. This is accomplished through

a mechanism we have dubbed the Master Index and Thesaurus which contains

the index and thesaurus elements of each of the data bases, including

an ordered list of all vocabulary terms used for indexing together

with the counts of the number of documents indexed by each and the

thesaurus relations for each. (See Fig. 2.) In addition, through use

of the techniques of phrase decomposition (that is, breaking a phrase

down into its individual words) and stemming (dropping word endings

so as to consider only the word stems) we can automatically identify

most intervocabulary relationships.

A Common Bibliographic Data Structure

A common bibliographic structure can be based on the identifi-

cation of data primitives or basic data elements, analogous to the

basic component functions of the common command language. Data ele-

ments in any system can then be translated into, or composed from,

combinations of basic data elements in the common data structure. The

basic data elements would be hierarchically arranged into a data struc-

ture and, typically, the data element of a system would be equated to a

higher-level node of the common data structure. An example of part df

such a structure for data elements that relate to document contents

and indexing is shown in Fig. 3.

-11-

1.4

AW 1172

electr-
insul-

icityT atorsN
atorsN

ical TN
- ation

ic - ating

electric fieldsT' N - herma insuloaionT t N

-T --- NT TJ celectric insulating papers _ BT capacitor paper

electric sparks RT asbestosN

RT -4 dielectics N

electrical insulation . - RT dielectricsN

'RI T, NT wiring

RT - UF. , ____.....

U Nl

. ... U nonconductors

electrical insulators - -- --RT electrical porcelain

KEY

relationship established automatically

- -_ relationship taken from existing thesaurus

T DOD TEST THESAURUS

N NASA THESAURUS

RT RELATED TERM

NT NARROWER TERM

BT BROADER TERM

UF USED FOR

U USE

FIGURE 2 SAMPLE RELATIONSHIP AMONG TERMS AS MAINTAINED IN
MASTER INDEX AND THESAURUS

1.4

.4 ~ ~ ~ ~ ~ ~ ~ Z

~.~
c
u o <~~~~~z,

. -.e zz
0.~~ .-~~~ ~ ~~ ~ ~ ~ ~ ~~~~~~~~~~~~~~~~~~~~Z~.~~ 0 ~~~c: I 0

<- L<~
-~~~~~~~~~~~~~~~~~~~~~ ,..,..I-30~~~~c z 0

u,~~~~~~~~~~~~~~~~~~~~~~us z~~~~~~~~~~~~~i <0-

z D~~~~~~~~i z U

<Z- I->y~~~~~U w~~~~~~~~" O-LTO ZW~~~~~0 m

~~~~~~~~~~~~~~~~~~~~~ui_

v,,z

zq- I_~iH d O o Z v, c 4 S Z rn~~~~~~~~~~~

8"~ ~ ~~~~~~~~~~~~~ ''i _

u00
00] . < ,.., 

Z.< -,e C" ~~~~~~~~~~~~~~~z Li
o ~U t to d <v

z z~~~~~~zoz - < ceL

I I-

UZI' 
' .1 U (D

l LL.
o uZ

0 ~ ~ ~ ~ ~ ~ 0K~~y -

p.- ~ 0 v 
-CC140 VP Z U13 

p.-~~~~~~~~~~~~~~~~~~c LU

UU ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~ctt z

< U-

-3- 0 0
~~~I LU~~~~~U

·- w z OQ~~~~~~~ Z -'CY

-. C cc D

< - 31. U t

< ZZ
< "<-

Z ~ ~ ~ ~~~$ ear~~~~~-;
C3 ZW ~~~~~~~~- t~U

1.5

These and other aspects of the interface -- including how to

fit the interface into the developing network framework -- will be

discussed in the body of this report.

1.5 Outline of Work and Report

In this section we outline the contents of the remainder of the

report and, in doing so, summarize the nature of the work that has been

undertaken on the project, especially that portion that has been

accomplished under the current grant during the past 16 months.

In Section 2 we describe the experimental interface that has

been constructed on the M.I.T. MULTICS system in order to test the

concepts and techniques developed in the theoretical component of our

research program. At the beginning of this grant period we had a simpli-

fied experimental interface that connected to two retrieval systems

containing about 8 data bases; a very simple translation of two

commands -- a search and an output command -- was provided. During

the present grant period the interface was extended to include con-

nection to four retrieval systems with a total of about 50 data bases.

Most of the foundations for a common command language was provided

with a generally adequate translation to the four systems. A number

of changes were made to the interface to improve the automaticity and

reliability of establishing and maintaining connections to the

different systems. In addition, a modest degree of translation of

system responses to a common format was achieved and the beginnings

of an instructional mode were implemented. In general, the experi-

mental interface has now reached that point of development in which

several (knowledgeable) users have been able to try it out for both

demonstration and initial evaluation purposes.

In Section 3 of this report we list and explain those general

principles for user/system interaction for online systems which serve

as guidelines for our research program. Many of these guidelines had

been developed by us and others prior to our current network effort

but additional factors specifically relating to networking and to an

-14-

1.5

interface/virtual system were discovered and integrated into the gen-

eral principles.

Section 4 includes a discussion of the general principles that

could serve as a basis for the development of a common command language

for interactive information systems and specific suggestions for the

development of such a language. The advisability of using natural English

as a command language for the interface is discussed. Here again, while

the general principles for command languages have previously received

considerable study, our work has extended them and applied them to

the interface situation. We have tried to go beyond simply describing

languages in the direction of prescribing optimized forms and explain-

ing the reasons for the choices made.

In Section 5 we discuss the necessary elements for successful

interprocess message communication among systems and human users in

the interface situation. A model based on such investigations can

serve three functions: (1) provide a basis for explaining some of the

important features of interprocess communication in the general human/

computer interactions and in the interface situation in particular;

(2) provide a mechanism for detailing the actual interpretation

and translation functions to be performed in specific situations; and

(3) serve as a framework for software modules that w.ould execute the

interpretation and translation functions in a flexible, table-driven

manner. Section 5 also contains discussion of how a common retrieval

protocol might be relevant to the interface situation.

The experimental interface is described first in this report

in order to make more concrete several elements of our work. However,

the reader might well choose to concentrate on some or all of the

analytic Sections 3 through 5, before Section 2, if he so chooses.

Section 6 gives our evaluation of the work to date. This in-

cludes a discussion of cost and benefits for interface systems of

varying degrees of sophistication. Several side-benefits to work

in the interface area are also described, Section 6 also discusses

future work that could prove beneficial in the interface field.

References, and appendices follow in the remainding sections,

-15-

2.-2.1

2. CONIT: THE EXPERIMENTAL INTERFACE

We have constructed an experimental interface on the M.I.T.

MULTICS computer system in order to test concepts and techniques developed

in the theoretical component of our research. We call this interface

CONIT, an acronym standing for COnnector for Networked Information Trans-

fer. In this section we shall describe CONIT in some detail so as to

provide a concrete base on which the theoretical and evaluative studies

of the later sections can be more readily understood. That is, in this

section we describe what CONIT is; in later sections we explain w it

is the way it is and how a better interface might differ from it.

It should be emphasized that CONIT is an experimental system and,

as such, no attempt has been made thus far to provide a comprehensive

interface. Rather it has been constructed so as to be able to test

specific, representative functions and techniques. There are ways in

which CONIT can be easily extended to cover more functions; other ex-

tensions would be more difficult. The nature of these extensions and

their respective importance and difficulties will be discussed in this

and later sections.

We shall first describe (Sections 2.1 - 2.4) how CONIT appears to

the ordinary user, namely a person who might be using the interface to

retrieve information for his own use from the networked retrieval systems

and their data bases. Some indication of the software and hardware that

underlie the interface will also be given. Later (Section 2.5), we shall

describe the special features of the system which enhance its operation

from the points of view of the analyst and designer.

2.1 Instructional Features

Let us start at the point at which the CONIT system itself has

been called. (The initial connection and logging in to MULTICS and

calling CONIT presents some special considerations that we shall discuss

later in Section 2.5.5). Upon entering CONIT the user is made aware

that instructions on how to use CONIT are available. The initial message

(see appendix A) tells the user that he may go ahead and use CONIT if

-16-

2.1-2.2

he knows how or, otherwise, it tells how he may get instructional in-

formation.

In this first-level of computer-assisted instruction the user

has one basic command, EXPLAIN, by which to request instruction. The

EXPLAIN command has the syntax*:

explain concept

where the one argument, concept, is the name of a concept -- or a mnemonic

abbreviation for the concept -- that CONIT is being asked to explain to

the user. The concepts that can be explained are related to each other

in a hierarchical fashion: the explanations for the general concepts

list the names of more detailed concepts. The currently available ex-

planations are shown in Appendix B. At the highest level is the con-

cept explain which can be invoked by the command 'explain explain'**

or by the simple synonym 'help'.

The command 'speak terse' will cause CONIT to abbreviate its

dialog with the user. The command 'speak verbose' causes CONIT to re-

turn to the normal, lengthly dialog providing extensive instruction.

2.2 System Selection, Connection and Detaching

The most elaborate command, in terms of the mechanisms required

within CONIT to implement it, is the PICK command by which the user can

request connection to a retrieval system and can pick a data base in

which to search. There are five systems to which CONIT currently makes

a connection: (1) The M.I.T. Intrex system resident on an IBM 370/168

under TSO in Cambridge, Massachusetts; (2) the Lockheed DIALOG system

on an IBM 360/50 in Palo Alto, California; (3) the System Development

*In this report we shall use underlining in examples of language con-

structions to indicate variable elements.

**In this report we shall use single quotes to bracket a character

string that could be used in the command language; the two outermost

delimiting single quotes are not part of the string itself.

-17-

2.2

Corporation (SDC) ORBIT system on an IBM 370/158 in Santa Monica,

California; and (4) the National Library of Medicine (NLM) MEDLINE

system for which there are two implementations to which we can connect:

one on a 370/158 machine at the NLM Bethesda, Maryland headquarters

(referred to as NLM/MEDLINE) and one on a similar machine at the State

University of New York at Albany (referred to as SUNY/MEDLINE). CONIT

currently supports a virtual-system type interface to these five systems;

these five systems and several other systems can also be connected in

a "transparent" mode, as will be explained below.

There are different modes of physical interconnection to these

five systems and these differences are reflected in the operations of

the PICK command. These physical interconnections have been previously

described 19,20 One mode of interconnection as shown in Fig. 4 is

through the ARPANET TIP at the National Bureau of Standards to the NLM

MEDLINE system in Bethesda. The other mode of interconnection requires

a "patch"-type, manually-set connection between two manually-dialed

phone lines: one between a Boston-area TIP and the patch box and a

second between the patch box and a computer having access to one or more

retrieval systems. This latter computer can be the M.I.T. 370 with

the Intrex system or it can be a local TYMNET satellite computer which

provides connection to the Lockheed, SDC, and the two MEDLINE systems

through the TYMNET network. The NBS TIP/MEDLINE connection is generally

maintained whenever the NLM/MEDLINE system is available. The patch

connections are made on an ad hoc basis as needed for the experiments.

Note that both that NBS TIP and the patch connections can be used at the

same time so that two retrieval systems can be connectioned simultaneously.

Also, we fully recognize that these low-bandwidth, terminal-oriented

connections are far inferior to higher-bandwidth, inter-computer oriented

telecommunications that we would prefer (see Section 6.1); however, they

have proved sufficient to carry out our initial experiments on the

higher-level aspects of the coupling of information retrieval systems.

To select a system the CONIT user types

pick system

-18-

2.2

x~~~C C=OtL~~~1 ~ LU

0 ~ ~ UI
LU-C) uoIo o x-,I --o i U-

,c c- 7r C~~a w-o---.0 LU

V)~ ~ ~ ~ ~ ~ ~~~~0o, z
C4~~C ~~~~~~~~~~

t- Z -- a Z<~o _- 0
Us~~~~.

z 0 z~0

u z~ z/ X
0

J N ----aI ,~~~~~~zE I~~~C
0v, -I -- o 0

,< '0
cu a. uJ o Vu -L L

/~ C cr o Vt
0

o~~ ~ ~ ~~~~~~~_ LU/0 0-0u r 4!Or: ~~~~~~~: ~~L: t ~~~/J c, ' . r .o~
CL 0L/ ~ / at ._3 .,E

/~~~~~~~ U C O LLJ(L._ -C -
C) C) E -

lu U C O l-C 0- .0- 0 '" .. < o. .-~~~~-o O:. ZOCc 3, o
i~~~~~~~~~~~~~ z

F- c t: t I
-19--. oa I I.--Z -0

E 0

C)~~~~~~~~~~~~~-

J~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~JLLI~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~- uI P W~~~~~~LLI uj~~
< cec

U~crU cO d~~~~zs)·.C~ ~ ~~~~~~ TC 3~VC) L vv~~~~w ~ ~ ~ C
tn 0>-~ ~ ~ ~ ~ ~ ~ ~ ~~~F

2.2-2.3

where system is the name of the system. CONIT performs a number of

functions in executing the PICK command (see appendix A for examples):

(1) Check to see if system is a valid system

(2) Check to see if system is already connected

(3) If system involves a TYMNET connection and there
is a system already connected through TYMNET,
then log the first system out. (The logoff pro-
tocol may involve the interchange of several
messages to and from the first system)

(4) If there already is a system connected but it is
connected through a TIP other than the one needed
for the requested system connection, put the current
system in a connected-but-not-active status and
proceed to connect the second system.

(5) Establish a connection to the appropriate ARPANET
TIP port if not already made. (This may require
cycling through a number of TIP ports to find one
that is available.)

(6) If system refers to TYMNET system, follow the
appropriate TYMNET protocol to call up that system.

(7) Login by following the appropriate protocol. (This
may include a separate call to the retrieval system
after login; e.g., for NLM/MEDLINE).

(8) Answer any initial system questions (e.g., "Do you
want experienced-or new-user mode?" -- CONIT works
in experienced-user mode for compactness.)

When the appropriate response is not seen by CONIT (e.g.,

because of system failure or unavailability) in following one of the

above protocols, CONIT returns control to the user with an indication

of what the problem is. This indication may currently be of the most

general kind (e.g., "proper response not seen") and may or may not leave

the user in a position to continue to reselect another system.

2.3 Response Translation

As in all cases where response from a retrieval system is

received by CONIT, there is a translation of retrieval system response

-20-

2.3-2.4

into a form more suitable to the user of the interface. There are two

main mechanisms for implementing this translation. The first is a simple

string-for-string translation table. The response message stream is

scanned to see if any character strings match the "left-hand" or "input"

or "argument" side of entries in the table. For each match found the

matched string in the response stream is replaced by the "right-hand"

or "output" or "function" side string of the matched entry in the trans-

lation tables. A separate translation table is active for each retrieval

system connected to. See Appendix C for listing of translation tables.

One function currently performed by these tables, for example, is to

translate the string "PROG:", meaning in the ORBIT language that the

message following is coming from the retrieval system, into the name of

that retrieval system: whether SDC/ORBIT or NLM/MEDLINE or SUNY/MEDLINE --

the latter two MEDLINE systems being basically implemented in the same

ORBIT framework as for the SDC system.

The second mechanism for response translation is simply the

general one of the appropriate code within the routines that handle

the dialog with the retrieval systems. For example, one function of

these routines is to determine when any response is completed by looking

for a specific "end-of-message" string, which is usually the "user prompt"

i.e., "<NL>USER:<NL>" for Intrex. ("<NL>" stands for a new-line character

or carriage return.) These system-specific user prompts are replaced

by the CONIT common prompt "<NL>USER::<NL>" -- or simply "::" in TERSE

mode. Many of the translations of both the table and the general

routine mechanisms are, currently, simply to suppress a portion of

the response (e.g., a system telephone number or the whole dialog about

new or experienced users) or to pass along the message without modi-

fication to the user (e.g.,broadcast news during login.)

2.4 General Retrieval Command Translation

The retrieval functions that can be performed through CONIT

in the network of retrieval systems, besides the logging in and logging

out described above, are largely accomplished, currently, through simple

translations from the prototype common command language to the languages

-21-

2.4-2.4.1

of the individual retrieval systems through the mechanism of translation

tables. These "user command" tables work in a fashion similar to the

response translation tables. The command or request message stream

as generated by the user is scanned, and any part of the stream that

matches any entry in the command translation table for the system that

is currently connected is modified by replacing the matched segment

with the corresponding right-hand side of the table entry. This

translated command is then sent to the retrieval system.

2.4.1 Data Selection

The CONIT user can find out what data bases are available in

the currently connected system by using the command 'show data.' This

gets translated to the commands '?FILES' in DIALOG and '"FILES?' in

the ORBIT systems. No translation, as such, is made for Intrex but

the mechanism is provided for such a request to evoke an instructional

message explaining that Intrex has only one data base.

In the ORBIT systems, unlike DIALOG, not all data bases are

available at the same time. The "'FILE?' command explains what data

bases are available at the moment. To request a listing of all data

bases that a system can make available at one time or another the

CONIT command "show data all" is employed. This gets translated to

"'EXPLAIN SCHED' for SDC ORBIT, ""'FILES' for NLM/MEDLINE and "'FILES'

for SUNY/MEDLINE. Note the small but crucial differences in the trans-

lations for 'show data [all]' even among the nominally identical ORBIT

systems. Also note that the ordering of the rules is important; by

insisting on a "longest-match-first" order 'show data all' takes pre-

cedence over 'show data' which takes precedence, in turn, over 'show'

(see Section 2.4.5).

The command 'pick data database' is used to select a data

base. The string 'pick data' is replaced by the string '.FILE' for

DIALOG and "'FILE' for ORBIT systems. (Actually, the additional

function "'USERS"' is added to the MEDLINE systems translations and

"'TIME"' to the SDC/ORBIT translation both in order to make them some-

what more compatible with the DIALOG translation. The argument database,

-22-

2.4.1-2.4.2

which signifies the name of the data base to be connected, is left un-

translated for the ORBIT systems. For DIALOG a translation is made from

a mnemonic name to the number required by DIALOG: thus, for example,

the strings 'eric' and 'ntis' are converted to the numerals '1' and '6',

respectively. Of course, a user could use the appropriate numbers, if

he knew them, and they would get transmitted to DIALOG without conversion.

The data base selection command takes precedence over system

selection because the translations are executed before CONIT looks

for commands it should execute rather than transmit. Commands to ORBIT

systems initially required sending a final double quote (") and con-

verting all lower-case letters to upper case. With recent modifications

to these systems these requirements are no longer necessary.

2.4.2 Search Commands

The basic common search command 'find term' is translated "'FIND

ALL term' 'select term' and 'subject term' in ORBIT, DIALOG, and Intrex,

respectively. The 'ALL' argument to ORBIT indicates that all alternate

meanings of the terms term are to be assumed desired instead of re-

questing the user to select some or all of these alternates. This

translation is more in keeping with the intended meaning of the FIND

command default option for the common command language. Actually, only

the Intrex translation provides the automatic phrase decomposition and

stemming that we wish to basic research mechanism to provide. (See

Section 4 for additional details).

The more specific command to search for a particular author 'find

author name' can be readily translated into DIALOG as 'select au=name'

and Intrex as 'author name' but the translation to ORBIT '"FIND name

(AU) '' is not possible with the current ranslation table mechanism be-

cause of the required rearrangement of the ordering of the 'author' and

'name' arguments. In the actual translation to ORBIT we use, '"FIND

name', will work satisfactorily as long as the given author name is not

also a subject index term.

The symbol '+' is the CONIT designation that, when appended to a

character-string argument to FIND -- viz., 'magnet+', indicates a match

should be made on any term exactly the same as the given string (e.g.,

-23-

2.4.2-2.4.3

'magnet') or any term having that string as a prefix (e.g., 'magnet',

'magnetic', 'magnetization', etc. This gets translated to the corres-

ponding ORBIT symbol ':' or DIALOG symbol '?'. Intrex cannot handle

this user-supplied stem; it takes words in the user-given terms and

automatically tries to find the best stem to search under according

to its stemming algorithm.

One could conceive of Boolean operations among the terms of a

FIND command. The systems to which CONIT connect, however, are so

dissimilar in their capabilities in this respect that CONIT currently

makes only a minor attempt to take advantage of the potentialities in

a common way. Intrex ignores all Booleans in the search command and

relies on its Boolean ANDING of stemmed words; CONIT now does nothing

to change a Boolean operator intended for Intrex, though it perhaps

should, at least, issue a warning to any unwary user who tries to use

an OR or NOT. ORBIT does allow a general Boolean capability within

the search (FIND) command and these operators are passed along by CONIT

to ORBIT as found. DIALOG does not provide for Booleans, as such, with

its search (SELECT) statement; it does, however, provide some powerful

"link'" type operators for its "free-text" searching and one of these --

(F), as in 'term A (F) term B', meaning term A must occur in the same

field as term B -- is taken as a reasonable equivalent for the CONIT

AND operator.

The different kinds of search operations possible in the different

systems, and the different manner of indexing for the different data

bases in the different systems (or, even, within a single system) point

up the inherent difficulty - and, often, impossibility -- of exact

translation from a common language to existing retrieval systems and

data bases.

2.4.3 Index Browsing Command

The CONIT command 'show index term' is intended to provide a

display of terms alphabetically near to term in the index to the current

data base. The translation is to the NEIGHBOR command for ORBIT and

EXPAND for DIALOG. (Intrex has no equivalent command.) As can be seen

-24-

2.4.3-2.4.4

from the response and command translation tables an attempt is made by

CONIT to make a common protocol for continuation of the index browsing

function after the first display is made (5 terms for ORBIT, 15 for

DIALOG). Thus "UP N OR DOWN N?" in ORBIT and the laconic "-more"'

in DIALOG are both converted to "To see more type 'show more'.".

Correspondingly, the CONIT 'show more' command is translated to the

'DOWN 5' command for ORBIT and '0' (page) command for DIALOG which

both have the effect of requesting a second section of index term dis-

play equal in length to the first and continuing where it left off.

We may note, parenthetically, the difficulty of making these

protocols exactly equivalent even for the simple case of length of

initial section: either multiple commands would have to be sent to

ORBIT and sections spliced together or the DIALOG response would have

to be buffered and read out in sub-sections. This complexity would be

compounded if we tried to incorporate the full capability of the

ORBIT command with respect to a variable number of terms in either the

forward (alphabetically) or backward directions.

We may note, also, that the full capability of DIALOG to tag

these displayed terms (with "E and R numbers") and use only the short

tags in the FIND (SELECT) command is implicitly available. The selection

of multiple terms in this way is an implicit Boolean OR function. ORBIT

does not have this capability; although, it could be implemented at the

interface level at some programming expense.

2.4.4 Naming and Combining Retrieval Sets

The CONIT convention is to name the set of documents resulting

from a search in the form: 'setn', where n is a number assigned

sequentially for each new search set. This contrasts with the convention

of using just a sequential number of ORBIT and DIALOG and the form 'sn'

used by Intrex.

The CONIT language expression for combining sets takes the form:

combine setnl bool setn2

where bool stands for one of the Boolean operations AND, OR, and AND NOT.

-25-

2.4.4-2.4.5

The conversion of this form to the appropriate retrieval system language

is shown in the tables. Note that ORBIT and Intrex do not use an ex-

plicit command for the combine operation but rather use only the Boolean

operator itself to indicate the function to be performed; therefore

for these two systems, the translation for 'combine' is null.

2.4.5 Output Commands

To have CONIT display information about documents in some re-

trieval set the basic SHOW command is employed with the following syntax*:

show [mode] [setn] [fields] [docsj-k]

where,

(1) the variable argument mode stands for some special mode
of output, e.g., offline.

(2) setn specifies a retrieval set

(3) fields is an argument string containing one or more
data fields or field groups to be output; e.g., title,
abstract, all

(4) The argument docsj-k specifies that output is to be
derived from the catalog records of the jth through
the kth documents in the search set.

We note again that particular features of several of the retrieval

systems prevent a perfect translation to the several systems within the

limitations of the current CONIT translation mechanism. Some examples

of these difficulties may be instructive to the general problem of

interface translations. Firstly, there may be no way of outputting some

catalog data field for a given data base as implemented on a particular

system. For example, the DIALOG system provides only a half-dozen or

so fixed-groupings of fields for output purposes. For most DIALOG data

bases, then, one cannot select for output just the author or just the

title or just title and author, for example. The current translations

simply make reasonable approximations. Thus, 'title' is translated

to DIALOG output code 6 which includes the title and, variously, other

citation information like order number, price, authors, etc. The default

*Elements in brackets indicate optional terms: they need not, in general,
be included -- in which case they are supplied 'default' values by CONIT.

-26-

2.4.5

case (i.e., no data fields specified) is equated with the DIALOG code

2 output which is nominally citation information but often contains

considerably more than that (e.g., index terms) -- in some sense there

would be a closer translation to DIALOG 'title' category output, but

getting the same result for title and citation output might cause con-

fusion to a user. Note that even in these simple translations CONIT

users can avoid the necessity to separate field names with commas as

required by ORBIT.

The argument 'all' in CONIT is meant to indicate output of all

fields is desired. This function has traditionally been performed by

the argument 'FULL' in ORBIT. However, with the addition of abstracts

to certain NLM and SUNY data bases (e.g., MEDLINE, SDILINE) this function

is now performed by the argument 'DETAILED'. We may also have the

situation in which the same function must be expressed differently in two

data bases, even within the same system. Also, note how changes in the

systems cause a translation to become incorrect.

Secondly, only the DIALOG system can provide the document

selection function directly in the form given in the 'docsj-k' argument.

A translation to ORBIT can readily be done when j=l, but the more general

case requires the argument string 'm SKIP n', where m = k-j+l and

n = j-l. CONIT cannot perform this more general translation with its

simple translation tables. Intrex cannot perform this document selection

function within its output command. It can, however, perform the

overall function by first creating a set of just those documents in

question. Thus, the string of two commands

docs j-k/ouput

will perform the desired output. The problem is that the simple trans-

lation table mechanism cannot rearrange the fixed element 'docs' and

'output' and insert the variable elements 'j-k' between them.

When no argument is given by a user to specify the set it is

assumed in the common CONIT language that the current (i.e., last-found)

set is desired. The translation is implicit to ORBIT and Intrex which

-27-

2.4.5-2.4.6

have the same default arrangement. The translation to DIALOG is not

now possible since that system has no default mode for the argument

and CONIT does not yet have a way to remember the current set number.

If no set number is given for DIALOG, CONIT now simply assumes setl.

Where an interrupt capability is available to the user it is

anticipated that any good common language (see Section 4) will make

the default condition on the document selection argument (docs j-k)

of the output command be the whole set -- the user interrupting when

he's seen enough. At present CONIT simply adopts the default procedure

for the target IR system -- for ORBIT: the first 5 documents; for DIALOG:

the first document (or first 5 for title only); for Intrex: the whole

set.

In the ultimate common language the order of the arguments should

be largely immaterial. Where this is true in the current IR systems

(e.g., ORBIT and Intrex), the current CONIT language can accept that

flexibility. Where a user is currently talking to DIALOG through CONIT

he must accept the order stated previously: i.e., (1) mode, (2) set

number, (3) field types, and (4) document selection. With the current

translation table mechanism there is no way for CONIT to rearrange the

order. The offline output function in DIALOG is accomplished by a

different command (PRINT) than for online output (TYPE); therefore,

the mode argument must be considered in conjunction with the show

command name to determine the output translation. Also note that for

DIALOG the user cannot now specify in CONIT the docs j-k argument with-

out also specifying the fields argument.

2.4.6 Saving Output

A rudimentary capability exists within the current experimental

CONIT for saving the results of searches from different data bases and

systems in a common file created and stored by the interface and from

which the user can display sections for subsequent online viewing.

First a file is set with the 'name-file' (abbreviation:nf) command

which has the syntax

nf filename

-28-

2.4.6-2.5

If filename names an existing file, that file is opened for viewing or

appending to. If filename does not yet exist a new (empty) file with

that name is created and designated for storage.

The command 'file' signals CONIT to append the response to the

next succeeding command to end of the current saved file. Thus the

sequence 'file' followed by 'show...' will cause the output of some

search set to be stored in the saved file. The command 'view filename'

causes the number of lines of text in filename to be reported to the

user. Finally, the command 'lines j-k' causes lines j thru k of the cur-

rent saved file to be displayed online.

2.4.7 News and Status of Retrieval Systems

Certain kinds of news and status information have been provided

as parts of previously mentioned functions: e.g., broadcast news on

login; database status on 'show data' commands; and timing information

on login, logout, and database selection. The CONIT command 'show news'

is the common means by which a user can request display of the standard

news message from the currently active system. This command gets trans-

lated to '?news' for DIALOG; "'NEWS' for SDC, and ""'NEWS' for NLM/MEDLINE.

There is no translation to SUNY/.AEDLINE, as such, but rather the evoca-

tion of a message (see explanation of 'sunynews') which explains that

MEDLINE news can only be obtained from the NLM/MEDLINE system. Note,

again, differences among the several ORBIT systems.

2.5. Systems Analyst Functions

The CONIT functions we have described above have been those that

make up the user interface, i.e., those communication components of the

interaction directly used by, or seen by, an end user, i.e., a user

whose main purpose in using CONIT is to find needed information from the

data bases. We shall now describe those online interactive capabilities

built into CONIT which assist a systems analyst to monitor, modify, and

evaluate CONIT. Of course, some of these latter capabilities may be

adapted to be useful to the end user as we shall indicate. These

capabilities, together with those of the user interface and those

-29-

2.5-2.5.2

and those corresponding capabilities available to a programmer of CONIT's

host system (MULTICS), make up what we might term the design interface.

2.5.1 Translation Tables

The command and response translation tables can be created, listed,

and modified online. The command 'set table [out] tablename' (abbrevia-

tion:st) causes a file with the name tablename[out] to be set up as the

currently active table; if no such file exists, an (empty) one is created.

If the optional argument 'out' is present, the table is taken as a

response table and the file name is taken to be one with the string

'out' appended to the end of tablename (i.e., tablenameout otherwise,

a command table is assumed. Command translation tables might be use-

ful for implementing a "rename" feature for users (see Section 4.3.3.5).

To enter a rule in a currently active translation table one uses

the command

replace [out] $matchstring=replacementstring[j]

(abbreviation for replace:rep), where matchstring is to be set as the

left-hand, or argument part of the rule (see explanation in Section 2.3),

and replacementstring is the right-hand, or function, part of the rule.

Again, the optional argument 'out' is used when, and only when, the

response table is intended to be modified. The optional delimiter

vertical rule (1) is added after reElacementstring in case that argument

ends in a space character which would otherwise get discarded in the

regular CONIT command-parsing operation. Note that presence of spacing

characters in the argument and function strings can be extremely

critical to the proper interpretation of a rule.

To list out online the current contents of a translation table,

the ccmmand 'list table [out]' is used (abbreviation for list table:lt).

In the listings of translation tables in appendix C the argument is the

string between the left-hand margin and the equals (=) sign; the

function is the string between the equals sign and the asterisk (*).

2.5.2 Dialog Modes and Language

Besides the argument pair TERSE and VERBOSE (see Section 2.1),

-30-

2.5.2-2.5.3

the SPEAK command can take other arguments to modify the form of the

dialog. The argument 'monitor' can be used to cause CONIT to display

the full dialog taking place among CONIT and the retrieval systems as

well as the customary CONIT/user dialog which includes only a translated

version of what the retrieval system communications were. Appendix B

shows examples of MONITOR mode output, which can be very useful for

debugging or demonstration purposes. In addition there is a mode evoked

by the argument 'no screen' (abbreviation:nsc) which causes CONIT to

pass through certain formatting characters that are ordinarily "screened

out" from retrieval system responses. The argument 'user' is used to get

back from MONITOR to regular (USER) mode and the argument 'screen' is

used to return to regular mode from NO-SCREEN mode.

The SPEAK command can also be used to go into a "transparent"

mode of operation in which the command of the user are passed along to

the currently connected system without translation and, likewise, the

output from the system is passed back to the user without modification.

The user is thus speaking the language of the connected (host) system.

To enter this mode a user types the command 'speak conit'. Note that

once in HOST mode the user can issue no instruction to be interpreted

by the interface as such except 'speak conit'. All of these four SPEAK

mode pairs are independent so there are 2 = 16 possible mode combina-

tions.

2.5.3 CONIT Status Reporting

CONIT can report the status of the current language, current

modes, current host, patch connection, and TIP port use. The in-

formation is reported upon user issuance of the LIST_STATUS (abbreviation:

ls) command which can take one of six arguments specifying the kind of

information as listed below:

(1) 'system' (sys) -- the currently selected system and the
other active system (if any).

(2) 'language' ('lang') -- the current language (i.e., CONIT
only, for now, since user can't get this information in
host mode).

-31-

2.5.3-2.5.5

(3) 'mode' - the currently selected modes such as VERBOSE
or TERSE; SCREEN or NO-SCREEN; and MONITOR or USER.

(4) 'tip' -- the TIPs and ports currently being used.

(5) 'patch' -- the name of system currently connected to
the patch

(6) 'all' -- information on all of the above.

One will note in the translation tables the rule 'ls all=ls all'.

This is a current device making use of the longest-match principle for

preventing 'all' from being translated as for the argument to the SHOW

command.

Mode selection and status review as features for and users are

discussed below in Section 3.4 and 4.3.7.

2.5.4 System and TIP Port Attaching and Detaching

The CONIT analyst can establish a connection to an ARPANET TIP port

independently of whether or not there is, or will be, a connection made

to a retrieval system over that port. The PICK command is used as

follows:

pick tipname portnumber

where tipname is the name of some TIP (e.g., NBS, MIT) and portnumber

is the number of the port to be connected on that tip. Thus, 'pick

NBS 50' will cause CONIT to attach the user to one of the 5 ports on

the NBS TIP that are regularly attached to the NLM/MEDLINE system,

without forcing a login to MEDLINE as such.

CONIT also provides the facility for detaching an ARPANET TIP

port connection by the command 'detach' (abbreviation:det). If the

argument to DETACH is a retrieval system name, CONIT will detach (close)

the connections to the TIP port through which the connection to that

system had been made. Alternately, any TIP port connection can be de-

tached by the commmand "detach tipname portnumber'.

2.5.5 Connecting and Disconnecting CONIT

CONIT may be evoked by issuing the command 'conit' at the MULTICS

command level. To get to the MULTICS command level requires logging in

-32-

2.5.5

to MULTICS. This, in turn, requires (1) calling up the telephone number

appropriate to one's terminal type, (2) setting up the terminal-to-

telephone connection in data mode through a modem, and (3) issuing the

'login name' command followed by a password consistent with the personal

name given in the name argument of the LOGIN command. MULTICS is fussy

about upper-case/lower-case distinctions and the user must be careful,

for example, to capitalize just the first letter of the name. Of course,

the name used in the login must either be the official name for the

CONIT directory (Conit) or some name which has access rights to that

directory.

Users may connect to MULTICS through the ARPA and Telenet net-

words. That involves dialing a TIP (terminal interface processor -

satellite minicomputer), establishing the terminal connection (including

typing a character string identifying the terminal type, issuing a call

to the MIT MULTICS computer ('o 44' -- i.e., open connection to computer

44 [MULTICS] for ARPANET, or 'c 617 mf' or 'c 617 ms' -- i.e., connect

in the 617 telephone area to a MULTICS fast (1200 BAUD) port or to a

MULTICS slow (300 BAUD) port, and then performing the MULTICS login

procedure as above.

Users quit the CONIT program by giving the CONIT command 'exit'

(abbreviation:ex) after which control is returned to the MULTICS command

level. Any MULTICS command may then be given including 'logout' which

disconnects the user from MULTICS. Disconnecting from ARPANET or Telenet

is accomplished by breaking the telephone connection.

If the user has logged in to the CONIT directory in MULTICS he

is captured by a "start-up executive command" program which automatically

calls CONIT for him. Whenever the user leaves CONIT -- either voluntarily

by the EXIT command or involuntarily from a system failure, the executive

program automatically logs the user out of MULTICS. Access protocols

that would be easier to use in network situations are discussed in Appendix

D.

-33-

3.-3.2

3. USER/SYSTEM INTERACTION: GENERAL PRINCIPLES

3.1 Importance of the User/System Interface

Online interactive computer systems are relatively new, having

been in existence only about fifteen years. There is just now developing

a body of literature 21-24, 3537 which describes and evaluates features

and facilities of the computer system which the user directly perceives

as he interacts with computer. These system features 'and facilities

include such system components as: (1) the command language; (2) the

response dialog from the system; (3) "help" or other instructional

facilities; and (4) user terminals. These system components are often

known collectively as the user/system interface (or, simply, user inter-

face). In our terms, the user interface is just one aspect -- the "front

end" -- of the interface/virtual system which connects the user to re-

trieval systems through an interface system.

Despite the recent analytic work in the area of the user inter-

face, there is, as yet, no agreed upon set of principles by which to

measure or evaluate this critical component of interactive system.

(The discussion in Section 1.3 emphasizes this point.) Needless to say,

there are no existing, widely-known, operational online systems that

are generally accepted as having anything approximating ideal user inter-

faces. In such a situation it is important that we attempt to describe

the general principles which motivate us in this area and which, clearly,

can strongly influence the nature of any analysis of translating computer

interfaces for interactive systems. Such a description follows in this

section.

3.2 Classes of Users

At least some of the controversy surrounding the user interface

issue is, undoubtedly, caused by a failure to distinguish the several

classes of users who may be engaging the systems. Earlier, in Section

1.3, we discussed some of the different kinds of users. One distinction

that we made for retrieval systems was between an end user and an inter-

mediary. The end user is a person who needs the information that is

-34-

3.2

derived from the data bases directly for his own work. The intermediary,

who may be an information specialist acting as a delegated searcher,

finds information for the sole purpose of passing it along to an end

user.

Besides their classification by function, users need to be dis-

tinguished by their experience. Relevant experience comes in three

categories. First there is the category of computer experience, expecially

in regard to interactive systems and particularly with retrieval systems.

Second is experience with the function to be served and the intellectual

tools available to serve that function -- in our case the bibliographic

retrieval function with the tools of bibliographic reference using

knowledge of data bases, indexing and classification structure, etc.

Third is experience with the subject matter of the data to be retrieved.

Thus, typically, the intermediary information specialist is

experienced with the retrieval system and bibliographic search function,

whereas the end user is experienced with the subject matter. Both classes

of users are, in general, much less expert in the complementary areas.

Of course, individual users possess varying degrees of experience in

each of the three areas. The important point is that, in each of the

three areas, the inexperienced user needs more help from the system than

the expert user.

To date online systems, in general, have tended to be far from

satisfactory for the inexperienced user; retrieval systems in particular

have tended to work well only for an intermediary information specialist.

One of our main goals is to consider what are the necessary prerequisites

for system design by which the inexperienced user -- especially an end

user -- can make effective use of online systems. Of course, a good

system should train an inexperienced user how to become an expert user

in time. Therefore, the good system should also allow for modes of

operation that are efficient for the expert user and a mechanism for

conveniently switching from beginner to expert mode at the user's dis-

cretion. In what follows below we try to outline some other general

principles that support this basic one we have just described.

-35-

3.3-3.4

3.3 Instruction: Computer-Assisted and Other

Because a relatively large number of potential users of interactive

information systems are inexperienced in one or more of the areas de-

scribed above, it is very important to provide sufficient instruction

to these users so that they can successfully take advantage of system

capabilities.

There are several media for instructing users: (1) a personal

medium in which human instructors teach system use; (2) a standard audio -

visual medium including printed guides and manuals, slide and audio in-

struction, etc.; and (3) computer-assisted instruction (CAI) in which

the computer itself is the basic medium by which assistance is given to
23,26the user. It has been suggested that computer-assisted instruction

is likely to prove by far the most cost-effective means for teaching system

use. Of course, there can be combined media instruction as when the

computer provides a real-time "hot-line" to a human aide or when the

computer integrates and directs some audio-visual instruction. For ex-

ample, an "online consultant" facility is available on MULTICS by which

users can ask questions on their terminals and receive answers about the

MULTICS system.2 5

In any case, our concern in our current work is primarily with what

the interactive system itself can do to assist in the training and in

otherwise aiding users in the use of the system. We shall outline in the

rest of this section some principles pertaining to computer instruction.

3.4 Computer Techniques That Aid Learning

Two prime requisites for interactive systems are clarity and

simplicity. The dialog from the system should be clear and easy to

understand. Clarity requires succint, unambiguous expression of con-

tent for the individual messages, easily understandable format in which

the messages are presented, and an ordering of the messages in a suitable

sequence and structure so that user is led easily in a step-by-step

fashion from his current state of knowledge to the desired conclusions.

Information should be provided to the user at the time needed -- or, at

least, with maximum probability that this should occur -- so as to

-36-

3.4

optimize its effectiveness. While the principle of clarity seems obvious,

it may not be easy to adhere to. Opacity and ambiguity abound in inter-

active systems as they currently exist.

Simplicity is another cardinal principle that may appear obvious

but is not necessarily easy to implement. Any complexity presented to

the user will tend to confuse and, thus, inhibit successful use of the

system. As system features multiply there is a tendency for the user/

system interface to become more and more complex. Three avenues are

available to the system designer to avoid unnecessary complexity: (1)

design the whole system with careful foresight so that its elements and

interrelations naturally form a coherent whole (including the design of

instructional modes within the system); (2) apply the principle of

clarity in instruction to simplify the explanation of the system (in-

cluding the use of illustrative examples when appropriate); and (3) make

the system modular with a simple basic core, as explained below.

A simple basic core means that the basic functions can be performed

by using only a few simple commands. Only a few options are presented

to the user; most options generally available from the system are hidden

and take on default conditions. The user can extend from the core to

other operations as he learns, at his own pace, what the other options

are and how to use them.

Rapid response from the system is one requirement for online systems

to be truly interactive. Generally speaking, delays in system response

to a user request of more than 10 seconds cause confusion, frustration,

interrupted train of thought, and other bad effects on the user. It is

desirable that response times be less than 10 seconds and as short as

possible -- although shortening times to less than one or two seconds

may not be very useful. If the full request cannot be satisfied in a

short time, it is often possible to start a response giving a partial

answer within an acceptable time.

The user should be kept aware of system status, especially where

rapid response is not possible. Just as indicators of the floor position

and direction of travel of an elevator can make waiting for the elevator

more bearable to the user (or can help the user decide not to wait any

-37-

3.4

longer), so too can the knowledge of system status relieve frustration

and aid in control decisions for users of interactive systems. Of course,

this principle must be balanced against the one of simplicity so that

excessive and confusing information is not given.

To help the user make sure his wants are being correctly under-

stood the system should feed back its interpretation of a user request

as a preliminary response to that request. Thus, the system may in-

dicate an obvious error in syntax or the user may detect an error un-

detected by the systems or a request otherwise undesired. Such feedback

also acts as reinforcement to the user of correct system language and

actions.

User control and flexibility in deciding what to do, and when,

makes for optimum effectiveness of user/system interaction. The actions

to be performed may be retrieval operations or informational requests.

One kind of control that is extremely important for interactive systems

is the ability for the user to interrupt the system, especially where

(1) the system response is unacceptably sluggish (overlong response

time); (2) the system response is overly lengthly (too much output); or

(3) the user simply wants to change the direction or nature of the

interaction without having to wait for the current operation to run to

completion.

Flexibility implies an ability of the user, and the system, to

pick among several modes of interaction according to the current class

and state of the user and other context. A listing is given below of

some of the more important modes that are possible. The modes are

listed in mutually exclusive and opposing pairs and each pair may re-

present the choice, along one or more of the instructional dimensions

dicussed above, of what degree of help for an inexperienced user, or

user control for an experienced user, is desired.

(1) VERBOSE/TERSE. These modes relate to the length and
and comprehensiveness of system dialog. There could
conceivably be more than two modes along this spectrum,
but it may be more important to switch among these
modes for individual messages than to establish a
whole third level.

-38-

3.4

(2) INSTRUCTIONAL/SERVICE. These modes relate to how much
emphasis in the system dialog is put on instruction
versus the provision of retrieval service as such. At
one extreme there could be a completely tutorial mode
whose sole purpose was to instruct. In general, there
may also be a more or less prompting and other instruct-
ion given in and around service operations.

(3) INTERPRETED/STRICT. In a STRICT mode the system does
exactly what the user requests. In the INTERPRETED
mode the system goes beyond exactly what the user re-
quested. For example, in a search in STRICT mode only
the exact term as given by the user is searched, where-
as in INTERPRETED mode an attempt is made to extend the
search to terms related morphologically (e.g., as by
stems) or semantically (e.g., as by thesaurus relations
in a Master Index and Thesaurus). As a second example,
in the translating interface situation a request that
could not be translated exactly is, in STRICT mode, in-
dicated as such to the user, whereas in INTERPRETED
mode an attempt is made to find an approximate trans-
lation.

(4) AUTOMATIC/ASSISTED. In AUTOMATIC mode the system simply
goes ahead and automatically does what it thinks best
for the user, whereas in ASSISTED mode the user is allowed,
and encouraged, to assist the system in making decisions.
For the examples mentioned in (3) immediately above in
the AUTOMATIC mode the system itself decides how to ex-
tend the search or make the translation whereas in the
ASSISTED mode the system simply lays out for the user
the options and lets him choose.

(5) HIDDEN/EXPOSITORY. How much should the system tell the
user about what is going on? In the EXPOSITORY mode
the system exposes a great many details (e.g., all the
steps of a login process in connecting to a remote host
through the translating interface). In HIDDEN mode the
system assumes that the user shouldn't (needn't) be
concerned with the details (e.g., simply report the suc-
cess or failure of the aforementioned login process).

(6) VIRTUAL/TRANSPARENT. For the translating-interface/
virtual-system approach a question is how thoroughly
the virtual mode can be achieved as contrasted with
making the interface be simply a transparent connector
to host systems that the user must deal with in their
own languages.

-39-

3.4

(7) INEXPERIENCED/EXPERT. For the inexperienced user all
of the first-mentioned modes in the 6 above mode pairs
are, ideally, chosen as a default mode. For the expert
user either the complementary modes are chosen or the
user is given the option of what modes he wants.

Of course, as indicated in the discussion of VERBOSE and TERSE

modes, there may be many intermediate situations between the opposing

modes in each mode pair. In the sections that follow we relate in

greater detail the application of these principles of user/system in-

teraction to the case of a translating interface to retrieval systems,

-40-

4.-4.1.1

4. A COMMON LANGUAGE FOR RETRIEVAL

As discussed in Section 1.4, we are experimenting with the net-

working of retrieval systems in which a computer interface presents to

the user a single virtual system based on a set of common features.

Features that need to be put into a common form include the user com-

mand languages, the system response languages, the indexing languages,

and the bibliographic data structures. In this section we shall dis-

cuss what specifications are appropriate to a common command language

and, to a less extent, to a common response language, indexing language,

and data structures.

Such common languages and structures can serve as a basis for

a protocol by which distributed components of an information retrieval

network may communicate with each other in a standard way. The net-

working aspect of the common language/protocol will be discussed more

fully in Section 5. In this section we shall discuss the common lan-

guage itself beginning with a critique of English as a possible basis

for the common language.

4.1 English as a Common Language

4.1.1 Advantages and Disadvantages of English

It might be thought, at first blush, that natural language

- i.e., English -- would be a good common language for interactive

computer systems. English is widely used; it is the common language

in this country and in many other areas around the world. In contrast

to the requirement to teach an artificial command language before it

is used, English speakers would not have to be taught English before

using it as a language for conversing with the computer. English

is naturally adapted to new conditions and uses. Finally, new

developments 27-29 in the fields of computational linguistics and

artificial intelligence have brought economic computer techniques

-41-

4.1.1

for handling natural language communications closer to achievement.

These comments about English are correct, as far as they go,

but they do not present the full picture. Of course, on an inter-

national basis, there are many more potential users of interactive

systems who do not speak English than who do. Thus, the correct argu-

ment is that natural language has the desired features of ease of use.

English and the other natural languages do not, then, present a single

universal language and different -- though perhaps similar -- computer

routines must be employed to handle them as command languages. Also,

while there are, undoubtedly important developments taking place in

computer understanding of natural language, many of these are still

in an experimental stage, and we do not yet have adequate cost-

effectiveness data to predict accurately their success in our applica-

tion.

Furthermore, the most important point to recognize, however, in

considering English as a common command language is that general knowl-

edge of the natural language does not, of itself, explain for a user

what a computer system is capable of doing and what it is not. There

is a vast disparity between the infinite variety of functions and

requests that can be expressed in the natural language and still rela-

tively very few and simple functions that interactive systems can

perform.

One of the main problems for at least some users in making

effective use of such systems is their lack of appreciation of the

limited nature of system capabilities. The "super-brain" myth that

views computers as all-knowing and all-powerful is one that continues

to confuse inexperienced users. To tell a user, then, to "state your

request to the computer in (ordinary) English" may be misleading in

two ways: (1) it may foster the "super-brain" myth --- the user may

infer that the computer understands (any) English as well as (or better

than) a human -- and (2) it may postpone the necessary learning dialog

between user and system in that the user feels the computer will always

"do its best" for him without any special knowledge or guidance of the

-42-

4.1.1-4.1.2

system required by the user. (Note that this kind of misleading is,

in fact, worse when the computer cleverly -- or perhaps, luckily -

responds with what the user perceives as an intelligent response to

his request.)

One could grant the difficulties of using English as a command

language and still promote its use for the user as part of a learning

dialog. This position has some merit. Thus, for example, a user

request, whether natural language or not, can be analyzed fairly simply

for keywords so as to select an instructional message that is probably
30

relevant to the situation. (See Shapiro , for example). However,

the use of English in an extended way to explicitly request detailed

instructional information faces the same problems as for its use as

a command language for retrieval functions.

The problems mentioned above, and the even more serious problems

to be described below, can be alleviated by taking advantage of the

interactive nature of the dialog: system and user can quickly converge on

the proper understandings through a question/prompt-and-answer exchange.

However, before we get into attempted problem resolution we should have

a good appreciation of the detailed nature of the problems to be over-

come so that we can better assure ourselves that the proposed solutions

fully address the proper issues. It is in this spirit that we describe

below some of the general problems of the use of natural language for

command languages, and in particular in the information retrieval applica-

tion , prior to our discussion of problem resolution which follows that

description.

4.1.2 The Ambiguity Problem

The main problem with natural language is its ambiguity; that

is, a statement can have many meanings. Usually, speakers can resolve

these ambiguities sufficiently well so as to get along with each other

at a rough level of understanding. This requires considerable mental

capacity in terms of native intelligence, a large body of experience --

especially experience shared among the communicants -- and the ex-

tensive processing of linguistic data in context. When precise

-43-

4ol.2

communication -- of the kind we need for effective computer system

operation -- is desired, however, a much greater requirement is placed

on the communicants: they must either spend a considerable effort in

conversational dialog so as to overcome the ambiguities for each case

or they must have a mutually agreed upon precise language for communi-

cation on the particular topics under discussion. Therefore, we are

faced with either an extra conversational burden or with the need to

develop a more precise language like the specific, formal language that

the natural language was supposed to enable us to avoid. However,

counterbalancing these observations is the point that for a particular

application we can build into the computer routines that interpret user

statements taking advantage of a knowledge of the limited context implied

by that application so that a fuller interpretion of user meaning is

more readily determined.

Therefore, in order to evaluate these questions further and to

make the above discussion more concrete, let us take particular examples

from the retrieval application. Consider, for example, the question

of naming and operating on sets of retrieved documents. Suppose that

a user has performed searches using these three search statements:

(1) "steel metallurgy"; (2) "steel castings"; and (3) "fractures in

turbine blades." What, now, does a user say if he wants to find all

documents that are in both the second retrieved set and the third re-

trieved set (i.e., the Boolean intersection of sets 2 and 3)?

First, one must realize that the user, based solely on his

knowledge of ordinary English, does not necessarily know, nor will he

necessarily use, any particular well-defined method of referring to

a set of documents. There are, of course, many possible methods, several

of which are actually used, as we have seen in Section 2.4.4. (For

example, the n set can be referred to as "set n", "sn", or just "n".)

Even more fundamentally, and making matters worse, the user does not

necessarily know the concept of intersection or that retrieved sets

are saved or that they may be operated on in other ways. Such a user

-44-

4.1.2

might use any of these referral methods; or worse, some combination of

them; or much worse, an ambiguous circumlocation in ordinary English

phraseology. For example, he might say:

(1) "Now everything on steel castings and fractures in
turbine blades."

(2) "Get a combination of castings and fractures searches"

(3) "Can you show me citations on both the last two
searches?"

If the first statement were given merely to perform the inter-

section it would represent a waste of user effort as contrasted with

making a more concise statement using a specific "set" notation. Note

that a statement like (1) could easily be interpreted to mean that the

retrieval systems should perform a fourth search containing all the

elements as given. Such an interpretation would be wasteful of computer

and real time compared to combining existing sets; it could also result

in a set different from the intended one depending on how the search

match algorithm worked.

We may note that various ways of using the words "and" and "both",

some of which are shown in the 3 example statements above, are gener-
31

ally ambiguous in English. Thus "and" can be variously interpreted

in the Boolean union (OR) sense ("We have a set of four eyes here: your

blue eyes and my Brown eyes") as well as in the intersection (AND)

sense ("Between the two of us the set of persons who are alive and have

blue eyes contains just one member").

As an example in the searching application, consider the follow-

ing four (perfectly reasonable) interpretations of Statement (1) taken

as a search request:

(a) (steel castings) AND (fractures in turbine blades)

(b) (steel castings) OR (fractures in turbine blades)

(c) steel (castings AND fractures) in turbine blades

-45-

4.1.2

(d) steel (castings OR fractures) in turbine blades.

Sometimes semantic analysis and context clues can be used to help resolve

ambiguities like these. However, automatic analyses may be complicated

and costly, and often, in any case, the ambiguities can be resolvable

only through questioning the user himself for his intent. We note here,

in particular, that language expressions for search topics are not limit-

able in scope and context; they are, in this respect, unlike the commands

themselves which are limited to the relatively few functions allowed by

the system. This potential wide range of applicability of search topics

is especially true in the situation we are dealing with: namely, a

multitude of data bases covering many disciplines and document types,

including those indexed under free-vocabulary as well as controlled-

vocabulary (thesaurus) techniques.

Statement (2) could be reasonably interpreted as meaning either

the intersection of the two given sets, as intended, or as a new search

on just the two terms "castings" and "fractures". Also, it might take

a fairly sophisticated algorithm to tell with any degree of assurance

whether a word like "combination" in Statement (2) has a functional

meaning or is intended as a term to be searched.

Beyond the naming and referring to retrieval sets, there are

other problems brought up by the three example English statements. One

problem is whether a search function or an output function is being

requested. The natural language is ambiguous on this score. Of course,

here again, syntactic and semantic clues may be used to help resolve

the ambiguities. We may note, however, that even after it is determined

that a search function is indicated, for example, other questions

then arise: what is desired in the way of a matching algorithm, index

elements to be searched, Boolean combinations, and data base searched?

Another problem that can be as thorny as the set-naming problem

is the naming and specification of bibliographic data elements. Take

just the term "citation", for example. It can mean (1) the references

listed in the biliography at the end of a paper, or (2) the papers which

-46-

4.1.2-4.1.3

have references (in the first sense) to a given paper, or (3) the

set of bibliographic elements by which one can "cite" a paper including

the title, the authors, and, variously, such other elements as journal

location, accession number, corporate author, editor, or other in-

formation to identify and access the document. How to refer to these

various elements, either individually or in groups, is no simple matter,

as this one example illustrates especially in the absence of a standard

bibliographic data structure and nomenclature,

Finally, we may note that the third statement with its inter-

rogative form could be taken simply as a request for information about

how the system works or an implied request to perform the questioned

operation.

4.1.3 Elements of English that are Desirable and Practical

The examples given above are clearly only a few samples chosen

to illustrate the point; they could be easily extended to elaborate on

the problems of the use of unrestricted and undirected natural language.

Of course, besides those automatic analysis techniques alluded to above,

answers to these problems may also be found, in part, at least, in those

modes of operation employing directed, interactive instruction to the

user on what is possible, and how to express it so that he may clearly

and unambiguously specify the functions to be performed. One good way

to instruct in the intricacies involved is to express them in a pre-

cise, unambiguous language, that is, at the same time, as simple as

possible. Thus, because of considerations of effectiveness as well as

cost, we are led in the direction of extensive instruction and/or

a restricted subset of English that would avoid the ambiguities in

expressing command functions.

The question then becomes one of determining which natural

language elements can, and should, be included in a retrieval language

for human use in the current state of evolution of computational

linguistics. We have not fully resolved this question but we believe

-47-

4.1.3

such elements should at least include:

(1) English words as command-language vocabulary

terms;

(2) "English-like" constructions for the commands --

i.e., having the "flavor" of, but not full variety

of, English;

(3) English response to users (at least in VERBOSE and

INSTRUCTIONAL modes);

(4) a natural-language approach to a common indexing
and search vocabulary; and

(5) at least a minimal capability for transforming
a natural language request into a suitable re-

quest for instruction on some system feature.

The above basic elements have already been demonstrated as being cost

effective. Of course, how far one can or should go in releasing the

restrictions on the formal command language and extending the variety

of English construction and vocabulary that may be used is an important

issue yet to be resolved. What our own analysis suggests is that the

answer to this question involves consideration of such interrelated

issues as;

(1) how much additional ambiguity is engendered in

so doing;

(2) how much (if any) does the additional flexibiliy

provide in terms of greater ease of learning

and use;

(3) how effective and how costly are the techniques

for automatically resolving these ambiguities

(the answer to this question is one undergoing

rapid change in an area of dynamic research and

development); and

(4) how effective are the subsidiary interactive

instructional techniques in handling the ambi-

guities not automatically resolvable.

-48-

4.1.3-4.2

In any case, how these five basic natural-language elements may be

integrated with a more precise, formal command language is included in

the discussion that follows of what a retrieval language should look

like.

4.2 Desired Structure and Features of Interactive Languages

Having discussed the general principles of the user interface

in Section 3 and some considerations on the use of ordinary English,

or elements thereof, in the common retrieval language, we are now in

a position to list those features that would make for a good language

between computer and user. These general features are, to a large

extent, we feel, independent of the particular application; the specific

application to retrieval will be considered below in Section 4.3.

The command language for expressing requests of a computer system

should be simple and clear, in keeping with both the needs of inexperi-

enced users and the limited nature of what the computer can do. In

the latter respect, it should be able to mirror the simple basic core

and modular nature of the optimum user interface (Section 3.4) in that

the command language subset required for the basic core should be very

simple with complexity added only as needed to request the more special-

ized functions.

Let us assume the basic input mechanism for the user is a terminal

with the ordinary typewriter keyboard containing at least the alpha-

betic and numeric characteristics and some punctuation. This assumption

is made both because such input devices are now generally available

and because it is not obvious at this point that any more elaborate

devices (e.g., graphical input, light pens, function switches and

buttons) can actually simplify the situation for the user.

A simple command structure that lends itself to the above

criteria is one having a command name followed by one or more argu-

ments followed by a command terminator:

command-name argument-1 argument-2 ... terminator

-49-

4.2

The arguments are separated from each other and from the command name

by simple punctuation -- e.g., one or more spaces. (The rationale for

specific character choices will be given below in Section 4.3.). The

number of arguments is variable; in the simplest case there would be

no arguments at all. The command terminator, which in the simple case

acts also as an end-of-message indication, is a single special (reserved)

character -- e.g., carriage return -- which may follow the last argument,

or command name, without any (other) delimiters.

Command names and arguments are primarily common English words,

including numbers expressed as numerals. Common functions should not

require the use of shift keys. The shift operation tends to be error

prone and confusing for many users. Also, therefore, upper and lower

case alphabetics should be generally equivalent. This command language

terminology should be kept as unambiguous as possible. Thus, the same

word should not be used with different meanings.

This last requirement can start to raise complications in special

cases. For example, where free-vocabulary English is to be used in an

argument, as in the search topic for the FIND command, there needs to

be a mechanism for distinguishing a word in the controlled language

terminology from that same word used in a free vocabulary sense -- e.g.,

author as an argument of the FIND command meaning either search in the

author index or search in (any) index for the word "author". One

mechanism, following the English convention, would be to enclose the

word in quotes when used in the free-vocabulary sense - e.g., 'find

title "author"' to request a search for the word "author" in the title

index.

Further extensions to the language are needed to help users make

the most effective use of the system. Pre-defined abbreviations for

command terminology should be allowed. Any prefix of a pre-defined

vocabulary term should be allowed as an abbreviation as long as it is

not ambiguous with another term or prefix. (If such an ambiguous pre-

fix were used the system should query the user on his intention.)

-50-

4.2

Beyond simple abbreviation the user should be allowed to use

his own terminology by establishing synomyms for system language terms.

Again, avoidance of ambiguity is the chief concern. One can also con-

ceive of more complicated translations than just word-for-word synomym

replacement. (See Section 4.3.3.5). In effect, the user should be able

to construct his own dialect; the most advanced user would have a dialect

with macro-like substitutions allowed.

The user should be able to string several commands together in

one statement. This can be easily stated in the language if there is

a command terminator distinct from the end-of-statement character. It

may also be convenient to permit the use of special characters attached

to, or connecting, arguments to indicate special functions like stemming

and linking in search requests or editing (correction) of user input.

One major addition tothe basic structure described above, which

is needed to provide a convenient mechanism for stating relationships

among arguments, is the subdivision of the arguments. Thus, for example,

to indicate which documents to putput in the SHOW command, the elements

"j" and "k" in the argument "docs j-k" are really subarguments to the

primary argument "docs". (One might also say that "docs" is a sub-

function or subcommand of the SHOW command). The more complete language

structure then allows subarguments for arguments; sub-subarguments,

and even deeper levels, are possible. It is desirable for simplicity

to contain the logical depth of subarguments as much as possible. Also,

to avoid complicating terminator requirements for subargument strings,

it is desirable to make the argument structure apparent through the

constraint on terminology in command and argument context.

Thus, the overall statement structure can be signified first

by

C1 ; C2 ; ... , Cn

where C. is the ith command and the semicolon is used as command termi-
1

nator. The command structure is represented as follows

-51-

4.2

1l n n

where N is the command name, Ai is the ith argument, Aij is the jth

subargument to the ith argument, n is the number of arguments, mk is the

number of subarguments to the kth argument, and only one level of sub-

arguments is shown. (No sub-subarguments). This structure is illustrated

in Fig. 5.

Generally speaking, the interpetation of user requests should not

vary with the reordering of arguments (or subarguments). Users should

not be burdened with remembering some fixed order for elements, at least

when they are essentially independent of one another -- like, e.g.,

the arguments to the output command. There are, of course, cases where

order is important and may need to be preserved in the command language

as where one was specifying a particular order for terms to be matched

in a search request. Ultimately, as dialect-creating macros become

sufficiently sophisticated, the expert user should be allowed to take

advantage of ordering to shorten commands.

Users, also, should be generally free to give commands in any

order they choose, as long as it makes sense. Thus, for example, a

user should not be forced to scan an index display before making a search

if he feels he knows what search terms he wants to use in the first

place. There is a mode of operation of interactive computer systems

in which the user is forced down a very particular path by, for

example, having to "fill in the blanks." Thus, for example, the user

may be asked what data base he wants to search and the only response

he can make at that time is the designation of a data base. We do not

advocate this respond-to-prompt-only mode because, first, it is so

contrained and, second, even in the instructional situation for which

it is often employed, this mode postpones demonstrating the command/

argument type format which the user needs to make effective, individual-

ized use of a system.

-52-

4.2

N ...
N Z

I _

KEY: N = COMMAND

A= ARGUMENT

S = SUB-ARGUMENT

FIGURE 5 LOGICAL STRUCTURE OF USER STATEMENT

-53-

4.2-4.3.1

The system may, of course, ask a specific question such as "Do

you want to see more output?". However, the user should be free to make

a command other than in direct response to the question -- e.g., a new

search request. Also, the question can probably be posed so as to

prompt a response in the command/argument format, thus instructing the

user in a more generally useful mode of communicating. For example, the

output question above could have been stated as an imperative: "To see

more output type 'show more' (or 's m' or 'sm')." Another advantage

of this command/argument type instruction is that the user is being

shown commands, that he may apply, without prompting in this and other

situations.

4.3 Specific Plans for a Retrieval Language/Protocol

4.3.1 General Considerations

Having discussed the general structure and some features that

make for a desirable interactive language, we now consider how these

general ideas may be applied to the specific application of retrieval.

We shall be extending, generalizing, and modifying the language framie-

work of the CONIT experimental system described in Section 2 as well

as trying to justify the choices made. The language described here

will not be complete in terms of all possible retrieval functions or

language specifications. While what we suggest here is incomplete and

tentative, we are, at least making a start toward normative specifi-

cations for retrieval languages as well as raising issues surrounding

33
the language question. We owe a debt to Martin whose extensive

descriptions of features of online retrieval systems has cleared the

way for an attempt at prescriptions.

Some functions needed in the retrieval language may be very

specific to the retrieval application, others less so. It is worth-

while to categorize this specifically into three levels. Some functions,

like search and set combination, are quite particular to the retrieval

application. A second class of functions, like initial connection to

-54-

4.3.1

the system and mode selection, are equally vital to a wide range of

applications. The third class of functions, like editing (correction

of user-statement typing errors), are, in the retrieval application,

limited subsets of the functions performed more generally in another

application (online text inputting and editing, in our example).

The reason for making this three-part classification is so that

we can consider the interrelationships among the retrieval language

specifications and specifications for other applications. The goal

of integration of -- or, at least, standarization and compatibility

among -- different applications as discussed in Section 1.1, impels

us to consider these interrelationships. Thus, for the third class

of functions we would want the retrieval language to be a subset of --

or, at least, compatible and consistent with -- any generally accepted,

standard language with a more encompassing expression of these functions.

In this case, hopefully, the subset will fall out simply from the

larger set. Conversely, we would hope that the retrieval-specific

functions of the first class could be simply adapted in other appli-

cations; the simple-basic-core principle should aid that goal.

Finally, for the second class of functions, we should try to

choose specifications that are suitable for other applications as well

as the retrieval one. Since there are no generally accepted, standard

application (task-oriented) languages now, nor is there an accepted

measure of consistency or compatibility among languages, we must expect

our current attempts to be only tentative and subject to modification

as developments in this area progress.

Another reason for tentativity is our uncertainty for a system

to be implemented in the near future of exactly what functions would

be included or how sophisticated they would be. Of course, the further

in the future one goes, the cloudier the picture. Therefore, any

langugage framework suggested at this point should be modular, flexible,

and extensible.

-55-

4.3.1

We have previously distinguished the response language from the

command language. Since the response language is largely in English --

especially in the VERBOSE and INSTRUCTIVE modes -- we need not be so

critical about its form and structure so long as it satisfies the general

principles of Section 3. Of course, the terminology should be consistent

with and, indeed, be didactic for, the command language. In the command

language discussion we shall make some comments on the content of the

response language as pertaining to the command function under discussion.

We should distinguish various levels of language, The command

language itself is what a user actually uses to issue commands. The

exposition language is a metalanguage used to explain the nature of

the command language, as to a user with the response language or to a

meta-user analyst (e.g., a reader of this report). An internal language

is a representation internal to the system of user commands, system

responses, and other status information. There may be several internal

representations as the commands and other messages are passed back and

forth and each one requires, of course, a metalanguage of its own to

describe it. The need for and nature of internal languages will be

discussed more fully in Section 5.

The command language is conceived as being flexible and adaptable

to user variations in a way not explicity indicated in the exposition

of each command itself. Thus,upper and lower case variations in al-

phabetic characters and variable spacing before or after terms and

delimiters as expressed by a user, are considered equivalent to the

singlecase, single-space standard form. The exposition language may

be different for user and analyst. For example, the user may have

difficulty with metalinguistic devices like quotes. When the system

says "type 'show more"' the user may wonder whether he must type the

single quotes, especially where some systems do actually -- unfortunately

(see Section 3) -- require quotes or other punctuation to distinguish

one type of command from another. Therefore, we suggest de-emphasizing

those kinds of metalinguistic devices for the user, as opposed to the

-56-

4.3.1-4.3.2.1

analyst. Metalinguistic devices that are better for the user would

include those devices that would be less likely to evoke a user attempt

to mimic; for example, examples to be copied or modeled by the user could

be indicated by a different type font or color or a separate line with

special indentation.

The device we have chosen of using capital letters to refer to

a command name is a compromise that is not ideal because it suggests

capitalization which should be avoided by non-expert typists. Our

attempts at handling these problems may be seen by comparing sections

3 and 4 (intended for the reader analyst) with the dialog of Appendices

A and B (intended for the user).

4.3.2 Retrieval Language Structure

4.3.2.1 Commands/Arguments/De limiters

We take as a basis the "open" command/argument structure de-

scribed in Section 4.2. The space character is taken as the delimiter

between command names and arguments which are, at least for the simple

basic core, common English words. This structure gives the simplicity

and mnemonic value associated with simple, English-like phrases -- or,

more exactly, imperative (verb) clauses.

Characters other than space (e.g., comma, period) are not nearly

so "natural" in this respect nor do they separate terms so "clearly"

to the eye nor are they as widely used in existing interactive languages.

Any other punctuation or special characters (especially mixtures of

different character types) and required abbreviations represent un-

welcome complexity and mnemonic burdens to a novice or irregular

user. The one problem with space is that it is a non-printing character

and you cannot "see" it; where this matters -- e.g., where the space

has not (yet) been followed by a printing character -- the difficulty

is reduced if the input device has a good type-position indication.

(Some of these considerations, especially as related to initial system

access, have been discussed by Neumann.)

-57-

4.3.2.2-4.3.2.4

4.3.2.2. End-of Message Signal

Similarly, a carriage return provides a simple, easy-to-understand

end-of-message signal. The ASCII new-line character is acceptable also

if the carriage return feature is either included or added on (echoed)

automatically. If a user statement should require more than one line

to complete the user can cancel the normal effect of carriage return

by preceding it with a special character, like hyphen - which is

regularly used to indicate continuation from one line to the next in

ordinary English. If a special device, like a function switch, is used

to indicate end-of-message, it should cuase a carriage return to make

it compatible with the simple case. It is clearly much less satis-

factory to have special statement continuation devices depending on

the particular command to be continued. In a well-designed system

statements of more than one line should be needed only very infrequently.

For example, long search phrases should be selectable as tagged ele-

ments from a dictionary display and the user should be able to break

up strings of arguments and commands into shorter components.

4.3.2.3 Command Terminator

A good command terminator is semicolon (;). Several systems

already use it as such and it has a corresponding meaning in ordinary

English. Even this small degree of punctuation for delimiting is

not desirable for inexperienced users. However, command stringing

and, hence, the command terminator, is not necessary; commands may be

issued on separate statements. It may be possible to eliminate the

need for command terminators if command names are sufficiently dis-

tinct. However, the use of free-vocabulary index terms and the possi-

bility of using arguments as separate commands (see below in Section

4.3.5) complicates the parsing problem and may make it inadvisable

to try to avoid using the command terminator in command strings.

4.3.2.4 Bracketing

Delimiting or bracketing argument strings may become necessary

-58-

4.3.2.4-4.3.3.2

in some complicated situations like the nesting of Boolean operations

(see Section 4.3.5). The parentheses could be reserved to handle

those situations.

4.3.3 Dialog Control

4.3.3.1 Input Editing

The user needs to be able to change his input statement before

he commits it to being sent via the end-of message signal. Two simple

editing commands that cancel some or all of the preceding characters

in the current unfinished statement should suffice for almost all

situations. The delete-character command has the effect of deleting

or canceling the last character entered by the user. The delete-line

command cancels the whole line up to that point. Whether the canceled

characters are actually removed and the type position reset, is a

question of system sophistication.

Natural characters to use for these edit functions are the

ASCII delete (DEL) and cancel (CAN) characters. However, current in-

put devices may require shifting to get these characters. Also,

current operating systems may require other implementations of these

commands. Until these conditions are alleviated it may be better to

accept other solutions. Thus, in the current CONIT we simply use

the number sign (#) and at sign (@), respectively, required by

MULTICS.

A simple extension of these edit commands is very useful.

A string of n delete characters deletes the last n characters. An

analagous extension could be employed for the cancel line command in

multi-line statements. Note that this is one situation where the

command terminator and other delimiting characters are not, and must

not, be used in a command string.

4.3.3.2 Interrupting

As we have previously stated, the interrupt function is crucial

to effective interactive dialog. Its meaning, generally, is to abort

-59-

4.3.3.2-4.3.3.3

(safely) the execution of the last given user statement and return

control to the user to make a new request. If the user is still pre-

paring his current statement, an interrupt would have the same effect

as the cancel line(s) command but would also call for a user prompts

In most existing time-sharing systems the interrupt is imple-

mented using a special key -- the BREAK key -- which transmits not

a character as such but rather a change in line condition (to zero

state) for a specified period of time (say approximately 200 milli-

seconds). Such a signal cannot be transmitted through existing net-

work connections without special hardware (although we have managed

to fool at least one retrieval system host computer into thinking a

string of null characters was break signal). Therefore, it is now

becoming accepted practice in network situations to reserve a character

in the regular character set to mean interrupt. For the common user

command language such a convention should also be adopted and could

be used in full-duplex operation. Note, also, that the interrupt com-

mand, unlike other commands, is used without waiting for a user prompt.

4.3.3.3 User Prompts and Status

The current CONIT user prompts -- "USER::" in VERBOSE mode and

"::" in TERSE mode -- were mentioned in Section 2.3. Two colons are

used because it is felt that a single character would too easily be

ambiguous with other system response, especially in TERSE mode where

it might be lost due to transmission or terminal timing errors, for

example. The colon is chosen over other punctuation (e.g., question

mark (?) hyphen (-), or greater than (>)) because it most clearly

seems to suggest the notion that something is to follow. (E.g.; a

question mark is often taken to have the significance; "I couldn't

understand your last statement - please repeat or rephrase".) It is

felt important that an inexperienced user be given more than just

punctuation as a prompt that it is his turn. The word "user" in con-

junction with the colons may have some advantages in suggesting whose

-60-

4.3.3.3

turn it is over other terms that may be used, such as "ready" or "type."

We have pointed out in Section 3 how user responsiveness and

rapid feedback are essential to effective interaction. The user needs

to know that the system and its components are working and that he can

expect a response that is reasonably timely and worthwhile. Examples

of kinds of status information that could aid a user in these respects

are listed below:

(1) The terminal is working;

(2) The communication channels are open;

(3) The controlling system (e.g., the interface) is
operational;

(4) Intermediate (e.g., network or operating) systems
or target (e.g., retrieval) systems are operational;

(5) The user may now input a statement;

(6) The user statement has been

(a) received,

(b) interpreted successfully,

(c) and this is its interpretation ...;

(7) the user request is now being actively worked on,
or is queued up, by the interface and/or some
other systems;

(8) For the current user request it will take so
much longer (real time) to begin (or finish)
a response at the following estimated cost.

To what extent, in what manner, and for what cost, the inter-

face system and/or the other systems and components involved can, or

should, determine and present this status information is certainly

a large question which we only partially address in this study. For

the end user in a highly virtual mode the amount and detail of such

information should probably be highly limited. For an experienced

-61-

4.3.3.3-4.3.3.4

user and/or systems analyst the amount of such information might pro-

fitably be very much greater.

4.3.3.4 Verbose, Terse and Other SPEAK Modes

In Section 2 we described the VERBOSE (longer, more instructional)

and TERSE (shorter) modes of the CONIT response language and how they

are invoked by the SPEAK command ('speak verbose' and 'speak terse').

Two questions might be asked about the commands:

(1) Why use a command and argument format? Why not just
two single-word commands; e.g., 'verbose' and 'terse'?

(2) Why the SPEAK command, in particular?

Since these questions are generic -- that is, they could be asked of

many other linguistic decisions discussed in this report --, we shall

spend some effort answering them here in hopes that these answers will

also serve to help explain the general case.

The main reason for the command name with argument format is

to help a user understand the nature of system functional capabilities

through explicitness and consistency of format. This format mimics

the verb-object/complement/modifier form of English verb-phrase struc-

ture. The command name is a verb used as an imperative to the system.

The arguments complete or modify the imperative. Keeping this format

consistently is worth something toward user understanding even though

some additional number of words in response or command language may

be needed. Advanced users can readily resort to a more compact form,

if they choose. Thus, the one word 'terse' -- or even just 't' -- can

be translated in a particular user dialect into 'speak terse'. Also,

the system, in a somewhat more sophisticated parsing capability, can

"understand" that an argument word, when used alone, implies the com-

mand word (unambiguously) associated with it. [We may note, parentheti-

cally, the relatively greater difficulty of this kind of parsing if

short abbreviations (t) are used in addition to fuller forms (terse)

-62-

4.3.3.4

because of the greater likelihood of ambiguity.]

The choice of terminology, as such, relates to several considera-

tions. Short, common English words as suggestive as possible of the

associated function(s) are what is sought. Brevity, of course, makes

for simplicity, clarity, and ease of typing. Common English words are

easier to learn and remember. Of course, the particular choice of

words can be changed by a user for himself through synonym generation

(renaming). Verbs are preferred for command names; nouns, adjectives

and adverbs for arguments. (Of course, the most common words usually

have more than one syntactical class, but one may predominate.) Com-

mands, with their names, classify the functional capabilities avail-

able. Therefore, the choice of the word "speak" relates to a percep-

tion - that we would like the user to share -- that the user/system

dialog may have many modes and the user should be able to select the

mode by asking the computer to "speak" in a certain way. The terms

"verbose" and "terse" were chosen as being somewhat more explicitly

dialog-related than the other pair of terms often used for this pur-

pose: "long" and "short".

Other dialog mode specifications would be made by other suit-

able arguments to the SPEAK command. For the command language itself

we have used the arguments 'conit' and 'host' -- perhaps, 'direct(ly)'

would be a better term than 'host'. System language names (e.g.,

"ORBIT", "DIALOG") and user (dialect) names (e.g., "smith") would also

be allowed. Some other modes possible are indicated in Sections 2.5.2

and 3.4. Some of tLese modes might more naturally be set other than

by the SPEAK command as, for example, by "'pick' or 'set' (conit) 'mode'

'automatic'." The language and parser should be at least as tolerant

to a user putting these arguments variously with the related commands

as it should be to ignoring the command name altogether.

The ordering of arguments in the SPEAK command, as elsewhere,

should not matter. In fact, with initial default settings of 'verbose'

and 'conit', the inexperienced user should not have to use the command

-63-

4.3.3.4-4.3.3.5

at all. A renaming macro should allow several modal arguments to be

expressed in a single term, for example, 'speak myway', where 'myway' =

'terse conit expository'. If the user, then, implicitly asks for the

same mode twice -- as in 'speak terse myway' -- the system should accept

the redundant element with, perhaps, a comment on the redundancy in

ASSISTED mode.

4.3.3.5 Renaming

In order to modify the language for his own purposes a user

should be given a "rename" capability. One implementation of this

capability is expressed:

rename oldword [as] newword

where newword, gets replaced by oldword by the system whenever it appears

in the user statement. Note that this is a synonym-generating feature;

the term oldword can still be used in its original sense. This may be

contrasted with the situation where it is desired to revoke the meaning

of some predefined vocabulary element (like 'and') so that it can be

used in a different sense (e.g., as part of a controlled vocabulary

term in a search). This latter capability can, perhaps better, be in-

voked by the "quote" mechanism mentioned above in Section 4.3.1 in which

the original sense of a term is removed in each instance that it is pre-

ceded by (double) quotation marks. If it is desired to make the changed

sense permanent, a different command should be used -- perhaps 'rename

[and] drop oldword [to] newword', with 'change' or 'replace' being possi-

ble synomyns for 'rename [and] drop'. However, synomym generating and

literal (quoting) functions are generally preferred over revocation in

our virtual system approach because they allow users to fall back to,

or more easily be encouraged into, using the common basic language

vocabulary and, therefore, inhibit the development and use of incompati-

ble special dialects.

The optional terms 'as', 'to' and 'and' may be useful in helping

the user learn and remember the language construction at hand, expecially,

-64-

4.3.3.5-4.3.5

as in this case, where argument order does matter. Of course, the re-

sponse language should be designed carefully to feed back the proper

interpretation of what is being done. In any case, the use of these

optional English function words to make the command language look more

like English should be carefully weighed against the danger that such

usage could (1) fool the user into thinking the computer understands

English and (2) confuse the user by presenting him with additional

vocabulary which the user might think, or suspect, that he is required

to use.

The RENAME function can be extended, in stages, to permit the

incorporation of multi-word terms and spacing requirements as in the

CONIT REPLACE command, and finally, to a full macro cpaability. The

more elaborate capabilities are certainly useful for a system designer

(see Section 5); we shall not consider in detail here how important they

might be for ordinary users and how much they might cost in terms of

language sophistication. The macro translation capability may be

symbolized in functional terms as:

g' [fl(xl) f2 (x2) ... fn(xn)] + g[x, x2, ... x]

that is, a construction, g, containing variable elements xl, x2, etc.,

(along with fixed elements) is replaced by a construction, g', con-

taining transformations of the variable elements.

4.3.4 System and Data-Base Selection and Connection

The use of the PICK command in CONIT to select systems and

data bases was described in Section 2. It was felt that these two kinds

of selections were sufficiently similar to warrant using the same com-

mand. It should not be necessary to use the argument 'data' since, if

the final argument is not in a list of known systems, it may be taken

to mean a data base.

The word "pick" was chosen because of its brevity and de-

scriptiveness; other possible terms are "select", "choose", and "use".

As was suggested in Section 4.3.3.4, the selection of various types of

-65-

4.3.4

entities could be done under separate commands (cf. SPEAK) or under a

single command; in the latter case we have the just mentioned question

of whether we need to specify the different types by special arguments

like 'data', 'system', or 'mode'. The term 'data' is used instead of

'file' because it more specifically suggests the file to be searched --

i.e., the data base -- as distinct from other files that may be involved

in the retrieval.

The PICK command actually incorporates two separate functions.

The first is the selection of a system or data base for searching. The

second is the actual establishment of a connection to that system or

data base. For most situtions it may be satisfactory to perform both

functions together. However, at times, as when one wants to avoid

premature connection and extra cost, one may want to postpone the con-

nection until the search is performed. For this purpose, these two

functions might be separated at least by the interface system if not

the user.

The selection of a data base may imply the selection of a system

and the user should not necessarily have to perform, or even know about,

the system selection. Sometimes the implication may be ambiguous (e.g.,

the NTIS and ERIC data bases are available through both SDC and Lockheed).

In those cases, the interface may select which system to use, with or

without the help of the user, depending on which mode was in effect.

Of course, with the Master Index and Thesaurus concept, it is possible

to select the systems and data bases automatically -- or partially so --

from the search topic itself.

In connecting to retrieval systems the login protocol is

generally conceived as being performed automatically by the interface,

as it is currently done in CONIT. However, in the more transparent (less

virtual) situation the user may need to assist in the login procedure

as with identification and password. Also, the interface user needs

to gain access to the interface itself, probably through some login

procedure. Therefore, it is appropriate to consider what might be a good

-66-

4.3.4-4.3.5.1

common login protocol, even though we might be forced to use other pro-

tocols currently. The general LOGIN command has the following syntax:

login system systemname id userid pass password

Several of these terms could be deleted if not required in a given situa-

tion (e.g., 'id' and 'userid', if no particular user identification is

needed for a given system) or if the variable element implied the argu-

ment type determiner (e.g., a system name implying the 'system' argument).

For security and other reasons modifications to this command procedure
34

may be desired. Discussion on this point is given by Neumann and

in Appendix D where a more prompt-oriented protocol is suggested. In

these discussions we note that 'login' may imply a 'logout' of the cur-

rent system whereas a 'logout' by user means "stop and disconnect termi-

nal" and 'exit' means "return control to calling system."

4.3.5 Search and Related Functions

4.3.5.1 Basic and Other Search Aspects

There are several aspects to searching that need to be consi-

dered in the retrieval language:

(1) System(s) to be used

(2) Data base(s) to be searched

(3) Kind of file to be searched

(4) Kind of data element(s) to be searched

(5) Matching algorithm to be used

(6) Elements to be matched

(7) Combinations of elements

(8) Type of results to be reported

(9) When to do the searching

(10) Naming of results

-67-

4.3.5.1-4.3.5.2

(11) Storing of (partial and full) results

(12) Sorting of results

(13) Effects on previous searches

The first question that might be asked with this large array

of considerations concerns how many commands are involved: one or thirteen

or some intermediate number.

Clearly, some of these considerations may be handled in separate

commands before a search command, some in separate commands after the

search command, and some by default. The only one that seems necessary

to the search statement itself is (6): what one is searching for. However,

it is desirable to be able to include any combination of the other 12

considerations within the search statement, if a user should so desire.

A linguistic mechanism for so doing is simply to define separate commands

for these functions which can also be included in a basic search command

as we explain below.

The basic search command is 'find searchstring' where search-

string is an argument or argument string expressing what term or terms

one is searching for. The word "find" is short, has good imperative

search connotations, and is commonly used. The word "search" suffers from

its ordinary usage in English: if you want to express that which you are

searching for, the construction "search for x" is regularly used; on the

other hand "search x" is normally understood in the sense "search in x"

which in the retrieval application is best associated with the selection

of a data base, or system, in which to search. The word "select" is not

nearly as specific in connotation for the search function. We have ex-
19

plained in this report (Section 4.3.1) and in our previous report why

we feel there should be some explicit command name and not just 'search-

string' with the default command being FIND.

4.3.5.2 Selection of Data Bases, Files, and Search Elements

The default situation for system and data base searched would

be the currently selected ones, unless otherwise selected automatically

-68-

4.3.5.2

through the Master Index and Thesaurus. The user could also make the

selection within the FIND command as follows:

find [pick] [data] ntis radiation effects

Note that 'ntis' is at the level of a sub-subargument. The command/

argument 'pick' -- and 'data', if possible -- should be optional here.

The searchstring arguments are those arguments not otherwise identified

as having pre-assigned meanings. The simple tutorial mode should suggest

"PICKing" before "FINDing"; however, the "internal" selection should

be allowed so that the user (1) is not forced to remember an ordering

requirement and (2) can postpone the connection as long as possible if

there is no separate "select-but-do-not-connect" function (see Section

4.3.4).

The kind of data elements to be searched may include elements

like title, abstract, descriptor or identifier index terms, author, etc.

These elements would be given assigned vocabulary terms which would be

used as arguments in the FIND command to specify the elements to be

searched. Thus,

find title descriptors neutron scattering

would signify a search for "neutron scattering" in the title or in the

descriptor index terms. The default condition (no data elements speci-

fied) is to search all data elements. (Our general philosophy is to

be generous in retrieval; i.e., emphasize recall at the expense of

precision -- on the theory that it is easier for a user to weed out the

false drops than to appreciate what has been missed). The general

question of what the common bibliographic data structure should be and

how it maps into the structures found in existing data bases is dis-

cussed in Section 6.2.4.

There may be several kinds of files associated with a given

data base. Searches are usually done on index (inverted) files. One

may also search the full records of the data base. Because a full re-

cord search must generally be done sequentially, it is generally done

-69-

4.3.5.2-4.3.5.3

only on a small subset of the data base -- for example, a retrieved set.

The index file has primary access data elements on which searching can

be initiated and, sometimes, secondary data elements that can be scanned

to determine whether a reference already found matches some secondary

criterion. Thus, for example, a document reference found (through title

index) searching, to contain two particular title words may be scanned

for secondary information to determine if the two words are within a

certain distance of each other and/or if the document referred to is of

a given type, say book or report, etc.

The user may, to a certain extent, be shielded from these com-

lexities. The user is instructed to express each search in the same

form with each data element type argument within the FIND command pre-

ceding its searchstring. As long as there is at least one primary

access data element, the search can be programmed successfully; other

wise, the user can be instructed to recast the search with at least

one such term. Sometimes, however, -- as when a data element may be

searched either as an index or a record search - it may be desirable

to specify which kind of file is to be searched. For this purpose the

additional argument 'record' may be inserted before the data element

to be searched in the full record: thus, e.g.,

find descriptor radiation record title neutron

4.3.5.3 Term Selection, Combinations, and Matching

The argument searchstring may include a combination of terms

satisfying a given Boolean relationship; e.g.,

find A and B or C and not D

find A and (B or (C and not D))

where A,B,C, and D are terms which must appear in the stated combination

in each document matched. The order of operation is from left to right,

unless countermanded by parentheses, as in the second example above.

(Thus, the first example is parsed 'find ((A and B) or C) and not D.)

-70-

4.3.5.3

This precedence order is preferred over one based on operator type

because it is easier to explain to a user. (It might be noted parenthet-

ically that the precedence order often chosen -- ANDing before ORing --

is opposite to the precedence more natural to the retrieval operation:

first ORing synonyms for a given concept; then ANDing several concepts.)

The argument searchstring should not be taken to imply only an

exact string match is desired; other matching algorithms are also war-

ranted. Numercial data may be matched with arithmetic relations; e.g.,

year greater than 1970

String data can be matched in various ways; e.g.,

find record abstract on?line:system:tingu

where # means any one character (two # for 2 characters, etc.)

means any number of unspecified characters

? means up to one unspecified character

More generally, we carn describe a set of positional relationships, in-

cluding relationships in word-oriented text; e.g.,

A within [exactly] + n units B within + n units C ...

where units can be character positions, words, lines, sentences, etc.

n is the number of units allowed from A to B

+ means B is to right (follows) A

- means B is to left (precedes) A

+ (default case) means B may precede or follow A.

default for n is 0, i.e., A and B must be within the

same (larger) unit -- e.g., words in a sentence

exactly means only the specified separation (nothing

shorter) is allowed.

Note how the earlier string matching operation symbols are abbreviations.

Thus, 'a##b' means the same as 'a within exactly +3 characters b'. A

-71-

4.3.5.3

very important ordering requirement is word adjacency: 'A within 1 word

B'. A convenient abbreviated form to express this is 'A-B', where the

hyphen carries over its natural language linkage signification. Lower

order units take precedence in the ordering of the execution of retrieval

operations over higher order units which, in turn, take precedence over

simple Boolean combinations.

As previous work has shown, 16 retrieval results in general

better than for exact matching can be obtained on word-phrase matching

when (1) word order is ignored, (2) common words are excluded, (3) only

word stems are matched, and (4) the Boolean AND is assumed. Thus, a

good system will take

find economics of computer communications

and automatically set up a search to match on all documents having all

three of the stems "econom:", "comput:", and "communicat:" in (any of)

the index terms. Sometimes, however, better results can be obtained with

a somewhat different algorithm. The user needs to be able to specify

the variations. The 'within' argument string provides specification

for word order. The phrase

exactly (A B C)

which may be abbreviated '(A BC) !', specifies an exact match is desired.

A user-given stem may be expressed with the colon convention; e.g.,

'find computer:' would match "computers" but not computation. The

rationale for using special symbols in some of the above retrieval modes

is that they are special cases and would not be used by the ordinary

user.

Other kinds of automatic interpretive matching techniques may

be desirable. For example, thesaurus-found related terms, statistical

clustering techniques, and special techniques for special data elements

like author names (matching certain initials instead of full names,

phonetic match of last names, etc.) Linguistic devices analogous to

those described above would be needed to control these functions.

-72-

4.3.5.3

Proposed command and response functions and related language

features relevant to displaying the Master Index and Thesaurus were dis-

cussed in detail in our previous report. The command language is up-

dated here to fit in with the newly developed considerations:

show type vocab data [n lines] term

where

term stands for that word, phrase, or string to
be looked up

type stands for the type(s) of relations to be
displayed:

'index' -- terms that surround term alpha-

betically

'phrase' -- terms having word stems in com-

mon with term

'thesararus' -- thesaurus relations for term

'relations' -- all of the above relations

vocab specifies the vocabulary(ies) that the re-
lated terms must come from; e.g., Mesh,
NASA thesaurus, etc.

data specifies the particular data base(s) to be
considered; e.g., MEDLINE, NTIS, etc.

n lines specifies the number of lines to be dis-
played.

The default condition for type and vocab is all.

The related terms displayed by this command will be tagged by short

identifiers that may be used to refer to those terms in FIND or SHOW

type commands.

A user may wish to specify the type of relation more specifi-

cally as, for example, synonyms or narrower (more specific) terms. Sub

arguments to the 'thesaurus' argument could be used to make these speci-

fications, as

show thesaurus synomyms term

-73-

4.3.5.3-4.3.5.4

A user may also wish to extend the relationships found to more than one

level in a single command. Thus, to see the terms that are specific to

a given term and the terms that are specific to those terms, one could

request

show thesaurus specific 2 levels term

The user should also be able to specify that certain thesaurus

relations be automatically taken into account in searching: i.e., in-

cluded in an augmented union set for each term. For example,

find thesaurus specific all (levels) term

which is equivalent to the MEDLINE EXPLODE command.

Conversely, to suppress an automatic use of relationships the

user could insert a 'no' argument qualifier; for example:

find no synonyms term

4.3.5.4 Results: Naming, Combining, and Re-searching

The result of a search is a set, or list, of documents. These

sets are automatically given names of the form 'set j', where j is a

number assigned sequentially. Alternate forms by which to refer to these

sets should be 'setj' (no space) and, where ambiguity can be avoided, just

the number j. The fuller form including the word "set" is felt to be

more descriptive for the inexperienced user and offers less confusion

with numbers used in other ways. Of course, the user can always re-

name the sets to suit his purposes. A convenient way to do this for

the current set is with the command 'name set' or just 'name'. Thus

find computer networks name cnet

is equivalent to

find computer networks; rename set k cnet

where 'set k' is the current set name.

-74-

4.3.5.4

Intermediate results may include counts of numbers of documents

found under individual terms and partial combinations of terms. To see

these counts the command

show count

is employed. If the command were included within the FIND command, the

counts would be shwon as they were found; if the 'show count' command

came separately, the partial results would be shown after the final re-

sult. If the final result is null, it has been found effective 16 to

provide the intermediate results automatically to the user; that could

be overriden with the argument string: 'no count'. The intermediate

sets themselves should be kept at least until the next retrieval opera-

tion so that a user can make any of these a recognized, named set with-

out having to reproduce them.

Regularly, the final results from a search as shown to the user

would include (1) a restatement of the search query (showing automatic

stemming and phrase decomposition, if performed); (2) the count of the

number of documents found; and (3) the name given to the newly found

set. Internally the system should store the above information for each

search together with additional information such as synonymous set

names; the actual list of references retrieved; and, at least implicitly,

the system(s) and data base(s) searched, the date and time searched,

and the identity of the (human) searcher. This information would be

available for user review by the command:

show sets [mode] [set i] [set ij] ...

where mode would specify if more of less information than the 3 items

first listed above were desired; the particular (range of) sets to be

reviewed, if other than a full listing were desired, could be specified

by the other arguments. A good synonym for 'show sets' might be 'review'.

The user may want to delete some of the sets he has made either

because they are too costly in storage (a system may actually limit the

number permissible for this reason) or because they are cluttering

-75-

4.3.5.4

up his "thinking space". A DELETE command would accomplish this:

delete set i set j ...

To delete all sets:

delete all sets

To delete a certain number (or all sets numbered before (less than) a

given set:

delete number direction set i

where number is a given number or 'all'; direction is either 'before'

or 'after'. To renumber the sets in the same order but "closing up the

ranks" for the deleted ones, the command would be:

rename sets

For this command the synonyms for the set names would, of course, be

transferred with the set to the new set number.

Retrieved search sets may be combined using a COMBINE command with

Boolean operators and set names in a way analogous to the use of these

operators on terms to be searched in the FIND command. Thus, e.g.,

combine (set 5 or set 6) and set 2 and not set 7

creates a new set with the specified relationship to previous sets.

(Note that the parentheses in the example are not necessary since the

same left-to-right precedence would have been followed without them,

in this case.) Again, we recommend instructing users with an explicit

COMBINE command name; expressing the combination function without a

command name should be an option for more experienced users. When sets

are components of other sets there is a question of how many levels to

unravel this structure in the REVIEW command.

The user should be able to intermix searching terms and combining

sets. Thus, e.g.;

find energy costs and not set 4

-76-

4.3.5.4

should be allowed. Extending this idea slightly, we see that COMBINE

command would not be needed at all; thus

find set 5 or set 6

(Note that this implies the system can distinguish set names from search

terms.) Boolean operators should also be implicit FIND commands with the

current retrieved set understood as the starting point; thus

and year greater than 1970

should be interpretable as meaning

find set k and year greater than 1970

where 'set k' is the current retrieved set. To make any set the cur-

rently active retrieval set the RESTORE command can2 be used:

restore set 2

The command name 'restore' should not be required; thus, the above

would be obtained also by

set 2

If a retrieval or combination function results in a null set, the last

previous (final) retrieved set would remain the current set.

It may be desirable to re-run a search statement after a data base

update or in an entirely different data base. Adding the argument

'research' (immediately) before a set name would signify that the search

statement was to be re-run rather than use the set itself. For example,

find research set 4 and not set 4

would perform the search originally performed to get set 4 in this new

context and then drop out those documents that were in the original

set. Since this is likely to be such a useful function it is worth

a separate command: 'update set i'.

Normally, a search statement is executed right away - that is,

as quickly as the time-sharing system gets around to it. However, in

-77-

4.3.5.4-4.3.6

an optimized system the user should be able to get a delayed execution

for lower cost. The user should be able to set up a sequence of state-

ments to be run in this background mode. An important related retrieval

function is SDI; that is, the running of a search automatically at each

data base update. We shall not discuss further here the various lin-

guistic requirements for specifying the setting up and running of a

program and obtaining the results.

4.3.6 Output and Related Functions

The output function refers to the printing or displaying of in-

formation from the catalog records -- or full text, if available -- of

documents in the data bases. The specifications that may be necessary

for the output function include:

(1) What information (data elements, etc.) to be output

(2) For what document set

(3) For what documents in the sets

(4) Where information is to be output

(5) When information is to be output

(6) What format for output

(7) What sort order

The basic ouput command is 'show'. No arguments are required since all

the specifications have default conditions. To specify other than the

default conditions arguments are required, as described below. In

general, the ordering of the arguments is immaterial, except as noted.

The data elements desired are indicated by a string of arguments;

e.g.,

show title author abstract

It is often desirable to express a grouping of elements by a single

term. For example, 'all' for all elements (the whole catalog record)

-78-

4.3.6

and 'citation' for those elements providing the minimum reference in-

formation (see discussion in Section 4.1 -- we would reserve the term

'references' to mean bibliographic references in the given document to

other documents and 'citing element' to mean a data element from a

document that cites the given document.) The 'citation' group is pro-

bably best as the default set of elements.

Other kinds of information besides data elements, as such, may

be called for if the system has the capability. Thus,

show text

could call for a display of the full text while

show match

could call for output showing why each document was matched -- e.g.,

by "highlighting" those words in title or abstract that match the

search statement.

To specify which set one wants to output the name of that set

is used as an argument:

show set 5

In the default case the current set is assumed. Also, in the default

case it is assumed that all documents in the set are wanted. To select

a subset of the documents the argument 'documents' (abbreviation 'docs'

or 'doc') is used:

show abstract documents 3 7 to 10 15

gets the abstract for the third, seventh through tenth, and fifteenth

documents in the current set. The connector operator 'to' could be

replaced by a hyphen.

The Ldocuments' argument can be used with the FIND command to

generate a new set that is a subset of the current. Thus,

find docs 7-10

will create a new set with 4 documents from the current set.

-79-

4.3.6

It is assumed that a user can interrupt the output at any time.

If the system does not permit interrupting, or if the system wants to

avoid an excessive amount of online output, it may stop the output and

ask the user if he wants to see more. The command

show more

would be a positive reply. The arguments 'from' and 'after' would also

be used to indicate that all documents after a certain number were

wanted; e.g.,

show from doc 7

A user on seeing a title for a given document in a string of

document titles might want to see more information on that document.

The user could do this by interrupting and then issuing the following

commands:

show abstract document 7

show title from doc 8

To add document 7 to a special saved set before continuing the user

could issue these commands:

find doc 7; or saveset; rename set k+l as saveset;
show set k title from doc 8

where 'set k' is the current set. In order not to create the super-

flouous set k+l, a command 'keep' might be defined; e.g.,

keep docs 5 8-10 (in) saveset

would add 4 documents to set saveset without creating any new set names.

If 'saveset' were not names, a systems-defined, default set would be

assumed.

To specify a different document order than the one provided by

the system -- usually an (approximate) inverse chronological order --

the ORDER argument is used:

show order field mode

-80-

4.3.6-4.3.7

where field specifies the element or group of elements to sort on:

mode specifies the mode of sort; e.g., forward or reverse

The output format would depend in part on the SPEAK mode: VERBOSE

being more explanatory about what the element fields are. Other formats

would be specified by other arguments to the SHOW command.

The default situation has the output going to the user at the

terminal. To send output to be printed offline the argument 'offline'

would be used in the SHOW command. The address to which offline out-

put should be sent should be stored by the system; getting the in-

formation about the different parts of the address appears to be one

situation in which the prompting mode has advantages. As with the

FIND command, there may be various levels, besides offline, of delay

in the execution of the SHOW command.

4.3.7 Instruction and Status Review

We have previously discussed the 'help' and 'explain concept'

commands and some other facets of the instructional features of the

retrieval language (see, especially Sections 2.1, 3.3 and 4.1). Some

additional features desirable to enhance instruction are discussed in

this section.

The command 'explain' without any arguments can be taken to

request an explanation of the last message or current content. The

command

explain message

can be taken to request explanation of a given message or message com-

ponent identified by the argument message which could be a prefix of,

or a tag associated with, the message.

The user should be able to "turn off" lengthy instructional

messages once he has seen them enough to learn their message. The

command

speak message terse

-81-

4.3.7

would request this. The command

speak message verbose

would reverse the setting and 'explain' or 'explain verbose' or 'ex-

plain message verbose' or 'explain more' would give the fuller ex-

planation at the current time without actually resetting to the VERBOSE

mode.

According to the simple-basic-core principle the user should be

shown only a few basic features to start with. However, the system

should occasionally prompt the user to try additional features. 'To do

this effectively the system should keep track of what features the user

has employed and explain, in appropriate contexts, additional features

that might prove useful. This dynamic instruction would be guided,

as the whole interaction is, by user mode settings and specific requests.

Online human instruction would be valuable at times, although

perhaps costly. To invoke such help one might use the command

help human

after which a free-form dialog between instructor and user could ensue

in which the execution of regular commands would be suspended until

the regular mode were reinstated.

More generally, the user might want to communicate with other

persons via the computer. A message-sending command might have the

following syntax:

send mode to name address message message

where name and address tell where to send the message

mode expresses a mode of transmission -- e.g., immediate or
offline

message is the message itself -- which could come from a file
rather than from the command line

Status information would be provided to the user as part of the

regular dialog and in response to certain EXPLAIN and SHOW command

options. Many kinds of status informaton have already been discussed.

-82-

4.3.7-4.3.8

Some specific status that can be, or should be, available, may be

listed:

(1) systems potentially and currently available;

(2) date bases potentially and currently available;

(3) dialog modes currently set;

(4) cumulative and incremental time and cost considerations.

4.3.8 Saving, Sharing and Reviewing Results

One area that current retrieval systems are just beginning to

develop is the saving, reusing, and sharing of search results from

one session to another. To save a retrieved set a saved file may be

opened:

open file

where file is the name of a previously created or new file. Sets may

then be saved in this file with the SAVE command:

save set i set k

The information about the sets mentioned in Section 4.3.5.5 should be

kept in the saved file. In fact, sometimes it may be desired only to

save the search statements. These sets may then be used in subsequent

sessions by their creator or someone else with the creator's permission.

As a further aid in recording and communicating results the saved sets

and files should be annotatable by the users.

To distinguish two sets that may have been given the same name

it may be necessary to prefix their given names with some of the status

information. To restore saved sets or files the RESTORE command may

be used:

restore file [set i] [set k]

where all or, optionally, some of the sets in file are added to the

current file from which they may be used in the same ways as sets

created during the current session.

Two other kinds of saved files may be useful. Storing the inter-

active dialog in a monitor file can be useful for systems analysis and

-83-

4.3.8-4.4

as a means by which the user, especially a user at a display terminal,

can "page back" to see previous dialog. It may also be useful to store

the output from various searches in a common file as is now done in

CONIT. The monitor file would be automatically updated, if used at

all. The output saved file would be opened as the other saved files

and would be updated by the use of the argument 'save' in the SHOW

command. A VIEW command would be used to display from these files;

e.g.:

view [file] page n

where the previously used file would be assumed if not expressed. Other

examples:

view certain [page]

where certain = last, next, previous, first, etc.

4.4 Summary

We have described some specific plans for a common retrieval

language based on certain principles of user/system interaction and

desired features of interactive languages. Having examined the problems

of using unrestricted English as a common retrieval language, we have

tried to determine the general and particular features of a language

that would be simple, easy-to-use, extensible and containing at least

sore of the elements of English that appear helpful for interactive

dialog. The language is intended to have an "open" format and make

use of the best features of existing languages.

The language as described is neither final nor complete in that

it must be tested and many additional functions may be required. We

have tried, however, to (1) suggest the variety of functions desirable

in a retrieval system (2) raise issues with respect to the linguistic

features to express those functions; and (3) suggest some particular

answers to these issues. It is noted that answers depend as much on

what set of functions is decided on in any given implementation as on

-84-

4.4

linguistic principles, as such. How the language questions are related

to questions of interfaces and networking is discussed in following

sections.

-85-

5.-5.1

5. MESSAGE INTERPRETATION AND PROTOCOLS IN AN INTERFACE

Our experience with the design, implementation, and evaluation of

the experimental interface, CONIT, has led us to a clearer understanding

of what functions need to be performed by a translating interface in a

computer network situation. In particular, we have been led to consider

the character of the timing and translation of messages among the inter-

acting but independent and heterogeneous processes involved in the

interface operations. One special character of this interchange derives

from the fact that although the messages coming from the retrieval systems

were designed for human interpretation, in this situation they are actu-

ally interpreted by a computer process: the interface.

We hope that our characterizations may lead to the development

of a model that will be useful for aiding in the resolution of three

kinds of problems in the area of networked interfaces. The first problem

is an adequate general characterization of message handling functions,

timing, and translations for networked interfaces. The second problem

is the design of mechanism for conveniently describing the actual messages

to be transmitted from a specified conmon interface to particular re-

trieval systems in response to specified conditions and messages from

the given systems and from a user. The third problem is the design of a

software structure which provides an effective and flexible mechanism

for carrying out some major part of the interface functions as specified

by some mechanism such as one associated with problem area two mentioned

above. We shall discuss the utility of the model for addressing these

problems after describing the model.

5.1 Simple Model

We shall first describe our initial formulations of these prob-

lems and their shortcomings. For most retrieval systems -- as for most

computer systems that work in an interactive, time-sharing mode with

human users -- the usually accepted basic mode of operation is one in

-86-

5.1

which each party in the dialog -- the human user and the computer system --

takes turns in sending messages to the other. Thus, typically, the user

first makes a request of the system; then the system interprets and re-

sponds to the user with some message of its own. This cycle of non-

overlapping, sequential messages* is repeated after the user, having

waited for the conclusion of the message from the system, digests that

message and decides on his next course of action -- which is expressed

as a second message to the system. This sequential mode is illustrated

diagramatically in Fig. 6.

The extension of this simple sequential mode of operation to the

interface situation is diagrammed in Fig. 7. In this mode the user

in each cycle first sends a message (Ml) to the interface; then the

interface interprets this message and translates it into a request to

the retrieval system (M2); next, the retrieval system sends its response

(M3) to the interface which, finally, translates it into a response (M4)

to the user's original request.

Three modifications to this simple 4-step cycle may be enumerated

which will make for a more realistic model of the necessary interface

operations. In the first place, the interface might well respond di-

rectly to a user request -- say, a request asking what systems are

accessible from the interface -- without need to go to any retrieval

system; thus messages M2 and M3 would be short circuited in this case

by action purely local to the interface. Secondly, any such message

M4 from interface to user might be interrupted by the user sending

an "interrupt" or "break message", the interrupt would occur during M4

and cause the interface to stop sending M4 immediately and to return

*Typically, a user issues a "command" and the system returns with a
"response" message. However, the system can also "command" a response
from the user, who may also wish simply to send an informative message
(e.g., gripe) to the system. The general term "message" will be used
to cover all these situations; different message types will be indicated
as needed.

-87-

5.1.

M u

U MUis

USER INTERACTIVE
SYSTEM

MU MS MU MS
F7/ v//////7///I MM, FP////////a *-

FIGURE 6 TIME DIAGRAM OF USER/SYSTEM MESSAGE FLOW FOR SIMPLE
SEQUENTIAL OPERATION

Si

S2
MUI MIS MSI MIU M MIS \/ /

MI1 \ /

S3 I

FIGURE 7 TIME DIAGRAM OF MESSAGE FLOW WITH INTERFACE PROCESS
FOR SIMPLE SEQUENTIAL OPERATION

-88-

5.1-5.2.1

to a state awaiting further user requests. Thirdly, one type of user

command message would be to select a different retrieval system for

searching, thus several retrieval systems could appear sequentially, on

different cycles, as the recipient and transmitter, respectively, of

messages M2 and M3.

This modified sequential model corresponds generally to the

basic structure of our early experimental interface, CONIT. Also, as

we have indicated in our description of CONIT in Section 2, a simple trans-

lation scheme was implemented in which a pair of translation tables was

devised to effect the translations for each retrieval system: one table

to translate user input to retrieval system input (message Ml to M2) and

a second table to translate retrieval system output to user (message M3

to M4). This translation is a straightforward conversion of specified

strings from the input character stream to similarly fixed and pre-

specified output strings.

5.2 Limitations of Simple Model

We knew at the outset, of course, that these sequential opera-

tions and simple translations would not suffice for everything we might

wish the interface to do; the degree to which they were effective and

the particular ways in which it turned out they were insufficient provide

a valuable basis for analyzing the complexities of the interface situ-

ation. Some of these complexities are discussed next.

5.2.1 Interface/Systems Dialog Unmediated by User

A single user request may require a series of interactions

between the interface and a remote system rather than the single pair

of messages M2 and M3 implied by the simple model. An important ex-

ample of this occurs when the user requests the selection of a new

system through the PICK command. Here the interface must go through

an extended exchange of messages with the retrieval system. Even with-

in the limits of a single retrieval system a series of messages may

be required. For example, an output request by a user which selects a

-89-

5.2.1-5.2.2

discontinuous subset of documents to be output (e.g., SHOW DOCUMENTS

1 4 7-9) may require a series of output requests be sent to a system that

cannot handle such a request in one command.

In some instances it may be desirable for the interface to initiate

an interaction with the retrieval system without any explicit user re-

quest. For example, a retrieval system may drop a user who does not re-

act with the system for more than a given amount of time -- say 15 minutes.

It is desirable for the interface to keep track of status information

like the time since the last interaction. The interface could then send

a simple request (e.g., asking for the time used in current session) to

forestall the line dropping while checking the status of the connection

to the retrieval system.

5.2.2 Indefinite Nature of Systems Response

The general nature of, and particular realization of, system

messages may be difficult to predict for a variety of reasons as out-

lined below:

(1) In general, it may be difficult to know the precise
nature of the responses to be expected from the
retrieval systems. Retrieval-system designers devise
the response repertoire of their system to be largely
self-explanatory to a human user. To the extent
that they are successful -- or believe so -- they may
not feel the compulsion to fully describe these re-
sponses in any written documentation like, for example,
a user's manual. While the common message types may
be fairly easy to uncover, messages for special situa-
tions (e.g., error conditions) may be very difficult
to learn about through the standard inquiry channels
of (1) written documentation, (2) informal communi-
cation with system designers or users; and (3) ex-
perimentation with the system itself.

To compound these problems the retrieval systems are
often very dynamic in their construction -- especially
in regard to the system-to-user dialog. It is not un-
usual for any given system to experience several changes
of this kind in the course of a month -- often with no

-90-

5.2.2-5.2.3

prior warning, or only a very general notice per-

haps to the effect that a "new system" is "about

to appear." A change in the logoff message, for

example, may seem innocent enough and be easily

understood by a human user but could cause serious

problems for simple-minded computer algorithm that

was looking for one fixed string -- say, "LOGOFF" --

and finds another -- say, "system disconnected."

(2) In particular, it may be difficult to know when a

message has been completed. Usually there is a

"user prompt" which is a particular string of char-

acters that signifies that the message from the system

is completed and the system is prepared for a new

message from the user. However, sometimes a system

may depart from this scheme, for example, when it

asks the user to respond to a particular question --

say, "Do you want to continue printing output?"

The difficulty of knowing when a message is completed

is compounded by the stochastic nature of the messages:

because of the inherent character of time-sharing

systems, messages may start being transmitted at some

indeterminate time, may be interrupted temporarily

for another unknown interval, and be concluded at a
time of similar indefiniteness. The interface must

wait a reasonable amount of time before concluding

that no further message is coming from the system

but it must not keep the user waiting an unreason-
able amount of time either -- see discussion on re-

sponsiveness in Section 3. The appropriate timing

of time-out signals for the interface and what message

to the user and other functions should be performed

at these times are clearly important issues.

(3) Variable Messages. Most messages, or crucial parts

thereof, are variable in content by their very

nature. Messages of this type include: output about

documents; the message telling how many, if any,

documents were found in a search; and news given at

login or in response to an explicit request.

5.2.3 Unexpected or Unpredictable Messages. Communication

channels can generate erroneous transmissions. Moreover, computer systems

can and do get sick and die at unpredictable times. The messages re-

ceived from system channels at such times can vary from (1) nothing

(there may be a simple line dropout with or without line-disconnect

-91-

5.2,3-5.2.4

notice) to (2) slightly distorted messages to (3) gibberish to (4) "wrong"

messages (as when responding to transmission-caused "wrong" command to

(5) a message stating the time of initiation and expected duration of an

outage. These latter messages may be of a well-specified form or may be

completely free form. At such occasions the control of message response

from system channels may change. For example, control may shift from

a retrieval system to a time-sharing supervisor (e.g., IBM TSO) or to

an intermediate network through which connection to the retrieval system

was arranged (e.g., TYMSHARE or ARPA network). Such changes of control can

dictate corresponding changes in message form (e.g, end-of-message in-

dication) and message content (e.g, a line dropout indication as opposed

to the expected response to a previous command). The interface must be

alert for these possibilities, try to diagnose them correctly, and be

prepared to act appropriately.

5.2.4 Overlapping of Messages. Contrary to the assumption of

strict sequentiality in messages made in the simple model, there is need

to consider a high potential for overlapping messages beyond just user

interrupts. Because of the variable nature of system responses in terms

of timing, length, and content, it is important to consider taking ad-

vantage of the full-duplex potential of the communication channels. For

example, it is necessary to be prepared to accept and react to an un-

expected message of the type mentioned in Section 5.2.3, above, which

could occur while the interface is sending a message to the system or

is interacting with the user. Furthermore, there is the possibility of

much greater efficiency and responsiveness to the user if the interface

is capable of interacting with the user while it is also doing so with

a retrieval system, especially where long interactions are involved.

For example, the interface should keep the user informed, during

the long connection process of success or failure -- or, especially,

that intermediate situation that frequently creates uncertainty and
24

anxiety in the user: delay. (See Boies for discussion of how "time

uncertainty" adversely affects users.) Also, for efficiency and to avoid

-92-

5.2.4-5.3.1

delay, the user should be given the initial parts of responses from the

retrieval systems, as for document output or news messages, while those

responses are still being received at the interface.

5.2.5 Multiple Simultaneous Retrieval Systems

It may be desirable to search several retrieval systems at the

same time or, at least, alternately and in such close proxin-ity that it

would be inefficient to login and logout for each search. The ultimate

interface system would provide for the simultaneous searching of multiple

data bases wherever they may exist so as to allow for greater respon-

siveness and comprehensiveness of retrieval function for the user.

5.3 Towards A More Comprehensive Characterization

The limitations of the simple model described above in Section 5.2

led us to consider what elements would be required in a more comprehensive

and adequate characterization of message communication in a networked

interface. This section includes the beginnings of such a more compre-

hensive characterization.

It should be remembered that the interface we are considering

connects a user to existing, independent retrieval systems without re-

quiring any change in these systems. If standardized network retrieval

protocols were devised, and if retrieval systems were modified to adhere

to these standards, many of the problems we have been describing could

be circumvented or, at least, handled in a fairly straightforward way

as we shall discuss in Section 5.4. However, it is well to consider

the complexitires as they now exist because (1) in so doing we may

help point the way toward and encourage standards and (2) we may never,

or not for a long time, achieve the needed standards.

5.3.1 Communicants and Communications

The kind of network we are investigating is characterized by com-

municants sending each other messages. A message is generally either

(1) an imperative -- i.e., a request for some action expressed as a

command -- or (2) a response to some imperative. However, an unrequested

-93-

5.3.1-5.3.2

declarative -- e.g., "The systems will be going down in 5 minutes" --

or other mixed types are possible. Even a declarative is often an implied

kind of imperative, e.g., for the previous example: "Please finish up and

log off in 5 minutes or your session will be terminated (abruptly) by

the system".

The communicants for the interface situation are (1) the interface

itself, (2) human users, and (3) computer-based retrieval systems, and

occasionally (4), other computer systems like operating systems for

individual computers or network communication processes whose function

in the retrieval application is to establish and maintain the connection

to the retrieval system. We are, in general, interested only in those

types of messages that would be generated by, or intended for, the human

user in the course of the retrieval application. We are not, for our

present purposes, concerned with the lower-level, inter-process and inter-

system protocols upon which the higher-level, human-oriented message

flow takes place. Thus, we are not concerned with that "communications

subnetwork" of minicomputer processors that provide the inter-computer

communications nor with the protocols among these communication pro-

cessors or between the communication processors and the host computers

on the network in so far as all these protocols are essentially trans-

parent to the retrieval systems and human users.

5.3.2 Communicants as Rule-Governed Processes

The communicants can be viewed as processes which generate, inter-

pret, and respond to messages. We would like to characterize the rules

by which this interpretation is (or could be or should be) done. One

kind of rule has to do with the time during which communication will be

accepted. A second kind of rule concerns the protocols for a message;

what format it must have, what signifies that it is completed, etc. A

third kind of rule concerns the actual rules for interpretation and

response to particular messages. The most comprehensive level of concern

with respect to rule execution has to do with the data, both data internal

to the communicating process and external events, upon which the rules are

-94-

5.3.2

applied in order to determine the particular response messages.

All these kinds of rules are, for the interface itself, open to the

determinations of the interface system designer and may be optimized by

him with respect to his chosen parameters only under the constraint that

the other processes are suitably respected. With respect to the retrieval

systems, the rules are largely fixed and, under the guidelines of our

approach, not under interface control. The one major exception to this

lack of control is that most systems will have two or more modes of opera-

tion in which the output messages -- and, possibly, the input commands --

may take different forms: for example, a short form for experienced users

and a longer instructional form for inexperienced users. The interface

can set this mode and, in general, would choose the more compact form

for efficiency.

Knowledge at the interface of rules at the retrieval systems varies

with the type of rule. Knowledge of timing and format rules generally

can be well established. Rules of interpretation and response can be

known in general terms subject to the limitations mentioned in Section

5.2. Actual responses cannot, in general, be predetermined since they

often depend on the detailed contents of the data bases. Except for

interaction with the index files in an implementation of our Master

Index and Thesaurus concept, responses to messages involving interaction

with the data bases can only be known a posteriori by observing actual

responses.

Knowledge of the human user as a rule-obeying communicant is much

less well defined. As an input device the human can accept a wide range

of timing and format although, depending on the user, some formats are

likely to be more effective than others. As an output device the user

is forced to accept the format that the interface demands; i.e., the

common command language. As a message interpreter and responder the

individual human is largely an enigma, although studies 18,21-24,35-37

have shed light on the nature of typical users. However, the interface

can strongly influence the nature of the response through instructions,

suggestions, and particular queries to the user.

-95-

5.3.3

5.3.3 Structure and Timing Considerations

The network structure has the interface itself as a mediator be-

tween a user and several interactive information systems. Thus, a dia-

gram of our extended model, shown in Fig. 8, looks structurally similar

to that of the Simple Model of Fig. 7 with the main difference being the

explicit recognition of multiple, simultaneously-connected information

systems. It is also recognized that any connected "information system"

is not necessarily a single, monolithic system but can appear to the

interface at various stages of the dynamic networking process as a net-

work connector or a host-computer operating system. Generally, when the

interface has established connection to the retrieval system these in-

termediate stages become transparent and can be ignored until a dis-

connect -- either intended or accidential -- causes them to reassert

themselves.

It is worthwhile, parenthetically, to consider the question of

multiple, simultaneous users. This multiplexed situation clearly would

be part of any efficient operational interface-form of networking. How-

ever, it is quite conceivable that the multiplexing needed to handle

multiple users can be accomplished entirely -- or, at least in large

measure -- by the systems and networks in which the interface resides

or to which it is connected to. In any case, the issue of multiple

users is a separable one.

An important generalization to the simple interface model is in

the area of message timing. As was pointed out in the previous section

(5.2), we want to be able to consider a considerable amount of over-

lapping in time among messages. Basically, messages from either user

or any system are conceived as arriving at the interface at some later

time. Conversely, while messages are being received, the interface may

be sending messages to any combination of systems and user.

However, in the retrieval application the timing of the reaction

to messages is usually not too critical. In particular, the interface

can generally wait a minute or more to respond and still not cause any

-96-

5.3.3

SM3

U I

S2

M Bu Ml i

USER/ V =/Z/ MiU MIU I' //////3A
I NTERFACE, /////////R /

INTERFACE 12 AO
SYSTEM |M 957 M 2 // MI3 . ..

V/////////////7A M 3

J~ M3I V////////

(B)= BREAK SIGNAL

FIGURE 8 TIME DIAGRAM OF TYPICAL MESSAGE FLOW FOR GENERAL
INTERFACE SITUATION

-97-

5.3.3-5.3.4

problems. In general this means a message can be interpreted and re-

sponded to before considering any other messages that may have arrived

after the arrival of the given message. The most critical timing is in

the login phase because timeouts may occur if responses are not sent to

some messages within a period of the order of a minute. In order to

avoid such timeouts the interface can be programmed to follow through

with the login to one system before starting another login or reacting

to a message from the user or another system.

Occasionally, it may be desirable to hold up the processing of one

message until an incoming message is completed: for example, a user

command to stop waiting for a response from a retrieval system if that

response is just starting to arrive.

The fact that a message is initially interpreted does not nec-

essarily mean that the full response to it is given at that time. User

interupts, for example, may simply be noted for action at a later time,

perhaps, when an ongoing operation is completed. This situation can

be discussed further after we describe in greater detail in the following

section that nature of the rules to be followed by the interface.

5.3.4 Message-Handling Rules for the Interface

The rules for interpreting and responding to messages at the in-

terface can be thought of as operating on input message streams and

generating output, or response, messages. One generalization over the

simple model is that response messages may be directed to more than

one communicant as the result of a single rule -- typically, say, to

the user and the currently active retrieval system.

Another major sophistication for the rules is that they be context

sensitive through the mechanism of state variables. Thus, in addition

to finding a particular match in the input stream, a rule would require

that certain state variables have specified values before the rule

would be executed. A rule could also include the setting of given

values for state variables in its execution. A state variable may

specify a very general state: for example, that the user is using VER-

BOSE mode; or it may indicate a very specific situation: for example,

-98-

5.3.4-5.3.5

that the interface has just sent the password in the login procedure to

system X and is awaiting the response. Thus the rules can be set up

to relate to, and "step through" a sequence of very specific situations

for various combinations of general modes in effect.

The rule must identify some part of the input stream as meeting

a particular criterion for match in order that the rule be invoked --

assuming of course that the state variables also match, as just described.

That part of the rule that specifies the nature of the match may be

called the rule match, or simply match. Also, there is a pointer which

identifies that point (i.e, character) in the input stream at which the

interface begins a scan of the stream to ascertain whether any rule match

is satisfied -- scanning going in the positive direction i.e., the di-

rection in which characters have been added. A rule would include the

specification of how to increment the pointer.

Normally, after a rule is executed, a search is begun for the

next matching rule in accordance with the rules of message priority

as, for example, indicated above in Section 5.3.3 and rule ordering as

discussed below in Section 5.3.6. However, it is conceivable that

control should be otherwise directed after a given rule; the capability

to provide this kind of direction should also be expressible in the

rule. Fig. 9 schematizes the kind of structure we have in mind.

5.3.5 Message Formats, Timing and Segments

Now we describe in greater detail the actual rule-matching and

message-generation operations required in the interface. First, we

need to consider the format of the incoming messages. These messages

can be decomposed into segments; the most common and natural segment

is a line; i.e., the character string ended by a new line or other line-

ending character, like carriage return or line feed. For some systems,

and in certain situations, only a partial line will be sent. This

will happen, typically, where a system has a user prompt that does not

end in an end-of-line type character: as, for example, just a question

mark on a line.

-99-

5.3.5

LU

U
LU ~~~~~~~~~~~~~~~U.

LU~~~~~~~~~LW rz.~~~~U LL -£- \

> -J- <

--a_ ~~~~~~~~~~~~~I--I- Z ce)z
LU

z
t 0

0

- U~~~~~ 0I~~~~~~
a_ ~zII u0

V)o z~~

* L0LU*D0 zD 0

3Z 3L-- 3U * LU

CL

,.~L.) "3 yQ cr~~~~~~~~~~~~~~~~~U W W~~~~~~~U ~v, ~: X : - M.J

LU.

r -IOO-3 · "j X u. .
I-- .-- Lv-, ~u

(LLi

,,,~~~~~~. ol. ~ ~ \~~~~~
WZ~~~~V LLr C--

E: L" W ~~~~~~0 a (n
c~~ c , O"J ~~aw L a

V) u~~; e LUrI

-100-

5.3.5

The basic mode of operation would then be to add a message seg-

ment to the input buffer when it is received and to perform rule matching

on the incremented input stream which, in general, would represent a

partial message. Of course, a completed message would be a special

case of a partial message and particular rule matches would attempt to

identify end-of-message segments for special attention. The set of de-

limiters specifying message segment boundaries would be dynamically set

by the rules. The size of these sets is quite small for most common

systems; it usually ranges from just the end-of-line characters to that

minimal set augmented by one or two punctuation characters like question

mark or colon.

A timing function should be built into the message segment handling

operation such that characters coming in immediately after (i.e., at

a time interval no greater than that determined by the BAUD rate) a non

end-of-line type character delimiter are appended to the message segment.

This would avoid forcing the rules to try to handle partial lines where

end-of-segment delimiters are innocently included within regular lines

without having an end-of-segment function. Conversely, if there were

a segment not ending in one of the currently recognized delimiters, a

timeout function would come into effect to force the transmission of

this (unexpectedly) short segment into the input stream as well as

setting a state variable to identify this condition. Two kinds of situ-

ations could induce this kind of timeout: (1) the rules simply had not

properly specified the current delimiter set or (2) due to error con-

ditions or the stochastic timing idiosyncrasies of the time-sharing

mode of operation, the end of a segment had been inordinately delayed.

Note that a null segment would be a special case of this latter situ-

ation and would be identified by another particular state variable.

If it were desired to base a rule match on some features of a

partial message that overran segment boundaries, this could be accom-

plished by proper setting of state variables, the input stream pointer,

and/or the rule match. Interrupt messages as well as timeouts should

-101-

5.3.5-5.3.6

set state variables so as to allow for all rules to be expressed in a

uniform input/state description of context.

5.3.6 Rule Matching Criteria, Transformations, and Ordering

Rules may be of certain rule types based on the kind of matching

functions in effect for the rule match. For example, it may be desirable

to ignore upper-case/lower-case distinctions for alphabetic characters.

Other rule types will be discussed below after a more comprehensive

discussion of the general matching criteria is accomplished.

It is clear that rule matches should be capable of specifying any

given character or fixed character string, whether these characters

be alphabetic, punctuation, non-printing characters or, in general,

any code. In addition it is advantageous to be able to have variable

features of the input stream be specified in the rule match. For ex-

ample, it may be recognized that a character string (of indefinite

length) that appears after a user FIND command is to be taken as a (free

vocabulary) expression of a search topic and should be placed in a

certain position in the output message. A symbology is needed to re-

present such a variable string for both the rule match and the rule mes-

sage.

Another kind of variable element would stand for some class of

characters say: end-of-line, alphabetic, non-alphabetic, numeric,

command delimiter (e.g., semicolon or end-of-line), etc. This kind

of variable combined with the variable-length element would provide

the means to specify variable words and phrases of a given character;

for example, a number would be a variable-length string of numeric

characters.

It is desirable to be able to specify that some identifiable

elements of the input stream undergo some particular functional trans-

formation, that is not (easily) expressible by the string manipulations

of the rules themselves, before being deposited in a state variable or

output message. For example, an arithmetic function may need to be

performed on the number n, represented by a given string in the input --

-102-

5.3.6-5.4

which in turn may represent, say, the number of the first document to out-

put -- in order to properly translate to the appropriate command mes-

sage -- e.g, "PRINT SKIP n-l". The symbology for expressing this kind

of transformation needs to be developed for incorporation, into the model.

Rules would be ordered and the search for a matching rule would

proceed by that order. The first rule matched would be executed. There

would always be a default rule, in general, or in a particular context,

so that unanticipated or default occurences could be handled. All vari-

able states expressed by a rule would have to be satisfied for the rule

to match; a variable state not expressed by the rule would be ignored

in the matching operation. Rule matches would generally be ordered from

longest to shortest so that rules depending on more precise context

would take precedence over those broader or default contexts. The

specific ordering of rules in cases where ordering would not ever effect

the actual choice of rule for any possible input streams and state vari-

ables would depend on such factors as whether the rules were intended

primarily for exposition to a human analyst or for actual execution.

In the former case, an ordering based on state variables might be pre-

ferred; in the latter case, an ordering based on a computer sort order

(e.g., alphabetic) might be preferred for efficiency of searching.

The nature of the operations provided for in this model is

schematized in Fig. 9.

5.4 Retrieval Protocols in Cooperative Networks

The description above of functions required in a networked inter-

face for interactive retrieval systems, while reasonably comprehensive

in coverage of the kinds of functions required, is limited in three

respects. First, as was pointed out in the beginning of Section 5.3,

we have assumed independent retrieval systems that could notbe changed.

Second, we have tended to lump all the functions together in one un-

differentiated mass without regard to the different levels involved.

Third, we have tended to ignore the structure of the network in which

the interface would reside. In this section we shall take a very pre-

liminary view of what might result if we could go beyond these limita-

tions.

-103-

5.4

In the first place, if networked systems could achieve that de-

gree of cooperation such that standardized communication protocols could

be agreed upon, then many of the problems of indefinite, unexpected,

and unpredictable messages mentioned in Sections 5.2.2. and 5.2.3 could

be circumvented or, at least, reduced in scope. Thus, for example,

message completions, acknowledgements and system dropouts would all be

handled in standard ways.

In the second place, the network structure in which the interface

resides has a strong impact on how interface functions should be per-

formed. In particular, we see in such ARPANET efforts as the RSEXEC

and the National Software Words 12-14, 38 (see Section 1.2) the develop-

ment of a distributed-computation approach to resource sharing based

on common protocols for intercommunicating among dispersed processes

to handle a given application.

Thus, for example, it is suggested that any major application

handled in the network, like interfacing to retrieval systems in a

virtual mode, be implemented in several separated, but interconnected

and cooperating processes. There are at least two main reasons for

resource sharing through this kind of structure: reliability and effi-

ciency. Reliability is achieved by having separate processes each of

which can individually handle the application. Thus, if one process

is unavailable for any reason -- failure in hardware, software, or

communications channels -- the user can be routed to another process

providing the same functions. Of course, the appropriate switching

mechanisms must be available. Greater efficiency through load-sharing

for example, can be achieved by routing users to less busy processes,

rather than to overloaded ones.

A second aspect to emerging networked structures, where distri-

buted processes are connected to and serve likewise distributed users

at terminals, is the recognition of two kinds of processes involved:

user processes and server processes. This distinction is in accordance

with the actual nature of the network situation: users are attached to

individual host computers and are, in general, required to make connection

-104-

5.4

to serving processes which reside in separate host computers. Thus it

is quite natural, for each individual application, to have in each host

computer a user process that takes all requests for that application

and establishes in an appropriate and uniform way, connections to suitable

serving processes in the given and other computers. Uniform access

methods are key to effective network operations.

The structure for a networked interface containing distributed

user and server processes for retrieval is exemplified by the diagram

in Fig. 10, where the overall interface process is still called "CONIT".

If we compare Fig.10 with Fig. 1 we see that the module labeled "User

Interface" in the figure is included within the user process and the

module labeled "Translation" is included within the server process.

The function "Interface Management" in the first figure is distributed

over both user and server processes in this revised picture.

In this revised picture the communication between user and server

is accomplished through agreed upon procedures and formats that may be

termed the retrieval protocol. In particular, the user process trans-

lates a user request into one in a common request protocol (labeled

Command Protocol in Fig. 1) which the server process translates into

the appropriate form for the retrieval program. Correspondingly, in

the reverse direction, the server process translates a response from

a retrieval program to a common response protocol which is sent to the

user process for conversion to a form suitable for presentation to

the user. In the most general sense the protocol includes all the

procedures by which the user and server processes communicate with each

other as well as all the status information for each user, including

all the various functions and function responses discussed in Section 4.

We note that between user and server -- i.e., intra interface -- we

can conventionalize and standardize the protcols and thus avoid many

of the problems of networked communications as described in Sections

5.2 and 5.3.

It is worthwhile to consider the functions of the server process

in greater detail. For non-cooperating systems of the kind we are

-105-

5.4

C~~~~~~~~~~~~~~~~~~~~~~~~~j ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ i

LULu>>
s,~~~~~~~~~U- 0!:

Z

zo-oLUz

LLJ<n Z~LI_o

~~~~~~~~~~~~~~~~~~~~~~~~~~~0 "'>'
LLJ

-106-

z C4 -
0 L. LL

u v, a~~~~~~~~

v, r> v> r-~~~~~~~

< in

wZ~~~~~~~L

~~~~~~~~~~L Z~~~~~~~~~~~~~~~~~~~~~~~~L

W)
0 0 L L "

3:~~~~r ~
w w 1-~~~~~~~~~~~~~~~~~~~~~~~/

-106- ~ ~ ~ ~ ~ ~ ~ u

5.4

currently dealing with, the server must communicate with the rest of

the network with the standard protocols while also handling the in-

dividual non-standard features of each retrieval system. We may say

that the server "encapsulates" the retrieval systems and makes them

appear to the rest of the network as if they performed standard functions

according to conventional protocols. The "encapsulator" notion is im-

plicit in Fig. 10 and made explicit in Fig. 11A.

The encapsulation function itself may be subdivided into a number

of functions that successively carry and transform the standard protocols

into the retrieval systems and, then, the responses of the retrieval

system backout to the network, as shown in Fig. 11B. First the en-

capsulator must handle the establishment and maintenance of connections

to the rest of the network. Next, the retrieval protocol must be in-

terpreted and other management (e.g., status keeping) functions must be

performed. Third, the interpreted protocol functions must be translated

into commands for the retrieval system. Fourth, the translated commands

must be passed along to the retrieval systems, possibly through non-

network, non-standard communications channels, if the retrieval systems

are so situated. Similarly, the retrieval system responses must pass

successively through these functional rings back out to the standard

network interface maintained by the encapsulator.

One advantage of the user/server process structure is that a new

retrieval system that follows the common protocol can be added to the

network directly, i.e., no new translation modules are needed. In fact,

the third and fourth (shaded) rings in Fig. llB can be eliminated in

standard network operations. For a retrieval system not following the

protocol, at least a well-defined translation procedure is implicitly

defined for the encapsulator. In addition, the intra interface protocols,

being freed from a requirement for human intelligibility, can be concise

and, therefore, more efficient for processing and communications. Also,

having such separate communications protocols tends to isolate the sur-

face languages and, therefore, make it easier to change those languages

without making major modifications to the basic interface operations.

-107-

5.4

j,,/~~~~~~~~~~~~~~~~u
I--,
Z
LU
z

>~ 0-C\~~~~~O

w O ~~~~~~~~~~~~~~LU
LUJ

.V)__ 2 r<- Wl.

>
OU-~. I-'= 1I,,,
0

C)

CZ,d~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~l

E
';d~~~~~~~~~~ oo~~,oL~~

CL>~~~~~~~~>

F- ~~~>

0-

~~-'1~~~~~~08-~
-108-~ ~ ~ ~ ~ ~~1

5.4

One question for future research is how to characterize the

structure of the interface more finely in terms of function so that

higher-level semantic functions, e.g., command interpretation, are more

clearly separable from lower-level (syntactic) functions, e.g., character

string handling. In any case, our current conclusions on the future

role of communications and protocols in networked interfaces are given

in Sections 6.1 and 6.3 below.

-109-

6.-6.2.1

6. EVALUATION

We have described the nature of the retrieval networking problem

of coupling heterogeneous independent interactive systems; discussed

general approaches to its solution; outlined specific techniques;

and described an experimental system to aid in analyzing the problem.

In this section we evaluate the general prospects for resolving the

problem and the several particular approaches we have considered. At

this stage the evaluations are still tentative; more extensive experi-

mentation and analysis will be needed to draw firm conclusions in many

areas.

6.1 Physical Interconnections

Rapid developments currently in progress in the field of computer

networking should soon alleviate current problems in the physical inter-

connection of interfaces and retrieval systems. Most of the major opera-

tional retrieval systems already are, or soon will be, accessible via

national and international computer networks. It should be possible to

build the interface components on hosts that are part of, or can be

easily attachable to, these networks.

Especially valuable for retrieval networks are some of the features

of the packet-switched networks of the ARPANET type. These networks

provide efficient multiplexing of communications channels for inter-

active data that could otherwise use 5 percent or less of channel band-

width on dedicated channels. Also, intercommunication between inter-

face programs and retrieval systems are provided directly by network
39

procedures and programs. In addition, recent studies have indicated

that long-distance communications channel bandwidths and costs will be

markedly reduced with satellite technology, making this component of

networking even less of a potential barrier to success.

6.2 Effectiveness of Interface Approach

6.2.1 The Dimensions of Effectiveness

We are generally optimistic about the future possibilities of the

-110-

6.2.1

virtual-system interface approach and the various techniques we have con-

sidered in implementing this approach. One must, however, recognize

the several dimensions along which effectiveness can be measured and

the tradeoffs that must be weighed between effectiveness and cost.

One dimension is the degree of "virtualness" provided by the

interface, that is, the extent to which the interface acts as a common,

virtual system, hiding all the heterogeneity and individuality of the

different retrieval systems. A second dimension is the completeness

with which the interface permits use of the various capabilities of

the networked retrieval systems. A third dimension is the exactness of

translation; that is, the degree to which the function called for in

the common command language is fulfilled, and not overfulfilled, by

the translated requests in the different retrieval systems.

Complementing the first three dimensions is the dimension of

the comprehensiveness of the totality of retrieval functions permitted

through the interface; this, in general, will be greater than what is

obtained from the networked retrieval systems since the interface it-

self provides capabilities not available otherwise. A fifth dimension,

closely related to the fourth, recognizes the need for dynamic and inte-

grated character to the solutions: the interface should be extensible

as additions to capabilities and other changes ensue and it should be

integratable within the larger computer context of distributed net-

worked computation. Finally, the interface may be measured by its

simplicity: how easy is it to use by the inexperienced user.

There are, clearly, tradeoffs that may need to be made among

the various dimensions and between effectiveness, in general, and cost.

For example, exactness of translation and completeness can be increased

at the expense of virtualness; in the extreme, a simple transparent mode

requires practically no translation and provides access to all the

functions of the different retrieval systems at the cost of complexity

due to heterogeneity of access for the user.

We believe the approach and techniques we have outline can lead

to an interface system that will score high in each of the six dimensional

-111-

6.2.1-6.2.2

measures listed above. We discuss below the possible effectiveness of

several component techniques we have been considering: a common retrieval

language, a Master Index and Thesaurus, and a common bibliographic data

structure.

6.2.2 The Common Retrieval Language

The common retrieval language, which has been one of the main

foci of interest in this report, has import for all six dimensional

measures. We have discussed the ways in which we have tried to make

the language simple, extensible, and integratable with other functions.

The set of retrieval capabilities outlined in the common command language

includes almost all the capabilities of all the retrieval systems we

have been working with. In so doing, it includes, a number of capabili-

ties which are not included, at least directly, in that system. Beyond

that, there are a number of capabilities that are not included in any

of the retrieval systems, either because they are extensions of existing

capabilities -- like the extensive storing, sharing, and reusing of

searches -- or because they are capabilities peculiar to interface

function -- like keeping track of the status of, and connecting to,

different systems.

The comprehensive nature of the functions that one would like

to obtain through the interface, together with the limited nature of

the capabilities available from existing retrieval systems, emphasizes

a number of complications that we face in interface building. One

problem, of course, is the cost of building into the interface the

features themselves or the connections to them. Another problem is

that of performing an exact translation of a request in the common

command language into one or more commands in a given retrieval system.

At a given level of sophistication of the interface the problem may be

one of complexity or absolute impossibility.

Thus, for example, as we have seen in Section 2, the current

CONIT system cannot translate an arbitrary order of SHOW arguments

to the DIALOG language. One could say that the full range of capabili-

ties was available to a user if the user was forced into the complexity

-112-

6.2.2

of using the fixed order required by DIALOG. Of course, a slightly more

sophisticated interface would handle the question of arbitrary order.

Note, however, the default case for set name can be handled only if the

interface keeps track of what the number for the current set is, i.e.,

the translation is dependent on session context. Neither of these

examples is particularly difficult to handle, at least conceptually,

and the mechanisms for handling them should likely be in any good

operational interface. They do point out, however, the idea that

there is a series of successively more sophisticated techniques required

to handle the problems encountered in achieving higher levels of inter-

face performance along the several effectiveness dimensions.

In a more basic way, however, the translation may be (almost)

impossible if the retrieval system cannot perform a given function.

For example, a sort of the output by author last name may simply not

be possible. The qualifier "almost" is necessary since, e.g., the inter-

face -- at considerable expense, at least compared to the costs of per-

forming this and other operations within the retrieval systems -- could

store the output, extract the author names, sort them, and then reorder

the output.

Other functions which at least one of the systems we have reviewed

cannot do, include: (1) handling of multi-line statements; (2) inter-

rupting; (3) line delete; (4) separate TERSE mode; (5) renaming; (6)

automatic stem search; (7) automatic common-word exclusion search

(8) Boolean combinations in search statement; (9) nested Boolean state-

ments; (10) unlimited search terms from a user-given stem search; (11)

word-order constraints in primary search; (12) record search; (13) display

and/or search of thesaurus-related terms; (14) deleting selected sets;

(15) reusing a previous search statement; (16) intermixing search

statements and combining sets; (17) SDI search; (18) outputting of a

selected file; (19) highlighting of matching elements; (20) displaying

counts of partial results; (21) saving search sets; (22) "keeping"

selected documents in a special set; (23) saving output; and (24) re-

viewing the previous dialog. It is not too severe, then, to say that

-113-

6.2.2-6.2.3

the set of functions that directly and exactly match among the several

major retrieval systems is a small subset of the totality of functions.

However, we believe -- as we have discussed in part in this report --

that there are methods, more or less difficult, for coming at least

moderately close in translating the most basic and important functions

from a common language to the different retrieval systems.

6.2.3 The Master Index and Thesaurus

The Master Index and Thesaurus (MAIT), which was mentioned in

Section 1.4 and whose specifications were described in detail in our
19

previous report , appears to be a powerful tool in providing access

to individual, as well as a multiplicity of, data bases. It contains

essential information and interrelationships necessary to making in-

telligent choices of data bases and search strategies.

In particular, a user could make a search request where the

search topic is expressed in natural English or in a controlled voca-

bulary or in some combination of the two. Taking the word stems of the

substantive words in the user's request, the interface can use the in-

formation in the MAIT -- possibly with the aid of the user -- to find
16

relevant index terms. (We have discussed in our Intrex work the

degree of relevance obtainable by these phrase decomposition and stem-

ming techniques.) The document counts associated with these terms pro-

vide sound information by which to base a selection of data bases in

which to search as well as which index terms under which index elements

to search on. Thus, the Master Index and Thesaurus provides the basis

for a successful network coupling using natural English words and phrases

as a common intermediate language as well as providing greatly enhanced

capabilities for access within most existing systems.

These capabilities come at a price: there is a sizable storage

requirement and a major updating requirement. However, considering

the large potential advantages of the MAIT, neither cost need be thought

of as a prohibitive. Index and thesaurus information may be only 5

percent of the total size of a large data base; thus, considering some

-114-

6.2.3-6.2.4

overlap in terms, the MPIT for 20 data bases would likely be smaller

than a single data base. Also, while updating from multiple sources

would require a good deal of coordination, it is possible that most

of the advantages of the MAIT could be retained with information that

was several months or a year old. This is analogous to a profile for

prospective SDI being developed on a retrospective data base.

An indication that Master Index and Thesaurus type concepts are

now being recognized and incorporated into current systems is the recent

development by Lockheed of its DIALIST merged term frequency indexes

in microfiche.

6.2.4 Common Bibliographic Data Structure

Another consideration in the development of means for users to

interact effectively with different data bases is the interrelation of

the diverse data elements and structures from those data bases. First,

searching is done on one or more data elements: in order to translate

a search request in the common language into a request in a retrieval

system the correct correspondence of data elements must be found. Simi-

larly, user output requests require the specification of combinations

of data elements. Finally, in order to combine retrieved document sets

from different data bases, we need to: (1) identify when document re-

ferences from different systems refer to the same document; (2) establish

common reference formats; and (3) create common index and catalog data

structures.

One part of the solution to these problems is the concept of

a common bibliographic data structure mentioned in Section 1.4 with an

illustrative example for part of such a structure shown in Fig. 3. We

have described the development of this structure in our previous report.

Our recent work has led us to question the relative value of our

attempting further efforts in this area at this time. To take the last

reason above first, we have not come close to the point of combining

document sets from different data bases and creating mini-data-bases

with catalog records from them, at least in an online mode. Secondly,

-115-

6.2.4-6.2.5

the comparison of data elements for searching may be best handled by

the Master Index and Thesaurus, one of whose tasks is to distinguish

data elements under which indexed. Thirdly, while a common bibliographic

data structure is clearly important if refined distinctions among

data elements are to be maintained, we have found that a rough trans-

lation among data elements is often all that is possible or needed. For

example, subtitles are not usually distinguishable from titles in most

data bases and systems in which they are, if anything, simply lumped

in with titles. Therefore, we can not easily make use of a structure

that is more detailed. At any rate, distinguishing sub-titles from

titles may not be very valuable and some systems, as we have seen, do

not even allow separation of title from several other data elements.
41-42

We note, in any case, that efforts appear to be gaining

headway to develop a common approach to bibliographic data elements

and to data structures in general. It may, then, be advisable in

near-term interface work to await these developments while making use

of coarse-level common data structures and translations.

6.2.5 Costs and Benefits

It is too early to analyze precisely either the costs or the

benefits of the interface approach. However, some order of magnitude

estimates can be made. The interface requires duplication of certain

functions regularly performed by retrieval systems: the parsing of in-

put requests and the handling of dialog. Also, communications require-

ments are roughly doubled in that the interface-to-retrieval-system

links have to be added to the terminal-to-computer links. Some functions --

like selection of and translation into, target systems -- would be new

(although such functions are mirrored in the individual system functions

of data base selection and common renaming). On the other hand, the

major component function of the actual storage and retrieval from very

large data bases would not be required within the interface, at least

for a rough translation without a Master Index and Thesaurus. Summing

up, we give as a very rough estimate an additional cost for the computer-

-116-

6.2.5-6.2

system components of approximately 20 percent for the simple interface

over those same costs for direct access.

The benefits corresponding to these costs are (1) an increase in

accessibility of perhaps an order of magnitude in terms of the number

of data bases and systems of practical availability and (2) a reduction

of -- and, in some cases, an elimination of -- the need for a trained

intermediary information specialist searches. This second benefit has

a direct positive benefit in the direction of reducing total costs

so that overall costs for interfaced access to retrieval systems could

be the same or less than for direct access. This figure of 20 percent

increased computer costs is partially supported by observations on

costs of the current CONIT which, although not having all the functions

of an operational interface, has been designed more for experimental

expediency than efficiency and cost effectiveness.

If we consider a more sophisticated interface with a large

Master Index and Thesarus and extensive instructional capabilities,

the incremental costs could go to the 50 to 100 percent range, or

higher. However, benefits then would include much improved retrieval

capability and ability for the end user to make easy access to the

data -- allowing many times more users to gain direct access. We would

also expect the incremental cost of the interface to be reduced as it

became better integrated with the target systems. Of course, this

benefit relates to the long-range goal of more compatible retrieval

systems.

6.3 Logical Interconnections

As important as how cost effective the interface can be is whether

this approach is the appropriate one compared with alternatives, and

how it fits into the developing scene of sharing of resources through

networking with distributed computation. We have not in the past year

seen any reason to believe that the problem of heterogeneous retrieval

systems will be resolved in the foreseeable future by any single system

becoming dominant nor by existing systems all agreeing to follow a set

of (yet-to-be-developed) common standards.

-117-

6.3

There have been some indications of a trend toward agreements

on certain aspects 34,41 of retrieval operations -- like login procedures

and data element definitions. Also, of more immediate importance, there

is a continuing trend for each system to "fill in the gaps" by incor-

porating those features which other systems had and it had lacked.

Counterbalancing and, perhaps, outweighing these trends are the exten-

sions of these systems in new and different ways and the development

of new and different retrieval systems.

Three other paths toward greater compatibility among systems can

be stated. We have already mentioned -- above in this section and in

Section 6.2.4 -- the efforts toward development of a common bibliographic

data structure and common, compatible data structures, in general. These

developments can be used by interfaces to aid in providing for greater

compatibility; they certainly would not, however, even when they come

to fruition, obviate the need to overcome many other differences or to

develop networked structures.

A second attempted line of work has been in the area of compati-

bility among computer programs themselves. It is the goal of this

development, either through the use of common or compatible programming

languages, to make it easier to transfer programs from one system to

another. Interface work should certainly keep track of, and take ad-

vantage of these developments. However, major developments along this

line do not appear likely to provide important aid for our problems

soon; they certainly will not, in themselves, resolve the many problems

of networking heterogeneous retrieval systems, especially for existing

systems which do not include them.

The third line of progress, which may be the most important in

the near and intermediate term, is the development of high-level proto-

cols by which different systems can communicate with each other by user

and server processes in a specific application area. As discussed in

Sections 4 and 5, these developments are closely related to our common

retrieval language development. Several considerations arise in de-

termining the nature of this relationship.

-118-

6.3-6.4

Perhaps the critical questions are how closely the individual

systems differ from the protocol and how far the interface should go in

creating a fully virtual system that hides, or compensates for, the

differences among systems and data bases by major functional capabilities

within the interface. To the extent that there are important differences

and that much virtualness is desired, we can expect the interface to be

a major component of the whole retrieval network. In this case the

appropriate structure for networking may be to separate out the large,

costly functions into an interface which stands alone -- or has only

one or two replications for reliability -- between the various user

processes and the server processes encapsulating the retrieval systems.

In such a case, the user and encapsulating processes might be

much reduced in scope in that many retrieval functions, as such, would

be handled separately by the intermediate interface. In any case,

the relations among a common retrieval language, a high-level retrieval

protocol, a virtual retrieval system interface, and user and server

processes for retrieval and other applications are clearly very important

issues in future interface development.

6.4 Areas Requiring Further fork

We have discussed in some detail in this report our approach

to the problem of networking heterogeneous retrieval systems and the

likelihood of various techniques being useful in the solution of this

problem. While we have established a number of avenues that seem

fruitful, much additional work is needed to evaluate adequately the

cost effectiveness of the individual techniques and the prospects for

their successful integration. Because there is such a range and depth

of research needed, it is important to select what might be most pro-

fitable for near-term effort. We especially want to point out areas

within the field of information retrieval that might not otherwise

receive adequate attention.

Our immediate plans call for the evaluation in some detail of the

question of how effective a fairly simple and not-too-costly interface

-119-

6.4

(see Section 6.2.5) would be in enhancing access to multiple systems and

data bases for the kind of potential user who is both most numerous

and most in need of assistance: the inexperienced end user. "Fairly

simple and not-too-costly" may be defined roughly as what could ulti-

mately be implemented on a mincomputer class computer. The instructional

facilities are clearly key in providing access for inexperienced users.

The best way to perform this evaluation in our opinion, is through

actual use in an experimental interface.

Subsidiary and longer-range studies, as suggested in the body

of this report, are also very important. To reiterate and extend a few

of these areas:

(1) Further exploration of the Master Index and Thesaurus
concept, including automatic selection of data bases
and searches.

(2) Further study of retrieval network software archi-
tecture including protocols and user/server programs.

(3) Further analysis of cost/benefits effectiveness,
expecially for the more advanced functions of the
interface.

(4) Continuing analysis of inter-computer and network
communications possibilities.

(5) Extending study of how retrieval systems could be
modified, or developed from scratch, so as to per-
form better in a network environment.

(6) Consideration of the question of whether there are
actual advantages to having different retrieval
systems.

(7) How is design affected by an operational, many-user
environment.

(8) To what extent can the interface development help
point toward retrieval standards?

(9) How to integrate the retrieval function via net-
working into the more general information transfer
and general information processing realms.

-120-

6.4-6.5

(10) What special problems will be faced in going from
a research to an operational environment; e.g.,

(a) who would administer the interface?

(b) how would payments be handled?

(c) what changes in existing system procedures
would be advisable?

6.5 Conclusions

Continued research on the networking of heterogeneous interactive

information retrieval systems has lent further credence to the belief

in the value of a virtual-system, computer interface as a means to

achieve the networking. In part, the evidence for this result has come

from the development and initital testing of an experimental interface

called CONIT, which contains the basis for a common command and response

language and an initital instructional mode. CONIT enables a user to

select one of four different retrieval systems to which CONIT auto-

matically connects, and to perform many of the basic retrieval functions

of the system using the common language.

Our research has suggested that a practical, operational inter-

face might be developed which would add perhaps 20 percent to the com-

puter costs for online retrieval but relieve the need for a trained

intermediary searcher. Such an interface might be most cost effective

in the near future if it emphasized access to most, but not necessarily

all, existing functions of several retrieval systems for the inexperienced

end user.

Progress has also been made in the analysis of the important

components of retrieval networks, especially a command language, net-

work structure, and requirements for ease of use. Fruitful areas for

additional efforts have been outlined including the study of a number

of research issues that have been uncovered but not fully resolved in

the work by us and others. These issues include (1) the extension of

interface capabilities into a more fully virtual system by such poten-

tially powerful techniques as a Master Index and Thesaurus and (2) the

-121-

6.4

the design of interface structures so that they fit in with, and enhance,

the newly emerging networking software and hardware technologies and

other efforts toward compatibility and standardization in retrieval

and other information processing areas.

-122-

7.

7. PROJECT BIBLIOGRAPHY

1. Therrien, Charles W., Data Communications for an Experimental Infor-
mation-Retrieval Network Interface, M.I.T. Electronic Systems Labora-

tory Technical Memorandum ESL-TM-515, August 1, 1973, NTIS Order No.

PB 237 975/AS.

2. Marcus, R.S., "A Translating Computer Interface for a Network of

Heterogeneous Interactive Information Retrieval Systems", Proceedings

of the ACM Interface Meeting on Programming Languages and Information
Retrieval (November 1973), SIGIR Forum, Volume IX, No. 3, Winter,
1974, Association of Computing Machinery, pp. 2-12.

3. Reintjes, J.F. and Marcus, R.S., Research in the Coupling of Inter-

active Information Systems, M.I.T. Electronic Systems Laboratory
Report ESL-R-556, June 30, 1974, NTIS Order No. PB 237 974/AS.

4. Marcus, Richard S., "Network Access for the Information Retrieval

Application", Panel on Access to Computer Networks, 1975 IEEE

Intercon Conference Record, Session 25/4, 1-7 (April, 1975).

5. Marcus, R.S., "Networking Information Retrieval Systems Using Com-
puter Interfaces", Proceedings of the 38th Annual ASIS Conference,
October 26-30, 1975. (Volume 12) American Society for Information

Science, pp. 77-78.

-123-

8. REFERENCES

1. Cuadra, Carlos and Luke, Ann (editors); Annual Review of Information
Science and Technology; Volume 10. American Society for Information
Science 1975.

2, Cuadra, Carlos; Harris, Jessica; Williams, Martha E; Markuson, Barbara
E.; 1965-1975: A Decade of Innovations; General Session I., 38th
ASIS Annual Meeting, October, 1975, Boston, Mass.

3. Fano, Robert M., "The MAC System: The Computer-Utility Approach",
IEEE Spectrum, January, 1975.

4. Beere, Max P., "Commerical Data Networks Using Available Common Carrier
Facilities" in Networks for Research and Education, edited by Martin

Greenberger et al, The MIT Press, Cambridge, Massachusetts, pp. 55-
63, 1974.

5. Chambers, Jack A. and Poore, Ray V., "Computer Networks in Higher
Education: Socio-Economic-Political Factors", Communications of the
ACM, 10 (no. 4) 193-199 (April 1975).

6. Roberts, Lawrence G., and Wessler, Barry D., "Computer Network De-
velopment to Achieve Resource Sharing", Proceedings of Spring Joint

Computer Conference, AFIPS press, Vol. 36, 543-549 (1970).

7. Wessler, Barry D. and Hovey, Richard B., "Public Packet-Switched
Networks", Datamation, July 1974, pp. 85-87.

8. Ornstein, S.M.; Heart, F.E.; Crowther, W.R.; Rising, H.K.; Russell,
S.B.; and Michael, A.; "The Terminal IMP for the ARPA Computer Net-
work", AFIPS Proceedings, Spring Joint Computer Conference, Vol. 40,
1972. pp. 243-254.

9. Bouknight, W.J.; Grossman, G.R.; and Grothe, D.M.; "The ARPA Network
Terminal System -- a New Approach to Network Access", Proceedings
DATACOM 1973. pp. 73-79.

10. Retz, David L., "ELF -- a System for Network Access", 1975 IEEE
Intercon Conference Record, Session 25/2, 1-5 (April, 1975).

11. Rosenthal, Robert, "Accessing Online Network Resources with a Network
Access Machine", IEEE Intercon Conference Record, Session 25/3,
(April, 1975).

12. Crocker, Stephen D.; Heafner, John F.; Metcalfe, Robert M.; and

Postel, Jonathan B.; "Function-Oriented Protocols for the ARPA Com-
puter Network", AFIPS Proceedings, Spring Joint Computer Conference,
Vol. 40, 1972. pp. 271-279.

-124-

13. Thomas, Robert H., "A Resource Sharing Executive for the ARPANET",

AFIPS Conference Proeedings, Vol. 42, June 1973, pp. 359-367.

14. Balzer, Robert; Cheatham, T.E.; Crocker, Stephen; and Warshall

Stephen; The National Software Works, University of Southern

California, Information Sciences Institute Memorandum, December

20, 1973.

15. McCarn, Davis B., "Trends in Information", Information Utilities:

Proceedings of the 37th ASIS Annual Meeting, October 13-17, 1974.

American Society for Information Science, pp. 145-150.

16. Overhage, C.F.J. and Reintjes, J.F., "Project Intrex: A General

Review", Information Storage and Retrieval, 10 (no. 5) pp. 157-188

(1974).

17. Benenfeld, Alan R.; Pensyl, Mary E.; Marcus, Richard S.; and Reintjes,

J.F.; NASIC at M.I.T. Final Report, M.I.T. Electronic Systems Labora-

tory Report ESL-FR-587, February 28, 1975.

18. Wanger, Judith; Fishburn, Mary and Cuadra, Carlos A.; On-Line Impact

Study, Summary Report, System Development Corporation Report,

December, 1975.

19. Reintjes, J.F. and Marcus, R.S., Research in the Coupling of Inter-

active Information Systems, M.I.T. Electronic Systems Laboratory

Report ESL-R-556, June 30, 1974, NTIS Order No. PB 237 974/AS.

20. Therrien, Charles W., Data Communications for an Experimental Infor-

mation-Retrieval Network Interface, M.I.T. Electronic Systems Labora-

tory Technical Memorandum ESL-TM-515, August 1, 1973, NTIS Order

No. PB 237 975/AS.

21. Walker, Donald E., (editor), Interactive Bibliographic Search:

The User/Computer Interface, AFIPS Press, 1971.

22. Heafner, J.F.; Protocol Analysis of Man-Computer Languages: Design

and Preliminary Findings, University of Southern California, Infor-

mation Sciences Institute Report ISI/RR-75-34; July, 1975. (NTIS

Order No. AD-A013 568).

23. Moghdam, Dineh, "User Training for On-Line Information Retrieval

Systems", Journal of the American Soceity for Information Science,

Vol. 26, no. 3 (May 1975) pp. 184-188.

24. Boies, Stephen J., User Behavior on an Interactive Computer System,

International Business Machines, Thomas J. Watson Research Center,
Interim Technical Report No. RC 4169; January, 1973. (NTIS Order

No. AD-754 836).

-125-

8.

25. MULTICS Programmers' Manual, Reference Guide and Commands and Active
Functions; Series 60 (Level 68), Honeywell Information Systems
Inc., December, 1975.

26. Kennedy, T.CS., "Some Behavioral Factors Affecting the Training
of Naive Users of Interactive Computer Systems", International

Journal of Man-Machine Studies, Vol. 7, No. 6 (Noveriber, 1975)
pp. 817-834.

27. Wilks, Yorick, "National Language Understanding Systems within the
A.I. Paradigm: A Survey and Some Comparisons", American Journal of

Computational Linguistics, 1976, No. 1. Microfiche 40, Card 103.

28. Schank, Roger C. and Nash-Webber, Bonnie L. (editors), Theoretical
Issues in Natural Language Processing, An Interdisciplinary Work-
shop in Computational Linguistics, Psychology, Linguistics, and
Artificial Intelligence, 10-13 June 1975; Cambridge , MA.; Center for
Applied Linguistics; Arlington, Virginia

29. Diller, Timothy C. (Editor), Proceedings of the 13th Annual Meeting
of ACL, in American Journal of Computational Linguistics 1975 No. 4,
Microfiches 32-36, Cards 85-89.

30. Shapiro, Stuart C. and Kwasny, Stanley C., "Interactive Consulting
via Natural Language", Communications of the Association for Computer
Machinery, Vol. 18, No. 8, August, 1975. pp. 459-462.

31. Kugel, Peter, "Dirty Boole?" Journal of the American Society for
Information Science, Vol. 22, No. 4 (July, 1971) pp. 293-294.

32. Marcus, R.S., Benenfeld, A.R., and Kugel, P., "The User Interface

for the Intrex Retrieval System", in Interactive Bibliographic
Search: The User/Computer Interface, edited by D.E. Walker, AFIPS
Press, 1971, pp. 159-201.

33. Martin, Thomas H.; A Feature Analysis of Interactive Retrieval
Systems, Stanford University, Institute for Communication Research,
Report SU-COMnM-ICR-74-1, September, 1974.

34. Neumann, Albrecht J.; A Basis for Standarization of User-Terminal
Protocols for Computer Network Access, National Bureau of Standards,
Technical Note 877; July, 1975.

35. Palme, Jacob; Interactive Software for Humans, Research Institute
of National Defense (Sweden), Report F)A C10029 M3(E5); July,
1975.

36. Collins, Alan M.; Passafiume, Joseph J.; Gould, Laura, and Carbonell,
Jaime G.; Improving Interactive Capabilities in Computer-Assisted
Instruction, Bolt, Beranek and Newman, Inc. Report BBN No. 2631,
1973.

-126-

8.

37. Penniman, W. David, "A Stochastic Process Analysis of On-Line User
Behavior", Proceedings of the 38th Annual ASIS Conference, October,
1975 (Volume 12) pp. 147-148.

38. Bolt, Beranek and Newman; "MSG: The Interprocess Communications
Facility for the National Software Works", BBN Report No. 3237;
January 23, 1976. (Also, Massachusetts Computer Associates Docu-
ment No. CADD-7601-2611).

39. Corte, Arthur B. and Pool, Ithiel de Sola; "International Data
Communication Capabilities and the Information Resolution",
Proceedings of the 38th Annual ASIS Conference, October, 1975
(Volume 12) pp. 1-2.

40. Lockheed Information Retrieval Service, Brochure on DIALIST,
Lockheed Palo Alto Research Laboratory, Lockheed Information
Systems; October, 1975.

41 Williams, Martha E., Preece, Scott, E.; and Rouse, Sandra H.;
Data Element Analysis and Use of a Relational Data Base Structure
for Mapping Bibliographic and Numeric Data Bases, Information
Retrieval Research Laboratory, University of Illinois. Also pre-
sented at the National Bureau of Standards Second National
Symposium on the Management of Data Elements in Information Pro-
cessing, Gaithersburg, Maryland, 24 October 1975.

42. ACM-SIGMOD Workshop on Data Description, Access and Control, Ann
Arbor, May 1-3, 1974; Association for Computer Machinery (Special
Interest Group on the Management of Data). New York (1974).

-127-

A-1

APPENDIX A

SAMPLED USER/CONIT DIALOG

This appendix lists excerpts from dialog between a user and CONIT

which are intended to illustrate various facets of the interface situation.

The excerpts are reproduced from computer terminal printouts with some

reduction in size. Annotations by the authors have been added to help

reader understanding and are enclosed in boxes. Excerpts form a continous

dialog except where ellipses (...) indicate some dialog has been taken out.

Each different session is so indicated.

The first three pages of excerpts (A2-A4) show a session with a

very simple round of selecting systems, data bases, performing searches,

and getting output. Latter sessions (pages A5-A20) explore some of the

more involved considerations.

The first page is additionally annotated to show the origin and

processing of the messages. User commands are underlined. Messages

originating from CONIT have a single line alongside them in the margin.

Messages originating from a retrieval system that have been translated

(at least in part) are indicated by a double line in the margin. Messages

without any markings originated in retrieval systems and were passed

through by CONIT with no translation.

-128-

A-2

coni t
Welcome to CONIT. For help on how to use CONIT you may type 'help'

followed by a carriage return; otherwise, you may now type any CONIT
command.
USER::
pick suny

I Attachment successful. INDICATES SUCCESS IN ATTACHING TIP PORT

Connection completed. INDICATES PROPER INITIAL RESPONSE SEEN

SS 1 is number for your next search set.

suny is connected successfully INDICATES LOGIN COMPLETED
You are now speaking in CONIIT (THESE MESSAGES,AND OTHERS, COULD BE IN

BETTER, MORE VIRTUAL FORMAT AS DISCUSSED
II USER:: IN REPORT)

find radiation

SUIY/M-EDL I NE:
Your search resulted in setl which contains this many documents: (2684)

SS 2 is number for your next search set.

lI USER::
show title docsl-3

Il SUNY/MEDL INE:

1
TI - :STATISTICAL EVALUATION OF LIG1HT PROTECTION FACTORS:

2
TI - PROGNOSIS AND POST-THERAPEUTIC FOLLOW-UP OF BREAST CANCERS BY

THERVOGRAPHY.

3
TI - MICROWAVE THtERMOGRAPHY: A METHOD OF DETECT-IG SUBSURFACE THER-'AL

PATTERNS.

SS 2 is number for your next search set.

USER::
piEck Ims LOCKHEED DIALOG SYSTEM PICKED

I sent INDICATES LOGIN SENT

HOST IS ONLINE
$$$$t$$$ RECONNECT @ 15:53:05

NEW FILE - DISSERTATION ABS. - SEE ?NEWS

II USER::
pick data eric

.FILE1

-129-

A-3

File reset: ERIC FULL-TEXT ED & EJ DEC-7

USER::
find radiation

Your search resulted in set2 454 RADIATION (PROCESS OF ENERGY

USER:: CANCELS LINE
show docs@show title docsl-3 TOTHAT POINT

Msg from 1:DIALOG GOINIG DOWN FOR THE DAY NOTESPECIALAND IMPORTANT
IN 5 MINUTES 1 MESSAGE IN LOGIN

1
EJ121600

Solar Heated Homes: They're Here

2
Ed121508

A Course in Nuclear Radiation for All High School Students

3
EJ121506

Energy Alternatives

USER::
pick sdc [SDC ORBIT SYSTEM PICKED
sent

YOU ARE ON LINE L8A

HELLO FROM1 SDC/ORBIT.
YOU ARE NOW CONNECTED TO THE ORBIT DATABASE.

SDC/ORBIT:

TODAY ONLY: GEOREF AND APIPAT WILL NOT BE AVAILABLE. SORRY
FOR THE INCONVENIENCE. NOTEECIALMESSAGE

SS 1 is the number of your next SDC/ORBIT search set.

USER::
pick data ntis

SDC/ORBIT:

THE TI VE IS HOW 6 :56 P.V. (EST), 01/16/76
YOU ARE NOW CONNECTED TO THE NTIS DATABASE.

SS 1 is the number of your next SDC/ORBIT search set,.

USER::
find radiation

-130-

A-4

SDC/ORB IT:
SS 1 is resulting set containing this many documents:(21223)

SS 2 is the number of your next SDC/ORBIT search set.

USER::
show title docsl-3

SDC/ORBIT:

TI - Results of the Lyman alpha Measurements of the Satellite Dial
Ergebnisse der Lyman-alpha Vessungen des Satelliten Dial

TI - Materials rata Retrieval at Estec

TI - Angular Distributions of Electrons of Energy Esub E Greater Than
0.06 Mev in the J ovian M!agnetosphere

SS 2 is the number of your next SDC/ORBIT search set,

USER::
pick nlm
sent

LOGON IN PROGRESS AT 18:59:30 ON JANUARY 16, 1976
*** BACK72 AT NLt' AND SUNIY CONTAINS 1972 CITATIO-IS ONLY.***
TOTAL ACTIVE TSO USERS: 06
READY

TSO LINE 07E
ELHILL3 IS NOT AVAILABLE AT THIS TIME. NOTE IMPORTANT MESSAGE
READY

USERS:: CONIT DOES NOT YET RECOGNIZE UNAVAILABILITY
U . kSER:: iMESSAGE AND GETS CONFUSED. ANALYST GOES

pick suny INTO TRANSPARENT MODE TO CARRY OUT TASK
Can't log off nlim"MANUALLY" (WITHOUT TRANSLATION)

USER::
sp host
Transparent mode. All of your input will now 'be sent directly to nim without
interpretation,except the 'speak conit' command which will cause CONIT to
resume interpreting your requests.

USER::
logoff

LOGGED OFF TSO AT 19:03:37 ON JANUARY 16, 1976+

DROPPED BY HOST SYSTEM
PLEASE LOG IN:
USER::
suny4

PASSWORD:bcn

-131-

A-5

iNEW SESSIONJ

-EL.-Ut:ZT Fi-UR: E:r-l'i!.-.T I'-iIt F:siEI E:E Y FLiF: I l HI.:IT.

PIF:rT /L ' U. IFII.F tr L[iE:L.Et TF:'H1i-i. I tE--T POiF:--
FlTTlCHqI'EN-,T 'U r'E:ST-.F'UL. SECOND PORT TRIED
is'u tiF:E: t.L. '-PF_.:F-i.t-:i4G ,lI.- CI!'iIT WHEN ONE UNAVAILABLE

L_ FiL' i FLIST STATUS
THE'_ -"'j-:':Trfr r -!i_:F:EiTLy '-LEiT.E; I:--- IFiT-r:E:K
·- THET.--F: '-:''SYTEr!S LU-F::EI.4''LY LiG.iEDr 1. -

*
t· l-.i tE

I"Ci iF:IRE 1lOW '- _PE ,' t-i t-J5 .I- t Li-iUFiRGE
"L:UiF. IRL E1 .LWT-H [Cf _iTT Iis ,:.i Et- EL LU; _: i-iU..
THFiE iCi i i C~ i s lsrt I i- . Fii -EiOF:E ' F!T L-TFii F -t -ICij
TCiF P-,'.-i T'-
TH:i.r FPF-1 Iro.. t ME

.-- LIST COMMAND TRANSLATION TABLELT NOTES: (1) OLDER VERSION THAN IN
APPENDIX C; (2) NO RESPONSE

.O'LJI -:'t t I.-- 4 HItiIA:-:_.:Hra TRANSLATION TABLE AT THIS POINT
PiH .t t t:.:- UUTFiUT--:P : I bi_ -:iLT'

-
= :

P! i -': ET=5::

p ! E .-: :FITf;=E::'::LRLF I t I i::..:[Fi.·lTF4-

Fi It-l FtILITHi 'F:-L!THLiF::'
f':~ PI '--:L!E:-JECET ;~
Ci Pli L: I IE 3 r' * :

FIND --_T= ' re "-T;::

i4TEI:':=E : .'i- LW I t-i 1 tI":-i iE, -v -

RIND;ETR -' .
~Fil~~ ~ I t 1NFO IUiIU ,. D- -'i EL- T_

FIND F 101Fit TI T.T

' :E flIp I llH ! tiF-: , -.;:.-.:li: :. _ :I.-r -i 4'F;T I- I .t i Elf E:F-FEI.T+'= .
FOUND 2'

CCUrti-EtiT-r- TiHFIT FiF:E h.lOUj YOIUR EiUF:F:E-INT LI -T.
'iT'UR iIEWi r'UF:F:ENTi' L -T L I *-itED :-;i.

REi-'DY

i. 7tt*i_ Ui'iE!:4T ',-_ i-:i. i;-:F:iF:i[T TF:!.1. iFtF T-iE I t:Of.F:ROL Ft-t[t .A.,:_iR'.-'EILL-EI NiE iJF'
PF4:ESUF-:E '..F_.SE-L IF:F:rPELITTI.! -FFECT. iH.-_R-IE. : F." lC] 0.Z1 . I-',Lt J._L .j

,", 3151EUFEI..tT [:;:1:. LI'iHT--I?-IT.ii -i.It.T¥' il-I-t!TF:iOl ;'E'.-ICE ti-J TZL£i:Ibl5E F:IEN'I'rEE
PRF:TIr-"LE$ _::LI PE.IDED[Iil EL !, GE~:'L ;riJF:.E F';,F' ;i. 4 i-'t.4.'ETltF: t

t .:.;3EF-::

-132-

A-6

$HrlilJI MIhTIH

i. :'Mf i'EtPIT:-: INDEXED EXPRESSIONS THAT
CONTAIN RADI+ OR EFFECT+

1FITi-Hil i: STEM

FF:S-U:E '.'--:-:EL ITF:[4:I.E, RfrTL'I.J E:I-rFE-T

H;ER f Til H t-tG-0;Fr-S;t :Hr EF-f.E i t'l: $

PH.t- I LEIL EF-F 'Et--.- OF F:Lr I F-T 1 'it
r:F I FIT I TIT Fil'-Tl I TCF: £ '--r!'

F::PJIRT I t i F'F'-CT-

iFI I fl-TI TLE:
CIUF-:F;:EtNT TR:E-LSE I-i THLE it-l rITF:riL iqlI-l-l ._- I LLF-'iIE OF' PF:ESSL!F:E

",'E.SSEL I F:F;RD I T I rJt- i E:fFFECT-

2. 'Jr.UIEHT 5r-3 UM

I-CFfF:P:F . :TE-tF i i HI .-. F -, i tHG:
: .i.:R-.i I TH F':R, _ 1 0 F:P: -

T.-E .LIGH'-IT F : . : .i-i !T ' I THE IE.'IE IS- r -HFtI4GEDO E:Y rEFRtN'I iF .=i=;

'EbI,-lETIRN r I*ND E F'EE:T ! WITH -TiHE L'TiiT -F: E -EI' FR,T[ID.Elii

WITH j P PF:I''1 T FI- I LU HIE H !. ir-- ri .'EE, -'i -i I'iF::T--T'- i. I T-,: FIFt1S-. : i: 'F, r

TH-E PFsF:T [ELE O IE:NTRI I - ':1 ::J THi T 7HE i iEL 19iYr' EF:E DEFtI::FEr', Tf

,P[-:E-(: ENhT !H I.4 F:RFtSZN[i F'F:Er:TItNl MF ';' T FHF:T]rLE EF.Th'-. ::ECTIin.-,

T'l L. I -iTf F:FI-: iLH ri LH [:iT HEF:Ld I E !idI UL Pf':: T'- i:fL 3UUiH THE iE.' I EE

Lt 11.ltE:- ' F:L!E' : E'l .

I-'F:EE-E-:.:F'F:E.'_--2 i, i :
E;' IEi' Z li'1FiH E:Llt-4i EFFEECT

_F'L . Ri 0 '

F I t R RUTHEIF: [Si-IrEFF:-i _-i".

·' :.:El::t.-i ,'il ''L'tL!F:R ':E:rE. :T. iT'.l_' E:i-EF:i' lUT-'P:: F't'U4D 4 i E'ELtErZI-EtIT 'rtFM-T

IS: t'il]l Y'tUUF: ERJ-:F:Er-it' Lf- 'T

iF'iiULl: E-LW LIFUf:F:EiI- LI S 'T I- IFEIIE : '_

TH'::E [IF':E I E_:u-J;EE/tlTY: E.-J mH[LIF-. - iS!JT:F::ET _IU-1-T.

'i"L. IF4: II'.i["L-' :F:EH'IT L. I -I:I Z . rF-iF4Ir ,:?

HI:I T I TLE

i, _ii [zuHF_:r-n ' :;- 3

* I TLE ,
'::LIT;:F:EtI'T t'i-::fE:t-IC:..: I.i l iIE l'i;:ri. FII-ICE LJi,;:..'E: ILLFIIL:E HIF P,:Ei':.-IFi:E '__S:_:EL

I F.F:FE I FIT I .l-- L-:FF'E:CI-:.

F..E .F -Ltr

-133-

A-7

USI-::: "-. '

r7' *I.t F:I- TP I F ILT H ..-!i-= EFF[FT,: '-'[:"H-:':~ i /.-= ; f!:'~TF.;F:: . ' ..T:-.
ir-':: Ifl L_: T-L.-TRCT:E

'-:jifF3ULTEF-: 1tIL, COlTF:EL frB--H:TF:.E-C T

'EIC

F-ri . F; :iC.T-R-E CO-i F Ui-:ER

-*T' 21 -'.- ! r
? 2 13 1 -

7211 :5

-. . ..

,,, .i.E;,- .3 i .L i :_; i 'i T
i?! !

1-*' I Ii 'r F1, rjL.FI . i..

I i',tI"f:F3E_ }lj I I r= T iiD C :L.i:--;S. I F T -"-FIT i-IOE
i;'1'3i-._C iLFiE:_:E; I F I i"i'iT I OiitN

f-IUr L HF:f REFr"TO: .t j :_. T E,.

=':H'T-- I r.i~L E E- FE:ET-T O' F F:FI=IE I FIT I fi. I
RF':C, I PT I [1" .:.' £ Tl r' ; -

iqLR'L:Fi F: _ H t:rDI, T OEF:_ -HDFiFITIOR-: iFEECT _,

R'iF !- N H.-' FR-Ii I N -G ,ii'lPIi I HE-FiIttiN
.'11Ii HERD I NG

tMR I i HFfD I H I
t'l'- I i' tE-RHR i -H G

I-'R!'14 t R -- ElI -4

F FR EE-EX: PRE: I 0
~'E'.--EL I'iE.T-F: RI Fl . .EF:PR{TLii- :ET Oi'.LHfE. ISS

NlE.UF:fIE1 E::--:PEIURF:E
":_.'~l: :::' :_F:IFt-LE:

CUF:EENIT T R:EtSLY'.

C'-rt-TF:13L

-UF:.IE I LLRtNEE

PF:ES---U:E '. 'E--EL. I F:: - I E:T I l i'-"FEET":

TF:Rf4:-: I T I - TEiPEF:RTUF:E

_2'.'ELOPrqEtiT IF: HFF'IL I CFIT I l

-134-

A-8

Ri.--,,-.T I-.- T,- r- ' T i CE.
tHIE f-HP"ER: LE-7.i-F: T F:- FI -r'iP LTY- ti . I_:LIF:F-:E:tIl-T t-;E:-:SLL:E '.-!::EL I FF: t'r.I FIT I M 11-

Uti;:'.-'E I LLF-ii iCE FiF:_ SF-F:RFrIiE.

T I.-tE r:i-E--: F'IF: E::IP£ECT I PiG "-1 Ei'4 i F' I tlt- I' K u.i:ULET I tr-t:: i i I t:;:F-I i F I [rto

I N'D i LtCED TF:r-.thl:.: I T I _Jft -IFi'EZF:r-T7UF:E -:r- I ' T-: ':HI F'LE T t;:4RLIgH
oDr'f;n:-L tOF &:i_-:ItLUFL E;LE:;II..IT lJUtl IT-f' i-I tli1i H PLF TE.R F-li- lE'I UEL,:L:

FiFE CI-E ::L':-- -iE:E;

iVF:LIF:3FIER::LE: IEt*4Ci :i LIEN·. I I hE UI-.F:i-uIe RE OUTLINE":H~~ 'I-: T --FF O I P__. r':EF:

,:'.--'Z'l I L E

i1 T H t
. F'.

FF.'[SfI IiL- ti-l FEL:IRTORF:

AUTHDF:

FtFIIF i IT I fFlt--i- I tl-D i.,i ; I' 0-1

L:OME-USTIO-' INC,'3H , i . £,nDF: : C:N4- U SA

,F F ! L T I ' i -T T Ir-
:F.:"'E.i'-F -F'F-F I i t-IT I il
i F:E..E:I-I'F "i-FF ! L i FT t I L'iJ

C:OOF'F'FF TE-Hl-i T H'-4--EFitD I li:
iLL, Ti!1.5T. It'-_F!CiL ..- sF im-F:IHFII- -_;ifl, .i.. E'-tU-F::~ s iFiEF: IFF.I'. . I"Ui'L tQF.:

_-rOC- . ET FIL

I-:tlFlFPIR FP TE- F E L Fi TIR F:
PF'

IIEET f rtI i-E 7 A T ;
F 'F:iFEFF-, OF TI-l_ FII-EF:IFJF-It-J PD.'IE~: CEiD-l:EF:EN CEE

t'IEET I F 8,;- F'L,-PCE:

T-. I'T.ATiC ti_ H jIii .i [i :,-135-'iiEE T I, t,., -F.L,-i .1. '.

S-- l-UHlEI'tT-FE:LR T il l-T"-'F'E- F :1D Ei"'

i- T'"'F-iT I F!ri-EH.FtEHIT-T'YPE-- ' : OlDE:

-135-

A-9

.. : ., i' I li'i--,lFU"T ilr-- T I TLE-Of:-t-iii':-:E F.:-ELE:H: t IT
F'r-:CEEEIZrC II'..l,-, _-f T',-ii_. F-;F':T.Ii-'==4 F-iLfiiiF r EO!.'iF':Er-IEE

L-:i. I C:FT iT l- i- .-FtTE -O -- ;ELt-. .FI- -' l it-CIt1E i .T

.i 3 fL7 i i Itf - T
F,.ELA.5ITE- . C'- i !,i F'F'. T T:

:LfT j k-I-:-IltIEI.T--IE:OLLFT. I IH

OTIHEF:-C-: ITT I Of'!-ELEiTC !-7 Z;E:

OTHER-C l TAfT I OI,-ELEIEElTS;:
',-LI) + 1177

RELFTED-DOClUt1EiT-I-FOFrI'.:l-C-Ol PE-

I 0I HS-tF' EC-C :OHT RL-HlI JH-liUttl-:ERI:

HSF'EC-;E C.:- ' -,'

Pi FF:-,C'iF-F'!.! T=L',-. I CFT I F- ,

:'-. · 31 _1 - _i

PFliL I Si-I.EFr:
I LL. T N2:T, 'T'-Ef-''HI.L.L.

USER::

-136-

A-10

NEW SESSION !
pick medline NEW SESSION
Attachment successful.
Logon to host started.

LOGON IN PROGRESS AT 14:56:52 ON JANUARY 14, 1976
NO BROADCAST VESSAGES
Response not yet recieved from medline TIMEOUT MESSAGE FROM CONIT
Shall I continue listening?
Type yes or y to continue, no or n to stop or dis to disconnect host.
y
TOTAL ACTIVE TSO USERS: 44
READY

TSO LINE OFA

HELLO FROM ELHILL 3.
YOU ARE NOW CONNECTED TO THE MEDLINE FILE.

MEDLINE:

SS 1 is the number for your next VEDLINE search set.
You are now speaking in CONtIT

USER::

show data

tIEDL I NE:
YOU MAY ACCESS THE HECLINE, SDILINE, CATLINE, HESH VOCABULARY,
JOURNAL AUTHORITY, NIAME AUTHORITY, OLD ?,ESH VOCABULARY, AVLIFE,
CANCERLINJE, CHEtMLIiNE, TOXLINE, CANCERPROJ AIND EPILEPSY FILE SETS.
YOU ARE NOW CONNECTED TO THE lMEDLINIE FILE.

SS 1 is the number for your next tEDLINE search set.

USER::
pick data sdiline

MEDLINE:

35 USERS LOGGED IN PRESENTLY.
YOU ARE NOW CONNECTED TO THE SPILINE FILE.

SS 1 is the number for your next VEDLI'IE search set.

USER::
show index radiation

MEDLI NE:

POST INGS TE RN
1 RADIATE (TW)
4 RADIATING (TW)
2 RAD I AT I ON (i)

156 RADIATION (TZW)
23 RADIATIONI CHI,'ERA (W:H)

To see more type 'show more'.

-137-

A-11

USER::
show more

MEDLINE:

POSTINGS TERM
37 RADIATION DOSAGE (H-H)

167 RADIATION EFFECTS (:H)
26 RADIATION GENETICS (fiH-!)
20 RADIATION INJURIES (OH)
14 RADIATION INJURIES, EXPERIMENTAL (f'H)

To see more type 'show more'.

USER::
find radiation+ [USER-GIVEN-STEM SEARCH

MEDLI NE:
Your search resulted in setl which contains this many documents: (349)

SS 2 is the number for your next IEDLINE search set.

USER::

find skin+

MEDLINE:
Your search resulted in set2 which contains this many documents: (700)

SS 3 is the number for your next MEDLINE search set.

USER::
0

find tissue+

MEDLINE:
Your search resulted in set3 which contains this many documents: (1057)

SS 4 is the number for your next FEDLINE search set.

USER:- CANCELS PREVIOUS CHARACTER
combine set3 a#or set2 CHARACTER

MEDL I E:
Your search resulted in seth which contains this many documents: (1665)

SS 5 is the number for your next .EDLINE search set.

USER::
combine seti and set4

MEDLINE:
Your search resulted in set5 which contains this many documents: (61)

SS 6 is the number for your next HEDLINE search set.

USER::
-138-

A-12

show title docsl-3

MuEDLI NE

1
TI - ¢<Statistical evaluation of light protection factors¢>

2
TI - Prognosis and post-therapeutic follow-up of breast cancers by

thermography.

3
TI - Microwave thermography: a method of detecting subsurface thermal

patterns.

SS 6 is the number for your next MEDLINE search set.

USER::
show abstract docsl-1

MEDL I IE:

1
AB - The protection against erythema belongs to the cosmetic effects

which lend themselves to mathematical treatment. It is
demonstrated -- on the basis of the optimal definitions given by
Ellinger and Schulze -- that the calculation of the mean value of
the light-protection factor Q as hitherto in use, does not
correspond to the real freauency-distribution. On the contrary
there exists, independent of the radiation source having sunlike
characteristics and of the distance from the radiator, a
binary-logarithmic standard distribution. 'With reference to the
gradation principles of the human skin a transformation of the
pertinent differences of area is necessary first, i.e. a
transformation responding to the Caussian standard distribution
principle. Tables are presented concerning the transformation and
the practical evaluation of the light-protection factor Q. By
aid of these tables a standardization of the factors 0 measured
by different authors has been attained as well as a standardized
statistical-mathematical analysis. The investigation of the
threshold dose producing erythema on the unprotected human skin
has revealed a superposition of three frequency-distribution
types (showing logarithmic distribution, toe) having different
standard deviations. The results of this entirely statistical
classification permit a safe forecast: the sunburn protection
inherent in the human skin is compounded of several contributing
factors which are interconnected multiplicatively, not
additively.

SS 6 is the number for your next fEDLINE search set.

USER::

st system SPECIAL TRANSLATION TABLE SET FOR TEST

USER::

open skinrad OPEN FILE NAMED SKINRAD FOR SAVING
File has been opened.

USER::
save SAVE (=FILE) NEXT OUTPUT IN SAVED FILE

USER::

-139-

A-13

st med RESET TO REGULAR MEDLINE TRANSLATION TABLE

USER::
show title docsl-2

MEDL I NE:

TI - ¢<Statistical evaluation of light protection factors0)

2
TI - Prognosis and post-therapeutic follow-up of breast cancers by

thermography.

SS 6 is the number for your next .,EDLINE search set.

USER::

pick data cancerline

MEDL I E:

27 USERS LOGGED IN PRESENTLY.
YOU ARE tJOlW CONNECTED TO THE C'NCERLINE FILE.

SS 1 is the number for your next .rEDIINE search set.

USER::

find skin and radiation

MtEDL I NE:
Your search resulted in set2 which contains this many documents: (289)

SS 3 is the number for your next MEDLINE search set.

USER::

show 1 MIXED CONIT AND ORBIT COMMAND

MEDLINE:

1
AU - Sheleshko PV
TI - CLINICAL, HISTOLOGICAL AND HISTOCHEMICAL DIFFERENT'IATIONI OF

PRECANCEROUS CONDITIONS OF THE SKIN.
SI - CARC/74/03302
SO - Vestn Dermatol Venerol ; 10):24-28 1974

SS 3 is the number for your next FMEDLINE search set.

USER::
st system

USER::
show@save

USER::
st med

-140-

A-14

USER::
show title docsl-3

MEDLINE:

1
TI - CLINICAL, HISTOLOGICAL AND HISTOCHEMICAL DIFFERENTIATION OF

PRECANCEROUS CONDITIONS OF THE SKIN.

2
TI - MINIREVIEW'. REPAIR OF DNA IN MAMFMALIAN CELLS.

3
TI - ItMUNOLOGIC ABNORMtALITIES IN HEAD AND NECK CANCER.

SS 3 is the number for your next MEDLIIJE search set.

USER::
st m#system

USER::
view skinrad
skinrad contains 29 lines

USER:: iREVIEW SEARCHES IN 2 DATA BASES
view lines 1-29 IN SAVED FILE

MIEDLINE:

1
TI - ¢<Statistical evaluation of light protection factors?>

2
TI - Prognosis and post-therapeutic follow-up of breast cancers by

thermography.

SS 6 is the number for your next t'EDLINE search set.
USER:

MEDL I NE:

1
TI - CLINICAL, HIISTOLOGICAL ANID HISTOCHEVAICAL DIFFERENTIATION OF

PRECANCEROUS CONDITIONS OF THE SKIN.

2
TI - MINIREVIEW. REPAIR OF DNA IN MAMMALIAN CELLS.

3
TI - IMM4UNOLOGIC ABNORMALITIES IN H4EAD AND NIECK CANCER.

SS 3 is the number for your next HEPLINE search set.
USER:

USER::
show news WRONG TRANSLATION
show is not a legal COlNIT command TABLE SET
Type 'explain commands' for a list of commands.

USER::
st med

-141-

A-15

USER::
show news

'MEDLIIE.NEWS. DATA'
14'JAN - IN AVLINE PRINT DETAILED DOES NOT AND WILL NOT PRINT

ABSTRACTS. THE EXPLAIN UNIT RECORD IS INI ERROR AND WILL
BE CORRECTED.

++*

13 JAN - UNTIL FURTHER NOTICE, IN THE AVLINE FILE, TEXT
WORD SEARCHING IS NOT AVAILABLE ON CORPORATE NAMES
AND SERIES TITLES.

++*

12 JAN - AVLINE WILL BE AVAILABLE JAN 13 AT NLM ONLY; AND MOT
JAN 12 AS PREVIOUSLY ANNOUNCED.

.+*+*

12 JAN - SDILINIE AT NLf, AND AT SUNY N!OW CONTAINS FEB INV
CITATIONS. Mt:EDLINE AT NIL?, AND PEIDLINE AT SU.NY NOW

CONTAINS IM CITATIOrNS FROr' JAN 1974 THRU FEB 1976.
BACK72, AVAILABLE THRU OFFSEARCH AT NLW1 AND SUNY,
NOW HAS 1972 AND 1973 CITATIONS IN THE DATA DASE.
THE 1976 .'ESH SHOULD NOW: BE USED WHEN SEARCHING AT
NLtW OR SUNIY.

6 JAN - THE EPILEPSY DATA BASE IS ,!0,W AVAILABLE TO ALL
U.S. t,'EDLINE .ND TOXLINE USERS. ENTER "FILE EPILEPSY.
FOR SEARCHABLE ELEEt'ETS ENTER "EXPLAIN UNIT RECORD.
THE SEARCHIIG DEFAULT IS TO ALL. FILE CONTAINS 16231
RECORDS FROI 1945 TO 1973.

IF YOU HAVE TROUBLE USINCG ONI-LINE FILES AT FNLIl OR SUNY, NIOTIFY
MIS GRACE Hi riCCARNi, "EDLARS M'!ANIAGEMEENT SECTIOi'C (301/496-6193),
EVENINGS CALL THlE NLM COP'MPUTER ROOC (301/654-6422), OR
THE SUNY COM'PUTER ROOM (518/474-2921).

TSO LINE OFA

MEDL I NE:

SS 3 is the number for your n ext MEDLINE search set.

USER::
show data all

'MEDLINIE.FILES.DATA'
DATA BASE TOTAL RECORDS ENTRY DATES COVERAGE/CURRENCY

*BACKE6 545,463 651113-681111 JAN 66 - DEC 68
BACK69 649,346 681117-711117 JAN 69 - DEC 71
BACK72 449,361 711130-731116 JAN 72 - DEC 73
*CATLINE 155,277 1965 - 9 JAN 1976

*CANCERLINE 45,383 JAN 63 - DEC 74
*CANCERPROJ 5,517 1974 - 1975
*CHEMVL I ;NE 76,955
*EPILEPSY 16,231 1945 - 1973
*JOURNAL AUTII 4,213 1974

MEDLINE ([ILN) 486,937 731130-760102 JAN 74 - FEB 76
MEDLINE (SUNY) 486,937 731130-760102 JAN 74 - FEB 76
WMESH VOC 13,624 1975
*NAME AUTH
SDILINE (tNILL) 21,138 751210-760102 FEB 76
SDILINE (SUIY) 21,138 751210-760102 FEB 76
*TOXLINE 294,013

CBAC 146,805 1971 - V-I'D-DEC 75
TOXBIB 64 007 1971 - PEC 75
IPA 21,088 1971 - SEPT 75
HEEP 44,504 1971 - SEPT 75
HAPAB/PESTAB 10,251 1971 - JUNE 75

-142-

A-16

EMIC 7,358 1971 - 1974
*TOXBACK 186,248

CBAC 90,922 1965 - 1970
TOXBIB 60,229 1966 - 1970
IPA 8,594 1970
HEEP 3,474 1972

HAPAB 7,221 1966 - 1970
Ef,!IC 5,765 1968 - 1970

HAYES 10,043 1930 - 1970
+ + *

1) * = FILES AVAILABLE AT NL!' ONLY.
2) THE BACKFILES ARE AVAILABLE ONLY THRU OFFSEARCH.
3) TOXBACK IS .VAILABLE ONLY THRU OFFSEARCH AT NLM.
TSO LINE OFA

MEDLINE:

SS 3 is the number for your next MEDLINE search set.

USER::

speak moniot rg

USER::
speak monitor
From CONIT: MONITOR MODE
You are now speaking in MONITOR mode

USER::
pick data medline
From CONJIT:
sent
From CONIT to medline
"USERS""FILE lEDL I NE

From medl ine:
4 m0ed23¢021 me: OCTAL CODES OF FORMAT CHARACTERS¢000023¢021

From medline:

:02340214:201

From medline:

PROG: RESPONSE FROM MEDLINE
M. EDL I IE:
From medline: lTRANSLATED RESPONSE FOR USER

MISSING DOUBLE-QUOTE MlARK.

From medline:

37 USERS LOGGED IN PRESENTLY.
37 USERS LOGGED IN PRESENTLY.

From medline:

YOU ARE rOW COINNECTED TO THE fEDLINE FILE.
YOU ARE NOW CONNECTED TO THE V'EDLINE FILE.
From medline:

-143-

A-17

pick Ims NEW SESSION
sent · 1 LOCKHEED DIALOG PICKED

HOST IS ONLINE
$$$$$$$$ LOGON 0 7:36:13

FILE 32 (tETADEX) ONLINE
FILE 35 (DISSERTATIONIS) ONLINE

USER::
show data

1 -ERIC: ED, EJ
3 -CHEMICAL ABSTRACTS CONDENSATES
4 -EXCEPTIONAL CHILURENI ABST.
5 -BIOSIS PREVIEWS
6 -NTIS
7 -SOCIAL SCISEARCH
8 -COt'PENtDEX (El) 9 - AIMI/ARtM

10 -NAL/CAIN 11 -PSYCH ABS
12 -IrlSPEC-PiIYSICS
13 - INSPEC-ELECTRONNI CS/COtlPUTERS
1.4 --IStEC 15 -ABI/ItiFORMt
16 -PTS CtEIV'/ELECT. V:KT. ABST.
17 - PTS IWEEKLY CM;A, EVA, AND F&S
18 -PTS F&S 19 - PTS CI1
20 -PTS 0not. STAT 21 -PTS FOR. STAT
22 -EISYour search resulted in set 23 -CLAIVlS-CHEMICAL
24 -CLA I -'S-GE..l
26 -FOUIDATION! DIRECTORY
27 -FOUNDATIOIN GRANTS I'NDEX
28 -OCEAN!IC ABS 29 -I:ETEOR/GEO ABS
32 -MtETADEX
34 -SCISEARCH 35 -DISSERTATIONS

USER::
pick data ntis

USER::

.FILEG
Event: Time,SearchTime,Date,User#,Cescr,,ocs,File
End: 7:49:25,013.21,0-1/19/76,0108,0000,0000,01
File reset: NTIS 1964-1976 ISS 02

USER::
show index skin

Ref Index-term Type Items RT
El SKILLS CONVERSIOtN

PROJECT -------------- 21
E2 SKI…'-------------------- 1
E3 SK I tIER--------- -------- 19
E4 SKI lMMERS---------------- 40
E5 SKI rI NG-------------- 11
E6 -SKIN-------------------- 2231
E7 SKIN (ANATOMrY)--------- 28
FI SKIN (ANATOit'Y) 24------ 1

-144-

A-18

E9 SKIN (BIOL) ------ 8
E10 SKIN (STRUCTURAL VIEf'DBER) 29
Ell SKIN A3SORPTION--------- 8
E12 SKIN ANALYSORS---------- 1
E13 SKIN BENDS-------------- 1
E14 SKIN CANCER ------------ 3
E15 SKIN DISEASES----------- 57
E16 SKIN EFFECT------------- 16
E17 SKIN FRICTION----------- 567
E18 SKIN FRICTION DRAG ------ 3
E19 SKIN FRICTION CAGES----- 1
For more type 'show more'

USER::
find sin##kin

Your search resulted in setl 2231 SKIN

USER::
find radiai#tion

Your search resulted in set2 35365 RADIATION

USER::
combine setl and set2

Your search resulted in set3 203 1*2

USER::
show set3 title docsl-3

LA-UR-75-1633 NTIS Prices: PC$3.50/,4Ft2.25
Meson Radiobiology and Therapy
Aug 75 8p

2
COO-2366-4 NTIS Prices: PCS3.50/'FFS2.25

Damage and Repair in Skin Following Exposure to Radioactive
Particles. Progress Report for the Support Period Ending 31 July 1975

1975 8p
3
PB-246 283/6ST NTIS Prices: PC,3.50/t'Fc2.25
Methods for the Production of Interferon in Cultures of Human

Diploid Cells
See also PB-233 653.
20 Feb 75 21p

USER::

nf skinrad
File has been opened. REOPEN FILE FROM PREVIOUS SESSION

USER::
view skinrad
skinrad contains 29 lines

USER:: REVIEW PART OF FILE (MEDLINE SDILINE SEARCH)
lines 1-9

MEDL NE:

-145-

A-19

1
TI - ¢<Statistical evaluation of light protection factors¢>

2
TI - Prognosis and post-therapeutic follow-up of breast cancers by

USER::
file

file-~ [SAVE ONE TITLE FROM CURRENT SEARCH
USER::
show tit###set3 title docs2-2

2
COO-2366-4 NTIS Prices: PC$3.50/HFFS2.25

Damage and P epair in Skin Following Exposure to Radioactive
Particles. Progress Report for the Support Period Ending 31 July 1975

1975 8p

USER::
pick data 34

.FILE 34
Event: Time,SearchTime,Date,User#,Cescr,Cccs,File
End: 8:04:38,015.23,01/19/76,0108,0002,0008,06
File reset: SCISEARCH 74-75 WK48

USER::
find radiation and skin

Your search resulted in set4 27 RADIATIONI(F)SKIN

USER::
show tit###set3 title docsl-3

1
913965 (***not online***)

ERROR DUE TO ASKING

913828 (***not online***) FOR SET NOT AVAILABLE

3 FOR CURRENT DATA BASE

913168 (***not online***)

USER::
pick data physics

.FILE12
Event: Time,SearchTime,Date,User#,Descr,Pocs,File
End: 8:07:09,002.51,01/19/76,0108,0002,0000,34
File reset: INSPEC-P'HYSICS 70-75 ISS 23

USER::
find radiation and skin

Your search resulted in set5 46 RADIATION!(F)SKIN

USER::

-146-

A-20

show set5 title docsl-3

1
816773 A7574583

AN INTEROCMPARISON OF RADIOPtIARMACEUTICAL K ID!EY KIIrETICS IN THE
'IOUSE

2
804602 A7567479

THE EFFECT OF IONIZI'NG RADIATION ON PROTEIFI FETABOLIS-M I1N STORED RAT
SKIN

3
801027 A7563291

HEAT BALANCE AND THER.IAL RESISTANCES OF SHEEP:S FLEECE

USER:: I SAVE TWO TITLES FROM
file PHYSICS ABSTRACT SEARCH

USER::
show set5 title docs2-3

2
804602 A7567479

THE EFFECT OF IONIZINJG RADIATION{ ON PROTEIN rlETABOLISM IN STORED RAT
SKIN

3
801027 A7563291

HEAT BALANCE ANrD THERt"AL RESISTANCES OF SHEEP:S FLEECE

USER::
view skinrad
skinrad contains 47 lines

USER:: REVIEW LAST 2 SEARCHES IN NTIS
lines 30-47 AND PHYSICS ABSTRACTS DATA BASES

2
C00-2366-4 NTIS Prices: PC$3.50/-4F$2.25

Damage and Repair in Skin Following Exposure to Radioactive
Particles. Progress Report for the Support Period Ending 31 July 1975

1975 8p

2
804602 A7567479

THE EFFECT OF IONIZING RADIATION ON PROTEIN METABOLISt,M IN STORED RAT
SKIN

3
801027 A7563291

HEAT BALANCE AND THERV'AL RESISTANCES OF SHEEP:S FLEECE

USER::
find skin

VY,.r coI ..h-..1 v * :7r 9c.. *l.-147-C.

-147-

B-1

APPENDIX B

CONIT INSTRUCTIONAL MESSAGES

This appendix lists the various instructional messages a user can

request currently in the experimental CONIT system. The initial "welcome"

message a user sees when first entering CONIT is shown first to provide

some context. Following that is listed the response to various instruc-

tion requesting commands. These commands include the 'help' command and

the 'explain' command. As explained in Section 2.1, the 'explain' command

name (abbreviation: 'e') is followed by the name of some concept the user

wishes the CONIT system to explain.

The listings are copied directly from a computer terminal print-

out so as to give the format exactly as a user would see it, except that

size has been reduced by 20 percent. Another exception is that the user

commands have been underlined for clarity. The conclusion of a CONIT

response is indicated by the user prompt (USER::).

It is to be pointed out that these messages represent our first

attempt at an instructional dialog for CONIT. Experiment and analysis

have suggested general principles and particular modifications we would

propose, as indicated in the body of this report.

-148-

B-2

W.elcomne to COtNIT. For help on how to use CONIIT you may type 'help'
followed by a carriage return; oth-,erwise, you may notw type any CON!IT comr;nand.

USER::
e 1 p

In order to get information about howt to use CONIT you type the
command name 'explain' (or just e) followed by the name of the concept
you want explained followed by a carriage return. For example if you type:

explain start
you will get an explanation of how to start to use COtNIT. If you type:

e concepts
You will get a list of the concepts you can have explained.

USER::
e start

EXPLANATIONl OF GETTING STARTCD
To get started you pick a retrieval system to search in by typing the

command name 'pick' followed by the system you want. e.g. if you type:
pick medline

you will get connected to the MEDLItlE system. Other systems you may pick
are sdc,lrns(Lockheed), and intrex.
After connecting to a retrieval system you may find out what data bases(files)
are available by typing 'show data'.

USER::
e concepts

EXPLANIATIOti OF CONICEPTS
To heave a concept explained type 'explain' followed by a co-cept name

Some concepts you can have explained are:
CONICEPT HA.;E CON!CEPT

con it Short introduction to COlIT system.
start How to start running CO'NIT
commands List of CONIT conmmands
converse How user and CO'IIT converse: the mechanics of the

interacting dialog.
Explanations are also available for the individual commands.

USER::
e conit

Explanation of COMtIT
COtIIT is a system that connects you to different information

retrieval systems and allowis you to select any database of any of these
systems to search (find documents). You can use a common (COtIIT) language
for giving commands or use the language of the system you are searching in.

USER::
e converse

EXPLANATIOAI OF HOVW TO COIVERSE W!ITH CONIT
You talk with CONIT by giving 'it corriands. Each comrrmand consists of a

coimmand name which may be followed by one or more additional words to make
the meaning of the commands clear. (Type 'explain commands' for details.)
To signal the coimputer that you have completed your command you I'tST
strike the carriage return key; the computer wvill just wt.ait until you do.

CONIT will respond to your colrmmand w.ith some messag=e. To signal that
its message is complete and that it is again .waiting for your corrmmand
COFNiT will print the 'uIser cue': USER:: (just :: in terse mode).
You cannot give a command until you gfet tlhe USER:: cue but, if you are
connected to CO'4IT directly thru 'ULTICS (not thru ARPANIJET) you -can
interrupt CO:.IT in its processing of its last cormmand by typing the
BREAK key after which CO:NIT will g;ive you a USER:: cue.

For other details, like how; to string comn-ands together, type
explain converse more

USER:
-149-

B-3

e comrnlvands
EXPLANATION OF CO!-T!ANDS

The following is a list of CONIT cormmands.
Type 'explain X', where X is command name, for further explanation.

tlAME AS3REV* SHORT EXPLANAT I 01
explain e Explain CO'IIT concepts.
pick p Pick a retrieval system and database to search.
find Search database to find documents.
show Show information on documents, data bases, etc.
combine Combine-sets of retrieved documents.
speak sp Change command language or language mode.

ABBREV* = abbreviated form of command.

USER::
e pick

EXPLANATIONJ OF PICK COMMA.ID
The PICK conmmand is used to pick systems and data bases to search in.

To pick a system type 'pick! X', where X is the name of the system; e.g.,
pick medline

will get you connected to the MEDLINE system. Other systems you may pick
are sdc, lms (lockheed) and intrex.

To pick a data base type 'pick data X', where X is data base name; e.g.,
pick data ntis

will set the t!TIS data base up as the current one you can search (if it
is available). Type 'show data' for list of data bases that should be
currently available from the currently connected system.

USER::
e find

EXPLANATION OF FIND COMtMAND
The FI1D command is used to search for documents indexed under

a particular term. Type 'find X' where X is the term you are searching for.
For example,

find transporation
find radiation effects
find energy conservation

If you want to knov, wzhat are alphabetically nearby terms under which documents
are posted type 'show index X'.
For further information on how to make particular searches, type 'explain
findmore '.

USER::
e s how

EXPLANATIOlO OF SHOW. COIHMAND
The show command gives information about documents that have been found

in searching, about data bases, about index terms to search on, etc.
To have CONtIT shtow standard citation information on some of the last set of
docunients you have found just type 'show '; you may also be more specific:

show set3 title docsl-4
will cause the titles of the first 4 documents of set3 to be sho:n to you.
For more details on hcw to get documlent information type 'explain sh'^w docs'
Examples of other information that can be obtained are given below:

COV:i\,AID BRIEF EXPLANATION
show data Lists data bases currcntly available
sho wI systems Lists systems currently available
show index X Lists index terms alphabetically near X
show nerws Gives nevws from connected syste:n

For more details type 'explain show data', etc.

USER::.

-150-

B-4

e cornm i ne
EXPLA!ATION OF CO.CBDI!,E CO.I,'.VAND

The C'OtelIE command allotws you to mnalke Boolean combinations of the sets
of documents you have prieviously found from searching. your currently
connected data base; for example,

combine set2 and set5
%will make a new set which contains only documents which are in both set2
and setS. Similarly,

combine set2 or set5
makes a new set with all documents from either set2 or set5. Also,

combine set2 and not set5
will make a new set which contains documents in set2 but not in setS.

USER::
e speak

EXPLAfNATIOI OF SPEAK CONAIAtND
The speak command allows you to change the command language you are

using to speak to the currently connected system. Initially, the
CONJIT language is set up. When you are connected to some host system
you may speak to it in the common COM!IT language or in the host language.
To speak in the host language type:

speak host
Wthen you are speaking in host language no regular CONIT commands will be
recognized except one:

speak conit
which resets the language to COrIIT.

lWhen speaking in the CO'IIT language you vill get explanatory messages
from CONIT. After you become familiar with CONIIT you nmay %want to have
these instruction messages shortened. You request this by typing

speak terse
To resume more lengthy explanations type

speak verbose

USER::
expal in sunynews
expalin is not a legal CONIT command
Type 'explain commands' for a list of commands.

USER::
explain sunynews

Nfeews is not available from the SU'Y/t,'EDLIINE system; to get news
about all the 1lEDLINJE systems, including SU'IY, 'pick medline' and 'show news'.

USER::
explain news
COtJIT cannot yet explain news
Type 'explain concepts' for a list of concepts Conit can now explain.

USER::

-151-

C-1

APPENDIX C

CONIT TRANSLATION TABLES

This appendix lists the five pairs of translation tables regularly

used in the CONIT system. Tables are listed for systems in this order:

1. NLM MEDLINE (tag: med)

2. Lockheed DIALOG (tag:lms)

3. Systems Development Corporation ORBIT (tag:sdc)

4. M.I.T. Intrex (tag:intrex)

5. SUNY MEDLINE (tag:suny)

For each system first the command translation table (see Section 2.4)

and then the response translation table (see Section 2.3) is given.

The tables are reproduced from computer listings. The commands set_table

(abbreviated:st) and listtable (abbreviated:lt) are used to make the

i-able operative and then to list it, respectively (see Section 2.5.1).

The tables themselves have been boxed in and labeled for ease of viewing

ivi this report. Note that each entry starts at the left hand margin and

ends with the asterisk (*) -- spaces are important. The input (left-

hand or argument) side of each entry is separated from the output (right-

hand or translation or function) side by the equals (=) sign.

-152-

C-2

NLM MEDLINE COMMAND TRANSLATION TABLE
yes=YES*
tohost=*
title=TI ,*
show systerns=e show.systems*
show news ="".NEWS*
show nlore=down 5*
show index="[JBR*
show data all=""FILES*
show data="FILES?*
show="PRI ',T*
pick data="USERS""FI LE*
offline=OFF-L I!E*
is all=ls all*
1 ogout="STOP"*
find author="Fl D*
find="FIND ALL*
docsl-=*
combine set=*
abstract=AB, *
+=:.*

show systems= show.systems*
show news= show. news*
show index= show.index*
show docs= s'ltw.docs*
show data= show.data*
shbow= show*
set= SS *
or set= OR *
find more= find.more*
find= find*
converse rnore= converse.more*
and set= AND *
and not set= ANPD IOT *
all= DETAILED*

USER::
settable out med

USER::
1list table out

I ist-Lab out NLM MEDLINE RESPONSE TRANSLATION TABLE
UP N OR DOWNI J?=To see more type 'shot, more'. *
!_ =C0'ON IT* [ARGUMENT HERE IS USER ID; BLOCKED AND
SS (=Your search resulted in set* TRANSLATED FOR SECURITY]
PROG: =1MIEDL I N!E: *
tIISSING DOUBLE-OUOTE VrARK.=*
) PSTG (= which contains this many documents: (*
/C?= is the number for your next 'tIELI.:E search set.*

USER::

-153-

C-3

set_table Ims

USER::
istL table

DIALOG COMMAND TRANSLATION TABLE
tohost=*
sh ow set=t*
show off line set=print*
slhow offl i ne=pr i n tl*
show, neows= ?ne Js *
show1 nmore=O*
shov index author=eau=*
show index=cxpand*
slhow data=?files*
shlow=T1*
pick data=.file*
ls all=ls all*
find author=sau=*
find=s*
comnbine set=c*
+=?*

title=/G*
psychab=1 1*
phys i cs=12*
or set=+*
or =e lrnsor*
ntis =6*
e ric=2*
cl eccouimp=13*
(.'OCS=/ *

compe n (lex = 8 *
citation =/2*
c: leemab= 3 *
ca in=16*
and set=**
Clnd not set= - *
and =(F)*
a1 1=/5*
a b st ract=/ 4*

USER::

-154-

C-4

st out 1ms

USER::
list_table out

DIALOG RESPONSE TRANSLATION TABLE

type in LOGOFF as your last command,=You are speaking in COrtIT.*
sure proper accounting of your Runtime,=*
a ? from the computer=the lSER:: cue from COHIT.*
Type in LOGOFF as your last command,=*
Tel: (415)493-4275=Lockheed [IALOG*
Please call (415) 4=*
LOGOFF at=DIALOG session terminated at*
DIALOG command=CONIT command*
93-4275 for questions or problems=*
*** I FMPORTANT... To in=*
just prior to hang ing-up the phone=*

IT= documents in set for term *
? f= USER:: prompt f*

O =:no documents found: try 'show index yourterm''*
T= T*

-more-=For more type 'show more'*
=Your search resulted in set*

USER::

-155-

C-5

st sdc

USER::

:hos1 t =ORBIT COMMAND TRANSLATION TABLE
tohost=*
t i tle=TI ,*
show news="!i4E¥'.S*
slhowp index=" BR*
show data all="EXPLAIP1 SCIED*
show data="FILES?*
stow="PR I NT*
pick data="TIt'E""FI LE*
offl ine=OFF-LI tE*
ls all=ls allls all*
find author="FINHD*
f ind="F I HtD ALL*
docsl-=*
combine set=*
abstract=AB, *
+=: *

set= SS *
or set= OR *
and set= AND *
and not set= AFM NOT *
al = FL;LL*

USER::

st out sdc

USER::
It out

ORBIT RESPONSE TRANSLATION TABLE
FROG: =SDC/ORB I T:*
NP (OPEN)=Connection completed.*
MVISSINHC DOUBLE-QUOTE rMARK.=- *
/C?=is the number of your next SDC/ORBIT search set.*

USER::

-156-

C-6

set_table intrex

USER::

list_table

INTREX COMMAND TRANSLATION TABLE
show=outpu t*
or set=or s*
find title=title*
find author=author*
find=subject*
combine set=s*
and set=and s*
and not set=and not s*

USER::

settable out intrex

USER::

list table out

iNTREX RESPONSE TRANSLATION TABLE
your request TITLE=your request FINfl TITLE*
your request SUBJECT=your request FIDlr*
your request AUTHOR=your request FINP AUTHOP*
named s=named set*
current 1 ist=current set*

USER::

-157-

C-7

st suny

USER::
It

SUNY MEDLINE COMMAND TRANSLATION TABLE
tohos t=*
title=TI ,*
show news=explain sunynews*
show i ndex=",BBR*
show data all="FILES*
show data="FILES?*
show="PR I kJ T
pick data="USERS""FILE*
offl ine=OFF-LI IE*
is all=ls all*
find author="F I ID*
find="F I ilD ALL*
docsl-=*
combine set=*
abs t ract=AB, *

set= SS *
or set= OR *
and set= ANFt1 *
and not set= AND 10T *
all= DETAILED*

USER::

st out suny

USER::
listtal)e out

SUNY MEDLINE RESPONSE TRANSLATION TABLE
SS (1) PSTG (168)=Connection completed.*
SS (=Your search resulted in set*
PROG: =SUNY/(1EDL I HE: *
tFISSI[IG DOUBLE-QUOTE !"ARK=*
f'EDTST05=C0!' I T*
hOST SYSTEh-=SU.fY/MEDLI FE*
) PST(G (= which contains this many docume-nts' (*
/C?= is nunmber for your next search set.*

USER::

-158-

D-1

APPENDIX D

SUGGESTED USER PROTOCOLS FOR ACCESS TO A COMPUTER SYSTEM VIA A NETWORK

It is noted that a bibliographic retrieval system is frequently

accessed through networks that also provide access to other retrieval

systems and systems providing service in other application areas. In

this appendix we suggest some procedures by which networked access to

retrieval systems and other systems may be standardized for users.

We start from the assumption that access to several current biblio-

graphic systems should require only two pieces of information from the

user: name of service desired and user's password, which implies his

identification. An attempt has been made in the suggested protocols to

be be compatible with, or adaptable to, different terminal types, more

general functional requirements (other than access, per se) in the re-

trieval application, more general application areas, and developing

common or virtual system approaches.

The "standards" we propose need not imply a system must have all

functions to be standard. Rather, they say, for example: an EXPLAIN

function may be a good facility to have and, if you have it, here is

the standard way it should appear to the user. Similarly, on request

for service: if the service is implied by the physical connection, there

is no need to insist on the request; but if there is a request, here is

the standard protocol.

-159-

D-2

PROTOCOLS

1. System (Network) Acknowledgement and Service Request (After estab-
lishment of telephone connections and terminal speed and type
identification)

(1) (2) (3) (4)HELPFUL NETWORK 13:45 EST 76-1-31 (617) 964-2007

REMEMBER NEW PHONE NUMBERS NOW AVAILABLE

(6) (7) (s)TYPE NAME OF SERVICE YOU WANT (FOLLOWED BY CARRIAGE RETURN) :: (8)

NOTES

(1) Name of acknowledging system given here. Encourage client systems
of networks to allow this (or at least some identifying phrase)
to make it easier for user (and system analysts) to know what's
going on.

(2) Time

(3) Date "Standard" -- year-month-day -- order used; however, it
should not be necessary to force non-suppressed zeros on user
if hyphens are given as separators).

(4) This is telephone number of port connection and can serve as
check for caller and as useful debugging device to identify
bad lines, modems, etc. Alternate form: BOSTON PORT 7.

(5) Optional system message of day.

(6) "TYPE" is more explicit than, e.g., "ENTER".

(7) This phrase may be needed for inexperienced user if good
timeout and recovery is not available (see below). If NEW
LINE becomes established in place of carriage return, some
change will be needed.

(8) System signal is two colons followed by carriage return.
(See Section 4.3)

2. Service Request Response (by User)

orlog (1)

NOTES

(1) Name of service given here.

(2) User responses should be allowed in either upper or lower or
mixed alphabetic cases.

-160-

--- -------·-- ·I

D-3

3. Service System Acknowledgment and Password Request

THIS IS ORLOG (1)

(2)
TYPE YOUR PASSWORD::

NOTES

(1) We assume entry of a correct service name by user causes

control to be passed to service system.

(2) We assume here a non-print mode is now entered for pass-

word security. If non-print mode is not available, the
format would be:

TYPE YOUR PASSWORD

:: YOUR PASSWORD

The two colons would be the last part of the message and

the next typing position to the immediate right of the

colons which is the first character in a string of under-

printing characters which mask the password. The under-

printing string would start with the string "YOUR PASSWORD"

and be overprinted by two or more additional lines to assure
masking (this device works well on MULTICS).

4. Service System Password Acknowledgment

Welcome to ORLOG ...

NOTE

This message implies acceptance of password.

5. Alternate Multistatement Request Response (User/System)

(1) (2) (3) (4) (5) (6)
login orlog :: pass xxxxx select eric find ...

NOTES

(1) "login" (synonyms: log or 1) is command name which tells

system that user wants to get out of response-limited mode

and string together several components of access procedure
in one statement.

(2) First argument is service name (but see (4))

-161-

D-4

(3) As an exception to general rule for user/system signals,

two colons (no carriage return) are sent by system to
indicate that service name is recognized and control

passed on. Possibly, this signal could be eliminated in
a variant command, say "logon."

(4) Second argument (synonyms "password" or "p") indicates

next word is password. This argument could be assumed
by content but an explicit indication might be easier

to implement in the more general system-to-system inter-
connections. For the same reason it might be better to
insist on an identifying argument (say "service") pre-

ceding service name.

(5) Password with appropriate non-print or non-print or other
security measures. Security measures should probably be
responsibility of network.

(6) Optional additional commands sent to service system.
NOTE: All user input after service name would be passed

along to service system and allow for indefinitely

long "batch" operations.

6. Error Message: Invalid Service Name

ORLOX is not a valid service name. If you want to see list of

(2)
available services, type LIST: Otherwise, type name of service ::

NOTES:

(1) Incorrect service name feedback to user.

(2) This CAI option should be allowed where knowledge of services

is not restricted.

(1) (1)
7. ORLOX is the third successive invalid service name we have

received. Call HELPFUL NETWORK representative for help at xxx-xxxx(2)

Your terminal connection is now being dropped (3).

NOTES

(1) Three strikes and you're out!

(2) Telephone number to call for help.

(3) Tell user he's being disconnected.

-162-

D-5

8. Error Message: Invalid Password

Incorrect password received. To see what was received, type ECHO(1)

otherwise, re-type password::

NOTE

(1) This option should be available when user can accept lack

of security in printing of near-password.

9. Error Message: Repeated Invalid Password

Incorrect password received three successive times. Call your ORLOG

representative for help at xxx-xxxx. You are being returned to

HELPFUL NETWORK. [Followed by Message 1.1

10. Timeout Message

No response received in 2 minutes. Call HELPFUL NETWORK representative

if you need help: xxx-xxxx. Your terminal connection is now being

dropped.

11. Exit Commands

ll.a login helpful.

NOTE

This means that the user wants to leave service system (after appro-

priate exit and accounting messages) and return (or login) to system

indicated. This may require passing appropriate information to other
systems. Default condition (no argument: synonym EXIT) would mean

drop back to calling system.

ll.b Logout.

NOTE

This means user wants to stop altogether and have his terminal dis-

connected. Logout is the natural antonym for login.

12. Edit Commands

12.a Cancel m preceding characters: m "left arrows".

-163-

D-6

NOTES

(1) Buffered terminals can replace deleted characters

(2) Is it important to use an ASCII character?

12.b Cancel line: @ (m at-signs would mean cancel last m lines)

13. Interrupt

Requested through special button (normally activating a line-condition

change rather than a character -- called INTERRUPT, ATTENTION, QUIT,

etc.), a very important function, especially on system output where

it means "stop output, give system signal, and allow user input."

On user input it can be used instead of cancel line (system signal

invoked).

14. CAI Commands

14.a Explain x (synonym: exp).

Argument may be message name or word in message, for example.

May be useful even in access procedures, as in "explain ser-

vice" which might, along with some other explanation, do same

as "list" (see (6)). Default condition: explain last system

message further.

14.b Help (synonym: ?)

Generalized CAI for current context; i.e., what current user

options are and how to get further information on those options.

-164-

