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Abstract

In this paper, we introduce an extension of the standard PAC model which allows the use
of generalized samples. We view a generalized sample as a pair consisting of a functional on
the concept class together with the value obtained by the functional operating on the unknown
concept. It appears that this model can be applied to a number of problems in signal processing
and geometric reconstruction to provide sample size bounds under a PAC criterion. We consider
a specific application of the generalized model to a problem of curve reconstruction, and discuss
some connections with a result from stochastic geometry.
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1 Introduction

The Probably Approximately Correct (or PAC) learning model is a precise framework attempting
to formalize the notion of learning from examples. The earliest work on PAC-like models was
done by Vapnik [21], and many fundamental results relevant to the PAC model have been obtained
in the probability and statistics literature [19, 20, 5, 12]. Valiant [18] independently proposed a
similar model which has resulted in a great deal of work on the PAC model in the machine learning
community. More recently, Haussler [6] has formulated a very general framework refining and
consolidating much of the previous work on the PAC model.

In the usual PAC model, the information received by the learner consists of random samples
of some unknown function. Here we introduce an extension in which the learner may receive

information from much more general types of samples, which we refer to as generalized samples. A
generalized sample is essentially a functional assigning a real number to each concept, where the
number assigned may not necessarily be the value of the unknown concept at a point, but could be
some other attribute of the unknown concept (e.g., the integral over a region, or the derivative at
a given point, etc.). The model is defined for the general case in which the concepts are real valued
functions, and is applicable to both distribution-free and fixed distribution learnability. The idea
is simply to transform learning with generalized samples to a problem of learning with standard
samples over a new instance space and concept class. The PAC learning criteria over the original
space is induced by the corresponding standard PAC criteria over the transformed space. Thus,
the criteria for learnability and sample size bounds are the usual ones involving metric entropy and
a generalization of VC dimension for functions (in the fixed distribution and distribution-free cases
respectively).

We consider a particular example of learning from generalized samples that is related to a
classical result from stochastic geometry. Namely, we take X to be the unit square in the plane,
and consider concept classes which are collections of curves contained in X. For example, one
simple concept class of interest is the set of straight line segments contained in X. A much more
general concept class we consider is the set of curves in X with bounded length and bounded
turn (total absolute curvature). The samples observed by the learner consist of randomly drawn
straight lines labeled as to the number of intersections the random line makes with the target
concept (i.e., the unknown curve). We consider learnability with respect to a fixed distribution,
where the distribution is the uniform distribution on the set of lines intersecting X. A learnability
result is obtained by providing metric entropy bounds for the class of curves under consideration.

The example of learning a curve is closely related to a result from stochastic geometry which
states that the expected number of intersections a random line makes with an arbitrary rectifiable
curve is proportional to the length of the curve. This result suggests that the length of a curve can
be estimated (or "learned") from a set of generalized samples. In fact, this idea has been studied,
although primarily from the point of view of deterministic sampling [17, 11]. The learnability result
makes the much stronger statement that for certain classes of curves, from just knowing the number
of intersections with a set of random lines, the curve itself can be learned (from which the length
can then be estimated). Also, for these classes of curves, the learning result guarantees uniform
convergence of empirical estimates of length to true length, which does not follow directly from the
stochastic geometry result.

Finally, we discuss a number of open problems and directions for further work. We believe the
framework presented here can be applied to a number of problems in signal/image processing, geo-
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metric reconstruction, and stereology, to provide sample size bounds under a PAC criterion. Some
specific problems that may be approachable with these ideas include tomographic reconstruction
using random ray or projection sampling and convex set reconstruction from support line or other
types of measurements.

2 PAC Learning with Generalized Samples

In the original PAC learning model [18], a concept is a subset of some instance space X, and a
concept class C is a collection of concepts. The learner knows C and tries to learn a target concept
c belonging to C. The information received by the learner consists of points of X (drawn randomly)
and labeled as to whether or not they belong to the target concept. The goal of the learner is to
produce with high probability (greater than 1- 6) a hypothesis which is close (within e) to the
target concept (hence the name PAC for "probably approximately correct"). It is assumed that
the distribution is unknown to the learner, and the number of samples needed to learn for fixed e
and 6 is independent of the unknown concept as well as the unknown distribution (hence the term
"distribution-free"). For precise definitions, see for example [18, 4].

Some variations/extensions of the original model that have been studied and are relevant to the
present work include learning with respect to a fixed distribution [3, 6], and learning functions as
opposed to sets (i.e., binary valued functions) [6]. As the name suggests, learning with respect to
a fixed distribution refers to the case in which the distribution with which the samples are being
drawn is fixed and known to the learner. A very general framework was formulated by Haussler
[6] building on some fundamental work by Vapnik and Chervonenkis [19, 20, 21], Dudley [5], and
Pollard [12]. In this framework, the concept class (hypotheses), denoted by F, is a collection
functions from a domain X to a range Y. The samples are drawn according to a distribution on
X x Y from some class of distributions. A loss function is defined on Y x Y, and the goal of
the learner is to produce a hypothesis from F which is close to the optimal one in the sense of
minimizing the expected loss between the hypothesis and the random samples.

Learning from generalized samples can be formulated as an extension of the framework in [6] as
briefly described at the end of this section. However, for simplicity of the presentation we consider a
restricted formulation which is sufficiently general to treat the example of learning a curve discussed
in this paper. We now define more carefully what we mean by learning from generalized samples.
Let X be the original instance space as before, and let the concept class F be a collection of real
valued functions on X. In the usual model, the information one gets are samples (x, f(x)) where
x E X and where f E F is the target concept. We can view this as obtaining a functional 6, and
applying this functional to the target concept f to obtain the sample (C6, Sx(f)) = (E6, f(x)). The
functional in this case simply evaluates f at the point x, and is chosen randomly from the class of
all such "impulse" functionals. Instead, we now assume we get generalized samples in the sense that
we obtain a more general functional a, which is some mapping from F to R. The observed labeled
sample is then (i, x(f)) consisting of the functional and the real number obtained by applying this
functional to the target concept f. We assume the functional Z is chosen randonmly from some
collection of functionals X. Thus, X is the instance space for the generalized samples, and the
distribution P is a probability measure on X. Let SF denote the set of labeled m-samples for each
m > 1, for each Z E X, and each f E F.

Given P, we can define an error criterion (i.e., notion of distance between concepts) with respect
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to P as
dp(fi, f2) = El(fi)- x(f2)l

This is simply the average absolute difference of real numbers produced by generalized samples on
the two concepts. Note we could define the framework with more general loss criteria as in [6], but
for the example considered in this paper we use the criterion above.

Definition 1 (Learning From Generalized Samples) Let P be a fixed and known collection
of probability measures. Let F be a collection of functions from the instance space X into R, and
let X be the instance space of generalized samples for F. F is said to be learnable with respect to
P from the generalized samples X if there is a mapping A: SF -+ F for producing a hypothesis h
from a set of labeled samples such that for every e, 6 > 0 there is a 0 < m = m(e, 6) < oo such that
for every probability measure P E P and every f E F, if h is the hypothesis produced from a labeled
m-sample drawn according to p m then the probability that dp(f, h) < e is greater than 1 - 6.

If P is the set of all distributions over some a-algebra of . then this corresponds to distribution-
free learning from generalized samples. If P consists of a single distribution P then this corresponds
to fixed distribution learning from generalized samples. This is a direct extension of the usual
definition PAC learnability (see for example [4]) to learning functions from generalized samples
over a class of distributions. In the definition we have assumed that there is an underlying target
concept f. As with the restrictions mentioned earlier, this could be removed following the framework
of [6].

Learning with generalized samples can be easily transformed into an equivalent problem of PAC
learning from standard samples. The concept class F on X corresponds naturally to a concept class
FP on X as follows. For a fixed f E F, each functional EG X produces a real number when applied
to f. Therefore, f induces a real valued function on X in a natural way. The real valued function
on X induced by f will be denoted by ], and is defined by

f(i) = £(f)

The concept class if is the collection of all functions on X obtained in this way as f ranges through
F.

We are now in the standard PAC framework with instance space X, concept class F, and
distribution P on X. Hence, as usual, P induces a learning criterion or metric (actually only a
pseudo-metric in general) on F, and as a result of the correspondence between F and iF, this metric
is the equivalent to the (pseudo-)metric dp induced by P on F defined above. This metric will be
denoted by dp over both F and F, and is given by

dp(f1 , 12)= E lf - f21 = El (fl) - (f2)1 = dp(fi, f2)

Distribution-free and fixed distribution learnability are defined in the usual way for X and E .
Thus, a generalized notion of VC dimension for functions (called pseudo dimension in [6]) and
metric entropy of F characterize the learnability of P in the distribution-free and fixed distribution
cases respectively. These same quantities for P then also characterize the learnability of F with
respect to dp.
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Definition 2 (Metric Entropy) Let (Y, p) be a metric space. A set Y(E) is said to be an e-cover
(or E-approximation) for Y if for every y E Y there exists y' E Y(e) such that p(y, y') < e. Define
N(e) _= N(, Y, p) to be the smallest integer n such that there exists an e-cover for Y with n elements.
If no such n exists, then N(E, Y, p) = oo. The metric entropy of Y (often called the e-entropy) is
defined to be log 2 N(e).

N(e) represents the smallest number of balls of radius e which are required to cover Y. For
convenience, if P is a distribution we will use the notation N(e, C, P) (instead of N(e, C, dp)), and
we will speak of the metric entropy of C with respect to P, with the understanding that the metric
being used is dp(., -).

Using results from [6] (based on results from [12]), we have the following result for learning from
generalized samples with respect to a fixed distribution.

Theorem 1 F is learnable from generalized samples (or equivalently, F is learnable) with respect
to a distribution P if for each e > 0 there is a finite e-cover F(O) for F (with respect to dp) such
that 0 < fi < M(e) for each fi E PF(). Furthermore, a sample size

m(c 6)Ž 2M2 (c/2) I 21F(6/ 2)1m(e, 6,) > ( n l

is sufficient for E, 6 learnability.

Proof: Let F(e/2) be an '-cover with 0 < fi < M(e/2) for each fi E P(E/2). Let F(e/2 ) be obtained

from /F(e/2) using the correspondence between F and F. After seeing seeing m(e, 6) samples, let
the learning algorithm output a hypothesis h E F(e/2) which is most consistent with the data, i.e.,
which minimizes

m(e,b)

m(e, 6) =h

where (ai, yi) are the observed generalized samples. Then using Theorem 1 of [6], it follows that
with probability greater than 1 - 6 we have dp(f, h) < c.

Although we will not use distribution-free learning in the example of learning a curve, for
completeness we give a result for this case.

Definition 3 (Pseudo Dimension) Let F be a collection of functions from a set Y to R. For
any set of points y = (Y,..., Yd) from Y, let Fly = {(f(yl),..., f(yd)) : f E F}. Fl- is a set of

points in Rd. If there is some translation of Fig which intersects all of the 2d orthants of Rd then y
is said to be shattered by F. Following terminology from [6], the pseudo dimension of F, which we
denote dim(F), is the largest integer d such that there exists a set of d points in Y that is shattered
by F. If no such largest integer exists then dim(F) is infinite.

We have the following result for distribution-free learning from generalized samples, again using
results from [6].
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Theorem 2 F is distribution-free learnable from generalized samples (or equivalently, F is
distribution-free learnable) if for some M < cc we have 0 < f < M for every f E Fi and if
dim(F) = d for some 1 < d < oo. Furthermore, a sample size

64M2 HeM 8l
m(e, 6) > 2 (2dhl1 + ln -

E2 E 6

is sufficient for E, 6 distribution-free learnability.

Proof: The result follows from a direct application of Corollary 2 from [6], together with the
correspondence between F and f and the fact that dp(fi, f2) = dp(Ji, f2).

Note that the metric entropy of F is identical to the metric entropy of F (since both are with
respect to dp), so that the metric entropy of F characterizes learnability for a fixed distribution as
well. However, the pseudo dimension of F with respect to X does not characterize distribution-free
learnability. This quantity can be very different from the pseudo dimension of ft with respect to
X.

As mentioned above, for simplicity we have defined the concepts to be real valued functions,
have chosen the generalized samples to return real values, and have selected a particular form for
the learning criterion or metric dp. Our ideas can easily be formulated in the much more general
framework considered by Haussler [6]. Specifically, one could take F to be a family of functions
with domain X and range Y. The generalized samples X would be a collection of mappings from
F to Y. A family of functions f mapping X to fY would be obtained from F by assigning to each
f E F an f E f defined by f(x) = (f). As in [6], the distributions would be defined on X x Y, a
loss function L would be defined on Y x Y, and for each f E F the error of the hypothesis f with
respect to a distribution would be EL(f(x), y) where the expectation is over the distribution on

Although learning with generalized samples is in essence simply a transformation to a different
standard learning problem, it allows the learning framework and results to be applied a broad range
of problems. To show the variety in the type of observations that are available, we briefly mention
some types of generalized samples that may be of interest in certain applications. In the case where
the concepts are subsets of X (i.e., binary valued functions), some interesting generalized samples
might be to draw random (parameterized) subsets (e.g., disks, lines, or other parameterized curves)
of X labeled as to whether or not the random set intersects or is contained in the target concept.
Alternatively, the random set could be labeled as to the number of intersections (or length, area,
or volunme of the intersection, as appropriate). In the case where the concepts are real valued
functions, one might consider generalized samples consisting of certain random sets and returning
the integral of the concept over these sets. For example, drawing random lines would correspond
to tomographic type problems with random ray sampling. Other possibilities might be to return
weighted integrals of the concept where the weighting function is selected randomly from a suitable
set (e.g., an orthonormal basis), or to sample derivatives of the concept at random points.
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3 A Result From Stochastic Geometry

In this section we state an interesting and well known result from stochastic geometry. This result
will be used in the next section in connection with a specific example of learning from generalized
samples.

To state the result, we first need to describe the notion of drawing a "random" straight line,
i.e., a uniform distribution for the set of straight lines intersecting a bounded domain. A line in the
plane will be parameterized by the polar coordinates r, 8 of the point on the line which is closest to
the origin, where r > 0 and 0 < 0 < 27r. The set (manifold) of all lines in the plane parameterized
in this way corresponds to a semi-infinite cylinder.

A well known result from stochastic geometry states that the unique measure (up to a scale
factor) on the set of lines which is invariant to rigid transformations of the plane (translation,
rotation) is drdO, i.e., uniform density in r and 0. This measure is thus independent of the choice
of coordinate system, and is referred to as the uniform measure (or density) for the set of straight
lines in the plane. This measure corresponds precisely to the surface area measure on the cylinder.

From this measure, a uniform probability measure can be obtained for the set of all straight
lines intersecting a bounded domain. Specifically, the set of straight lines intersecting a bounded
domain X, which we will denote by X, is a bounded subset of the cylinder. The uniform probability
measure on X is then just the surface area measure of the cylinder suitably normalized (i.e., by the
area of X).

We can now state the following classic result from stochastic geometry (see e.g. [14, 2]).

Theorem 3 Let X be a bounded convex subset of R2, and let c C X be a rectifiable curve. Suppose
lines intersecting X are drawn uniformly, and let n(i, c) denote the number of intersections of the
random line c with the curve c. Then

E n(Z, c) = (c)

where L(c) denotes the length of the curve c and A is the perimeter of X.

In the next section, for simplicity we will take X to be the unit square. In this case, the theorem
reduces simply to En(E, c) = 2L(c).

A surprising (and powerful) aspect of this theorem is that the expected number of intersections
a random line makes with the curve c depends only on the length of c but is independent of any
other geometric properties of c. In fact, the expression on the left hand side (suitably normalized)
can be used as a definition for the length (or one-dimensional measure) of general sets in the plane
[15].

An interesting implication of Theorem 3 is that the length of an unknown curve can be estimated
or "learned" if one is told the number of intersections between the unknown curve and a collection
lines drawn randomly (from the uniform distribution). In fact, deterministic versions of this idea
have been studied [17, 11].
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4 Learning a Curve by Counting Intersections with Lines

In this section, we consider a particular example of learning from generalized samples. For con-
creteness we take X to be the unit square in R 2, although our results easily extend to the case
where X is any bounded convex domain in R2. We will consider concept classes C which are
collections of curves contained in X. For example, one particular concept class of interest will be
the set of straight line segments contained in X. Other concept classes will consist of more general
curves in X satisfying certain regularity constraints. The samples observed by the learner consist
of randomly drawn straight lines labeled as to the number of intersections the random line makes
with the target concept (i.e., the unknown curve). Recall, that with the r, 0 parameterization, the
set of lines intersecting X, which is the instance space X, is a bounded subset of the semi-infinite
cylinder. We consider learnability with respect to a fixed distribution, where the distribution P is
the uniform distribution on X.

4.1 Learning a Line Segment

Consider the case where C is the set of straight line segments in X. In this case, given a concept
c E C, every straight line (except for a set of measure zero) intersects c either exactly once or not
at all. Thus, 0 consists of subsets (i.e., binary valued functions) of X, where each c E 0' contains
exactly those straight lines x E X which intersect the corresponding c E C.

The metric dp on C and C induced by P is given by

dp(cl,c2 )= dp(Zl, 2) = E In(i,c1 )- n(, C2 )I = P(Zl A2)

where, as in the previous section, n(i, c) is the number of intersections the line x makes with c. In
the case of line segments n(i, c) is either one or zero, i.e. c is binary valued, so that

dp(cl,c2) = dp(Cl,c2) = P(c2Ac2)

where ZlAc2 is the usual symmetric difference of cl and c2.

In the case of line segments, a simple bound on the dp distance between two segments can be
obtained in terms of the distances between the endpoints of the segments.

Lemma 1 Let cl, C2 be two line segments, and let a1, bl and a2, b2 be the endpoints of cl and c2
respectively. Then

dp(cl, c 2 ) < - (Ila1 - a211 + 11ib - b2 11)2

Proof: Since cl,c 2 are line segments, the distance dp(cl, c2 ) between cl and c2 is the probability
that a random line intersects exactly one of cl and c2. Any line that intersects exactly one of cl, c2

must intersect one of the segments ala2 or blb 2 joining the endpoints of cl and c2. Therefore,

dp(cl, c 2) < P(T n aia 2 $ 0 or x n bb2 $ 0) < P(f n ala 2 4 0) + P(l nT blb2 4 0)

Using Theorem 3, the probability that a random line intersects a line segment in the unit square
is simply half the length of the line segment, from which the result follows.

El
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Using the Lemma 1, we can bound the metric entropy of C (and hence C) with respect to the
metric induced by P.

Lemma 2 Let C be the set of line segments contained in the unit square X, and let P be the
uniform distribution on the set of lines intersecting X. Then

N(e, C, P) = N(E, C,P) < 
4e4

Proof: We construct an e-cover for C as follows. Consider a rectangular grid of points in X with
spacing v/2e. Let C(e) be the set of all line segments with endpoints on this grid. There are 21
points in the grid, so that there are - line segments in C(e). (We ignore the fact that some of
these segments are actually just points, since there are just 1 of these.) For any c E C, there is

a c' E C(e) such that each endpoint of c' is within e of an endpoint of c. Hence, from Lemma 1
dp(c, c') < -(e + e) = e so that C(e) is an e-cover for C with v elements.

The construction of the previous lemma allows us to obtain the following learning result for
straight line segments.

Theorem 4 Let C be the set of line segments in the unit square X. Then C is learnable by counting
intersections with straight lines drawn uniformly using

2 8
m(E,6) = 2 In 84

samples.

Proof: Let C be the concept class over X corresponding to C. Then c E C is defined by c() =
n(i, c), i.e., c(Z) is the number of intersections of the line r with c. Clearly, 0 < c~ 1 (except for
a set of measure zero) for every c E C' Using the construction of Lemma 2, we have an 2-cover of
C with 4/e 4 elements. Hence, the result follows from Theorem 1.

4.2 Learning Curves of Bounded Turn and Length

Now we consider the learnability of a much more general class of curves. First we need some
preliminary definitions. We will consider rectifiable curves parameterized by arc length s, so that
a curve c of length L is given by

c = {(x 1(s),X 2(s)) I 0 < s < L}

where zx(.) and X2 (.) are absolutely continuous functions from [0, L] to R such that 2 + k is
defined and equal to unity almost everywhere. If x1 and x2 are twice-differentiable at s, then the
curvature of c at s, ;(s), is defined as the rate of change of the direction of the tangent to the curve
at s, and is given by n(s) = E261 - E12 The total absolute curvature of c is given by fo li'(s)l ds.
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Alexandrov and Reshetnyak [1] have developed an interesting theory for irregular curves. A-
mong other things, they study the notion of the "turn" of a curve, which is a generalization of
total absolute curvature to curves which are not necessarily twice-differentiable. For example, for
a piecewise linear curve the turn is simply the sum of the absolute angles that the tangent turns
between adjacent segments. The turn for more general curves can be obtained by piecewise linear
approximations. In fact, this is precisely the manner in which turn is defined [1].

Definition 4 (Turn) Let vo ... vn denote a piecewise linear curve with vertices v 0 ,.. ., vn. Let ai
be the vector vilvi, and let hi be the angle between the vector ai and ai+l. That is, Oi represents
the total angle through which the tangent to the curve turns at vertex i (ir minus the interior angle
at vertex i). The turn of vo ... v,, denoted C(vO... v,), is defined by

n-1

i=l

The turn of a general parameterized curve c, denoted n(c), is defined as the supremum of the turn
over all piecewise linear curves inscribed in c. I.e.,

(C) = SUP{(C(sO)...C(sn)) I 0 _< S < S <S < <Sn < L}

where L is the length of c.

As expected, the notion of turn reduces to the total absolute curvature of a curve when the latter
quantity is defined [1]. We will use the generalized notion of turn throughout, so that our results
will apply to curves which are not necessarily twice differentiable (e.g., piecewise linear curves).

We will consider classes of curves of bounded length and bounded turn. Specifically, let CK,L
be the set of all curves contained in the unit square whose length is less than or equal to L and
whose turn is less than or equal to K. Note that for curves contained in a bounded domain, the
length of a curve can be bounded in terms of the turn of the curve and the diameter of the domain
(Theorem 5.6.1 from [1], for differentiable curves see for example [14] p. 35). Hence, we really need
only consider classes of curves with a bound on the turn. However, for convenience we will carry
both parameters K and L explicitly.

As before, the samples will be random lines drawn according to the uniform distribution P on
X, labeled as to the number of intersections the line makes with the unknown curve c. However,
with curves in CK,L the number of intersections with a given line can be any positive integer as
opposed to just zero or one for straight line segments. (Note that by Theorem 3, the probability
that a random line has an infinite number of intersections with a given curve is zero, so that the
number of intersections is a well defined integer valued function.) Thus, the class CK,L consists of
a collection of integer valued functions on X as opposed to just subsets of X as in the previous
section.

Also, as before, the results on learning for the set of curves will be with respect to the metric
dp induced by the measure P. That is the dp distance between two curves cl and c2 or their
corresponding functions cl, c2 is given by

dp(c, c 2) d(l, 2 ) = EIn(, c l )-n(, c)

where the expectation is taken over the random line Z with respect to the uniform measure P. This
notion of distance between curves has been studied previously (e.g., see [17] and [14] p.38). For
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example, it is known that dp is in fact a metric on the set of rectifiable curves, so that dp satisfies
the triangle inequality and dp(cl, c 2) = 0 implies cl = c2. (Note that in the references [14, 17] the
notion of distance used is actually ½dp, but this makes no difference in the metric properties.)

To obtain a learning result for CK,L we will show that each curve in CK,L can be approximated
(with respect to dp) by a bounded number of straight line segments. The metric entropy compu-
tation for a single straight line segment can be extended to provide a metric entropy bound for
curves consisting of a bounded number of straight line segments. Thus, by combining these two
ideas we can obtain a metric entropy bound for CK,L which yields the desired learning result.

First, we need several properties of the dp metric for curves of bounded turn.

Lemma 3 If cl, c2 are curves with a common endpoint (so that cl U C2 is a curve) and similarly
for cl, c' then

dp(cl U c2, cl U c) < dp(cl, cl) + dp(c2 , c4)

Proof: For any line c (except for a set of measure zero), n(;, cl U c 2) = n(i, cl) + n(i, c2) and
similarly for c', c'. Therefore,

dp(cl U c2, c U c) -Eln(., cl U c2)- n(, c' U c4)l

= 2En(i, cl) - n(x, c) + n(Z,c 2) - n(,4 c)1

< -E1n(i, cl) - n(i, c)l + En(, )- n(n , c 2 )1

dp(cl,4c) + dp(c2, C4)

By induction, this result can clearly be extended to unions of any finite number curves. The
case of a finite number of curves will be used in Lenuna 6 below.

Lemma 4 If c is a curve and c is the line segment joining the endpoints of c, then

1
dp(c, ) = - (I(c) - C())

Proof: Each line can intersect c at most once, and every line intersecting c also intersects c.
Therefore, n(;, c) > n(i, C) so that In(i, c) - n(i, n)l = c)- n(,c) , e) for all lines x (except a set
of measure zero). Hence,

dp(c, ) = EIn(x, c) - n(i, c)t = E (n(i, c) - n(E, E = (c) - C()
2 2

where the last equality follows from the stochastic geometry result (Theorem 3).

We will make use of the following result from [1].
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Theorem 5 (Alexandrov and Reshetnyak) Let c be a curve in R n with K(c) < 7r, and let a
be the distance between its endpoints. Then

£(c) < ()
cos 2

Equality is obtained iff c consists of two line segments of equal length.

Lemma 5 For 0 < a < 7r/6, 1/ cos a - I <a 2 so that if c is a curve with turn K(c) < 7r/6 and c
is the line connecting the endpoints of c then

dp (,e ) < () ( )

Proof: Let g(a) = 1/ cosa and h(a) = 1 + a 2. For 0 < a < 7r/6, sina < 1/2 and cosa > V/3/2
so that g(a) = 2 sin2 a/ cos3 a + 1/ cos a < 4 + 2 =- 1o < 2 = h(a). Combining i(a) < h(a)

with the fact that g(O) = h(O) and #(0) = h(0) gives g(a) < h(a) and so 1/cos a - 1 < a 2 for
0 < a < 7r/6.

Now, using the above result, Lennma 4, and Theorem 5 we have

dp (c, ) = (L(c) - C(e)) < () ( ) -1 < 2(C)

Lemma 6 If c E CK,L then for each E > 0 the curve c can be approximated to within e by an
inscribed piecewise linear curve with at most K2L segments.

Proof: As usual, let s denote arc length along c. Since rc(c) < K, for any a > O, we can find a
decomposition of c into at most K/a]l pieces 1,... ,rK/xl such that r(ti) < a for each i. For
example, let so = 0 and let

si = sup(si_l < s < LI,(c(sil, s)) < a}

where c(si_l, s) is the part of the curve c between arc length si-1 and s inclusive. Then, let ei =
c(si_l, si). By definition, rc(I;) < a. The turn of a curve satisfies rc(c(s, s'))> K(c(s, t)) + tc(c(t, s'))
for any s < t < s' and ,¢(c(s, s')) - 0 as s' - s from the right ([1], Corollaries 2 and 3, p. 121).
From these properties it follows that if si < L then for any r7 > 0, r;(c(0, Si + r7)) > ia. Since

K(C) < K we must have si = L for some i < [K/al.

Now, let [i be the line segment joining the ends of ti. Clearly, the union of the ei form a piecewise
linear curve inscribed in c (i.e., with endpoints of the segments lying on c). From Lemmas 3 and
5, and the fact that £(ii) _ £(c) < L, we have

K/of
K/a KL _ KL

dp(c,Ui=l i) < E dp(i,i) -< - -ac2
~i=1 -- a 8 8

i=<

Thus, for a < K, dp(c, U K/lati) < e so that K = K2 L segments suffice for an e-approximation to
- KLi= a Se

c by an inscribed piecewise linear curve.
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Theorem 6 Let CK,L be the set of all curves in the unit square with turn bounded by K and length
bounded by L. Let P be the uniform distribution on the set of lines intersecting the unit square,
and let dp be the metric on CK,L defined by dp(cl,c 2) = Eln(i,cl) - n( ,c 2)l. Then the metric
entropy of CK,L with respect to dp satisfies

N(E,CKLP)< (4L2) 4

Proof: We construct an e-cover for C as follows. Consider a rectangular grid of points in the unit
square with spacing 2 L* Let C()L be the set of all piecewise linear curves with at most K2L

segments the endpoints of which all lie on this grid. There are K 4 L 2/8e4 points in the grid, so that
there are at most (K4L2/8e4)1+K2L/4e distinct curves in C ®?L.

To show that C(K) is an c-cover for CK,L, let c E CK,L. By Lemma 6 there is a piecewise linearK,L

curve c with at most K2L segments such that dp(c, c) < e/2. We can find a curve c' E C?)L close

to c by finding a point on the grid within 2E2 of each endpoint of a segment in c. By Lemma 1

each line segment of c' is a distance at most E2 (with respect to dp) from the corresponding line

segment of 6. Since c, c' consist of at most KL segments, applying Lemma 3 we get dp(e, c') < E/2.
Hence, by the triangle inequality dp(c, c') < e.

[1

We can now prove a learning result for curves of bounded turn and length.

Theorem 7 Let CK,L be the set of all curves in the unit square with turn bounded by K and length
bounded by L. Then CK,L is learnable by counting intersections with straight lines drawn uniformly
using

mK4 L2 n 2 (2K4L 2 1+ K2L
m(e 6) = 2e4 n e4

Proof: Let CK,L be the concept class over X corresponding to CK,L. Then c E C is defined by
i(Z) = n(Z, c), i.e., e(z) is the number of intersections of the line i with c.

Using the construction of Theorem 6, we have an 2-cover, 0j(e/2), of CK,L with (2K4L2/e4)1+ K 2 L/2E

elements. Furthermore, each element of the '-cover consists of at most K2L line segments. Since

a line 0 can intersect each segment at most once, we have 0 < ji(i) < L for every ai C E('/2)
Hence, the result follows from Theorem 1.

It is interesting to note that CK,L has infinite pseudo dimension (generalized VC dimension),
so that one would not expect CK,L to be distribution-free learnable. That the pseudo dimension
is infinite can be seen as follows. First, assume that K, L > 2r. For each k, let 1,... , k be the
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set of lines corresponding to the sides of a k-gon inscribed in the unit circle. For any subset G of
these k lines, we can find a curve CG e CK,L so that n(ii, ccG) = 2 for ii E G and n(i, ccG) = 0 for
xi 4 G. Such a curve can be obtained by taking a point on the unit circle in each arc corresponding
to ;i C G, and taking ccG to be the boundary of the convex hull of these points. Then, I;(CG) = 27r
and L(CG) < 2wr so that CG E CK,L. Thus, the set 1,-..., is shattered by CK,L, and since k
is arbitrary the pseudo dimension of CK,L is infinite. For K, L < 27r we can apply essentially the
same construction over an arc of the unit circle and without taking CG to be a closed curve.

4.3 Connections With the Stochastic Geometry Result

For the class of curves whose length and curvature are bounded by constants, the learnability result
of Theorem 7 can be thought of as a refinement of the stochastic geometry result. First, using the
expression for the expected number of intersections, one can estimate or "learn" the length of c
from a set of generalized samples. The learnability result makes the much stronger statement that
the curve c itself can be learned (from which the length can then be estimated). To show that the
length can be estimated, we need only note that

1 _ 1
I£(cl) - L£(c2 )[ = I E(n(y,cl)- n(y, c2))l < !E n(y,cl) n(y, C2)1 = dp(Cl,c 2 )

2 22 

so that if we learn c to within e then the length of c can be obtained to within e/2.

Second, for the class of curves considered, we have a uniform learning result. Hence, this refines
the stochastic geometry result by guaranteeing uniform convergence of empirical estimates of length
to true length for the class of curves considered.

5 Discussion

We introduced a model of learning from generalized samples, and considered an application of this
model to a problem of reconstructing a curve by counting intersections with random lines. The
curve reconstruction problem is closely related to a well known result from stochastic geometry.
The stochastic geometry result (Theorem 3) suggests that the length of a curve can be estimated
by counting the number of intersections with an appropriate set of lines, and this has been studied
by others. Our results show that for certain classes of curves the curve itself can be learned from
such information. Furthermore, over these classes of curves the estimates of length from a random
sample converge uniformly to the true length of a curve.

The learning result for curves is in terms of a metric induced by the uniform measure on the set
of lines. Although some properties of this metric are known, to better understand the implications
of the learning result, it would be useful to obtain further properties of this metric. One approach
might be to obtain relationships between this metric and other metrics on sets of curves (e.g.,
Hausdorff metric, dH). For example, we conjecture that over the class CK,L

inf dp(cl,c 2) > 0
{c1,C2 I dH(Cl,C2)>e}

This result combined with the learning result with respect to dp would immediately imply a learning
result with respect to dH.
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The stochastic geometry result holds for any bounded convex subset of the plane, and as we
mentioned before, our results can be extended to this case as well. Furthermore, results analogous
to Theorem 3 can be shown in higher dimensions and in some non-Euclidean spaces [14]. Some
results on curves of bounded turn analogous to those we needed also can be obtained more generally
[1]. Hence, learning results should be obtainable for these cases.

Regarding other possible extensions of the problem of learning a curve, note that the stochastic
geometry result is not true for distributions other than the uniform distribution. Also, we are
not aware of any generalizations to cases where parameterized curves other than lines are drawn
randomly. However, learnability results likely hold true for some other distributions and perhaps
for other randonily drawn parameterized curves, although the metric entropy computations may
be difficult.

There is an interesting connection between the problem of learning a curve discussed here
and a problem of computing the length of curves from discrete approximations. In particular, it
can be shown that computing the length of a curve from its digitization on a rectangular grid
requires a nonlocal computation (even for just straight line segments), although computing the
length of a line segment from discrete approximations on a random tesselation can be done locally
[9]. The construction is essentially a learning problem with intersection samples from random
straight lines. Furthermore, the construction provides insight as to why local computation fails
for a rectangular digitization and suggests that appropriate deterministic digitizations would still
allow local computations. This is related to the work in [11].

We considered here only one particular example of learning from generalized samples. However,
we expect that this framework can be applied to a number of problems in signal/image processing,
geometric reconstruction, stereology, etc., to provide learnability results and sample size bounds
under a PAC criterion. As previously mentioned, learning with generalized samples is in essence
simply a transformation to a different standard learning problem, although the variety available in
choosing this transformation (i.e., the form of the generalized samples) should allow the learning
framework and results to be applied to a broad range of problems.

For example, the generalized samples could consist of drawing certain random sets and return-
ing the integral of the concept over these sets. Other possibilities might be to return weighted
integrals of the concept where the weighting function is selected randomly from a suitable set (e.g.,
an orthonormal basis), or to sample derivatives of the concept at random points. One interesting
application would be to problems in tomographic reconstruction. In these problems, one is inter-
ested in reconstructing a function from a set of projections of the function onto lower dimensional
subspaces. One could have the generalized samples consist of drawing random lines labeled accord-
ing to the integral of the unknown function along the line. This would correspond to a problem
in tomographic reconstruction with random ray sampling. Alternatively, as previously mentioned,
one could combine the general framework discussed by Haussler [6] with generalized samples, and
consider an application to tomography where the generalized samples consist of entire projections.
This would be more in line with standard problems in tomography, but with the directions of the
projections being chosen randomly.

For more geometric problems in which the concepts are subsets of X, some interesting gen-
eralized samples might be to draw random (parameterized) subsets (e.g., disks, lines, or other
parameterized curves) of X labeled as to whether or not the random set intersects or is contained
in the target concept. Other possibilities might be to label the random set as to the number of
intersections (or length, area, or volume of the intersection, as appropriate) with the unknown



concept. One interesting application to consider would be the reconstruction of a convex set from
various types data (e.g., see [7, 16, 10, 13]). For example, the generalized samples could be random
lines labeled as to whether or not they intersect the convex set (which would provide bounds on
the support function). This is actually just a special case of learning a curve which is closed and
convex, although tighter bounds should be obtainable due to the added restrictions. Alternatively,
the lines could be labeled as to the length of the intersection (which is like the tomography problem
with random ray sampling in the case of binary objects). A third possibility (which is actually just
learning from standard samples) would be to obtain samples of the support function.

Formulating learning from generalized samples in the general framework of Haussler [6] allows
issues such as noisy samples to be treated in a unified framework. Application of the framework
to a particular problem reduces the question of estimation/learning under a PAC criterion to a
metric entropy (or generalized VC dimension) computation. This is not meant to imply that
such a computation is easy. On the contrary, the metric entropy computation is the essence of
the problem and can be quite difficult. Another problem which can be difficult is interpreting the
learning criterion on the original space induced by the distribution on the generalized samples. The
induced metric is a natural one given the type of information available, but it may be difficult to
understand the properties it endows on the original concept class. Finally, although this approach
may provide sample size bounds for a variety of problems, it leaves wide open the question of
finding good algorithms.
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