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Abstract

Early vision algorithms often have a first stage of linear-filtering that 'extracts' from the image

information at multiple scales of resolution and multiple orientations. A common difficulty in

the design and implementation of such schemes is that one feels compelled to discretize coarsely

the space of scales and orientations in order to reduce computation and storage costs. This
discretization produces anisotropies due to a loss of traslation-, rotation-, scaling-invariance that

makes early vision algorithms less precise and more difficult to design. This need not be so: one

can compute and store efficiently the response of families of linear filters defined on a continuum

of orientations and scales. A technique is presented that allows (1) to compute the best approx-
imation of a given family using linear combinations of a small number of 'basis' functions; (2) to
describe all finite-dimensional families, i.e. the families of filters for which a finite dimensional

representation is possible with no error. The technique is based on singular value decompo-

sition and may be applied to generating filters in arbitrary dimensions. Experimental results

are presented that demonstrate the applicability of the technique to generating multi-orientation

multi-scale 2D edge-detection kernels. The implementation issues are also discussed.
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1 Introduction

Points, lines, edges, textures, motions are present in almost all images of everyday's world. These
elementary visual structures often encode a great proportion of the information contained in the
image, moreover they can be characterized using a small set of parameters that are locally de-
fined: position, orientation, characteristic size or scale, phase, curvature, velocity. It is threrefore
resonable to start visual computations with measurements of these parameters. The earliest stage
of visual processing, common for all the classical early vision modules, could consist of a collec-
tion of operators that calculate one or more dominant orientations, curvatures, scales, velocities
at each point of the image or, alternatively, assign an 'energy', or 'probability', value to points
of a position-orientation-phase-scale-etc. space. Ridges and local maxima of this energy would
mark special interest loci such as edges and junctions. The idea that biological visual systems
might analyze images along dimensions such as orientation and scale dates back to work by Hubel
and Wiesel [21, 20] in the 1960's. In the computational vision literature the idea of analyzing
images along multiple orientations appears at the beginning of the seventies with the Binford-Horn
linefinder [19, 4] and later work by Granlund [16].

A computational framework that may be used to performs this proto-visual analysis is the
convolution of the image with kernels of various shapes, orientations, phases, elongation, scale.
This approach is attractive because it is simple to describe, implement and analyze. It has been
proposed and demonstrated for a variety of early vision tasks [28, 27, 6, 3, 7, 18, 44, 34, 32, 35,
12, 31, 5, 45, 25, 26, 15, 39, 2]. Various 'general' computational justifications have been proposed
for basing visual processing on the output of a rich set of linar filters: (a) Koenderink has argued
that a structure of this type is an adequate substrate for local geometrical computations [29] on
the image brightness, (b) Adelson and Bergen [2] have derived it from the 'first principle' that
the visual system computes derivatives of the image along the dimensions of wavelength, parallax,
position, time, (c) a third point of view is the one of 'matched filtering': where the kernels are
synthesized to match the visual events that one looks for.

The kernels that have been proposed in the computational literature have typically been chosen
according to one or more of three classes of criteria: (a) 'generic optimality' (e.g. optimal sampling
of space-frequency space), (b) 'task optimality' (e.g. signal to noise ratio, localization of edges)
(c) emulation of biological mechanisms. While there is no general consensus in the literature on
precise kernel shapes, there is convergence on kernels roughly shaped like either Gabor functions,
or derivatives or differences of either round or elongated Gaussian functions - all these functions
have the advantage that they can be specified and computed easily. A good rule of the thumb in
the choice of kernels for early vision tasks is that they should have good localization in space and
frequency, and should be roughly tuned to the visual events that one wants to analyze.

Since points, edges, lines, textures, motions can exist at all possible positions, orientations,
scales of resolution, curvatures one would like to be able to use families of filters that are tuned
to all orientations, scales and positions. Therefore once a particular convolution kernel has been
chosen one would like to convolve the image with deformations (rotations, scalings, stretchings,
bendings etc.) of this 'template'. In reality one can afford only a finite (and small) number
of filtering operations, hence the common practice of 'sampling' the set of orientations, scales,
positions, curvatures, phases 1. This operation has the strong drawback of introducing anisotropies

1Motion flow computation using spatiotemporal filters has been proposed by Adelson and Bergen [3] as a model
of human vision and has been demonstrated by Heeger [18] (his implementation had 12 discrete spatio-temporal
orientations and 3 scales of resolution). Work on texture with multiple-resolution multiple-orientation kernels is due
to Knuttson and Granlund [28] (4 scales, 4 orientations, 2 phases), Turner [44] (4 scales, 4 orientations, 2 phases),
Fogel and Sagi [12] (4 scales, 4 orientations, 2 phases), Malik and Perona [31] (11 scales, 6 orientations, 1 phase)
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and algorithmic difficulties in the computational implementations. It would be preferable to keep
thinking in terms of a continuum, of angles for example, and be able to localize the orientation of
an edge with the maximum accuracy allowed by the fiiter one has chosen.

This aim may sometimes be achieved by means of interpolation: one convolves the image with
a small set of kernels, say at a number of discrete orientations, and obtains the result of the
convolution at any orientation by taking linear combinations of the results. Since convolution is a
linear operation the interpolation problem may be formulated in terms of the kernels (for the sake
of simplicity the case of rotations in the plane is discussed here): Given a kernel F : R2 --, C1 ,
define the family of 'rotated' copies of F as: Fs = F o R 0, 0 e $1, where $1 is the circle and Rs is
a rotation. Sometimes it is possible to express Fs as

n

Fo(x) = Ea(9)iGi(x) VO e S',Vx E (1)
i=l

a finite linear combination of functions Gi : R2 -+ Ci1. It must be noted that, at least for positions
and phases, the mechanism for realizing this in a systematic way is well understood: in the case
of positions the sampling theorem gives conditions and an interpolation technique for calculating
the value of the filtered image at any point in a continuum; in the case of phases a pair of filters
in quadrature can be used for calculating the response at any phase [3, 33]. Rotation, scalings and
other deformations are less well understood.

An example of 'rotating' families of kernels that have a finite representation is well known:
the first derivative along an arbitrary direction of a round (a, = a,) Gaussian may be obtained
by linear combination of the X- and Y-derivatives of the same. The common implementations of
the Canny edge detector [7] are based on this principle. Unfortunately the kernel obtained this
way has poor orientation selectivity and therefore it is unsuited for edge detection if one wants to
recover edge-junctions (see in Fig. 1 the comparison with a detector that uses narrow orientation-
selective filters). Freeman and Adelson have recently argued [15, 14] that it would be desirable
to construct orientation-selective kernels that can be exactly rotated by interpolation (they call
this property "steerability" and the term will be used in this paper) and have shown that higher
order derivatives of round Gaussians, indeed all polynomials multiplied by a radially symmetric
function are steerable (they have a more general result - see comments to Theorem 1). For high
polynomial orders these functions may be designed to have higher orientation selectivity and can
be used for contour detection and signal processing [15]. However, one must be aware of the fact
that for most kernels F of interest a finite decomposition of Fs as in Eq. (1) cannot be found. For
example the elongated kernels used in edge detection by [38, 39] (see Fig. 1 top right) do not have
a finite decomposition as in Eq. (1).

One needs an approximation technique that, given an Fs, allows one to generate a function
Gf] which is sufficiently similar to Fs and that is steerable, i.e. can be expressed as a finite sum
of n terms as in (1). Freeman and Adelson propose to approximate the kernel with an adequately
high order polynomial multiplied by a radially symmetric function (which they show is steerable).
However, this method does not guarantee a parsimonious approximation: given a tolerable amount

and Bovik et al. [5] (n scales, m orientations, I phases). Work on stereo by Kass [27] (12 filters, scales, orientations
and phases unspecified) and Jones and Malik [25, 26] (6 scales, 2-6 orientations, 2 phases). Work on curved line
grouping by Parent and Zucker [35] (1 scale, 8 orientations, iphase) and Malik and Gigus [30] (9 curvatures, 1 scale,
18 orientations, 2 phases). Work on brightness edge detection by Binford and Horn [19, 4] (24 orientations), Canny [7]
(1-2 scales, oo-6 orientations, 1 phase), Morrone,Owens and Burr [34, 32] (1-3 scales, 2-4 orientations, oo phases),
unpublished work on edge and illusory contour detection by Heitger, Rosenthaler, Kiibler and von der Heydt (6
orientations, 1 scale, 2 phases). Image compression by Zhong and Mallat [45] (4 scales, 2 orientations, 1 pahse).
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Figure 1: Example of the use of orientation-selective filtering oll a continuum of orientations (see
Perona and Malik [38, 39]). (Top left) Original image. (Top right) A T-junction (64x64 pixel detail
from a region roughly at the centre of the original image). (Middle left) The kernel of the filter
(it is (gaus-3) in Fig. 3) is elongated to have high orientation selectivity. (Middle-centre) Modulus
R(z, y, 0) of the output of the complex-valued filter (polar plot shown for 8x8 pixels in the region
of the T-junction). (Middle-right) The local maxima of jI(.x,: y.)1 with respect to 6. Notice that
in the region of the junction one finds two local maxima in 6f corresponding to the orientation of
the edges. Searching for local mnaxima in (x,y) in a. dir(et ion ortogonal to the ma.ximizing 6's one
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of error one would like to find an approximating G1; ] that has minimum number n of components.
A different design perspective could also be taken: given a number n of filtering operations allowed,
synthesize the best (with respect to the specific task at hand) kernel within the class of functions
that car, be exactly represented by a sum of n terms. Therefore it is useful to be able to answer to
the question: What is the set of functions that can be represented exactly as in Eq. (1)? Neither
this question, nor the approximation question have yet been addressed in the vision and signal
processing literature so far.

This paper is organized as follows: the special case of the rotations (Eq. (1)) is explored and
solved in section 2 and appendix A.1. In section 3 a few results from functional analysis are recalled
to extend the approximation technique to all 'compact' deformations. In section 4 an application
of the approximation technique to generating steerable filters for edge detection is described. In
section 5 it is shown how to generate a steerable and scalable family. Experimental results and
implementation issues are presented and discussed for the schema presented in sections 5 and 4.

2 Steerable approximations

In order to solve the approximation problem proposed in the introduction one needs of course to
define the 'quality' of the approximation G 1] - FO. There are two reasonable choices: (a) a distance
D(Fo, Gfnh ) in the space R2 x 51 where F0 is defined; (b) if F0 is the kernel of some filter one is
interested in the worst-case error in the 'output' space: the maximum distance d((Fo, f), (G' ], f))
over all unit-norm f defined on R2. The symbols An and 6, will indicate the 'optimal' distances,
i.e. the minimum possible approximation errors using n components. These quantities may be
defined using the distances induced by the L2-norm:
Definition.

Dn(Fo, GIn ) = lIFo - G I112 X,, I1

An (Fo) =infD (F0, G])

dn(Fo, ,G[] ) = sup 11(Fo - G[], f)u2llsl
lf 11=1

en(Fo) = inf dn(Fs, G6)
Gn]

Consider the approximation to F0 defined as follows:
Definition. Call FAn] the n-terms sum:

n

Fn = Zaia1 (x)bi(9) (2)
i=l

with ai, ai and bi defined in the following way: let h(v) be the (discrete) Fourier transform of the
function h(O) defined by:

h(o) = A2 Fo(x)Fo,=o(x)dx (3)

and let vi be the frequencies on which h(v) is defined, ordered in such a way that h(vi) > h(vj) if
i < j. Call N < oo the number of nonzero terms h(vi). Finally, define the quantities:

ci- = h(vi)1/ 2 (4)
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bi(6) = ej(5)

ai(x) = ot 1 f F(x)ej27rvids (6)

Then F?] is the best n-dimensional approximation to Fo in the following sense:

Theorem 1 Given the definitions and notation introduced above, suppose that F G L2(R 2) then:

1. {ai} and {bi} are orthonormal sequences of functions.

2. F IN] is the smallest possible exact representation of Fo , i.e. if 3 M, pi, gi s.t. Fo(x) =
TY pi(90)gi(x) then M > N.

3. The number N of terms is finite iff the number M of indices i for which ai(x) 0 OL2(R2) is
finite, and N = M.

4. Fn] is an optimal n-approximation of F8 with respect to both distances:

D~(Fo,F?)= An(Fo)= E rr2 (7)
i=n+l 

dn(Fo, Fn]) = 4(F) = a,+l (8)

5. Dn, 6, - O0 for n -* N.

6. F L] =- Fno o Ro.

7. 301,. . ., n s. t. F[] = ,i=1 ai()Fn] . In fact this is true for all 01, . ,On but a set of measure
zero.

Comment.

1. The expression for the bi is independent of F. Only vi and ai depend on F. The bi depend on
the particular group of transformations (the rotations of the plane in this case) that is used
to generate F0 from F.

3. The 'if' part of statement 3 is equivalent to the main theorem of [13] - Freeman and Adelson
show that all functions that one can write as a linear combination of functions like the ai's
(polar-separable with sinusoidal 0 component) are steerable. The 'only if' part says that the
functions that they described are all the steerable functions.

4. For deciding at what point n to truncate the sum one plots the error E, or An v.s. n and looks
for the smallest integer n for which the error is less than some assigned value. See Figs. 4, 6.

6. This means that F[ ] is steerable, i.e. its shape does not change with 0, modulo a rotation in the
domain. Therefore FAn] is the best approximation to Fs in the space of 'n-steerable' functions
('best' is intended with respect to the L2-induced distance).

5



7.1. A set of size n of rotated copies of F[ =] is enough for representing F? , so we may choose to
use this different decomposition instead of 2. On the other hand this representation has some
numerical disadvantages: (1) The set Foi is not orthonormal, so its numerical implementation
is less efficient (it will require more significant bits in the calculations to obtain the same
final precision). (2) The functions at are easier to approximate with sums of X-Y separable
functions then the Foi (see the experimental section 4.2, and Fig. 8).

7.2. The error d(Fo, F£?]) of the n-approximation is constant with respect to 0 since Fs = F o R0

and Fn = F[
0

] o Ro. There is no anisotropy even if F In] is an approximation.

The proof of this theorem can be found in appendix A.1. It is based on the fact that the triples
(a/,ai(x),b(90)) are the singular value decomposition (SVD) of a linear operator associated to Fo(x).
(From now on the abbreviation SVD will be used to indicate the decomposition of a kernel into
such triples).

3 Deformable functions

The existence of the optimal finite-sum approximation of the kernel Fo(x) as decribed in the
previous section and Sec. A.1 is not peculiar to the case of rotations. This is true in more general
circumstances: this section collects a few facts of functional analysis that show that one can compute
finite optimal approximations to continuous families of kernels whenever certain 'compactness'
conditions are met.

Consider a parametrized family of kernels F(x; 0) where x E X now indicates a generic vector
of variables in a set X and 0 E T a vector of parameters in a set T. (The notation is changed
slightly from the previous section.) Consider the sets A and B of continuous functions from X and
T to the complex numbers, call a(x) and b(8) the generic elements of these two sets. Proceed as
at the beginning of sec. A.1 and consider the operator L : A - B defined by F as (La(.))(0) =
(F(-; 0), a(.))A.

A first theorem says that if the kernel F has bounded norm then the associated operator L is
compact (see [8] pag. 316):

Theorem 2 Let X and T be locally compact Hausdorff spaces and F E L 2(X x T). Then L is well
defined and is a compact operator.

Such a kernel is commonly called a Hilbert-Schmidt kernel.
A second result tells us that if a linear operator is compact, then it has a discrete spectrum

(see [9] pag. 323):

Theorem 3 Let L be a compact operator on (complex) normed spaces, then the spectrum S of L
is at most denumerable.

A third result says that if L is continuous and operates on Hilbert spaces then the compactness
property transfers to the adjoint of L (see [9] pag. 329):

Theorem 4 Let L be a compact operator on Hilbert spaces, then the adjoint L* is compact.

Trivially, the composition of two compact operators is compact, so the operators LL* and L*L
are compact and will have a discrete spectrum as guaranteed by theorem 3. The singular value

6



decomposition (SVD) for the operator L can therefore be computed as the collection of triples
(ai, ai, bi), i = 0, ... where the ai constitute the spectra of both LL* and L*L and the ai and bi are
the corresponding eigenvectors.

The last result can now be enunciated (see [40] Chap.IV,Theorem 2.2):

Theorem 5 Let L : A -+ B be a linear compact operator between two Hilbert spaces. Let at, bi, ai
be the singular value decomposition of L, where the ai are in decreasing order of magnitude. Then

1. An optimal n-dimensional approximation to L is L, = an=_l aiaibi

2. The approximation error is d,(L) = an+l, A2 (L) -N= +l (72

As a result we know that when our original template kernel F(x) and the chosen family of
deformations R(9) define a Hilbert-Schmidt kernel F(x; 0) = (F o R(0))(x) then it is possible to
compute a finite discrete approximation as for the case of 2D rotations.

Are the families of kernels F(x; 0) of interest in vision Hilbert-Schmidt kernels? In the cases of
interest for vision applications the 'template' kernel F(x) typically has a finite norm, i.e. it belongs
to L 2 (X) (all kernels used in vision are bounded compact-support kernels such as Gaussian deriva-
tives, Gabors etc.). However, this is not a sufficient condition for the family F(x; 0) = F o R(0)(x)
obtained composing F(x) with deformations R(0) (rotations, scalings) to be a Hilbert-Schmidt
kernel: the norm of F(x; 0) could be unbounded. A sufficient condition for the associated family
F(x; 0) to be a Hilbert-Schmidt kernel is that the inverse of the Jacobian of the transformation R,
IJRI-1 belongs to L 2(T). In fact the norm of F(.; .) is bounded above by the product of the norm
of F in X and the norm of IJRL- in T:

IIF(; .)112 = I F(x; 0) 2dxds

= JTX I(F o R(0))(x)12dxdG

J< x IJR(0)l-lIF(y)i2dydO

= IiF(.)112111JR(.)i-l112

Which is bounded by hypothesis.
A typical condition in which this arises is when the transformation R is unitary, e.g. a rotation,

translation, or an appropriately normalized scaling, and the set T is bounded. In that case the
norm of IIJRII-1 is equal to the measure of T. The following sections in this paper will illustrate
the power of these results by applying them to the decomposition of rotating 2D kernels (section 2),
2D kernels into sums of X-Y-separable kernels (section 4.2), rotating and scaled kernels (section 5).

A useful subclass of kernels F for which the finite orthonormal approximation can be in part
explicitly computed is obtained by composing a template function with transformations To belong-
ing to a compact group. This situation arises in the case of n-dimensional rotations and is useful
for edge detection in tomographic data and spatiotemporal filtering. It is discussed in [36, 37].

4 Steerable approximations: practical issues and experimental
results

In this section the formalism described so far is applied to the problem of generating steerable
and scalable approximations to convolution kernels for an edge-detector. The Gaussian-derivative

7
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Figure 2: The kernel h(O) (see eq. (3) and (23)). Angle 0 in abscissa. The template function is as
in Fig. 3 with oa,: ay ratios of 1:1, 1:2, 1:3. The orientation-selectivity of the filters with impulse
response equal to the template functions can be estimated from these plots: the half-width of the
peak is approximately 600, 350, 20 ° .

kernels used by [38, 39] have been chosen for this example. These kernels have an elongated shape
to achieve high orientation selectivity (equivalently, narrow orientation tuning). The real part of
the kernels is a Gaussian G(x, ot, a,) = exp -((x/ao) 2 + (y/a,) 2 ) differenciated twice along the
Y axis. The imaginary part is the Hilbert transform of the real part taken along the Y axis (see
Figures 3 and 6, top-left).

One more twist is added: the functions ai in the decomposition may in turn be decomposed
as sums of a small number of X-Y-separable functions making the implementation of the filters
considerably faster.

4.1 Rotations

In the case of rotations theorem 1 may be used directly to compute the decomposition. The
calculations proceded as indicated in section 2. For convenience they are summarized in a recipe:

1. Select the 'template' kernel F(x) of which one wants rotated versions Fo(x) = F o Ro(x) =
F(x cos(O) + ysin(0), -x sin(O) + ycos(0)) and the maximum tolerable error r/.

2. Compute numerically the function h(O) using its definition (Eq. (3)). See Fig. 2.

3. Compute the discrete Fourier transform h of h. Verify that the coefficients hk are non-negative.

8
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Figure 3: The decomposition (ai, bi, oi) of a complex kernel used for brightness-edge detection [39].

for i = 0 ... 8. The real part is above; the imaginary part below. The functions bi(8) are complex
exponentials (see text) with associated frequencies vi = i.
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(rec-0.9) (rec-50.9) (rec-111.9) (rec-117.9)

Figure 5: Functions reconstructed at angles 0° , 50°, 111°0 117 ° from the optimal decomposition
shown in Fig ue. 3. Nine components were used. The reconstruction error is 13% at all angles (see
caption of Fig. 4).

4. Order the hk computed at the previous step by decreasing magnitude and call their square
roots vi (see Fig. 3 (Top right)) and the corresponding frequencies Yv (see Eq. (4)).

5. Define the functions bi(0) according to Eq. (5) and the vi calculated at the previous step.

6. Compute the error plots 5(n) and A(n) from eq. (7), (8) (see Fig. 6). Obtain the number n
of components required for the approximation as the first integer where the error drops below
the tolerable error a/.

7. Compute the functions ai(x) using Eq. (6). (See Fig. 3).

8. The n-approximation of Fs(x) can now be calculated using Eq. (2).

The numerical implementation of the formulae of section 2 is straightforward. In the imple-
mentation used to produce the figures and the data reported in this section the kernels F4 were
defined on a 128x128 array of single-precision floating-point numbers. The set of all angles was
discretized in 128 samples. The Y-axis variance was oy = 8 pixels, and the X-axis variance was

= kay with k = 1, 2, 3. Calculations were reduced by a factor of two exploiting the hermitian
symmetry of these kernels; the number of components can also be halved - the experimental data
given below and in the figures are calculated this way.

Notice first that the coefficients as converge to zero exponentially fast; as a consequence the
same is true for both errors. This is very important in practice since it implies that a very small
number of coefficients is required. The kernel reconstructed using 9 components is shown at four
different angles in Fig. 5. The reconstruction may be computed a~t any angle 0 in a continuum.

In Fig. 4 (Bottom) the approximate reconstruction is shown for n = 4,9, 15. Notice that
the elongation and therefore the 'orientation selectivity' of the filter increases with the number of
components. In Fig. 7 the modulus of the response of the complex filter to an edge is shown for
two different kernels and increasing levels of approximation. The number n of singular components

required to reconstruct the Ar. :ry = 1: 1, and wa: ry = 1: 2 families is smalle r as indicated by

the plots and in the caption of Fig. 6.
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reconstruction error
log(s.val)

..............t::~'""'r'-.. .... 2- -

le+00- -

(gaus1) (gaus-2) (gaus-3)2- _
.. . .... .....le-03- -

"are respectively 1 1, 1 2, 1: 3 . (Right) The log of the reconstruction errors are plotted
to the number n of components employed: 5 exp(-) with r 1.7, 5.2, 8.2...

12:,:,:,: ........ %l...................~ . . . . . ~ e -02 -

(gaus-1) (gaus-2) (gaus-3) 2-
le-03 -

0.00 5.00 10.00 15.00 20.00

Figure 6: Comparison of the error plots for three kernels constructed differenciating Gaussians of
different aspect ratios as in Fig. 3. (Left) The three kernels shown at an angle of 120°; the ratios
a,r: cru are respectively 1 : 1, 1: 2, 1 : 3 . (Right) The log of the reconstruction errors are plotted
against the number of components employed. For 10% reconstruction error 3, 6, 10 components
are needed. For 5% reconstruction error 3, 7, 12 components are needed. Notice that for these
Gaussian-derivative functions the reconstruction error decreases roughly exponentially with respect
to the number n of components employed: An ; exp(--) with r " 1.7,5.2,8.2.
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i t I angle angle
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(a) (b)

Figure 7: Magnitude of the response vs. orientation angle of orientation-selective kernels. The
image is an edge oriented at 1200 (notice the corresponding peak in the filter responses). The
kernels are as in Fig. 6: (gaus-2) for (a) and (gaus-3) for (b). The plots show the response of
the filters for increasing approximation. The first approximation (2 components) gives a broadly
tuned response, while the other approximations (4,6,8 ... components) have more or less the same
orientation selectivity (half-width of the peak at half-height). The peak of the response sharpens
and the precision of the approximation is increased (1 % error for the top curves) when more
components are used.
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4.2 X-Y separability

Whenever a function F is to be used as a kernel for a 2D convolution it is of practical importance
to know wether the function is X-Y-sepa,rable, i.e. if there are two functions fX and fY such that
F(x, y) = fx(x)fY(y). If this is true the I2D convolution can be implemented cheaply as a sequence
of two ID convolutions.

Even when the kernel F is not X-Y-separable it may be the sum of a small number of separable
kernels [41]: F(x, y) = Ei f(x)fjY(y). One may notice the analogy of this decomposition with the
one expressed in Eq. (1): the function F(x, y) may be thought of as a kernel defining an operator
from a space A of functions fx(x) to a space B of functions fY(y). At a glance on can see that the
kernels ai of Fig. 3 are Hilbert-Schmidt: they have bounded norm. Therefore (see sec. 3) a discrete
optimal decomposition and approximation are possible. Again the SVD machine may be applied to
calculate the decomposition of each one of the ai and its optimal ni-component approximation. If
the SVD of ai is indicated as: ai(x, y) = h_=1 Pihaih(x)aYh(y) then the approximate decomposition
of Fo(x, y) expressed in Eq. (2) and (20) becomes:

N ni

Fo(x, y8)= ibi() E Piha'h(x)aYh(y) (9)
i=l h=l

How is this done in practice? For all practical pourposes the kernels ai are defined on a discrete
lattice. The SVD of a kernel defined on a discrete M x N rectangular lattice may be computed
numerically using any one of the common numerical libraries [10, 42] as if it was a M x N square
matrix A of rank R. The typical notation for the matrix SVD is: A = UWVT where U and V are
orthonormal M x R and R x N matrices and W is R x R band-diagonal with positive entries wi
of decreasing magnitude along the diagonal. If this is written as

R

A = kUkVk (10)
k=l

where Uk and Vk are columns of U and V the analogy with Eq. (2) becomes obvious. Notice that
the (hidden in the vector notation) row index of U plays the role of the coordinate y and the row
index of V plays the role of the coordinate x. Rewriting the above'in continuous notation we obtain:

R

a(x, y) = E Wkuk(y)vk(z) (11)
k=l

The first two terms of the separable decompositions are shown in Fig. (8) for the functions a 3 and
a8s

Wether few or many components will be needed for obtaining a good approximation is again
an empirical issue and will depend on the kernel in question. The decomposition of the singular
functions ai associated to the Gaussian-derivative functions used for these simulations is particularly
advantageous; the approximation error typically shows a steep drop after a few components are
added. This can be seen from he curves in Fig. 8 (Bottom-left) where the log of the error is plotted
against the number of X-Y-separable components. All the ai of Fig. 3 can be decomposed this way
in sums of X-Y-separable kernels. The number of components needed for approximating each with
1% accuracy or better is indicated in the plots of Fig. 8 (Bottom-right) the real and imaginary
parts have roughly the same separability. One can see that the number of components increases
linearly with i. The caption of Fig. 8 gives precise figures for the Gaussian 3 : I1 case.
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It is important to notice that rotated versions of the original template functions F cannot
be represented by sums of X-Y-separable functions with the same parsimony (see again Fig. 8

(Bottom-left) upper curves). This is one more reason to represent F[n] as a sum of orthonormal
singular functions, rather than as as sum of rotated copies of the template functior (Theorem 1,
statement 7.), as discussed at the end of Sec. 2. One must remember that beyond X-Y-separation
there are a number of techniques for speeding up 2D FIR filtering, for example small generating
kernel (SGK) filtering [1], that could further speed up the convolutions necessary to implement
deformable filtering.

5 Rotation and scale

A number of filter-based early vision and signal processing algorithms analyze the image at multiple
scales of resolution. Although most of the algorithms are defined on, and would take advantage of,
the availability of a continuum of scales only a discrete and small set of scales is usually employed due
to the computational costs involved with filtering and storing images. The problem of multi-scale
filtering is somewhat analogue to the multi-orientation filtering problem that has been analyzed
so far: given a template function F(x) and defined Fa(x) as F,(x) = al/2F(ax), a E (0, oo) one
would like to be able to write F, as a (small) linear combination:

F (x) = Zsi(a)d(x) a E (O, oo) (12)

Unfortunately the domain of definition of s is not bounded (it is the real line) and therefore the
kernel Fq(x) is not Hilbert-Schmidt (it has infinite norm). As a consequence the spectrum of the
LL* and L*L operators is continuus and no discrete approximation may be computed.

One has therefore to renounce to the idea of generating a continuum of scales spanning the
whole positive line. This is not a great loss: the range of scales of interest is never the entire real
line. An interval of scales (al, a2 ), with 0 < al < a2 < oo is a very realistic scenario; if one takes
the human visual system as an example, the range of frequencies to which it is most sensitive goes
from approximatly 2 to 16 cycles per degree of visual angle i.e. a range of 3 octaves. In this case
the interval of scales is compact and one can apply the results of section 3 and calculate the SVD
and therefore an L 2-optimal finite approximation.

In this section the optimal scheme for doing so is proposed. The problem of simultaneously
steering and scaling a given kernel F(x) generating a family F(a,O)(x) wich has a finite approxima-
tion will be tackled. Previous non-optimal schemes are due to Perona [36, 37] and Freeman and
Adelson [15].

5.1 Polar-separable decomposition

Observe first that the functions ai defined in eq.(6) are polar-separable. In fact x may be written
in polar coordinates as x = IIxIIR0(x)u where u is some fixed unit vector (e.g. the 1st coordinate
axis versor) and q(x) is the angle between x and u and R(x) is a rotation by q. Substituting the
definition of F0 in (6) we get:

ai(x) = at 1 f F(lxlI R°+±(x)(u))eJ27rvi"d =

=a7 e j2i(X) f F(IIXIIR(U))ej2 i )'d1
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so that (2) may be also written as:

N

Fo(x) = E aici(IIxII)e3 i(G-(x)z (13)
i=1

ci(xllxi) = ai F(jlxIIlR+(u))eJ2r vi d¢ (14)

The scaling operation only affects the radial components ci and does not affect the angular
components. The problem of scaling the kernels ai, and therefore F0 through its decomposition, is
then the problem of finding a finite (approximate) decomposition of continuously scaled versions
of functions c(p):

ca(p) = ZSk(a)r'k(P) a E (al,a2 ) (15)
k

If the scale interval (al, a 2) and the function c are such that the operator L associated to F is
compact then we can obtain the optimal finite decomposition via the singular value decomposition.
The conditions for compactness of L are easily met in the cases of practical importance: it is
sufficient that the interval (rl, a 2) is bounded and that the norm of c(p) is bounded (p E R+) .

Even if these conditions are met, the calculations usually cannot be performed analytically. One
can employ a numerical routine as in sec. 4.2 for X-Y-separation and for each ci (below indicated
as ci) obtain an SVD expansion of the form:

ci(p) = E yksk(or)rk(p) (16)
k

As discussed before one can calculate the approximation error from the sequence of the singular
values ?k. Finally, substituting (16) into (14) the scale-orientation expansion takes the form (see
Fig. 11):

N ni
Fo, =(x) = aei2 7rvi(6-k(x)) >Z -Sk (a)r(llI Ixj) (17)

i=l k=1

Filtering an image I with a deformable kernel built this way proceeds as follows: first the
image is filtered with kernels a'(x) = exp(-j27vi0(x))rT(ljxll), i = 0,...,N, k = 0,...,ni, the
outputs Ik of this operation can be combined as Io,a(x) = Zl aibi(O) Enl '4i(a)Ik(x) to yeld
the result. The filtering operations described above can of course be implemented as X-Y-separable
convolutions as described in sec. 4.2.

5.1.1 Polar-separable decomposition, experimental results

An orientation-scale decomposition was performed on the usual kernel (second derivative of a
Gaussian and its Hilbert transform, a : ay = 3: 1). The decomposition described in sec. 4.1 was
taken as a starting point. The corresponding functions ci of eq. 13 are shown in Fig. 9.

The interval of scales chosen was (arl,a 2 ) s.t. al : a 2 = 1 : 8, an interval which is arguably
ample enough for a wide range of visual tasks.

The range of scales was discretized in 128 samples for computing numerically the singular value
decomposition (7-, S , rk) of ci (p). The computed weights ,; are plotted on a logarithmic scale in
Fig. 10 (Top). The 'X' axis corresponds to the k index, each curve is indexed by i, i = 0,..., 8.
One can see that for all the ci the error decreases exponentially at approximately the same rate.
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Figure 9: (Top)The plots of ci(p), the radial part of the singular functions ai (cfr. eq. 13). The 0
part is always a complex exponential. The original kernel is the same as in fig. 3. (Bottom) The
0th, 4th and 8th components co, c4 and cs represented in two dimensions.
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The components ri(p) and s,(a), i = 4, k = 0,...,3 are shown in the two plots at the bottom of
Fig. 10.

In figuce Fig. 11 reconstructions of the kernel based on a 1% error decomposition are shown
for various scales and angles. A maximum of 1% error was imposed on the original steerable
decomposition, and again on the scale decomposition of each single ai. The measured error was
2.5% independently from angle and scale. The total number of filters required to implement a
3-octave 1% (nominal, 2.5% real) approximation error of the 3:1 Gaussian pair is 16 (rotation)
times 8 (scale) = 128. If 10% approximation error is allowed the number of filters decreases by
approximately a factor 4 to 32.

6 Open issues and discussion

A few issues remain open to investigation:

1. Sometimes one would like to generate a discrete decomposition of a family of filters that obeys
other constraints than just being the most parsimonious one. For example (a.1) hardware
limitations could constrain the shape of the interpolating funtions b(0), (a.2) one would like to
build pyramid implementations of the decomposition for speeding up the filtering stage (work
on this issue has been done by Simoncelli et al. [11]).

2. Another interesting question mentioned in the introduction is the synthesis of the discrete
decomposition directly from the specification of an early vision task, rather than passing
through the synthesis of a 2D (nD) kernel which then is deformed somewhat arbitrarily. Work
in this direction has been done by Hueckel [22, 23], Hummel [24], and Haralick [17] who
approached the problem of feature (step edge, line in [23]) detection and localization as one
of projecting image neighbourhoods on small-dimension linear subspaces, and deriving the
relevant parameters (orientation, position) of the feature from this reduced representation.

Hummel's approach is particularly interesting: the parameters describing the feature are
modelled as continuous random variables. The neighbourhood operators (= kernels of the
linear filters) used to project each neighbourhood onto a small-dimensional subspace space are
selected using the Karhunen-Loeve transform. Such procedure guarantees that the projection
maximizes the variance of the parameters and therefore the parameters thus obtained are
maximally informative.

The similarity of the kernels derived by Hueckel amd Hummel to the ai depicted in Figure 3
is not totally surprising: the polar separability and the fact that the tangential component
of the kernels is sinusoidal has to be expected from the fact that one of the parameters in
question is a rotation in the plane.

7 Conclusions

A technique has been presented for implementing families of deformable kernels for early vision
applications. A given family of kernels obtained by deforming continuously a template kernel is
approximated by interpolating a finite discrete set of kernels. The technique may be applied if and
only if the family of kernels involved satisfy a compactness condition. This improves upon previous
work by Freeman and Adelson on steerable filters in that (a) it is formulated with maximum
generality to the case of any compact deformation, or, equivalently any compact family of kernels,
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and (b) it provides a design technique which is guaranteed to find the most parsimonious discrete
approximation.

Unlike common techniques used in early vision where the set of orientations is discretized, here
the kernel and the response of the corresnonding filter may be computed in a continuum for any
value of the deformation parameters, with no anisotropies. The approximation error is computable
a priori and it is constant with respect to the deformation parameter. This allows one, for example,
to recover edges with great spatial and angular accuracy.
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A Appendix

A.1 Proof of theorem 1

What follows is a derivation to prove theorem 1. The proof is summarized at the end of the section
Proof. The family of functions Fs defined by eq. (1) may be thought of as the kernel associated
to a linear operator L : A B, defined by

b(0) = (La)(0) = JR Fo(x)a(x)dx (18)

where A = L2 (R2), and B = L2(S1), the square integrable functions defined on the plane and the
circle respectively, and a E A, b E B, 0 C $1. Let L* denote the adjoint to L, i.e. the unique linear
operator satisfying the equality

(La, b)B = (a, Lb)A (19)

with (, )c indicating the inner product of a Hilbert space C.
If IIFII < oo then Fo is a Hilbert-Schmidt kernel and L has a discrete spectrum; then Fo can be

written as a sum:
N

Fo(x) _ E aa(x)b-(0) (20)
i=1

where the a2 are the nonzero (positive, in fact) eigenvalues of the auto-adjoint operators LL*
L o L* and L*L = L* o L, and the ai and bi are the associated eigenfunctions of L*L and LL*
respectively, and N could be infinite. The collection of triples (0,ai, aib)i=l ... ,N is the singular
value decomposition (SVD) of L (see e.g. [43]).

Observe that expression (20) is in the desired form of (1), with the additional advantage that
the ai and bi are orthonormal bases of A and B (see below). Therefore if one could calculate the
SVD (i.e. the aj, bi and ai) of L explicitly one would be able to write Fo as in (1), and the problem
would be solved.

L* can be computed from its definition (19) and (18) and is:

(L*b)(x) = f Fo(x)b(0)dO (21)

hence the LL* operator is

(LL*b)(O) = j H(O,O')b(O')dO' (22)

H(0, 0') JR Fo(x)Fo,(x)dx (23)

and L*L is

(L*La)(x) = JR K(x,x')a(x')dx' (24)

K(x,x') = j Fo(x)Fo(x')d0 (25)

Observe that the kernel associated with LL* is a function of the difference of its arguments only.
To see that change the variable of integration in (23), y = Rox, obtaining H(O, 0') = H(O - O', 0) =
h(0 - 0').
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The eigenvalue-eigenvector problem for LL*

LL*bi = Aibi (26)

can then be solved explicitly substituting (22) in (26):

j h( - ')bi(O')dO' = Aibi(O) (27)

The equation holds between the Fourier transforms of the two terms of the shift-invariant convolu-

tion of eq. (27):
h(v)bi(v) = Aib-i() (28)

The nonzero solutions of this equation are the couples (Ai, bh) s.t. Ai = h(vi) and bi(v) = 6(v- vi);
therefore

<xi = h(Vi)112 b-() = ej2 7rvti (29)

where, by convention, the frequency numbers vi are ordered so that h(vi) is a nonincreasing se-
quence: h(vi) > h(v/i+l) > 0. For multiple eigenvalues any linear combinations of the corresponding
eigenfunctions (eigenvectors) will also be eigenfunctions.

The eigenfunctions of the L*L operator cannot be easily determined directly from its integral
expression (24) as for LL*. However one can make use of the fact that L*bi is an eigenfunction of

L*L, which can be verified as follows: L*L(L*bi) = L*(LL*b-) = L*Aibi = Ai(L*bi). The unit-norm
eigenfunctions of L*L are therefore the functions defined by

ai(x) A bi2 = ai- F(x)eji2 Vid (30)

i.e. at each x, ai(x) is the conjugate of the Fourier coefficient of Fo(x) corresponding to the
frequency -vi.

In conclusion (the numbers refer to the corresponding statements of the theorem):

1. Follows from the properties of SVD and the fact that the sum (20) is built using the SVD
triples.

2. As above.

3. From equation (30) and the fact that the dimension of the range of L* is equal to N, the
number of nonzero eigenvalues.

4. Follows from SVD properties.

5. Follows from the fact that ai > ai+l and that Ei vi = IILI12 < oo. May be seen directly from

SVD properties.

6. From (13) one can see that F ] is a function of Ixl and 0 - +(x) only.

7. The functions ai are linearly independent, so any collection of n of them spans an n-dimensional
subspace of L2(R 2). This is the same subspace spanned by any linearly independent collection

Fi] i = 1,..., n. The thesis follows from the fact F[ ] = F[no Ro. The coefficients oai can
be obtained with the usual change of basis formulae.
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