
February 1991 LIDS-P-2021

OPTIMAL DISTRIBUTED POLICIES

FOR CHOOSING AMONG MULTIPLE SERVERS t

by

George D. Stamoulis $ and John N. Tsitsiklis j

Abstract

We analyze a system consisting of multiple identical deterministic servers. Customers arrive

in several streams; each customer has to decide which server to join by looking only at previous

decisions of customers of the same stream. For three variations of this problem, we prove

that Round Robin is the policy minimizing the total expected delay over all customers of an

individual stream. We also consider the problem of optimizing the total expected delay over all

streams; we investigate the performance of Round Robin and we argue that it is not optimal

for this problem. Most of our results also apply under more general service time distributions.

t Research supported by the NSF under Grant ECS-8552419 and by the ARO under Grant
DAAL03-86-K-0171.

t Laboratory for Information and Decision Systems, Massachusetts Institute of Technology,

Cambridge, Mass. 02139, USA; e-mail: stamouli@lids.mit.edu, jnt@lids.mit.edu.

1

1. INTRODUCTION

The topic of server allocation in multiserver systems has received significant attention in

the literature. There have been numerous papers dealing with policies for assigning the ar-

riving customers to one of the available servers; the objective is usually the optimization of

a performance measure such as the average delay per customer, the throughput etc. For

most of the systems analyzed in the literature, it is assumed that they consist of exponential

servers and that decisions are made under perfect information of the system's state; see [Sti85]

and references therein. In this paper, we consider problems involving identical deterministic

servers and decision-making under imperfect information. The general context of our analysis

is depicted in Fig. 1: There are multiple arrival streams and multiple deterministic servers;

each scheduler allocates the customers of the corresponding stream by only looking at its own

previous decisions. There are basically two types of policies that can reasonably be applied,

namely randomized allocation and Round Robin. For most of the variations of our problem,

we establish that Round Robin is optimal for niininmizing the total expected delay over all

customers of a stream; we also present several related open questions.

Motivation for analyzing the problems considered in this paper primarily arises from the

context of routing in store-and-forward data networks and in interconnection networks of mul-

tiprocessor computers. In most of such networks, there are several alternative paths for each

origin-destination pair; usually, routing is done in a distributed fashion, with limited central-

ized coordination; see [BeG871, [BOSTT89] and references therein. Thus, each node routes the

packets it generates (towards one of the alternative paths) by possibly knowing the routing

policies of the other processors, but without having any further information on the actual paths

and the timing of packets generated elsewhere. This fact motivates our considering systems

that involve several contending streams, where each of them has only limited knowledge of

the global state. Furthermore, note that, in the literature of routing in parallel computers,

it is usually assumed that processors communicate by exchanging packets of fixed length (see

[BOSTT89] and references therein); also packets of fixed length are used in the emerging stan-

dard of high-speed conununications, namely the Asynchronous Transfer Mode [Min89], as well

as in some standards for store-and-forward data networks [BeG87]. Therefore, the various

interconnecting arcs in such networks should be modeled as deterministic servers. Finally, our

problems are also related to the context of resource allocation in multiprocessor systems, where

there are usually several contending sources generating jobs to be processed; even though these

jobs may have different service times, several of our results are still relevant, because they also

hold under more general service time distributions.

In [EVW80], Ephremides et al. analyze the following problem: A stream of arriving cus-

tomers have to choose from L identical exponential servers, where L > 2; each customer has

to join a server upon arrival, in such a way that the expected total delay over all customers

2

arriving up to a certain time is minimized. It is established therein that Round Robin (RR)

is the optimal allocation policy for the aforementioned problem. In this paper, we prove that

the same result also applies for the case of deterministic servers; see §2.1. In §2.2, we consider

a more general problem, namely we assume that each of the deterministic servers also receives

a stream dedicated to be served by this same server; all of these streams are taken to have the

same statistics; see Fig. 3. The customers allowed selection of a server are now called special;

each of them chooses which server to join (upon arrival) by only knowing the previous decisions

by special customers. (Arrivals corresponding to dedicated streams are not observable prior

to decision-making.) Thus, each special customer selects its respective server while having

imperfect information on the workload of the available servers. Again, RR is established to be

the policy minimizing the expected total delay over all special customers. A similar problem

was analyzed by BonoIni and Kumar [BoK90], with all dedicated and special streams being of

the Poisson type. However, only static randomized policies are considered therein, that is all

customers decide which server to join by applying the same probabilistic rule; this gives rise

to a nonlinear optimization problem. (Obviously, RR is a non-static policy.)

In §3, we consider the system depicted in Fig. 1, where all arrival streams are identically

distributed. Each customer chooses which of the available deterministic servers to join, by

knowing only the previous decisions of customers belonging to the same stream. We analyze

two optimization problems. In the first one, each stream of customers wishes to minimize its

individual total expected delay; in this context, we prove that a set of randomized versions

of RR constitute an equilibrium set of policies (in the sense of Game Theory); see §3.1. On

the contrary, in §3.2, the objective is social optimization, that is to minimize the steady-

state average delay per customer over all streams (which are taken Poisson). Regarding the

latter problem, we present some first results and discuss some open questions that we intend to

investigate in the future. A sinilar problem (with exponential servers and Poisson streams) was

analyzed by Ni and Hwang [NiH85]. However, only static randomized policies are considered

therein, thus reducing the problem to a nonlinear program.

To the best of our knowledge, the results of this paper are new. Even though there exists

an extensive literature on stochastic scheduling, the use of non-static policies in problems with

imperfect information has received limited attention. Related is the work by Beutler and

Teneketzis [BeT88], who gave a framework for analyzing problems with only two alternative

scheduling decisions. However, the problems analyzed therein involve one scheduler, in contrast

with the problems discussed in §3 of the present paper.

3

2. PROBLEMS WITH A SINGLE SCHEDULER

2.1 One Arrival Stream and Several Servers

In this subsection, we prove that Round Robin (RR) is an optimal policy for assigning any

stream of K arriving customers to one of L identical deterministic servers with unit service

time; see Fig. 2. All servers are assumed to be initially empty; the optimization criterion

is the expected total delay over the K arriving customers. A little thought reveals that RR

simulates the G/D/L queue, where each customer joins the first available server; this is due to

the assumption of deterministic service time. Thus, it is intuitively clear that the RR policy

should be optimal. However, the above argument does not constitute a rigorous proof, because

it only shows that each customer suffers the smallest possible delay given the decisions of

customers that arrived previously. Below, we present the rigorous proof for the case of L = 2

servers, and then we extend the result to all L > 2.

Proposition 1: Round Robin is an optimal policy for the case of 2 servers, for any sequence

of arrival instants (either fixed or random). ·

Proof: Let tk be the arrival time of the kth customer, for k = 1,...,K, and let w (i) be

the unfinished work at the jth server at time tk-, for j = 1, 2. It is initially assumed that

tl,..., tK are fixed and known and that the wi)'s are observable; these assumptions will prove

to be redundant. It can be established that the optimal decision for the kth customer is to

join the second server if and only if w(l) > w(2) . (In fact, for w (l) - w(2) , both decisions

are equivalent.) The proof is done by a straightforward (yet tedious) Dynamic Programming

argument with finite horizon; in order not to break continuity, we present this argument in

the Appendix. Thus, the optimal policy is the myopic one, namely for each customer to join

the least loaded server. Furthermore, we have w(l) = w(2) = 0, by the assumption that both

servers are initially empty. Assuming that the first customer joins the second server, then we

have w(l) + 1 > (2) > w(1) = 0, which implies that the second customer should join the first

server. (Note that if w2) = 0, then the second customer could alternatively join the second

server; however, this does not apply for all sequences of arrival instants.) Furthermore, we

have

(1) = [W(1) +1 - (t 3 - t 2)]+ and (2) = [W(2) - (t3 - t2)] +

where [ca]+dfmax{0, a); this implies that w(2) < w(1) < (2) + 1 and thus the third customer

should join the second server etc. It follows that RR is an optimal policy, for any fixed

sequence of arrival instants; since the structure of RR does not depend on the arrival instants,

its optimality is preserved under random arrivals. Finally, the assumption that workloads at

time t 2 ,.. ., tK are observable also proved to be redundant. Q.E.D.

As already mentioned, there are cases where the optimal policy is not unique; e.g., if all

interarrival times exceed unity (which equals the service time), then all policies are equivalent.

4

However, Proposition 1 guarantees that RR is always optimal. Next, we consider the case of

more than two servers.

Proposition 2: Round Robin is an optimal policy for the case of L > 2 servers, for any

sequence of arrival instants (either fixed or random). I

Proof: The result is trivial when the total number K of customers does not exceed L. Hence-

forth, we assume that K > L. Since there are finitely many policies, at least one of them is

optimal. We fix an optimal policy; let cil, i2,.. ·. be the ordered indices of customers choosing

the ith server under this policy. Let us focus on the subset of customers choosing either the

ith server or the jth server under the optimal policy (with i $4 j). By the optimality of RR

for the case of two servers (see Proposition 1), there should hold

Cil < cjl < ci2 < cj2 < ... or cjl < Cit < cj2 < ci2 < ... ; (1)

for, otherwise, we can redistribute the customers between servers i and j and (in general) reduce

the expected total delay. [For certain sequences of arrival instants, such a redistribution would

not change the value of the expected total delay, thus yielding a new optimal policy that

satisfies (1).] Therefore, we have cil < cj 2. Combining these inequalities over all pairs i,j it

follows easily that {ct, .. . , CL} {1, ... , L}; that is, each of the first L customers is assigned

to a different server. Let us assunme, without loss of generality, that cil = i for i -- 1, L.

Applying (1) with i = 1 and j > 1, it is seen that the leftmost set of inequalities apply; thus,

we have c12 < cj2 for all j > 1, which implies that cl2 = L + 1. That is, after all L servers have

been exhausted, the very first one is selected again. Furthermore, applying (1) with i = 2 and

j > 2, it follows that c22 < cj 2 for all j > 2, which implies that c2 2 = L + 2. Continuing this

argument, we can establish the optimality of the RR policy. Q.E.D.

Using Propositions 1 and 2, it is easily seen that, in the case of an ergodic arrival process,

RR is optimal for minimizing the steady-state average delay per customer.

It is worth noting that Proposition 1 (and consequently Proposition 2) also holds under

another interesting optimization criterion, namely for minimization of the expected departure

time of the last customer to complete service. The proof follows the same lines: first, a finite

horizon Dynamic Programming argument proves that joining the least loaded server is again

optimal; then, using this, the optimality of RR is established as in Proposition 1.

2.2 Server Allocation in the Presence of Dedicated Streams

In the problem of §2.1, there was only a stream of K arriving customers to be assigned to

the servers available; this stream will henceforth be referred to as special. In this subsection,

we analyze a more general problem; in particular, we now assume that in addition to the

special stream, there are L identically distributed streams of customers, with each of them

being dedicated to a different server; see Fig. 3. No restrictions apply for either the marginal

5

or the joint statistics of the dedicated streams; however, we assume that the special stream

is independent of the dedicated ones. Each server operates on a FIFO basis. The scheduler

receives only the special stream of customers and decides how to assign them to the servers,

based only on its previous decisions; the scheduler cannot observe the workload of the servers.

We shall prove that Round Robin is still optimal for minimizing the expected total delay over

all special customers. This result makes perfect intuitive sense. Indeed, since the scheduler

cannot observe the dedicated streams, it has the same "estimate" for the additional load

imposed at each different server; thus, the optimal policy should be the same as in the absence

of the dedicated streams. Though somewhat tedious, the proof to follow is based on this idea.

[Of course, if the scheduler were allowed to observe the workloads of the servers, then the

optimal policy would (in general) be different, since it would take into account this additional

information.]

Proposition 3: Round Robin is an optimal policy for any sequence of arrival instants of the

special customers (either fixed or random). ·

Proof: We shall only consider the case L = 2; a similar proof also applies for L > 2. Let

t, ,..., tK be the arrival instants of the special customers, which are initially taken to be fixed.

Let U?) denote the random variable corresponding to the unfinished work at the jth server at

time tk -; this includes the work induced by both the special and the dedicated streams. Our

optimization problem is as follows:

K

minimizeEE[k(U(') + 1) + (1 - Xk)(U(2) + 1)] , over (X1,.,XK) {0, 1 }K . (2)

k=1

Notice that Xk = 1 (resp. Xk = 0) corresponds to the kth customer joining the first server

(resp. the second server). Let us assume that the service discipline is changed from FIFO to

the following: all dedicated customers are alloted preemptive resume priority over the special

ones. The distributions of the Uj)'s remain the same, because the new service discipline is

work-conserving. Henceforth, we assune that this new discipline applies. We have

U(j = V)+ W(2) , (3)

where the random variable V (j) corresponds to the contribution of the dedicated customers to

the unfinished work at the jth server at time tk-; similarly, W(j) corresponds to the unfinished

work due to special customers. Using (2) and (3) and omitting a constant term, it is seen that

our optimization problem is equivalent to the following:

K

-minimizeSF [(xkV,) + (1- zk)V(2)) (W() + (1 - xk)W(2))

k=1

over (Xt,...,XK)E {0,1)}K; (4)

6

Clearly, special customers are transparent to the dedicated ones; this implies that VlJ) does

not depend on (xl,..., XK). Moreover, by symmetry between the dedicated streams, Vk() and

V(2) are identically distributed. Thus, we have

E [ZkV () + (1 - Xk)(2)] = E[V()],

and the optimization problem of (4) reduces to the following:

K

minimizeE E [xkW) + (1 - x) W
(2

)]
, over (x,..., , K) E {0, 1}K (5)k----1

k=l

Recall now that special customers are served only in the absence of any dedicated customers

at the same server. Therefore, during the interval [tk,tk+l), the jth server (where j E {1,2})

can reduce the unfinished work due to special customers by as much as I(j), where the random

variable I() is the total idle period over the interval [tk, tk+l) of a ./D/1 queue serving only

the dedicated stream of the jth server. Recalling also the interpretation of xk (and that service

times equal unity), we have

n (1) = [W-) + Xk - I()] (6.a)

and
w(+)1 = [w(2) + (1- k) -()] (6.b)

with W(1) = W(2) = 0. Since the two dedicated streams are symmetric and independent

of the special stream, the random vectors (Il1),...,I(1)) and (I(2),...,I(2)) are identically

distributed for any k G {1,..., K - 1}. Hence, for each fixed (zl,..., XK), the distribution of

the vector (W(2),..., W (2)) remains the same if we replace I (
2) with '(1) in (6.b) (*). Let us

assume that each W(2) is updated according to this rule [instead of the rule in (6.b)], namely

that
w()= [w(2) + (1 - Xk) - I)] , (6.c)

Then, for each fixed (zX,...,ZK), the value of the "cost" function in (4) still remains the

same, because the expectations involved depend only on the marginal distributions of the

vectors (W(),..., W)) and (W(2), ... , W(2)). [Note that by replacing (6.b) with (6.c), the
joint distribution of these two vectors is (in general) modified.] Notice now that (6.a) and (6.c)

are the updating rules for the unfinished work in a two-server system receiving only the special

(*) This becomes apparent after "unfolding" the iteration in (6.b) as follows:

)= max {O, (1 - Xk) - Ik) (1- Xk-) + (1 - Xk) - -k)

- X *+- , *. *-...)

7

customers at the random arrival instants Il(),I l) + I(l),. .. ,I() + I(l) ... + I()l Since

the optimization problem in (4) also is the same as the one considered in §2.1, it follows from

Proposition 1 that RR is an optimal policy for any fixed sequence of arrival instants of the

special customers. Again, RR is also optimal for random such instants. Q.E.D.

It is worth noting that Proposition 3 also holds for any service time distribution for which

Proposition 1 applies; e.g., for the exponential distribution, according to the result of [EVW80].

As already mentioned in §1, the problem analyzed above is motivated from the context of

distributed routing. Indeed, let us consider the example of Fig. 4. Nodes 0,1 and 3 send

packets to node 2; nodes 1 and 3 behave symmetrically. Of course, node 2 cannot observe

the packets generated by 1 and 3. According to Proposition 3, its optimal routing policy is to

alternate in sending packets through paths 0 -* 1 -- 2 and 0 - 3 - 2. Note that arcs 1 -* 2

and 3 -, 2 correspond to the servers of our problem.

3. PROBLEMS WITH SEVERAL SCHEDULERS

The system to be analyzed in this section is depicted in Fig. 1. There are L deterministic

servers, with L > 2. Customers arrive in N independent and identically distributed streams,

where N > 2. Upon arrival of a customer, the corresponding scheduler decides which server

she will join, based only on its own previous decisions. It is assumed that each scheduler knows

the policy of the rest, without ever receiving any additional information. Two problems will

be analyzed in this context, namely one with individual optimization (per stream) and another

with social optimization (over all streams). Note that the term "individual" here refers to a

single stream, rather than to a single customer (as in [BeS83]); however, using this term in the

present context is appropriate, because each stream is allocated to the available servers on the

basis of individual information.

Again, the system under consideration is motivated from the context of distributed routing.

An example of the same spirit as that of Fig. 4 can be easily constructed; see Fig. 5. For the

network depicted therein, it is assumed that nodes 1 and 2 send packets to node 5; obviously,

we have N = 2 and L = 2, with arcs 3 -- 5 and 4 -- 5 corresponding to the servers.

3.1 Individual Optimization of Contending Streams

In this subsection, we assmune that each of the streams of customers wishes to minimize its

individual total expected delay. Since the situation is "competitive", we are interested in find-

ing equilibrium sets of policies. If the schedulers follow such a set of policies, then none of them

would have incentive to deviate from its own policy; this would ensure fairness among the vari-

ous nodes. As will be proved below, any N-tuple of Symmetrically Randomized Round Robin

policies (Sym.Rand.RR) is an equilibrium set. This class of policies is defined as follows: As-

sumiing that a scheduler applies RR, we define as its decision pattern the vector of the first

8

L allocation decisions (*); of course, this is a permutation of (1,...,L) and it is sufficient to

define the entire sequence of decisions of the scheduler, because it is repeated periodically. A

policy will be said to be Sym.Rand.RR if the scheduler selects its decision pattern randomly, in

such a way that each entry assumes any fixed value m GE 1,..., L} with the same probability

(namely, with probability L). For example, one such policy is obtained when the decision

pattern of a scheduler is selected randomly, with all L! possible orders being equiprobable;

another such policy is obtained when the selection is over all L cyclic shifts of (1,...,L),

with all permissible outcomes having a priori probability L. It should be noted that when a

scheduler is known to adopt a Sym.Rand.RR policy, the other schedulers cannot observe its

decision pattern, even though they may know what the possible patterns are. This assumption

is consistent with on-line distributed routing (see also §1), where the decision pattern of a node

may be determined progressively, as more packets are generated.

Proposition 4: Any N-tuple of Symmnnetrically Randomized Round Robin policies is an equi-

libriumn set of policies, for any marginal distribution of the arrival streams. [

Proof: Let us assume that each of the schedulers corresponding to the first N - 1 streams

adopts a Sym.Rand.RR policy (not necessarily the same); we shall prove that, given this

information, the Nth scheduler should also adopt such a policy, in order to minimize the total

expected delay of the customers of the Nth stream. Indeed, the Nth scheduler visualizes the

situation as follows: Each of the servers will receive a "dedicated" stream, which in fact consists

of customers originating from the first N - 1 "original" streams. Since all servers are treated

symmetrically by a Sym.Rand.RR policy, the Nth scheduler can tell a priori that all these

"dedicated" streams have the same statistics. Therefore, according to Proposition 3, RR (with

any decision pattern) is an individually optimal policy for the Nth scheduler. This implies

that any Sym.Rand.RR policy also is individually optimal for the Nth scheduler, which proves

the result. Q.E.D.

Since the above result is a consequence of Proposition 3, it also holds for any service time

distribution for which Proposition 1 applies.

It should be noted that an N-tuple of RR policies is not necessarily an equilibrium point.

Consider, for example, the case of N = L = 2, with both streams consisting of 2 customers

arriving at times 0 and 1. Clealry, if both N schedulers apply RR with decision pattern (1, 2),

then each of them would have been better off if it had choosen the decision pattern (2, 1). In

fact, if one of the schedulers chooses (1, 2) as its decision pattern while the other chooses (2, 1),

then each customer would suffer the minimum possible delay (namely, one time unit). This

pair of RR policies results in the minimum total expected delay over all customers of both

streams; that is, it constitutes a social optimum. On the contrary, a pair of Sym.Rand.RR

(*) In order to avoid trivialities, we assume that, with positive probability, each stream consists

of at least L customers.

9

policies is not a social optimum, because with positive probability the two schedulers choose

the same decision pattern.

It would be desirable to attain an equilibrium set of policies that do not employ any random-

ization at all. Consider, for example, the following variation of the problem under analysis: All

arrival streams are Poisson with rate p < 1 (see also §3.2) and, for each stream, the objective

is individual minimization of the steady-state average delay per customer. It is can be proved

that any N-tuple of RR policies is an equilibrium set. The idea of the proof is as follows: Let

Pj denote the decision pattern of the jth scheduler, for j = 1,..., N; note that Pj is some

fixed permutation of (1,...,L). Let s () denote the index of the server to receive the first

customer of the jth stream to be served in the kth busy period. Given the initial decision

patterns of the schedulers, it is straightforward that the vector (s(1),..., SN)) evolves as an

irreducible finite-state homogenious Markov chain. (Note that all entries of the corresponding

transition matrix are positive.) Thus, for fixed initial decision patterns P1,. .. , PN, the steady-

state performance is the same as that of a system using a set of Sym.Rand.RR policies with

the permissible initial decision patterns for the jth scheduler being the L cyclic shifts of Pj

(for all j E {1,..., N}). Using ergodicity and Proposition 4, it follows that RR with decision

patterns Pi,..., PN also constitutes an equilibrium set of policies.

3.2 Social Optimization of Contending Streams

Next, we discuss a problem of optimizing a "global" performance measure in the system

introduced in the beginning of this section. We now assume (for simplicity) that each arrival

stream is Poisson with rate p. We are interested in nininmizing the steady-state average delay

per customer, where the average is taken over all streams. We shall consider the simple case

N = L, and we assume that p < 1 so that stability is attainable; e.g., by having each customer

choosing radomly which server to join (with all servers being equiprobable), the system reduces

to N independent M/D/1 queues, each with utilization p.

We denote by f(N; p) the optimal average delay per customer. We are not able to find

an exact expression for f(N; p); however, we derive some bounds that provide us with some

qualitative view of its behavior. In particular, it is easily seen that

f(N 1 N2; p) < min{f(N 1; p), f(N2; p)} (7)

Indeed, for N = N 1 N 2, we can group the servers and the streams in N 1-tuples and dedicate a

different group of servers to each group of streams; by applying the optimal policy correspond-

ing to N = N1 within each of the groups of streams, we attain an average delay of f(N 1; p) per

customer. This implies that f(N 1N 2; p) < f(Nm; p); the inequality f(N 1N 2; p) < f(N 2 ; p) can

be proved in exactly the same way. Investigating the structure of the optimal set of policies

and the behavior of f(N; p) as a function of N seems to be a rather hard problem. Since

our problem is related to distributed routing, it is of interest to analyze the asymptotic case

10

N --+ oo. (In the literature of interconnection networks, asymptotics with respect to the net-

work size play a key role.) It is easily seen from (7) that the performance of the optimal set of

policies does not deteriorate; this, however, does not necessarily imply that the optimal delay

decreases as N -- oo. It is conjectured that limN,,l f(N; p) exists and that it is bounded

away from 1. In other words, some delay due to contention is inevitable even for very large N.

This is in contrast with the M/DIN queue, for which the average delay per customer tends

to 1, for N -- oo and fixed utilization p; such a queue would be obtained if all N streams were

merged to one.

For all problems analyzed so far, Round Robin proved to be an optimal policy. Unfortu-

nately, this is not the case for the present problem. Indeed, let us assume that each of the

schedulers applies an RR policy. Then, for any n and 1, the sub-stream of customers from the

nth stream that join the Ith server form a renewal process, with interarrival time distributed

as Erlang with N degrees of freedom and expected value N. Each server is fed by the sum of

N such processes; for N - oo, this compound process converges weakly to a Poisson process

with rate p (see [0in72]). Therefore, as N t- oo, each of the N queues in the system "tends to

behave" as an M/D/1 queue with utilization p. Thus, letting r(N; p) be the average delay per

customer attained by RR, we have limnNr,,o r(N; p) = 1 + 2(IPp) (see [Kle75]); though intu-

itively clear, the derivation of this limit is technically complicated and will be clarified further

in the final version of the paper. On the other hand, it will be proved below that r(2; p) is

strictly smaller than this limiting value; see Proposition 5. If N is an even number, an average

delay per customer equal to r(2; p) would be attained by dedicating a different pair of servers

to each pair of streams (and forcing each scheduler to apply RR between the corresponding

two servers). Hence, RR over all N servers is definitely non-optimal for large N.

Proposition 5: There holds

r(2; p) < 1 + 2(1 p)

Proof: Assuming that N = 2, we denote as M/D/1 the policy that assigns all customers of the

jth stream to the jth server, for j = 1, 2; clearly, this results in a steady-state average delay of

1 + -PT-. Thus, it suffices to prove that, if both schedulers apply RR, then the performance is

better than the one attained under MID/1. Starting at time 0 with an empty system, let S(J)

be the index of the server to be joined by the first customer to arrive through the jth stream

(when applying RR), for j = 1, 2. We consider the first two customers to arrive; clearly, the

probability that they both "originate" from the same stream equals 1. If 5(1) = S(2), then

RR with two customers from the same stream (resp. from different streams) is equivalent to

MID/1 with two customers from different streams (resp. from the same stream); since the

two scenarios are equiprobable, both RR and M/D/1 perform the same for s(l) = s(2). If

s(l) 4 s(2), then the two customers served will join different servers (under RR), regardless

of which streams they "originate" from; this outperforms M/D/1, because if both customers

originate from the same stream then one of them will delay the other with probability 1 - e-2P.

By appropriately coupling the two systems, namely that with M/D/1 and that with RR, it

follows that the total delay for the first two customers is definitely not smaller under M/D/1;

moreover, under M/D/1, the next two customers will encounter a system at least as loaded

as under RR. Continuing this argument by considering the arriving customers pairwise, it

follows (by induction) that, under RR, the total expected delay over the first 2m customers to

arrive does not exceed that attained under MID/1, for m = 1,... Letting rn -4 oo and using

ergodicity, it is seen that RR is at least as good as M/D/1, regarding the steady-state average

delay per customer. Moreover, RR is strictly better, because the stationary probability that

s(l) 4 s(2) at the beginning of a busy period is positive. (To see this, just notice the following:

If a busy period starts with s(l) = s(2), then, with probability e - 2 p, only one customer will be

served until the system empties; in such a case, the next busy period will start with s(l) 4 s(2).)

Q.E.D.

It is worth noting that the idea used in the proof of Proposition 5 can be applied for any

service time distribution; thus, it can be proved that, for a general such distribution (with

expected value equal to I and coefficient of variation c), there holds r(2; p) < 1 + 2(+c-)P

(This upper bound equals the steady-state average delay per customer of the corresponding

M/G/1 queue; see [Kle75].)

p=0.5

N RR MID/1
1 1.485 1.485
2 1.234 1.487
3 1.227 1.477
4 1.250 1.469
5 1.272 1.475

10 1.355 1.455
20 1.398 1.468
50 1.440 1.458

Table I

Next, we comment on the behavior of r(N; p) as a function of N, for fixed p. Numerical

experiments suggest that r(N; p) exhibits a global minimumn at a value N', which depends on

p. Under light or medium traffic, N' appears to be very small (either 2 or 3) and the minimum

is rather sharp. In Table I, we present some experimental results for p = 0.5. The entries

of the column labeled RR correspond to r(N; 0.5), while those of the column labeled MID/1

correspond to the average delay under the M/D/1 policy defined in the proof of Proposition

5; both policies are compared under the same sequences of arrivals. (Note that, for p = 0.5,

12

the upper bound given by Proposition 5 equals 1.5.) Other experimental results suggest that,

as p -+ 1, the value of N' increases and the minimumn becomes more flat. The behavior of

r(N; p) agrees with intuition. As N increases, there is a trade-off between the increased choice

of servers for each individual customer and the increased "entropy" in the compound arrival

process of each server. For very small N, the former factor prevails and there is a benefit

in increasing N, while, for larger N, it is the latter factor that prevails and the performance

deteriorates. Proving rigorously the validity of these observations seems to be rather hard.

So far we have only dealt with the case L = N; as far as asymptotics with respect to N

are concerned, the case L = ON (where 3 is constant) can be treated similarly. Of interest

are also the cases N = o(L) and L = o(N), which however seem to be simpler. For example,

for constant N, p = ,L (where a < 1 is a constant), and L -- oo, the optimal delay should

converge to 1, at least as fast as the delay of an M/D/I queue with arrival rate a and £ -e oo;

indeed, in this case, an efficient policy is to allocate different [L J servers to each of the arrival

streams. On the contrary, for constant L, p = aL, and N - o, the optimal delay should

converge to that of an MI/D/I queue with arrival rate ac; in this case, each of the servers (under

any "reasonable" policy) is fed by a process that converges to Poisson, as N -- oo. A more

detailed discussion of such cases will be presented in the final version of the paper.

4. CONCLUDING REMARKS

Ill this paper, we have analyzed server allocation problems involving deterministic servers

and decision-making under imperfect information. We began with problems involving a sin-

gle scheduler and then we turned our attention to those with multiple schedulers. For the

latter type of problems, we considered both cases of individual (per stream) and social (over

all streams) optimization. Apart from deriving several results on the corresponding optimal

policies, we stated some conjectures which we intend to investigate in the future. All problems

considered are motivated from the context of distributed routing in data networks and in mul-

tiprocessor computers. Given its diversity and extent of applications, that field appears to be

rich in scheduling problems that have not attracted yet the attention of researchers. Analyzing

such problems seems to be an interesting as well as challenging direction for further research.

REFERENCES

[BeG87] D. Bertsekas and R. Gallager, Data Networks, Prentice Hall.

[BeS83] C.E. Bell and S. Stidham, "Individual versus Social Optimization in the Allocation of Cus-

tomers to Alternative Servers", Management Science, vol. 29, pp. 831-839.

[BeT88] F.J. Beutler and D. Teneketzis, "Routing in Queueing Networks Under hnperfect Informa-

tion: Stochastic Dominance and Thresholds", Stochastics and Stochastics Reports, vol. 26,

pp. 81-100.

13

[BOSTT89] D.P. Bertsekas, C. Ozveren, G.D. Stamoulis, P. Tseng, and J.N. Tsitsiklis, "Optimal Com-

munication Algorithms for Hypercubes", Report LIDS-P-1847, Laboratory for Information

and Decision Systems, M.I.T.

[BoK90] F. Bonomi and A. Kumar, "Adaptive Optimal Load Balancing in a Nonhomogeneous Mul-

tiserver System with a Central Job Scheduler", IEEE Trans. Comput., vol. C-39, pp.

1232-1250.

[Qin72] E. Qinlar, "Superposition of Point Processes", In P. Lewis (Ed.), Stochastic Point Processes:

Statistical Analysis, Theory and Applications, John Wiley, pp. 549-606.

[EVW80] A. Ephremides, P. Varaiya, and J. Walrand, "A Simple Dynamic Routing Problem", IEEE

Trans. Auto. Control, vol. AC-25, pp. 690-693.

[Kle75] L. Kleinrock, Queueing Systems, Vol. I: Theory, John Wiley.

[Min89] S.E. Minzer, "Broadband ISDN and Asynchronous Transfer Mode", IEEE Communications

Magazine, vol. 27, pp. 17-57.

[NiH85] L.M. Ni and K. Hwang, "Optimal Load Balancing in a Multiprocessor System", IEEE Trans.

Softw. Eng., vol. SE-11, pp. 491-496.

[Sti85] S. Stidham, "Optimal Control of Admission to a Queueing System", IEEE Trans. Auto.

Control, vol. AC-30, pp. 705-713.

APPENDIX

In this appendix, we establish a result used in the proof of Proposition 1.

We consider the system of Fig. 2, for the case of 2 servers. Let tk be the arrival time of the

kth customer (which is taken to be fixed), for k = 1,..., K, and let w (j) be the unfinished work

at the jth server at time tk -, for j = 1, 2. The objective is to minimize the total delay over

all customers. Assuming that the wy)'s are observable by the scheduler, it will be proved that

the optimal decision for the kth customer is to join the second server if and only if wl) > w?);

in fact, for wkl) = w 2), both decisions are equivalent.

We shall apply Dynamic Programming with finite horizon. Let Vk(w(1), w(2)) denote the

optimal cost-to-go function (at stage k) and let bt*(w(l), w(2)) be the corresponding optimal

decision for w(l) = w(l) and w(2) = w(2). Bellnian's equations are as follows:

Vk(w((), W(2))= -min {(w(') + 1) V+l([() + 1 - k]+, [(2) - Tk]+),

(w(2) + 1)+ Vk+l ([(l) - Tk]+, [W(2) + 1 -k]+) },

for k -1,...,K- 1, (A.1)

where rk- tk+l - tk; also,

VK(W(1), W(2)) = mnin{w(1) + 1, w (2) + 1}. (A.2)

14

Obviously, Vk(w(1), w(2)) is symmetric and increasing in both its arguments. Because of

symmetry, we only need to consider the case w(l) > w(2) and show that / (w(l), w(2)) = 2.

Indeed, we shall prove by backwards induction that

t;(W(1), w(2)) = 2 and Vk(w(') + 1,w (2)) - Vk(w('),w(2) + 1) _ w(2) -

for w(l) > w(2) (A.3)

First, notice that, for k = K and w(') > w(2), we have from (A.2) that /l*(w('), w(2)) = 2 and

VK(W (1) + 1, W(2)) - VK(W (1), W(2) + 1) = mni{w(1) + 1, w(2)} - min{w(1), (2) + 1}

= w(2) - min{w(1), w(2) + 1}

> W(2) _ W(1),

which establishes (A.3) for the final stage. Next, we fix some k E {1,..., K - 1}. Assuming

that (A.3) holds for k + 1 we shall prove that it holds for k as well. We have to consider four

different cases:

Case of w(2) < rk - 1: The righthand quantity in Bellman's equation (A.1) simplifies to

1 + min{w(1) ± Vk1 ([W(') + +([1 - k]+, 0), w(2) + Vk+ ([W(1) - Tk]+, 0)};

using monotonicity and the fact w(1) > w(2), it follows that /~ (w('), w(2)) = 2.

Case of Tk - 1 < W(2) < W(1) < Tk: The righthand quantity in Bellman's equation (A.1)

simplifies to

1 + min {w(1) + Vk+l(w(l) + 1 - rk,O), W(2)+ Vk+l(0, W(2) + 1 - k)};

using symmetry, monotonicity and the fact w(1) > w(2), it follows that /* (w(1), w(2)) = 2.

Case of rk - 1 < w(2) < Tk < w(1): The righthand quantity in Bellman's equation (A.1)

simplifies to

1 + iin {w(l) Vk+((l + 1 -Tk,() +k, WO),(2) + -Tk)} . (A.4)

Applying the induction hypothesis (A.3), we obtain

Vk+I(W(') 1(-) 0 Vk+l(W(') Tk, 11) +k -,(1); (A.5)

Notice now that, for the present case, we have w(2) < 7rk and w(2) + 1 -r k < 1; thus, it follows

that

Vk+I(W(') - rk, 1)+ ±k - w k() > Vk+l(w(l) -rk,W(2) + 1- rk) + W(2) - W()

15

Combining this with (A.5), we obtain

Vk+l(w(') + 1 - T k,O) > Vk+l(w(') - Tk,W(2) + 1 - k) + W(2) - w () ,

which together with (A.4) implies that /4(w('), w(2)) = 2.

Case of Tk < w(2) < w(1): The righthand quantity in Bellman's equation (A.1) equals

1 + rin {W(L) + Vk+l(w() + 1 - Tk,W(2) - k),W(2) + Vk+1(w(') - k,W(2) + 1- k)} .

This together with the induction hypothesis (A.3) implies that l*t(w(1), w(2)) = 2.

So far, we have established the leftmost part of (A.3). As for the rightmost part, we have

(for w(l) > w(2))

1}k(W (1) + 1, w(2)) = (w(2) + 1) + Vk+l([w(1) + 1 -rk]+, [W() + -Tk] +)

= (w(2) - w()) + (w(l) + 1) + k+([w() + 1 - Tk]+, [W(2) + 1 - Tk]+)

> (w(2) - + m)) in ((')+ 1)n {(Vk+l([w() +1 - Tk]+, [W(2) + 1 - k]+),

(w() + 2) + Vk+1([w(') - k]+, [w(2) + 2 - k]+)}

= (W(2) - W(1)) + Vk(W(l), w(2) + 1),

where we have also used Bellman's equation (A.2). This completes the inductive proof of (A.3)

and the derivation of the optimal policy. Q.E.D.

16

Deterministic Servers

/\

1\ /1 1

Schedulers

Figure 1: The general system.

17

Deterministic Servers
/

Scheduler

Figure 2: One arrival stream and several servers.

Deterministic Servers

2/ ,/ \- /

// -Scheduler

Dedicated
Streams

Special Stream

Figure 3: Server allocation in the presence of dedicated streams.

18

Figure 4

1 3

Figure 5

19

