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Abstract

Reliable object recognition is an essential part of most visual sys-
tems. Model based approaches to object recognition use a database (a
library) of modeled objects; for a given set of sensed data the problem
of model based recognition is to identify and locate the objects from
the library that are present in the data. We show that the complexity
of model based recognition depends very heavily on the number of
object models in the library even if each object is modeled by a small
number of discrete features. Specifically, deciding whether a discrete
set of sensed data can be interpreted as transformed object models
from a given library is NP-complete if the transformation is any com-
bination of translation, rotation, scaling, and perspective projection.
This suggests that eflicient algorithms for model based recognition
must use additional structure in order to avoid the inherent computa-
tional difficulties.
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0002.



1 Introduction

Many tasks of perceptual information processing that are easy and natural
for humans appear to be much harder for machines. For example, although
locating an object such as a pen on a table appears to us an easy task,
it requires the ability to identify all possible shapes of pens as such, and is
difficult to implement in a machine. These difficulties can be avoided in many
computer vision applications that take place in a controlled environment. In
these cases it is assumed that the objects of interest can be modeled and
catalogued in a library. The problem of model based recognition can be
informally described in the following way: given a library of modeled objects
and a set of sensed data, identify and locate the objects from the library that
are present in the data.

Reviews of the extensive literature on model based recognition in com-
puter vision can be found in [1, 2, 3|; more recent studies include [5, 6, 9, 11].
The standard computational approach is to represent the modeled objects
and the data in terms of discrete features so that the recognition can be
solved as a search problem. These results indicate that by applying rigidity
constraints in various ways, model based recognition can be efficiently ap-
plied to recognize a small number of object even from partial views and in
the presence of non-malicious noise. The relevant complexity parameter in
such cases is the number of features that model each object.

In this paper we analyze the case in which objects are represented by a
small number of features. The relevant complexity parameter in this case
is the number of objects. Instead of analyzing the performance of specific
algorithms, our approach is to apply techniques from complexity theory to
identify cases in which model based recognition appears to be inherently
difficult. Specifically, we show that the problem is NP-complete, and thus,
its complexity (modulo standard complexity assumptions, i.e., P # NP) is
exponential in the size of the library.

Proving that a problem is NP-complete is a common technique in com-
plexity analysis for identifying the problem as intrinsically difficult. In a (well
defined) sense, an NP-complete problem is the most difficult problem in the
class NP, which includes many difficult problems such as the traveling sales-
man. However, an NP-complete problem is not completely unapproachable:
a standard method for coping with such problems is to identify easily solved



sub-problems. In the case of model based recognition this might correspond
to exploiting additional structure of the modeled objects and the way they
are viewed. For more information on the theory of NP-complete problems
see [4]. For applications of NP-completeness results to vision tasks see (8, 10].

The negative results of this paper can be used to determine constraints
that may simplify the problem of model based recognition. We will attempt
to identify three types of constraints: constraints that leave the problem NP-
complete, constraints that guarantee efficient (polynomial) algorithms, and
constraints that make our NP-completeness proofs inapplicable, so that they
may simplify the problem. The generic model based recognition problem that
we consider is noise free and assumes no occlusion. An example of constraints
of the first type is that every pair of local features can be found in at most
three objects from the library. An example of constraints of the second type
is that every pair of local features can be found in at most two objects from
the library. An example of constraints of the third type is occlusion of convex
objects.

2 Preliminary definitions

We consider situations in which objects can be described in terms of sets of
local features. A local feature is a simple! geometric shape, and an object is
described by a set of local features and their location in space. Commonly
used features are points, lines, angles, etc. An example is shown in Figure 1,
where a triangle is described in terms of straight lines (a), corners (b), and
points along its edges (c).

Definition: An object description by local features is a set of pairs

0 = {{fi, X1),{f2, X2),... (fe; Xs) }

where for 1 <1 <, f; is a local feature and X; is its location is space relative
to a fixed coordinate system.

Definition: A library is a set of object descriptions.

The results of this paper hold for arbitrary interpretations of “simple” and “local”.




el N I N N

[(a)] [(b)] [(c)]

Figure 1: Examples of local features.

Definition: A picture is sensed data given as a set of local features and
their location is space.

The problem of model based object recognition is:

For a family of coordinate transformations ¥, a library L, and a
picture P = {(f1,X1),...,(fm;Xm)}, determine a disjoint parti-
tion of P into objects from L, i.e., subsets Oy,...,0, such that:
(i)fori# 37 0,N0; =0; (ii) P = 01U---UQ,; (iii) for 1 <i < ¢
there is ¥; € ¥ that transforms an object from L into O;.

Our main result is that the problem of model based recognition under trans-
lations, rotations, and perspective projections is NP-complete. The proofs
are based on a reduction from ezact cover by 3 sets (X3C) that is known to
be NP-complete. (See [4] page 221.)

X3C: The following ezact cover by 3-sets problem is NP-complete:

Instance: a set £ of m elements and a collection C of 3-element subsets of
E.

Question: does C contain an exact cover for F, i.e., a subcollection ¢ C C
such that every element of E occurs in exactly one member of C'?7

Comment: X3C remains NP-complete even if no element occurs in more
than three subsets in (', but is solvable in polynomial time if no element
occurs in more than two subsets. A related problem. exact cover by 2-sets.
is solvable in polynomial time.




pmo— m+l — pp e ppo= m4d = pi o Pm
Figure 2: The picture in the proof of Theorem 1.
ps — 2m2+5 — py — mi44 — ps

Figure 3: A typical object in the proof of Theorem 1.

3 The case of translation and rotation

Theorem 1: Let L be a library of objects and let P be a picture. The
decision problem of whether P can be described as a disjoint union of trans-
lated and rotated objects from L is NP-complete. The problem remains
NP-complete even if each object is described by 3 points.

Proof: Membership in NP is obvious. To show that the problem is NP-
complete we reduce X3C to it.

Let {E,C} be an instance of the X3C problem. C is a collection of 3-element
subsets of the m elementseq,...,e, € E. We begin by constructing a picture
P of m points py,...,pm on the  axis. The location of p, is at the origin,
the point p; is at distance m? + 1 from p;, the point ps is at distance m? + 2
from p,, etc. See the illustration in Figure 2. Let ¢ : E — P denote the
mapping of elements in E to points in P. For 1 < ¢ < m we have:

$(e;) = a point at z = (i — 1)m® +i(i — 1)/2 (1)

Clearly, ¢ is 1-1 and onto, so that the inverse mapping is well defined. We now
create the library L from the 3-element subsets in C'. For a 3-set composed
of the elements e,, eg, e, we add to L an object described by the 3 points
#(ea), P(eg), #(e,). The object generated by the elements e,, e4, €5 is shown
in Figure 3.

To prove the NP-complete result it remains to show that P is a disjoint
union of rotated and translated objects from L if and only if (' contains an




exact cover of E. The proof is based on Lemma 1 which is proved at the end
of this section.

Let ¢! C C be an exact cover of E, where ¢ = m/3 = |C'|. For
{€i, €€} € C' define O; = {¢(e;, ), Ples,), P(ei,)}, so that O; € L for
1 <1 < q. Since C'is a cover of E and ¢ is onto, P = U, O;. Since C' is
exact and ¢ is 1-1, 0; N O; = 0 for 7 # ;.

Conversely, let ¥ be the family of coordinate translations and rotations,
and assume O; € L, ¥; € ¥ for 1 <7 < ¢ such that: (i) for ¢ # 7 ¥;(0:) N
¥;(0;) = 0; (i) P = UL, ¥:(0;). From Lemma 1 it follows that 1; is the
identity transformation (4;(0;) = O;), so that ¥;(0;) € L for 1 < < q. Let
Oi = {pis,Pi, Pis }- Define T; = (¢7*(p, ), o7 (p3,), ¢~ *(ps,)), and C' = {T; :
1 < < ¢}. From (ii) and the fact that ¢~! is onto it follows that C'is a
cover. From (i) and the fact that ¢=! is 1-1 it follows that C' is an exact
cover. (]

Lemma 1: Let O be an object from the library defined in the proof of
Theorem 1, and let O’ be an object defined by 3 points from the picture in
the proof of Theorem 1. If O can be mapped by translation and rotation to
O' then O = O'.

Proof: Without loss of generality let O be described by the points p;,, p;,,
pi; and O' by the points p;,, pj,, pj;, where i3 < i, < i3 and j; < j; < Js.
Since the objects are 1-dimensional, a transformation taking O to O’ involves
either zero rotation or a 180° rotation. We show that the transformation must
be with zero rotation and zero translation.

First, suppose the transformation involves no rotation, then the distance
between p;; and p;, is the same as the distance between p; and p;,. From
Equation (1) we have

ia(is — 1) —iy(iy — 1)
2

j2(2 — 1) = 51(51 — 1)
2

Let s(z,7) = (5(7 — 1) — (i —1))/2, so that the above equation can be written
as

= (2,2 — i1)1n2 +

(Ja— 1N )mz +

(72 — 71) = (32 — 1)Im? = s(i1.12) — s(1,72)- (2)
Clearly, 0 < s(¢,7) < m? for 1 < i < j < m, and |s(iy,is) — 5(j1,72)] < m™.
But since the right hand side of Equation (2) is divisible by m? it must equal
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0, and we have
8(11,12) = (2, 72) o
Je—N1=t2—1u
The unique solution to the system (3) with j;, 7, as the unknowns is 7; = ¢,
and j; = 25. Since in pure translation the distance between p; and p;, is
the same as the the distance between p; and p;, the same derivation gives
Jja3 = i3, so that O = O'.

It remains to show that a transformation taking O to O' cannot involve
rotation. Suppose, on the contrary, that O is mapped to O’ by a transfor-
mation involving nonzero rotation. As mentioned above, this rotation must
be 180°. But then the distance between p;, and p;, is the same as the dis-
tance between p;, and p;,, and the distance between p;, and p;, is the same
as the distance between p;, and pj,. Using the same derivation as above we
get j; = 13, J2 = 12, and 73 = t;. But since j; < 73 and 7; < 73 we have a
contradiction. [J

4 Translation, rotation, and scaling

Theorem 2: Let L be a library of objects and let P be a picture. The deci-
sion problem of whether P can be described as a disjoint union of translated,
rotated, and scaled objects from L is NP-complete. The problem remains
NP-complete even if each object is described by 6 points.

Proof: Membership in NP is obvious. To show that the problem is NP-
complete we reduce X3C to it.

Let {E,C} be an instance of the X3C problem. We begin by constructing a
2D picture @) as a disjoint union of two pictures: @ = P U P’. The pictures
are defined by the two 1-1 and onto mappings: ¢: F — P and : £ — P'.

dle;) =apointatz=(i—1)m? +i(: —-1)/2, y=0 1
f(e;) =apointatz=(t—1)m? +¢(i —1)/2, y=d (4)

See the illustration in Figure 4. We now create the library L from the 3-

element subsets of C'. For (e, €3, €,) we add to L an object described by
the 6 points: f(en), 8(eg), (e, ), dlea), ¢leg), dle,). The object generated
by the elements €,, €4, €5 is shown in Figure 5.

I
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Figure 4: The picture in the proof of Theorem 2.
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Figure 5: A typical object in the proof of Theorem 2.

To complete the proof it remains to show that @ is a disjoint union of
translated, rotated, and scaled objects from L if and only if C' contains an
exact cover of E. The proof is based on Lemma 2 which will be proved at
the end of this section.

Let C' C C be an exact cover of E, with ¢ = |C'|. For {e;,,e;,,e:,} € C’
define O; = {f(e;,),0(e;,),0(es,), Ples, ), P(ei,), d(ei,)}, so that O; € L for
1 <7< g. Since (' is a cover of E, and ¢, 0 are onto P and P’ respectively,
@ =PUP =UL,O;. Since (' is exact and ¢, are 1-1, O; N O; = 0 for
i#£ 7.

Conversely, let ¥ be the family of coordinate translations rotations and
scaling and assume O; € L, ¢; € ¥ for 1 < ¢ < ¢ such that: (i) for 7 # j,
¥:(0;) N P;(0;) = 0; (i) @ = U, ¥:(0;). From Lemma 2 it follows that v;
is the identity transformation, so that ¥;(0;) € L for 1 < i < q. Let O; =
{Piy» Pir, Pis» 1}, , P, P}, }» Where we assume without loss of generality that
iy Pig» Pis have zero y coordinates. Define T; = {67 (p;, ), o7 (pi, ). 271 pi,) },
and ¢ = {T; : 1 <i < ¢}. From (ii) and the fact that ¢~! is onto E it follows
that €' is a cover. From (i) and the fact that ¢~! is 1-1 it follows that (' is




an exact cover. O

Lemma 2: Let O be an object from the library defined in the proof of
Theorem 2, and let O’ be an object defined by 6 points from the picture in
the proof of Theorem 2. If O can be mapped by translation, rotation, and
scaling to O’ then O = O'.

Proof: Let O be generated by e; ,e;,,e;,. Let uy,us,us, be the points of
O’ that are mapped to O(e;, ),0(e;,),0(e;,) respectively, then uq,u,,us are
collinear. Similarly, let vy,vs,v3, be the points of O’ that are mapped to
olei,), Pei, ), p(ei,) respectively, then vy, vy,v; are collinear. Since 6(e;, ),
0(e;,), ¢(e;,) form a right triangle, u;,u,,v; form a right triangle, so that
the triplets uy,u;,u3, and vy, vy,v3 are not on the same line in the picture.
Therefore, it must be that one triplet lies on the line y = 0, and the other on
the line y = d, and since the distance between the lines in the library object
is d, the transformation involves no scaling.

It remains to show that the transformation involves no translation and
rotation and this follows from Lemma 1 when applied to the points wu;,u,,us
and the library of objects defined by the triplets of points {f(e;,), 0(e;,),
f(e;,)}for 1 <1< q. O

5 The case of perspective projection

A perspective projection is the mapping 7 : R® — R? given by
X Y

Here it is assumed that the camera is at the origin and pointed directly down
the Z axis. The reference frame is oriented as the image plane, which is lo-
cated at distance f from the origin. See [7]. Unlike translation, rotation, and
scaling, perspective projection may destroy geometric properties by merging
lines and points. In the extreme case, any object far enough from the im-
age plane is projected into a single point in a finite resolution picture. To
eliminate degenerate cases we consider only stable perspective projections.




Definition: A stable perspective projection has the following properties: (i)
Distinct 3D feature points are mapped into distinct 2D feature points. (ii)
Non-collinear 3D feature points are mapped into non-collinear 2D feature
points.

Notice that a small perturbation of the viewing point of an unstable perspec-
tive projection always gives a stable perspective projection.

Theorem 3: Let L be a library of 3D objects, and let P be a 2D picture
.given as a set of local features and their 2D location. The decision problem
of whether P can be described as a stable perspective projection of a disjoint
union of translated and rotated objects from L is NP-complete. The problem
remains NP-complete even if each object is described by 12 points.

Proof: Membership in NP is obvious. To show that the problem is NP-
complete we reduce X3C to it.

Let {E,C} be an instance of the X3C problem. We begin by constructing
the 2D picture @ = P, U P, U P3 U Py, where

P; = {¢j(e;);1<i<m} for1<;j<4

#1(e;) = apointatz=(—-1)m?+i(: -1)/2, y=0
$2(e;) = apointatz=(—-1)m?+i(i—-1)/2, y=md
#3(e;) = apointaty=(i—1)m?+i(:—-1)/2, z=-1
ds(e;) = apointaty=(:—1)m?2+i(i—1)/2, z=m3+1

Thus, the points are on the edges of a planar rectangle.

We now create the library L from the 3-element subsets of C'. For (e;,, €;,,
ei;) we add to L an object described by the twelve 3D points: {#%(e;,);1 <
J <4, 1<t<3}, where:

#i(e;) = apointat X =(i—1)m?+i(:—-1)/2,Y =0, Z=f
#i(e;) = apointat X =(i—1)m?+i(i—1)/2, Y =m? Z=f
#i(e;) = apointatY =(G—-1)m?+i(i-1)/2, X=-1,Z=f
#di(e;) = apointatY =(G—-1)m? +4(i—1)/2, X=m3+1, Z=f

Observe that 7(¢i(e;)) = ¢;(e;) for 1 < j < 4. It remains to show that Q is
a stable perspective projection of a disjoint union of translated and rotated
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objects from L if and only if C' contains an exact cover of E. The proof is
based on Lemma 3 which will be proved at the end of this section.

Let C' C C be an exact cover of E, with ¢ = |C"|. For {e;,,e;,,€;,} € C'
define O; as the 3D object described by the twelve 3D points: {#3(e;,);1 <
J<4,1<t<3}, s0that O; € L for 1 <t < q. Since C' is a cover of E,
and ¢; are onto P; respectively, Q@ = UL, 7(0;). Since C’ is exact and ¢;
are 1-1, W(O)ﬂﬂ’(O) 0 fori #j.

Conversely, let ¥ be the family of coordinate translations and rotations
and assume O; € L and 1/)‘ € ¥ for 1 <1 < g, such that: (i) for ¢ # j,
7(¥:(0;)) N7 (¥;(0;)) = 05 (ii) @ = U=, #(¥:(0;)). From (ii) and Lemma 3
it follows that ; is the 1dent1ty transformation, so that ;(0;) € L for
1<i<gq. Let O; = {p’!,p,z,p’ } for 1 < 7 < 4, where we assume without
loss of generality that pi, were generated by #%. Define T; = {(¢3)” 1(p“) :
1<7<41<t<3}and 0" ={T;: lgzgq} From (ii) and the fact
that (¢7)~! is onto E it follows that C’ is a cover. From (i) and the fact that
(¢%)1 is 1-1 it follows that C' is an exact cover. O

Lemma 3: Let O be a 3D object from the library defined in the proof of
Theorem 3, and let O' be an object defined by 12 points from the picture
in the proof of Theorem 3. If O can be mapped by translation rotation and
stable perspective projection to O’ then the mapping is with zero translation
and rotation.

Proof: We use the following properties of perspective projection (see [7],
Chapter 13): (a) Collinear 3D points are projected into collinear 2D points.
(b) If the projection of parallel 3D lines is parallel 2D lines then the 3D lines
are parallel to the image plane.

Let O be generated by e;,,e;,,¢€;,. Let L; be the 3D line of the rotated
and translated points ¢(e;, ), #3(e;,), d3(eiy) for 1 < j < 4, so that L, is
parallel to L; and Ls is parallel to Ls. Let u},u?,u? be the points of O
that are mapped to ¢%(e;, ), d%(e;,), #%(ei,) respectively, then u},u?, u} are
collinear for 1 < j < 4, and since the projection is stable, the 4 trlplets are
on 4 different lines in the picture. The picture has exactly four lines with at
least 3 points. These lines are: y = 0, y = m®, » = —1, and * = m® + 1.

Therefore, the 4 triplets come from these 4 lines.
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Let [; be the projection of L; for 1 < j < 4. [, intersects with two lines
from {l,,13,14}, and is parallel to the third. Since L, intersects with L; and
Ly, l; intersects with I3, 14, and is parallel to ;. Thus, we have two parallel
lines L,, L, that are projected into parallel lines. Therefore, both L; and L,
must be parallel to the image plane; let Z; and Z; be their depth. From the
same arguments the lines L3, L4 are parallel to the image plane; let Z3,Z,
be their depth respectively. But since Lj intersects with both L; and L, we
have Z1 = Zz = Zs = Z4.

We conclude that all the points of the translated and rotated object O
have the same distance from the image plane. From Equation (5) it follows
that in this case the distance from the image plane has the effect of scaling the
object. Thus, Lemma 3 follows from Lemma 2 when applied to the library
of objects defined by ¢;(e;, ), diei,), ¢i(ei;) and the 6 points u},u?,u? for
1<j;<2. 0

6 Implications

In this section we identify constraints that can potentially simplify model
based recognition, and other constraints that leave the problem NP-complete.

Local features other than a point: With no additional structure this can
only make the problem more difficult. However, with additional structure of
the local features the problem may become polynomial. For example, straight
lines may have an additional constraint that their ends meet (see Figure 1).

Occlusion: Without additional structure this can only make the problem
more difficult. However, with additional constraints such as convexity this
makes our NP-completeness proofs inapplicable, so that it may potentially
simplify the problem.

A small number of feature points: If each object is described by 2 points
the problem is polynomially solvable by matching techniques.

A large number of feature points: Without additional structure this
can only make the problem more difficult. However, if it is assumed that
small subsets of these points determine a unique object from the library then
the problem is polynomially solvable. (This is the essential assumption in
geometric hashing [9]).
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Almost distinct subsets: If the distance between every pair of feature
points uniquely determines two (or less) objects, the problem is polynomially
solvable. If this distance determines three (or more) objects the problem is
still NP-complete. This follows from the comment in the definition of X3C.

Dimensionality: Notice that the results of Theorem 1 hold also for transla-
tion and rotation in 2 and 3 dimensions. Similarly, the results of Theorem 2
hold also for 3 dimensions.

7 Concluding remarks

We have shown that the problem of model based recognition is NP-complete.
Thus, there is little hope for a performance guaranteed algorithm that can
solve the problem efliciently. However, it is still possible that easy sub-classes
of the problem can be characterized by additional structure of the modeled
objects (e.g., convexity) and the way they are viewed (e.g., occlusion). Our
results can help determine what constraints are potentially useful.
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