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Abstract

In another paper the first author presented an asymptotic result concerning the

Muniford-Shah functional,

E(f, F) = 0 (f - g)2 + vf + length(r),

showing that if g is approximately piecewise smooth and 3 is sufficiently large then r

which minimize E will be close to the discontinuity set of g in the sense of Hausdorff

metric. In this paper an algorithm is presented which implements the scaling sug-

gested by the asymptotic results to obtain accurate localization of edges even when

only large scale edges are being detected. An approximation to E is also considered

and the implications of the asymptotic results to this functional are also examined.
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1 Introduction

Edge detection is regarded as one of the fundamental components of computer vision.

An issue which arises in all edge detection schemes is that of scale. One reason for

this is the basic insight which says that coarse (i.e. large scale) representations are

less complex than more detailed ones. Coarse scale descriptions can effectively be

used to select "regions of interest" for detailed processing, thus reducing the demand

on computational resources. It is important therefore that coarse scale descriptions

retain those features of the data which are required for effective decision making. In

the case of edge detection for example, T-junctions and corners play important roles

in estimating the depth and the shape of objects in a scene. It is desirable therefore

that even at coarse scales these features be accurately represented. The purpose of

this paper is to present (without proofs) certain analytical results on the Mumford-

Shah functional related to its scaling properties, and then to show how these results

support the use of certain approaches to edge detection.

By edge detection we mean the problem of location step discontinuities in an

otherwise smooth function, perhaps in the presence of noise and smearing. There

are many methods which have been proposed for detecting edges of this type. Two

classes which comprise a majority of these methods are:

1. Techniques which consist of linear filtering followed by some non-linear

operation such as the locating of the maxima of gradients.

2. Techniques which combine the smoothing and nonlinear operation into a

single formulation or process.

Well-known example from the first class include the Marr-Hildreth edge detector [25]

and the Canny edge detector [8]. Within the second class we find Markov Random

Field formulations [17] [26] [14], the Variational formulation [7] [28] [29], and Non-

linear Diffusion approaches [30]. Historically the first class preceded the second. The

central idea the second class added to those of the first class was that of performing

simultaneous edge detection and smoothing rather than the previously used two step

procedures. The motivation for this was the fact that the smoothing procedures blur
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across boundaries obscuring and distorting the edges, especially at high curvature

locations such as corners and T-junctions. The three approaches which we mentioned

as belonging to the second class can all be related to an optimization problem; the

minimization of some functional typically having three terms. One example, the

point of reference for this paper, is the Mumford-Shah functional associated with the

variational formulation;

E(f, Pr)= 3 j(f - g)2 + n\r Vf12 + a length(r).

Here g represents the data, which we will think of as a real valued function. The sym-

bol F denotes the set of edges in the image and f is a piecewise smooth approximation

to g. The problem is to minimize E over admissible f and r. The parameters d and

a control the competition between the terms; they decide the "scale" of the edge

detection. The the second term of E provides for the interaction between the edges

and the smoothing mechanism by allowing r to control or modulate the smoothness

constraint on f. It was expected, and demonstrated to some extent in [7] that this

approach better localizes the edges than the methods of class 1. However, analysis of

optimality conditions revealed that optimal r can have only certain restricted types

of local geometries, implying in particular that T-junctions and corners tend to be

distorted [29]. On the other hand a result of the first author showed that these con-

straints were truly of a local nature and that globally the variational approach should

produce reasonable solutions. The result is an asymptotic one stating that as d - coo

optimal r will converge in an appropriate sense to the discontinuity set of g provided

the noise and smearing are removed from the data sufficiently quickly. This, then, is a

kind of fidelity result for the variational formulation. Furthermore the results suggest-

a principle whereby it may be possible to recover coarse scale edges alone with the

localization accuracy usually available only on the finest scale.

An algorithm is developed which on a small time scale resembles the minimizing of

the energy functional but on a longer time scale evolves by changing the parameters

of the functional in the direction of the aforementioned limit. In order to prevent the

resolving of microscopic detail as the limit is taken, i.e. in order to retain only large

scale features, we systematically remove small scale features as if they were a distor-
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tion of the ideal image. The rates and topological structure for this removal (which

is achieved by edge location dependent smoothing) are governed by the convergence

theorem mentioned above.

The implementation of the variational formulation itself presents several difficul-

ties. It turns out that there is a method for approximating E, using the concept of

r convergence that allows for a straight-forward implementation (a gradient descent

method). Furthermore we can argue that this approximation may in some sense be

superior to the original one in the manner in which it distorts the singularities i.e.

the T-junctions and the corners, and this argument is based on the principle referred

to above.

2 Summary and Outline of the Paper

For the sake of compactness we have chosen to suppress most of the mathematical

results. In Section 3 some of what is known about the fundamental question of exis-

tence of minimizers to the (continuous) variational problem is reviewed. Some of the

implications of the formulation on the structure of minimal boundaries is presented.

These results help to motivate our work which aims to circumvent those constraints

and to demonstrate their local nature. We view these constraints as undesirable

structural restrictions placed on solutions by ad hoc choices in the formulation of the

energy functional. What the functional offers in return is a relatively simple structure

that admits analysis.

Section 4 summarizes our main contributions to the analytical understanding of

the variational formulation of the segmentation problem. The results demonstrate an,

asymptotic fidelity of the variational approach. The ideas inherent in these results

also serve as the primary justification and motivation for the algorithm. To obtain

these results we assume that the image is a corrupted version of piecewise constant

or piecewise smooth function, depending on the particular problem formulation. The

results state that asymptotically as 3 --+ oo the boundaries given as a solution to

the variational problem converge (in Hausdorff metric) to the discontinuity set of the

underlying image. These results can be thought of as a counterpoint to the results
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of the calculus of variations. The results of the calculus of variations imply that the

minimizers have certain local structure which from the image processing point of view

may be undesirable. The limit theorems say that when viewed globally the solutions

behave well and asymptotically essentially any structure i.e. any boundary geometry,

can be recovered.

III Section 5 we sketch an algorithm. The main ideas on which the algorithm is

based are derived from the limit theorems. The structure of the algorithms closely

resembles that of the limit theorems; in fact the limit theorems can be interpreted as

consistency results for the algorithms.

Section 6 is devoted to presenting the r-convergent approximation to E. Some

basic properties of solutions to this approximation are stated. In Section 7 the details

of the computation are given. In Section 8 we present the results of some experiments.

3 The Variational Model for Edge Detection

Three techniques for image segmentation and reconstruction based on intensity in-

formation which have recently gained considerable attention are Markov Random

Fields, Variational Formulations, and Non-linear Filtering. Most researchers in this

area have realized that these methods are closely connected (see [15] or [30]); the

practical differences lying mostly in the conception of the computation to be carried

out. The essential feature which these models are designed to capture; simultaneous

smoothing and edge enhancement/boundary detection, is achieved in essentially the

same way. Our work is connected with these methods, it is most convenient to relate

it to the Variational formulation.

The Variational formulation models edge detection as the minimization of an

energy functional. The functional introduced by Mumford and Shah, [28] [29], and

(in discrete form) referred to as the weak membrane by Blake and Zisserman [7] is

the following,

E(f, r) =/3 (f - g) 2+ j IVf 12 + a length(r)

where ac and of are positive real scalars (the parameters of the problem) and f is a
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piecewise smooth approximation to g having discontinuities only on the set r which

one interprets as the edges found in the image. The first term of E penalizes the

fidelity of the approximating image f to the data g. The second term imposes some

smoothness on f. The third term penalizes the total length of the boundary (which

we think of as the union of curves). The removal of any term results in trivial solutions

yet with all three terms the functional captures in a simple way the desired properties

of a segmentation/approximation by piecewise smooth functions.

The parameters /3 and a have to be chosen. Since we have not fixed them a priori

we have really defined a two dimensional space of functionals. It is of interest to

examine certain limiting versions of the functional.

Consider allowing /3 and ac to tend to zero while keeping their ratio fixed. Relative

to the other terms the smoothing term would dominate. Clearly any limit of mini-

mizers would necessarily be a locally constant function on F\r (where r would be the

limiting boundaries.) Mumford and Shah were thus lead to introduce the following

functional,

Eo(f, r) = (i g) 2 + a length(r)

where r = Qf\ Uti i and the fi are constants. This functional, because of its greater

simplicity lends itself to more thorough analysis.

The energy functional associated with the variational model is ad hoc. In [29] the

structure of minimizers of the functional was studied via the calculus of variations. A

summary of a few of the results on the structure of minimal r is presented here since

this paper is partially motivated be the desire to circumvent some of these constraints.

The following constraints on P's which minimize E were proved by Mumford and Shah

in [29]. They are illustrated in Figure 1.

* If F is composed of C"'l arcs then at most three arcs can meet at a single point

and they do so at 120 °.

* If r is composed of C"l arcs then they meet aQf only at an angle of 90° .

* If r is composed of Cll" arcs then it never occurs that two arcs meet at an angle
other than 180° .
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120 °

1200

Non-minimal Geometries Corresponding Minimal Geometries

Figure 1: Calculus of Variations Results
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* If x C r and in a neighborhood of x, r is the graph of a C2 function then

(fl(f _g)2 + IV fl 2)+ _ (3(f -g) 2 + IVfl2)- +a. curv(r) = 0 where the superscripts

+ and - denote the upper and lower trace of the associated function on r at x

and curv(r) denotes the curvature of r at x.

The difficulty with these results is that they do not support the use of the varia-

tional approach as an image segmenting scheme with respect to the goal of obtaining

intuitively appealing segmentations. In particular T-junctions, believed to be impor-

tant image features, tend to be distorted and corners tend to be rounded out. The

restrictions on the geometry of the edges arises out of the model and are artifacts of

the particular formulation and do not reflect an intrinsic property of the problem at

hand. How then can one improve upon such as hoc models ? One idea is the follow-

ing. Consider the set of all possible minimizers of the functional E, over all possible

values of the parameters. Each of these minimizers possess the properties which the

model imposes. However, if we take the closure of these functions in an appropriate

topology we may widen the class of functions considerably. The asymptotic theorems

outline in Section 4 indicate that particular meaningful members of such a closure

may be found by taking the parameters associated with the functional to certain

limits. In fact in this way one can produce essentially any piecewise smooth function

with edges having arbitrary geometries. An idea which clearly presents itself is to

develop an algorithm in which the same limit is taken. This is one of the purposes of

this paper.

In all known segmentation/edge detection schemes there exist parameters which

can be related in some sense to "scale". There is no generally accepted definition of

"scale" but often one has notions of size, contrast and geometry in mind. Consider,'

for example, edge detection techniques based on convolution of the image with Gaus-

sian kernels followed by detection of gradient maxima [24] [25]. Here the relevant

parameter is oa, the "variance" of the kernel. For each value of C one obtains a dif-

ferent set of edges. Ideally one would hope that as or increases that the set of edges

would decrease monotonically. HIowever, this is not the case; in general the edges

drift as the scale varies. Since on the finest scales it is desirable to know which edges

correspond to gross features in the image there arises the problem of finding within
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the small scale edges those that correspond with large scale features. It is true that

the edge sets vary continuously as a function of the parameter C but in general it is

computationally too costly to compute boundaries for sufficiently dense a set of u to

make the tracking obvious.

In the energy base formulations there are usually 2 free parameters associated with

the problem. In this sense the use of the word "scale" is misleading. When Blake

an Zisserman [7] speak of varying the scale of the problem they consider varying the

coefficient on the smoothing term in E (which is set to 1 in our formulation.) This

is equivalent to varying a and 3 while keeping their ratio fixed. While 1 can be

interpreted as the analog to a, keeping the ratio smoothing conception of "scale"

since this has the effect of keeping the total quantity of boundary and the localization

errors roughly constant. In our limit theorems we (usually) keep a fixed and let

p tend to oo. Thus for a fixed a "scale" can be thought of as proportional to 1

However, in general there are two parameters and these parameters describe the range

of functionals under consideration. In [36] the significance of the two parameters is

studied in the context of the 1-dimensional segmentation problem.

3.1 Existence Results

For the functional,

Eo =B3 (f, - g)2 + length(r)

(where the Qi are the connected components of fQ\r and the fi are constants), the

following has been proved.

Theorem 1 [27] Let Q be an open rectangle and let g e L°(Qf). For all one-

dimensional sets r C Q such that F U MOf is made up of a finite number of C1,1 -

arcs, meeting each other only at their end-points, and, for all locally constant func-

tions f on Q\r, there exists an f and a r which minimize Eo.

Mumford and Shah [29] proved a similar theorem with the restriction that g be

continuous of Ql. In this case they showed that F is composed of a finite number of

C2 curves. The proof relied heavily on results from geometric measure theory. The
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theorem quoted above was proved by Morel and Solimini [27] using direct, constructive

methods. Finally, another proof using r restricted to be unions of line segments and

then taking limits as the segment lengths tend to zero was achieved by Y. Wang [37].

To formally state the best known existence theorem for E we will require a little

more notation. It is still an open problem to show existence of minima for the func-

tional E with sufficient regularity of the boundary to allow the analysis of Mumford

and Shah [29] to go through. The best available existence results necessarily allows

the boundary r to be sufficiently irregular that 'length' cannot be defined for it. This

measure is therefore replaced with a more general measure.

3.1.1 Hausdorff Measure

A curve r C R" is the image of a continuous injection g: [0, 1] -- + Rn. The length of

a curve r is defined as

m

L(r) = sup{E Ig(ti) - g(ti-)11 : 0 = to < ti <... <tm = 1}
i=l

and r is said to be rectifiable if L(r) < oo.

For a non-empty subset A of R", the diameter of A is defined by diam(A) =

sup{flx - Yll: x,y E A}. Define

00 00

7Hi(A) = inf{I diam(Ui)' : A C U Ui, diam(Ui) < 6},
i=l i=l

The Hausdorff 1-dimensional measure of A is then given by

7 -1(A) = lim 7-(A) = sup 7-H(A)
6--.0 6>0

Many properties of Hausdorff measure can be found in [11, 12, 32]. The following

theorem states that 'H1 is a generalization of length, as required.

Theorem 2 If r c " is a curve, then tl'(r) = L(r).

Proof See [11] Lemma 3.2. [
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The following theorem is a structure theorem for closed sets of finite 7-1 measure.

We refer to a compact connected set as continuum.

Theorem 3 If r is a continuum with x-/l(F) < oo, then r consists of a countable

union of rectifiable curves together with a set of 7'1-measure zero.

Proof See [11], Theorem 3.14. []

A natural "weak" formulation of the variational principal is thus the following,

E(f,Fr) = :j(- f)2 + j\r IVfl2 Hl(r) (1)

where r being a relatively closed subset of Q and f E W1,2 (n\r) where W1,2 is the

Sobolev space as defined in [1]. An existence result now exists for this formulation due

to results of Ambrosio [2] [3] [4] and DeGiorgi-Carriero-Leaci [10] but it is beyond

the scope of this paper to describe these results.

4 The Asymptotic Theorems

In this section we state the limit theorems. The proofs are beyond the scope of this

paper and will be published elsewhere (they may be found in [31]). The theorems

are concerned with what happens to solutions of the variational formulation of the

segmentation problem as / -- oo. Some notation is required so that we may define

what we mean by "convergence of a set of edges".

4.0.2 The Hausdorff Metric

For A C Rn, the e-neighborhood of A will be denoted by [A], and is defined by

[A], = {x E " : inf i1x - yll < e}
yEA

where I' * 1 denotes the Euclidean norm. In the terminology of mathematical mor-

phology [35], [A], is the dilation of A with the open ball of radius e. The notion
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of distance between boundaries which we will use is the Hausdorff metric. Denoted

dH(., .), the Hausdorff metric is evaluated by

dH(Al, A 2 ) = iIf{e: Al C [A2]6 and A 2 C [A] 6j}.

Elementary considerations show that dH(.,.) is in fact a metric on the space of all

non-empty compact subsets of R".

The results of this section assert that if the image is ideal i.e. a piecewise smooth or

piecewise constant function depending on whether E or Eo is being considered, then

the optimal boundaries r converge to the discontinuity set of image with respect to the

Hausdorff metric. Furthermore the convergence still holds if the image is corrupted

by smearing and additive noise provided the smearing effect and the magnitude of the

noise decay sufficiently quickly as l3 tends to infinity. We treat the piecewise constant

case (i.e. minimizing Eo) and piecewise smooth case (i.e. minimizing E) separately.

4.1 Problem Formulation

We will be examining minimizers of E and Eo the existence of which is asserted by the

existence theorems (hence by E we mean the weak form). Solutions are determined

by r (i.e. for a fixed F the optimal f if unique) and we will often refer to the solution

r meaning the pair f, r. Also, we will be varying the parameter /3 and will use rp to

indicate an optimal solution for a particular value of 3.

The proofs require that we make certain assumptions on the data g. The limit

theorem has been proved in greater generality than stated in this paper but we choose

to avoid some of the more intricate mathematics. The piecewise constant and the

piecewise smooth case need to be treated in part separately. The piecewise constant-

case is described first.

4.1.1 The Piecewise Constant Case

The case we are interested in is one in which the image is a corrupted version of a

piecewise constant L° function g. We will define a set which we interpret as the

natural candidate for a set of boundaries in the image; this will be the discontinuities

of the image.
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Suppose that Q can be decomposed into a countable number of disjoint sets Aj

having piecewise Lipschitz boundaries (say) such that on each Aj, . is constant. We

define the "boundary" Bg to be Q n Uj 0Aj. We assume length(Bg) < oo and that

if length (dAi n OAj > 0) then 4(Ai) $ 4(Aj), i.e. the boundary should be "visible"

from 4.

4.1.2 The Piecewise Smooth Case

To define the edges in the piecewise smooth case assume 4 E L"o(Q). The Lebesgue

points of u, i.e.,

{x: 3z: lirm p- JIu - zldx = 0}
p-.o+ fJ-,()

are the points of approximate continuity 4. The set of edges, which we denote by

Bg is simply the complement of the Lebesgue points of u in f, and for convenience

we assume it is relatively closed, (a weaker sufficient assumption is to assume that

Hl~g-\Bg = 0).

The following summarizes our assumptions in both cases.

Assumption 1: \ E L°(f), fn\v, 1V912 + H-l(3g) < oo and JB has no isolated

points i.e. if x E B9 then Vp > 0, 1l'(Bg n Bp(z)) > 0.

Assumption 2: If A C Q is an open set satisfying dist(A, Bg) > 0 then there exists

an L < oo such that if x and y are the end points of a line segment lying in

A then then l(x) - 4(y)l < Liz - yl. We refer to L as the Lipschitz constant

associated with A.

Essentially we have assumed that 4 E C 0°l(f\[Bg],) for any e > 0.

4.1.3 The Noise Model

In this section we describe the restrictions on the relation between g and 4 we need

to make in order for the limit theorems to go through. A succinct statement of the

assumptions can be made by defining a parametrized class of images T(3). The

following are our assumptions on this class.

lim sup 3fJ(g) = 0, (2)
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and,

Ve > 0, lim slup I(g - M)(1 - X[sg])lo = 0 (3)
'd-'+ gET(p)

Under some mild additional assumptions we can convert this into a model allowing

smearing and bounded additive noise. The main reason for allowing smearing is not

to require the image to have actual jumps. To model smearing define S, as the class

of maps taking L°(Q) to L-(Q) having the property that the value of the image

function at a point x C Q lies within the range of essential values that the argument

function takes in a ball of radius r around x. This models in a quite general way

smearing of the image and hence distortion of the boundaries. More formally 4, E S,

of and only if 4 has the property

ik(g)(z) E [ess inf g9B,(r), ess sup g9B,(x)].

An example of such a k would be a smoothing operator defined using a mollifier

with support lying inside the ball of radius r, but nonlinear perturbations are also

allowed. To admit this model of smearing it is convenient to make the following mild

assumption,

There is a constant cb < 00 such that I[Bg], n lZI< cbr.

This assumption is automatically satisfied for a large class of sets containing all closed

sets having finite 71 measure and finitely many connected components. This is a

consequence of the following result from the theory of Minkowski content [12],

Proposition 4 [12] Let F be a continuum in W2 with 7v'(r) < oo then

l[r]im l(r).
E--O+ 2E

A simplifying assumption for the piecewise smooth case is that the Lipshitz con-

stants referred to in Assumption 2 can be uniformly bounded i.e. L does not depend

on A. (This is slightly more than we require but it simplifies the statements to follow.)

Now, for either case let g have a representation of the form,

_ = ~to,) +__ (4)
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for some l E Sr and w E Lo with I{lwl{oo < 1 and d a real scalar. Further, assume

that there are functions h,: (0, oo) -4 [0, oo) and h : (0, oo) -+ [0, oo) satisfying

limn /3hr(/3) = 0

p3-.oo

Define T(0) to be those functions g which can be written in the form 4 for some Ir,, w

and 9 with r < hr,(3) and 9 < hg(/3). It now follows that with this definition of T(/3)

the assumptions 2 and 3 are satisfied since

/3 f(g _- )2 )</3[Bg]r] IIg- 41I{ + /3(Lhrh(3) + 0)211l.

4.2 Statement of the Limit Theorems

Given that assumptions 1 and 2 are satisfied, the following holds,

Theorem 5 As P -4oo {Lrp} converges to B9 with respect to the Hausdorff metric,

and 7'l(Fr3 ) -4 7il(3g). Furthermore /-f(f - g) converges to 0 in L 2 (Q).

We mean by this that for any e > 0 there exists /' > oo such that if / > /3'

and rP, is a minimizer of E (or E 0 as the case may be), for some g e T(/3), then

dH(rF,Bg) < e and I17'(rp) - 1(B 9g)l < e. Note that this shows the variational

formulation to be asymptotically faithful to the piecewise smooth assumption. In the

limit as/3 -4 oo the geometry of the boundaries rp becomes essentially unrestricted.

It should also be noted that in the limit / -+ oo any discontinuity in the image will

be detected, i.e. edges on all scales are recovered. The convergence depends strongly

on removal or rescaling of the noise (the rates for which are tight). To convert this-

into an algorithm we need to re-interpret the rescaling of the noise.

5 A Scaling Algorithm

It was pointed out in Section 1 that in general there is a trade off between the accuracy

of localization of boundaries found by the variational method and the total quantity

of boundary admitted into the solution. (This appears to be true for most edge
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detection techniques.) Suppose the goal of the segmentation was to recover objects

only above a certain scale. Consider Figure 2 for example (assume the domain is very

large), if one were trying to find objects on the scale of the larger square and not

those on the scale of the smaller square by minimizing E0 with appropriately chosen

parameters, then it is necessary to incur an error at the corners of at least (V/ - 1)b

as illustrated in Figure 2.

Now, the limit theorem discussed in the preceding section state that as / tends to

infinity the boundaries which are found by solving the variational problem converge to

the correct ones (i.e. the discontinuity set of the image) with respect to the Hausdorff

metric. As such, these theorem do not provide us with any means of circumventing

the scale/accuracy trade-off because they state that the limit of the minimizing F

includes all of the discontinuity set of the image. We ask whether it is possible to

take the limits required by the limit theorem while avoiding the attendant problem

of introducing more and more boundary into the solution.

In response to this question we sketch an algorithm which requires within it two

key operations or procedures:

P1: The Minimization of E (or Eo) to produce f and r with the parameters ac and

/3 as input variables

P2: The updating or altering of the image by smoothing outside some neighborhood

of r and updating the parameters which provide the data for P1 for resolution

at smaller scale.

The interaction between these two procedures is illustrated in Figure 3. An execution

of the algorithm begins by minimizing E with the function g set to the original data"

and the parameters a and /3 chosen to provide edge detection on the desired scale.

Once minimal f and F have been determined they are used to alter the function g.

The new g is formed by "smoothing" the original g outside of some neighborhood of

F while leaving it unchanged inside the neighborhood. Since f is a piecewise smooth

approximation to g which respects the edges r a simple smoothing technique might

be to take a convex combination of f and g (this is what was done in the simulations).

Simultaneously, the parameters /3 and a are assigned new values such as would be
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a g=1 g=O0 g9=1

error > (_ -l)b

Figure 2: Segmentation of Two Squares with a > 2 > b

Initial g,/,ca

end P1: Minimize E

f,r,g,/3,a Updated g,,,a
and neighborhood size

P2: Update Image

and parameters

Figure 3: A Schematic for Scale Independent Segmentation

used with the original data if the edge detection were desired on a finer scale. We then

re-solve the problem of minimizing E, the difference this time being that we use the

updated image and parameter values. The hope is that we should detect essentially"

the same edges as before only now with finer resolution. This procedure can then be

iterated on until sufficient accuracy is attained.

As stated the idea of the algorithm is very general and there remains within each

procedure considerable flexibility. How one does the smoothing or chooses neighbor-

hoods is unspecified; also, we have not stated how we will find a minimizer of the

variational problem. Of course, in order for the algorithm to work the various pa-
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rameters and operations must be coordinated properly. It is at this point that the

limit theorem become useful. The limit theorem effectively governs the evolution of

the parameters.

If we remove the smoothing of the image from procedure P2 then the algorithm

would constitute an explicit taking of the same limit as taken in the limit theorem.

The deficiency with the limit theorem with regard to their direct application in edge

detection, i.e. the reason why this will not be effective is the fact that the limit

theorem predicts the convergence of the solution r to the entire discontinuity set of

the image. If the image was noisy this could effectively result in boundaries being

put essentially everywhere. The smoothing of the image plays a role in the algorithm

analogous to that played by the rescaling of the noise in the limit theorem. Small

features and noise are smoothed out, but at the same time the detail needed for

accurate localization of the large scale boundaries is retained.

Recall that in the limit theorem the amount of noise which can be allowed while

retaining convergence of the boundaries has been quantified. In particular we con-

sidered sequences /3,gn such that {gn} converges to the ideal image g", accord-

ing to lim_ 3 f 0 'n(g - g_)2 = 0, where Q is the domain of the image, and

lim -VI(1 - s )()llo = 0 for any e > 0 (where Sg.o is the sup-

port set of the discontinuities of g,). Now, let ~4. represent an arbitrary smearing

operator such that the value of the result at a point x E Q lies within the range taken

by argument in Br(x) and let w represent an arbitrary function in the unit ball of

Loo(Q). We argued in Section 4, under some mild regularity assumptions on gO, that

the convergence conditions were satisfied if we could represent the gn by,

gn = Irn(g9oo) + V'9wn

with rn being a sequence of constants satisfying

liln /3 n:0 (5)

and 'n being a sequence of constants satisfying

lim /3nin =0. (6)
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The idea of the algorithm is to produce gO by generating the g,.

The algorithm produces sequences {f}, j{r}, {g.}, {13} such that f, and rn

are found by minimizing E(/3,,g.) (or Eo), and it also produces a scalar sequence

{fu} where u, denotes the size of the neighborhood within which the smoothing is

suppressed at stage n. The algorithm is initialized by setting go = g where g is the

original data and by choosing uo . The quantities, gn, ,3 and un are defined according

to the following schedule,

9n+1 = gn + hn(z)E(fn- gn)

/,n+l = (1 -)-2zn

Un+1 = (1 - e)n = -uo
i3n

The function hn(z) controls the spatial dependence of the smoothing which is effected

by partially replacing gn with fn. For simplicity, and to be consistent with our

simulations we consider setting hn equal to 1 - X[rn]I,. The parameter uo represents

an estimate of the error in the initial boundary locations. For the simulations u0o has

been selected heuristically (see also Section 6). The formalism just presented is a

discrete one i.e. a discrete sequence of images and parameters is produced. One can

in principle also vary the parameter n continuously and represent the algorithm as

differential equations. In this context we can say that e represents the step size of the

algorithm.

One can argue heuristically why the set of boundaries should remain essentially

unchanged throughout the iterations of the algorithm for reasonable small values of

uo. For simplicity, consider what would happen if we set h,(z) = 1 for all n i.e.

uo = 0. It is not very difficult to check that the solution fo, F0 would be a local"

minimum for the functional E(gl,l1) i.e. if we consider small local variations in the

boundary we find that the original locations are optimal. We conjecture that fo is in

fact a global minimum and this can easily be seen for certain special cases such as

the image of a square. Because the original solution is in some sense being reinforced

by the feedback we expect that it becomes a 'deeper' minima then previously. This

then lends a certain robustness to the algorithm.

There are several observations which should be make concerning the proposed
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algorithm. First, since the algorithm requires minimizing E many times the com-

putational load will obviously be higher than simply minimizing E. The algorithm

has been proposed to demonstrate the possibility of overcoming the scale/accuracy

tradeoff inherent in the original model. It has been structured to parallel as much

as possible the asymptotic theorem. There are several improvements and speed-ups

that can be considered. Many approaches to minimizing E would admit at each

stage the possibility of using solution from one step as an initial condition for the

next, thus reducing time required to find the new solution. Another possibility would

be to modify the parameter f locally within the image domain and to dispense with

the smoothing step entirely. This could also substantially save on computation. A

second observation concerns the magnitude of e. Because of the manner in which we

spatially control the smoothing of the data we cannot afford to make e large. The

sharp cutoff of the region in which smooth (by convex combination) could create

small discontinuities in the data of order e. It is important therefore in our particular

implementation that e not be too large. Having smaller e on the other hand forces

more iterations of the sequence P1-P2 in order to reach the desired resolution. A

simple improvement might be force the feedback to have vary smoothly spatially.

Although these ideas and others could conceivably improve the computational

viability of the proposed algorithm substantially we have chosen to defer these re-

finements to a later time. Our goal here is to build on the asymptotic results for the

variational formulation in the simplist way possible demonstrating the potential for

improving on the formulation via certain dynamics in scale.

5.1 An Example

To illustrate the algorithm we consider minimizing E 0 when the image is that of a

light square on a dark background such as in Figure 4. Let S be the support set of the

square and define C = Q\S. For simplicity assume that Q is a set much larger then

S such that dist(&d, AS) > a. In this case the r which minimizes E0 is either the
emptyset or the contour indicated in Figure 4 which is symmetric about the center of

S and consists of 4 straight line segments of length 2(a - r) one centered on each side

of S and the 4 components one obtains from intersecting a circle of radius r with the
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1 ( g1 9=0

r

Figure 4: Segmentation of a Square

four quadrants in W2 . Obviously r < a. We will denote such a r by rr. The following

two expressions are easily derived.

E() - (4- -ir)r2ICI
Eo(r') = of (4- ) + 8(a - r) + 2nrICI + (4 - ir)r2

4a21CI
E0(0) = 4a2 CI

4 a 2 + ICI

For simplicity consider the case ICI = oo. By minimizing Eo(r') over r one obtains

r = /-1. Comparing the two possible solutions one discovers that there is a threshold

t = 2+ such that r = 0 is optimal when a/3 < t and r = r 1-' is optimal when2

a/ > t. From this we conclude that the maximum error, i.e. the maximum possible

value of,

e = dH(S, r) = (.5*- 1)r,

which can occur when F is not the empty set is (v-l)a. In general e is proportional

to /3-1 thus as long as u0 > (v - 1)-o then the r, produced by the algorithm willn

either converge to OS in Hausdorff metric as n -- oo or will equal the empty set for

all n. When ad = t then either r, = 0 for all n or for some n r, = rfn' and then

Fm = rPm; for all m > n. If 0 < u 0 < (vI - 1)/031 and a3 > t then the Fr will not

converge to AS however dH(rn, OS) will be decreasing.
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6 A r-Convergent Approximation

A idea which plays an important role in our study and implementation of the vari-

ational approach to the edge detection problem is the notion of r-convergence due

to E. De Giorgi. The same concept was developed independently in France under

the name epi-convergence by H. Attouch [6]. It concerns variational convergence, i.e.

the approximation of one variational problem by another. In this section we pro-

vide a definition of r-convergence, state some of its basic properties and provide an

application to our problem.

Let (S, d) be a separable metric space and let F,: S --4 [0, +oo] be functions. We

say F,, r(S) - converges to F: S -- [0, +oo] if the following two conditions hold for

all x E S,

Vxn -* x liminf Fn(xn) > F(x)
n-- Oo

and 3Xn - lim inf F_(Xn) < F(x)

The limit F when it exists is unique and lower-semicontinuous. The following propo-

sition characterizes the main properties of r-convergence.

Proposition 6 (see [5] for example) Assume that F, r(S)-converges to F. Then,

the following statements hold.

(i) F, + G F(S)-converges to F + G for every continuous function G : S -R.

(ii) Let t, 1 O. Then, every cluster point of the sequence of sets

{x E S: Fn(x) < inf Fn + tn}
S

minimizes F.

(iii) Assume that the functions F, are lower semicontinuous and for every t E [0, 00)

and there exists a compact set Kt C S with

{ax e S: F,,(x) < t} C Kt Vn E

Then, the functions F, have minimizers in S, and any sequence x, of minimizers of

F, admits subsequences converging to some minimizer F.
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A significant contribution of r convergence to our problem is that via a r-convergent

approximation one can represent the boundaries by a function defined on the same

domain as the image. The functional given below, for example is a modified version

of an approximation scheme due to Ambrosio and Tortorelli [5].

In this approximation one replaces the set r C Q with a function v: +Q [0, oo].

The location of boundaries is in general given by e -n "2 0.

It was proved in [5] that the sequence of functionals very similar to {En} (with

(1-v 2 ) n replacing e-nv"2), r-converges to E. This proof can be modified and extended

to include the functional given above. The metric space in this case is a product of

function spaces elements of which are pairs (f, v).

The functionals En can be discretized by finite elements thus obtaining a sim-

ple representation of the edges suitable for computation. Our simulations employ

a gradient descent to find local minimizers of E n. This approach closely resembles

the an-isotropic filtering approach due to Perona and Malik [30]. In our case how-

ever we obtain an explicit representation of the boundary which would be useful for

subsequent processing.

The function v appearing in the r-convergent approximation is such that 1- e- n "2

has the appearance of a smoothed neighborhood of the boundaries. The boundaries

themselves can be identified with those locations where e- n" 2 0. It can be shown

(see [31]) that by thresholding e-nv2 at a level t one obtains a set which can be

interpreted as a neighborhood of r of size ut where,

nut 00 exp -r
t exp -dr (7)

2 int- r

This means that we can define a neighborhood of r to be {x : e- nv 2 < t} and that this

should approximate [rP]u where ut - S x pr dr. Thus sublevel sets of e-nv'

can provide an approximation to the neighborhoods of r required by the algorithm

outlined in the previous section. For the simulations presented in this paper t has

been set to -. The equation 7 then yields the relation ul -1 .
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7 Computation

In this section we describe how the ideas presented in the Section 5 are refined in the

piecewise smooth case by introducing the r-convergent sequence of approximations

to E as a means to generate both the boundary locations and their neighborhoods.

The procedure P1 of the algorithm will now be implemented by the minimization

of the following functional over f and v,

E(f, v, g,, a, n) = 3f( g)2 + (1 V2 ),,lvf 12 + a ((- v2 )nlVv2 +

The procedure P2 will be implemented by altering the other variables. One can write

down the Euler-Lagrange equations for v and f associated with this functional and

then the parabolic equations which would be associated with a descent algorithm.

For E as above we obtain,

8f = Cf [V . (e-nv 2 Vf) - (f - g)]

- 2 an2]at l v. (e -nVv) + n(IVf12 + aVv 2)e -v - --16
with Neumann boundary conditions. The parameters cf and cv are arbitrary positive

constants which controls the relative rate of descent. These equations resemble the

non-linear filtering scheme of Perona and Malik [30]. The differences are worth noting.

The equations presented here have a term dependent on g; unlike Perona and Malik

we do not necessarily converge to a piecewise constant function. Also the control of

the conductivity associated with the diffusion of the image is effected by the function

v rather than by an explicit function of the magnitude of gradient of f. The function

v is governed by another partial differential equation whose driving term is related to'

the gradient of f.

Since the functional is not convex in v we do not expect to always reach a global

minimum by a descent method. Also the dependence of the solution on the initial

conditions, and the constants cf and c, is significant. For example if cf is of much

smaller than c, and we initialize f by setting it equal to g then the system of equations

places emphasis on the height of edges. The evolution of v is initially governed

essentially by jVgJ2 and thus will tend to place boundaries at edges in the image
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largely ignoring the size of the feature of which the edge is a boundary. Conversely

if cv is much smaller than Cf or if f is initialized by a smoothed version of g then

the geometry of the features will play an important role since a smaller features will

produce a smaller gradients in f even for the same height of the discontinuity. Thus

boundaries will be more likely to appear at the edges of larger objects, everything else

being equal. Consider for example the image of the two squares Figure 2. Suppose

we initialize the descent equations with f set to the solution of Af = P(f - g) and P

satisfies A1 - b. The smaller square (with sides of length b) will have a smaller effect

on the initial f. That is, the gradient of the initial f will be smaller near the edges of

the smaller square than near those of the larger square. Consequently if a is chosen

appropriately the equations above will have a greater tendency to increase v i.e. to

place an edge near the edges of the larger square than near those of the smaller.

Whatever choice is made concerning the selection of the various parameters asso-

ciated with the computation it is important that they be kept consistent throughout

the iterations of the algorithm. The intent of the algorithm is to refine the boundaries

found in the early stages, not to radically change them. To achieve this a consistent

computational approach is necessary. We mentioned in Section 5.1.1 that the feed-

back will have the effect of reinforcing the solution found during the earlier stages of

the algorithm, tending to make that solution a 'deeper' minima than initially. The

same argument holds for the local minima which will be found by a computational

procedure such as we have described. As long as the computation remains consistent

from iteration to iteration then the feedback should make the algorithm more robust

in the sense that it encourages the finding of essentially the same solution.

7.1 Discretization

In this section a particular discretization the functionals En is presented. This for-

mulation may have value in that it lends itself to possibility of an analog hardware

VLSI implementation such as considered in Harris et. al. [21].

For the simulations presented in this paper f,g and v were discretized by finite

elements in a manner described below. Discrete versions of f and g are defined on

a square lattice with lattice constant 6 while the discrete version of v is defined on
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one twice as dense. This is not necessary but it facilitates the implementation of the

discrete problem. Figure 5 indicates the assignment of lattice values. For convenience

the variables are labeled as in standard matrix notation; thus fij denotes the variable

associated with f at the lattice location row i, column j. To keep the notation for the

function v consistent with the lattice used for f and g the variables associated with

v are partitioned into two sets, vh and vv, corresponding in some sense to horizontal

and vertical edge elements. The assignments are as in Figure 5. A suitable discrete

version of E in terms of these variables is the following,

E = 61 (f,,j- i,,j)2 +
i j

Z(f i,j - fi+l,j)2e- nvv j + (,j fi ,j+l)2 e-n h"
it,

+.2 (z e--i E (vv,j - vhi,,j,)2 + A e"-"Vi S (vhai,j- vvI,,)2)
i,j (i',j)E Jq',, ij ij (i',j')Ea(i,j)

+ct e E -" ( vvh,j - vhi,,ji) + E e-nht?,i(vvi,j -vhi,,)
t(i'j)E ',(ij) (i'j)EVh(i j)

a 2n2
2 16 (vvj + vh,j)

where Afh(i,j) is the set of indices for the nearest vertical edge element neighbors of

vhi,j and similarly NA,(i,j) is the set of indices for the nearest horizontal edge element

neighbors of vvij. A discrete form of the Euler-Lagrange equations for this system

is found by differentiating the expression above with respect to the various elements.

Associated with this one obtains a gradient descent equations of the following form,

VV,!' Vt a E,ft~l - ftj = -Cf E (8)' ~t,+l- VVj = -C.aE (9)
1,3 1,f Ovvi,j

vht+l vhtj -cv E

where the variables cf and c, control the stepsizes of the algorithm and t denotes

'time' or steps in the algorithm. For our simulations we updated f by using the
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Figure 5: Lattice Variables and Finite Elements

assignment,

= 2 ( +62f ± + e- 4+ ee-vi + envhi,+ l)

in keeping with standard relaxation algorithms. The constant c, should be scaled

with n. The details can be found in [31]; c, should be scaled as n-15 .

In general some upper limit on n must be imposed for a given lattice spacing.

Consider the behavior of v in the r-convergent approximation for large n. For each

point i in the array there is a term in the cost proportional to n2v?. Now, as n

becomes large it is necessary for the cost to remain bounded that vi decrease like -.
n

However limn,, oo(1- K ) = 1 for any K < oo, i.e. as n tends to infinity all boundaries

will be removed. There is a secondary positive feedback effect which aggravates this

problem. An increase in e - "n 2 results in an increase in the smoothness of f i.e. a

reduction in IVJf . This causes yet a further increase in e-n" 2 . Thus it is apparent that

the discretized version of this approximation becomes unreliable for large n. Another

reason for keeping n small is that if the wider the 'support' of the edges in terms

of the lattice constant the smaller the effect of the discretization. In particular the

rotational invariance of the continuum formulation is better retained.
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8 Simulation Results

We have simulated the algorithm developed in this Section on the image shown in

Figure 6. The size of the image is 230 x 216 pixels. The image is a well known

one but the version used is an unusally noisy one. It was taken from a bitmap i.e.

a 0\1 image of size 920 x 864 bits and each 4 x 4 block was mapped onto a single

pixel. The value of the image g at a given pixel is proportional to the number of

l's in the associated 4 x 4 block and is scaled so that the range of g lies within

[0,2]. The image is thus quite noisy. Our displays are also bitmaps where we have

reversed this procedure. Thus our resolution is essentially 4 bits per pixel although

the computations were done using 64 bit floating arithmetic. This image is a rather

problematic one for edge detection because many of the edges are blurred and there

are regions of texture. We have performed the simulation for several scales. For

one scale which we denoted 'Scale 2' we have sampled the functions, g and e- "" 2 at

various stages of the algorithm. What is worth noticing is how the fine detail such

as sharp corners and T-junctions are recovered in the final stages. This can be seen

particularly in the details of the eyes. Also, as predicted the global properties of the

solution remain essentially unchanged. Because the edges themselves are blurred and

noisy at fine scales we begin to observe multiple edges. Even though 3 is increased by

a factor of 13 the particular boundaries which are found do not change except in the

fine detail of the localization. (In other experiments / was allowed to increase over

a much larger range and similar results were obtained.) In figure 9 we display e-nv2

from solutions obtained for several scales. Notice that the set of boundaries found is

essentially monotonic in scale.



8 SIMULATION RESULTS 29

6 0.05
Range of g [0.0,2.0]
Stepsize c, an.
e 0.05

Table 1: General Parameters for 'Lenna' Simulations

'Scale' ac Initial/3 Final/3 Initial n Final n
1 0.008 2.0 26.0 3.0 39.0
2 0.006 3.0 39.0 3.0 39.0
3 0.0045 7.0 91.0 8.0 104.0
4 0.003 10.0 130.0 10.0 130.0

Table 2: Parameters for Simulation 'Lenna: All Scales'

Sample Number a /3 n
1 0.006 3.0 3.0
2 0.006 5.0 5.0
3 0.006 14.0 14.0
4 0.006 39.0 39.0

Table 3: Parameters for Simulation 'Lenna: Scale 2'
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Figure 6: "Lenna" Data Used for Simulations
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Sample 1 Sample 4

Figure 8: Lenna Scale 2: Samples of Updated g

... ......... .....

Scale 2 Scale 4

Figure 9: Original Image with Edges
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