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Abstract

In a military conflict, the defense tries to save as many of its valuable assets as possible.
For any given offensive strategy the defense must decide which of its assets should be defended
and which of them it should leave completely undefended. This is called a preferential defense
strategy. We will present an algorithm for obtaining a near-optimal defense strategy under the
assumption that all defensive weapons are identical.

1 Introduction

We consider the following problem faced by the defense in a military conflict. The offense (the

enemy) launches a number of offensive weapons which are aimed at valuable assets (military instal-

lations, population centers, Command and Control (C2 ) nodes, weapon farms, harbors etc.) of the

defense. Since these weapons will be the targets of the defense's weapons, henceforth we will call

them targets. Each of these targets is aimed at exactly one of the defense's assets and, if it is not

intercepted, it destroys the asset with some lethality probability. This probability will depend on

the accuracy of the targets as well as the nature (i.e. hardness) of the asset. We will assume that

the impact of a target on an asset is independent of all other targets and assets. The defense has

a number of defensive weapons with which to engage these incoming targets. The engagement of a

target by a weapon will be modeled as a stochastic event. A probability, called a "kill probability",

will be assigned to each weapon-target pair. This will be the probability that the weapon destroys

the target if it is assigned to it and reflects the characteristics of the engagement of the specific

weapon-target pair. We will assume that the engagement of a weapon-target pair is independent

of all other weapons and targets. Values are assigned to the defended assets and the objective
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of the defense is to assign weapons to targets so as to maximize the expected total value of the

assets which survive after all weapon-target engagements and all target impacts. We will call this

the Asset-Based Weapon-Target Allocation (WTA) problem. In this paper we will assume that all

weapons are fired simultaneously. In part II of our report we will consider the dynamic case in

which weapons are fired in stages and the outcomes of engagements of a stage are observed before

assignments for the following stage are made.

Note that a particular target may be engaged by more than one weapon (Salvo attacks).' Also

note that, in order to save an asset, the defense must, with high probability, destroy all of the

targets aimed for it. Each of these targets must be attacked with enough weapons so as to make

the probability that one or more of them survives sufficiently small. However, if this is done, the

defense may not have enough weapons to defend all of the assets. Therefore the defense must decide

which of the assets should be defended and assign all of its weapons to the defense of these assets.

No weapons should be assigned to the targets aimed for the other not-to-be-defended assets. This

is known as a preferential defense strategy (see for example Bracken et al. [2]).

Another frequently used model for weapon-target allocation is the following. Assign values to

the offensive targets (based on target type, probable point of impact etc.) and assign weapons

to targets so as to minimize the total expected surviving value of the targets which survive all

engagements. In this model the assets are taken into account only through the assignment of

target values. We will call this the Target-Based WTA problem. This problem can be shown to be

a special case of the Asset-Based problem.

Target-Based objectives lead to subtractive defense strategies. In other words the defense tries

to destroy as many of the most lethal targets as possible, or at least the most valuable ones. On the

other hand Asset-Based objectives lead to preferential defense strategies. Note that, by directing

multiple targets at an asset, the offense is in effect trying to make a subtractive defense useless.

This is because in a subtractive defense it is likely that at least one of the targets aimed at an

asset will get through, and that the asset will almost surely be destroyed. On the other hand, a

preferential defense requires more information because the defense has to know the point of impact

of each target. If this information is not available, then the best that the defense can do is to

'The weapon-target allocation problem is but one of the many problems that need to be addressed in the field of
Command and Control (C2 ) theory. The perspectives paper by Athans [1] presents some of the other basic problems
in the theory of C2 systems.
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use a subtractive defense. Therefore an understanding of both the Target-Based and Asset-Based

problems is needed in order to produce the best defense possible. In this paper we will only consider

the Asset-Based problem (see [7] for details of the Target-Based problem).

Some important properties of the Asset-Based WTA problem are that it is (a) NP-Complete

(i.e. one must essentially resort to complete enumeration to find the optimal solution), (b) Discrete

(fractional weapon assignments are not allowed), (c) Nonlinear (the objective function is non-linear;

it is also neither convex nor concave), (d) Stochastic (weapon-target engagements and target impacts

are modeled as stochastic events) and (e) Large-Scale (the number of weapons and targets is large,

making enumeration techniques impractical). These properties of the problem rule out any hope

of obtaining efficient optimal algorithms. In this paper we will study the special case of the Asset-

Based problem in which the kill and lethality probabilities are solely target dependent. We will

present an algorithm for obtaining a sub-optimal solution to the problem and show that the solution

is in fact near-optimal.

Most of the literature on weapon-target allocation considers the Target-Based problem. Matlin

[9] provides a review of the literature on weapon-target allocation problems. Several references are

given and are classified by the model under consideration. Eckler and Burr [6] also give a review of

the material on weapons allocation problems. Besides giving references, they summarize different

mathematical models and provide some analysis.

A major result, obtained by Lloyd and Witsenhausen [8], is that the Target-Based problem is

NP-Complete. What this means is that the computation time of any optimal algorithm for the

problem will grow exponentially with the size of the problem. Since this is a special case of the

Asset-Based problem then we can conclude that the Asset-Based problem is also NP-Complete.

In [3], Burr et al. take a different approach to the weapon-target allocation problem. Instead

of fixing the number of defensive weapons and minimizing the amount of damage caused by the

offense's weapons, they minimize the number of defensive weapons needed by the defense to provide

a given level of defense (i.e. an upper bound on the damage caused by the offensive weapons).

A group at Alphatech Inc., under the leadership of Dr. D. A. Castafion, has examined both

Target-Based and Asset-Based problems in the context of the Strategic Defense System. Their

recent reports, although unclassified, are restricted and the first author did not have access to these

documents. On the other hand, personal communication with Dr. Castafion [4] ensured that no
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significant duplication of effort and results (unclassified and/or unrestricted) occurred.

2 Problem Definition

In this section we will define the Asset-Based problem. We will assume that all weapons are fired

simultaneously (i.e. no feedback of information) and that damage assessment is performed after

all target inpacts. In part II of this report we will consider the case in which weapons are assigned

dynamically. There we will assume that the results of engagements of previous assignments are

observed (i.e. information is fed back) before assignments for the present stage are made.

We will assume that the engagement of a target by a weapon is independent of all other weapons

and targets and that the impact of a target on an asset is independent of all other targets and assets.

The following notation will be used.

def
K = the number of assets of the defense,

def
N the number of targets (offense weapons),

def
M = the number of defense weapons,

def
Gk = the set of targets aimed for asset k, k = 1,2,..., K,

def
nk d= the number of targets aimed for asset k, (i.e. IGkl), k = 1,2,..., K,

def
Wk d the value of asset k, k = 1,2,...,K,

def
Pij f= the probability that weapon j destroys target i if assigned to it,

i = 1,2,...,N; j = 1,2,...,M,
def
= the probability that target i destroys the asset to which it is aimed, i = 1,2,... ,N,

def
z+ d= The set of ordered n-tuples of non-negative integers.

The decision variables will be denoted by:

1 if weapon j is assigned to target i
=ij 0 otherwise

The probability that target i is destroyed is given by 1-I Im_=(1 - pij).'. Therefore the probability

that asset k survives all targets aimed for it is given by SiEGk[1 - Mr MI-1(1 - pij)xii]. Hence we

can state the problem as:

Problem 2.1 The Asset-Based WTA problem can be stated as:

K M

max J= E W k H (1 ri i (1- p ij)x'i),
{xijE{O,1} k=1 iEG(k j=1
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N
subject to xij = 1, j = 1, 2, ... , M.

i=l

The objective function is the sum over all assets of the value of the asset times the probability of

survival of the asset. The constraint is due to the fact that each weapon can be assigned to only

one target.

The solution to problem 2.1 provides us with an assignment of weapons to targets. However,

recall that it may be optimal to use a preferential defense strategy, i.e. defend some of the assets

and leave the others undefended. From the solution of problem 2.1 one can tell which of the assets

should be defended and how each of the defended assets should be defended. We will find that the

assets which are defended have large values and/or have few targets aimed for them. The assets

which have few targets aimed for them will be assigned a small number of weapons per target. If

an asset has many targets aimed for it but has such a large value that it is optimal to defend it,

then, we will find that many weapons per target will be assigned to defend it. This must be done

to ensure that the probability, that one or more of the targets aimed for it get through, is small.

The Asset-Based problem has proven to be significantly more difficult than the Target-Based

problem. The difficulty stems from the fact that, unlike the Target-Based problem which has a

convex objective function, the objective function of problem 2.1 is neither convex nor concave.

Even if we assume that the kill probabilities are independent of the weapons, the problem is still

difficult. However, it has not yet been proven whether the problem, under the assumption of weapon

independent kill probabilities, is NP-Complete or polynomial time solvable.

3 Asset Dependent Kill and Lethality Probabilities

In this section we will assume that the kill probability of a weapon-target pair is dependent solely

on the asset to which the target is aimed. We will also assume that the lethality probability 7rk

of a target is dependent solely on the asset to which the target is aimed. We will denote the kill

probability of a weapon on target i by Pk, where k is the asset to which target i is aimed. Let us

denote the number of weapons that are assigned to target i by xi.
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Problem 3.1 The Asset-Based WTA Problem with Asset dependent probabilities can be stated as:

K

max J= ZWk ]I (1 - rk(1 -pk)fX),
{zEZ+} k=l iEGk

N

subject to Exi = M.
i=l

The optimal assignment of problem 3.1 has some important properties which we give in the following

theorems.

Theorem 3.1 If a is an optimal assignment for problem 3.1 then

IXa - Xb < 1, V a,bEGk, k=l,...,K.

Proof: Pick any asset k and assume that Xa > xb + 1 for some pair of targets a, b E Gk. Let J(E)

denote the value of this assignment. Now consider the assignment which is the same as i except

that a single weapon is removed from target a and assigned to target b. If we use the notation

eT = (0,...,0,1,0,...,O), then this assignment can be written as - ea + eb. We will denote the

value of this assignment by J(Z - ea + eb). We have:

J() - J(:- ea + eb) = Wkrkpk[(l - pk) l - (1 -pk)b] (1- (1- pk)) (1)
iEGk
ioa,b

Since xa > xb + 1 then the right hand side of 1 is negative. Therefore,

J() - J( - ea + eb) < 0.

This is a contradiction since the assignment x was assumed to be optimal. [

This theorem states that, in the optimal assignment, the numbers of weapons assigned to any

two targets aimed for the same asset are either equal or differ by one. Theorem 3.1 can be used

to simplify problem 3.1 by introducing a new decision variable, Xk, which will be used to denote

the number of weapons assigned to all targets aimed for asset k. Given Xk one can obtain an
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optimal assignment by spreading the weapons evenly among the targets. We will let X be the

K-dimensional vector with elements Xk. Let us define Jk(Xk) to be the expected surviving value

of asset k if Xk weapons are assigned to its targets and these weapons are spread as evenly as

possible among the targets. We then have2

Jk(X) = Wk(1 - 7rk(l - pk)nk)X nklrJ(1 -rk(-pk)kJ) ( l x (2)

We can now use equation 2 to simplify problem 3.1 to

Problem 3.2

K
max J = E' WkJk(Xk),

i EEZ k=1

K
subject to EXk=M.

k=1

Note that the objective function in problem 3.2 is separable. However, the functions Jk are not

concave which means that multiple maxima may exist for the problem. This makes the problem

difficult. Our approach is to find concave approximations to each of the functions Jk and then solve

the resulting concave optimization problem. This provides us with a sub-optimal solution which

we will show is near-optimal.

In figure 1 we have plotted an example of the function Jk for the case nk = 10, Pk = 0.8, rk = 0.9

and Wk = 1. Clearly it is neither convex nor concave. Note that between multiples of nk the

function is convex. This is due to the fact that the weakest link in the defense of the asset is the

target to which the least number of weapons is assigned. As a function of multiples of nk, the

function is convex and then becomes concave. This change occurs roughly at the point where the

expected number of surviving targets is one i.e. the value of X for which

x
nk7rk(1 - pk)nk = 1.

These two properties can be stated formally as follows.

Property 1: If LxJ < X < [x] then

Jk(X - 1)- 2Jk(X) + Jk(X + 1) > 0.
2 For ane real variable x, rzl denotes the smallest integer greater than or equal to x while lxJ denotes the largest

integer less than or equal to x.
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Figure 1: An example of the function Jk, the expected surviving value of asset k, for nk = 10,pk =
0.8 ,7rk = 0.9 and Wk = 1, vs. the total number of weapons assigned to defend it, X.

Proof: Let us define

_= - rk(1(-pk)[k,

and

1 - 7rt(1 - p X) 

Note that

Jk(X + 1) = Jk(X),

and

Jk(X - 1) = Jk(X)o.

Therefore,

Jk(X- 1)-2Jk(X) + Jk(X + 1) = Jk(X)[' + 2]

= Jk(X)[a -/]/1(a.)

> 0,
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which completes the proof. ·

Property 2: There exists an rk E Z+ such that for all r > rk,

Jk(nkr) - 2Jk(nk(r + 1)) + Jk(nk(r + 2)) < 0.

Furthermore, if rk > 0 then for all 0 < r < rk,

Jk(nk(r - 1))- 2Jk(nkr) + Jk(nk(r + 1)) > O.

Proof: Note that

Jk(nkr) = Wk(l- rk(l - pk)) nk.

Let Jkf(nkr) denote the second derivative of Jk(nkr) with respect to r. We have

J/'(nkr) = Wknk7rk(l - Pk) log2 (1 - pk)(1 - rk(l - pk)r)nk-2[nkrk(l - pk)r - 1].

Therefore if r < -1og(nk rk)I then Jk(nkr) > 0 and the function is convex. Otherwise if
[- log(1-Pk) I,

r > [log(nkk)l then Jk(nkr) < 0 and the function is concave. ·log(1-pk) ! k~, k

The first property says that the function Jk is convex between multiples of nk. The second property

says that the function Jk(rnk) is first convex for small values of r and concave for larger values.

We will approximate each of the functions Jk by its concave hull which we will denote by Jk.

Note that, because of property 1, the line through the origin which is tangent to the function Jk

will touch at a point where X is a multiple of nk. Define ek E Z+ to be such that X = eknk is

the point at which the tangent through the origin is tangent to Jk. Next note that, because of

property 2, ek > rk where rk is the point at which the function Jk(rnk) changes from being convex

to concave. This implies that the function Jk(rnk) is concave for r >_ k. These facts can now be

used to obtain the concave hull Jk as

Jk(X) t= {tk i) if X kk (3)
Jk(fnkLXJ) + ( - LxJ)(Jk(nk[r1) - Jk(nkLXJ)) if X > kik3



o.sl /0.9 

0.8

0.7

0.6 -

0.3 / 

0.3

0.2

0.1

0 5 10 15 20 25 30 35 40 45 50

X

Figure 2: The hull Jk(X) of the function Jk(X) shown in figure 1. The dashed line is Jk(X) and
the solid line is Jk(X).

In figure 2 we have drawn the hull for the function that was plotted in figure 1. The dotted

line is the function Jk while the solid line is the function Jk. Note that in this example ek = 2 and

rk = 1. Secondly note that Jk(X) is a good approximation of Jk(X) for X > nkek. This fact will

be used in obtaining bounds on the optimal value for the problem.

Consider, now the problem in which we replace the objective function in problem 3.2 by its

concave hull.

Problem 3.3 An approximation to problem 3.2 is given by:

K
max J= Wk Jk(Xk),

K

subject to E Xk = M.
k=l

This is a separable concave maximization problem. Before we solve this problem we need to

present the following result.
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Let F: Rn R R be defined as:

n

F(:Z)= fi(zi) xi E Z+, i= 1,2,...,n
i=l

where each of the functions fi(x) has the property:

f i(x - 1) - fi(x) < fi(x) - fi(x + 1).

For any m E Z+ consider the following optimization problem:

max F(V) (4)

n

subject to xi = m.
i=l

The following algorithm, called the Maximum Marginal Return (MMR) algorithm, is optimal for
this problem.

procedure MMR
begin

2 := [0,..., 0]T

for i:- 1:n do Ai := fi(zi + 1)- fi(zi)
for j := l:mdo
begin

Let k be such that Ak = maxiAi)};
Zk :-k + 1;

Ak : fk(Xk + 1)- fk(Xk);
end

end

This is basically a greedy algorithm. In each iteration the index k is found for which an increase in

xk by unity produces the maximum increase in the objective function. The value of xk is increased

by one and the process is repeated until the constraint is satisfied. If the marginal return data

is stored in heaps then the initial heap data structure requires O(n) operations to construct. In

each iteration the maximum marginal return item is removed and the heap must be reorganized.

This requires O(logn) operations. Since there are m iterations, the worst case complexity of the

algorithm is O(n + m log n). We will next prove the optimality of the algorithm.

Theorem 3.2 The solution produced by the MMR algorithm is optimal for problem 4.

Proof The proof of this theorem for the special case in which the functions fi have the form

f(x) = V(1 - p)Z is given in [5]. We have generalized their proof. The proof of the theorem will



be by induction. Note that the theorem is trivially true for the case m = 1. Assume that it is true

for m = mf. Denote the optimal solution for this case by *. Now suppose that:

fk(±k + 1)- fk(tk) = max{fi(' i + 1)- fi(-i)} (5)
I

Let us denote the solution produced by the algorithm for the case m = fmn + 1 by x. Note that

x* = * + ek. Let z be any feasible solution to the problem with m = fm + 1 other than x*. There

must exist some j such that zj > x; > tj. Let x = x + ej. We have

F(z = F(z- ej) - [fj(zj - 1) - fj(zj)]. (6)

We also have that

F(X) = F(X) - [fj(j) - fj(j + 1)]. (7)

Since x is optimal for the case m = fn we have

F(z- ej) < F(Y) (8)

and by the assumptions on the functions fi stated in the problem we have

f(.ej) - hfj(.j + 1) _< fj(zj - 1) - fj(zj) (9)

since zj > 'j. If we subtract 7 from 6 and use the inequalities 8 and 9 then we can show that

F(z) < F(x). Furthermore one can use 5 to show that F(*) > F(x). We therefore have that

F(z < F(*).

This implies that the solution z is no better than the solution x* obtained by the algorithm in the

theorem. Since z can be any feasible solution we conclude that the solution obtained by the algo-

rithm for the case m = fii+ 1 is optimal. Therefore, by induction, the theorem is true for all m > 0. ·

Note that problem 3.3 has the form required to apply theorem 3.2. We can therefore conclude

that the MMR algorithm produces the optimal solution to problem 3.3. Denote the optimal solution

to 3.3, if the MMR algorithm is used, by X . The assignment X has the following important

property.
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Property 3: For all but one of the assets k, X* is a multiple of nk.

Proof: The proof will be by contradiction. Assume that the property does not hold. This

means that there exist at least two assets with the property that the total number of weapons

assigned to the targets aimed for them is not a multiple of the number of targets aimed for

them. For simplicity let us assume that two of these assets are assets 1 and 2. Note that

the function Jk is linear between multiples of nk. Therefore, the marginal return of asset k

is constant between multiples of nk. If the marginal return for asset 1 on termination of the

algorithm is greater than that of asset 2 then the weapons that were assigned to asset 2 would

have been assigned to asset 1 leading to a contradiction. Therefore the marginal return of

asset 2 on termination of the algorithm must be greater than or equal to that of asset 1. If

this is the case, then, since the algorithm started assigning weapons to asset 2 then it would

have continued doing so until the number of weapons assigned was a multiple of n2 (i.e. until

the marginal return for asset 2 changed value). This is a contradiction since we assumed that

the number of weapons assigned to asset 2 was not a multiple of n 2. D

This property states the following. If an asset is defended, then the same number of weapons

is assigned to each of the targets aimed for the asset. Because the total number of weapons is

arbitrary, then it may not be possible to do this for all of the defended assets. Therefore, the

property may not hold for one of the defended assets. Let target v be the target for which Xv is

not a multiple of nv, i.e the property is violated.

By examining equation 3 one can see that if X is a multiple of nk then Jk(X) = Jk(X). Since

XZ is a multiple of nk for all assets k except asset v then:

(X ) = J(X )- J(Xv) + J(XV). (10)

Finally note that J(X) is an upper bound to J(X). Therefore, if we denote the optimal solution

to the original problem (i.e. 3.1) by X* then

J(X*) > J(X*). (11)

Furthermore since X* is optimal for Problem 3.1 then

J(X*) > J(X ). (12)
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Combining equations 10, 11 and 12 we obtain

J(X) + J(X;) - J(XV) > J(X*) > J(X) (13)

Therefore the optimal value of problem 3.3, the approximate problem, can be used to obtain upper

and lower bounds on the optimal value of problem 3.2.

Notice that the solution to the approximate problem 3.3 is a suboptimal solution to the original

problem 3.2. The difference in value between the optimal and suboptimal solutions is bounded by

J(X- - J(X*) () - J() (X)- J(X) (14)

Note that if J(X.) = J(X£), which would be the case if X,v is also a multiple of n, then we obtain

J(X*) = J(X )

which implies that X is an optimal solution to problem 3.2. In other words, if the total number

of weapons is such that for each defended asset the same number of weapons is assigned to each of

the targets aimed for the asset, then the algorithm produces the optimal solution.

Let us now consider the case in which J(Xf) > J(X*). In this case Xv is not a multiple of nv.

By the nature of the algorithm used, if the number of weapons is increased by n, [ ] -Xv weapons,

then the optimal solution to problem 3.3 will be the same except that Xv will be increased by the

number of additional weapons making it a multiple of nv. The analysis in the previous paragraph

can then be used to show that the optimal solution for the approximate problem is also optimal

for the original problem 3.2. Similarly if the number of weapons is decreased by Xv - n, L|J then

the resulting optimal solution of the approximate problem is optimal for the original problem 3.2

with the decreased number of weapons. These results suggest that the optimal solution obtained

for the approximate problem is close to being optimal for the true problem (i.e. 3.2). We will now

state our result as a theorem.

Theorem 3.3 Consider the Asset-Based WTA problem in which the kill probability of a weapon-

target pair and the lethality probability of a target-asset pair is dependent solely on the asset to

which the target is aimed. Let X be the optimal solution to the approximate problem defined in 3.3

obtained by the use of the MMR algorithm. Let X* denote the optimal solution of the true problem

(i.e. problem 3.2) then

J(X )+ J(X*) - J(Xv) > J(X*) > J(X ).
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Furthermore if we let

E = max max J(Xk)- Jk(Xk)
k (O<Xkt1knk)

then

J(X*) - J(X) < e.

Proof: The first part of the theorem has already been proved. The second part is obtained by

upper bounding the difference J(X,) - J(X*) by its maximum possible value. U

Note that E is the maximum, over all assets, of the maximum difference between the function

Jk and its concave hull Jk. Therefore E is dependent solely on the shape of the functions Jk. If

we increase the size of the problem by increasing the number of assets, targets and weapons but

do not change the types of assets so that E does not change then we find that as the problem size

increases, the percentage error of the suboptimal solution decreases because e remains constant.

Therefore, for large-scale problems we expect that the algorithm will perform well.

Note that the bound E can be computed even before problem 3.2 is solved. This provides an

upper bound on the error of the suboptimal solution that is obtained by the algorithm. However,

after the approximate problem 3.3 has been solved a much tighter bound is obtained by the differ-

ence J(X*) - J(fXC). Furthermore, as we have shown, the solution can be made optimal by slightly

decreasing or increasing the number of weapons.

4 Target Dependent Kill and Lethality Probabilities

In the previous section we assumed that the kill and lethality probabilities were solely asset depen-

dent. In this section we will assume that the kill probabilities are weapon independent and that

the lethality probabilities are solely target dependent. These assumptions are valid for the case of

a single cluster of weapons and a single type of assets. Note that this is a more general problem

than that of the previous section. We will present an algorithm, similar to the one in the previous

section, which yields a suboptimal solution for this problem. The following notation will be used.

K f the number of assets of the defense,

defN = the number of targets (offense weapons),



def
M = the number of defense weapons,

def
Wk - the value of asset k to the defense, k = 1,2,..., K,

def
Gk f the set of targets aimed for asset k, k = 1,2,..., K,

def
nk = the number of targets aimed for asset k, (IGk), k = 1, 2,..., K,

def
7ri = the probability that target i destroys the asset to which it is aimed, i = 1,2,... ,N,

defPi = the probability that a weapon destroys target i if it is fired at it, i = 1,2,..., N.

def
Xi = the number of weapons assigned to target i, i = 1,2,..., N,

x = the N-dimensional vector [x1,... ,N] T ,

def
Xk = the number of weapons assigned to the defense of asset k, (i.e. ZiEGk xi),

X d the K-dimensional vector [X1,...,XK]T,

Z+N df The set of ordered n-tuples of non-negative integers.

Under the assumptions we have made, the probability that an asset survives is the product over

all targets of the probability that the target is destroyed. We therefore have:

Problem 4.1 The Asset-Based WTA problem with Target dependent probabilities can be stated as:
K

max J() = EWk n (1-)(l -pi)i),
Z+ k=1 iEGk

N

subject to xti = M.
i=l

The objective function is the total expected surviving asset value and the constraint is due to the

fact that the total number of weapons fired must equal the number of weapons available.

Because problem 4.1 is separable with respect to the assets, it can be re-formulated as follows.

Let Jk(X) denote the maximum expected surviving value of asset k given that X weapons are used

to defend it. Jk(X) can be obtained by solving the following problem.

Problem 4.2 The subproblem (SUB) is defined by:

Jk(Xk)= max Wk 1 (1 - ri(1 - pi)'),
+EZ iEGk

subject to E = Xk-
iEGk

We can now restate the original problem.
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Problem 4.3 Problem 4.2 can be restated as (MAAIN):

K

max J(X)= Z Jk(Xk)
.9 E Z+K k=1

K

subject to E X = M
k=1

We will first consider the subproblems 4.2. The approach will then be the same as in the previous

section. We will find the hull of Jk and then use an MMR algorithm on the approximate problem

in which Jk is replaced by its hull in problem 4.3. We will then show that the solution of this

approximate problem is a near-optimal solution to the true problem 4.3. Since the approach is

identical to that used in the previous section, some of the details will be omitted.

4.1 Solution of the Subproblem

Since the logarithm function is monotonic, if we replace the objective function of problem 4.2 by its

logarithm then the optimal assignment of the resulting problem will also be optimal for the original

problem. If we take the logarithm of the objective function of SUB we obtain

in Wk + E ln[l - ri(1 - pi)Zi].
iEGk

The first term is constant so we can remove it and optimize the second term. The optimization

problem is:

max sF(ik) = Z ln[1 - ri(l - pi)'i], (15)
9EZ+ iEGk

subject to i = Xk.
iEGk

Note that the function F(xk) is separable with respect to the target index i. Next note that each

of the functions ln[1 - 7ri(l - pi)'i] is concave. This can be verified by showing that the second

derivative of this function (with respect to xi) is non-positive. Therefore, the objective function F

satisifies the conditions required to apply theorem 3.2. We can therefore conclude that the MMR

algorithm can be used to obtain an optimal solution to this problem. This solution will also be

optimal for problem 4.2.

We next need to obtain the concave hull of the function Jk. In the previous section this task

was easy because in that case the functions Jk had two special properties which could be exploited,
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(a) Jk is convex between multiples of nk and (b) as a function of multiples of nk the function is

first convex and then concave. In this case however, the functions Jk do not have these special

properties. The functions Jk in this section differ from those of the previous section because the

kill probabilities and lethality probabilities are target dependent instead of asset dependent. The

effect of these differences is that the function Jk is "smoother" for target dependent probabilities

compared to the case for asset dependent probabilities.
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Figure 3: Maximum expected surviving value of a unit valued asset versus the number of weapons
assigned to its targets for (a) target dependent parameters (solid curve) and (b) target independent
parameters (dashed curve).

Figure 3 illustrates the effect of having target dependent kill and lethality probabilities. We

considered the problem of a single asset with W = 1 and n = 10. The dashed curve is for the

case of target independent parameters, pi = 0.8, ri = 0.9. The solid curve is for the case of target

dependent kill probabilities, {pi} = [.7,.7,.7,.8,.8,.8,.9,.9,.9,.9], and target dependent lethality

probabilities {rj} = [.8,..8.8,.9,.9,.9, 1,1, 1, 1]. One can see that unlike the dashed curve, the solid

curve is almost concave. For all practical purposes, the solid curve is concave in the region of a

heavy defense.
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4.2 Solution of the Main Problem

Let us define Jk to be the concave hull of the function Jk (defined in problem 4.2). We will

approximate problem 4.3 by its concave hull. This approximate problem can then be solved to

obtain a sub-optimal solution.

Problem 4.4 The approximate problem to problem 4.3 is given by:

K

max J(X) = Jk(Xk)
ZEZK k--1

K

subject to EX = M.
k=l

Theorem 3.2 can be applied to show that the MMR algorithm produces the optimal solution to
_ *

this problem as well. Let X denote the optimal solution of the approximate problem 4.4. By the

nature of the algorithm, we can show that for all but one of the assets

Jk(Xk) = Jk(Xk).

Let the asset for which this equality does not hold be asset v. Also let X* denote the optimal

solution to the true problem 4.3. Using the same analysis as in the previous section we can then

show that

J(X + J(X,) - J(XV) Ž J(X *) > > J( (16)

Therefore the optimal solution to the approximate problem can be used to obtain upper and lower

bounds on the optimal value of true problem (i.e. problem 4.3).

Notice that the solution to the approximate problem 4.4 is a near optimal solution to the true

problem (4.3). The difference in value of these two solutions is bounded by:

J(X*) - J ) J(XC) - J(x)*). (17)

*

If J(X*) = J(Xv*) then X is optimal for problem 4.3. Also note that if J(Xv*) J(Xv), then

by slightly increasing or slightly decreasing the number of weapons one can obtain a problem for

which the solution to the approximate problem (4.4) is also optimal for the true problem (4.3). We

now state our result as a theorem:
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Theorem 4.1 Consider the Asset-Based WTA problem in which the kill and lethality probabilities

depend solely on the target. Let X be the optimal solution to the approximate problem defined in

4.4 obtained by the use of the MMR algorithm. Let X* denote the optimal solution of the true

problem 4.3 then

J(X) + J(XV) - J(Xv) > J(X*) ( )

Furthermore if we let

e = max max Jk(Xk)- Jk(Xk)
k {O<Xk<tk)

then

J(X* ) -J < e

Proof: The first part of the theorem has already been proved. The second part is obtained by

upper bounding the difference J(X*) - J(X*) by its maximum possible value. -

_*

Therefore we can obtain a suboptimal solution X to the problem as well as an upper bound on

the optimal value. Furthermore, if the number of weapons is slightly increased or slightly decreased

then the algorithm produces the optimal solution for the corresponding problem.

5 Sensitivity Analysis

In this section we will present some sensitivity analysis results. These results will help us decide

the importance of the role of each of the parameters in the optimization problem. This information

will be useful in determining how accurately each of the parameters should be measured.

5.1 Optimal Value Sensitivity Analysis

We will present sensitivity analysis results in this subsection for the case of a single kill probability

and a single lethality probability. The following baseline problem will be used:

Baseline Problem Definition

Number of weapons: M = 200,

Number of targets: N = 100,

Number of assets: K = 10,

Number of targets aimed at each asset: nk = 10, k = 1,... ,10,
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Value of each asset: Wk = 1, k =1,... 10,

Kill probability of each weapon-target pair: p = 0.8,

Lethality probability of each target: -r = 1.

We will vary the parameters p, ir, M and nk individually and see how the optimal value of the

problem changes. As we vary the kill probability p we will denote the optimal value by J(p). Similar

notation will be used for the other parameters. Since we do not have an algorithm that guarantees

optimal solutions for the problem, we will compute upper and lower bounds on the optimal value.

The algorithm presented in section 4.2 will be used to compute a solution to the problem as well

as an upper bound on the optimal value. The expected value of the sub-optimal solution will be

plotted with a solid line. The upper bound will be plotted with a dashed line. The plot for the

optimal value will lie between these plots. Note that for some of the plots the algorithm produces

the optimal solution. In these cases no dashed curve will be visible.
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M nk
Figure 4: Upper and lower bounds on the optimal value for the baseline problem, as a function of
(a) the kill probability (b) the lethality probability (c) the number of weapons and (d) the number
of targets aimed for an asset (with M = 2N).
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In figure 4 we have four plots. In plot (a) the upper and lower bounds on the optimal value

is plotted versus the kill probability p which is the same for all weapon-target pairs. Note that

the dashed curve is almost identical to the solid curve. This means that the solution produced by

the algorithm is almost optimal for all values of the kill probability. Also note that for the values

of interest to us (0.5 < p < 0.9) the optimal value is very sensitive to the kill probability. Small

increases in the kill probability can result in large increases in the optimal value.

In plot (b) the optimal value is plotted versus the lethality probability 7r. Note that there is

no dashed curve because the solution was optimal. Here we find that the optimal value decreases

almost linearly with the lethality probability. It therefore appears that the lethality probability

does not play an important role in the optimization problem.

Plot (c) contains the optimal value versus the number of weapons for M = 100,150,200,250,300.

For these values of M the algorithm produced the optimal solution. We find that the optimal value

increases almost linearly with the number of weapons.

In plot(d) the upper and lower bounds on the optimal value is plotted versus the number of

targets aimed for each of the assets. We kept the weapon-target ratio fixed at 2:1. Again note

that the algorithm is optimal for most of the plot. Here we find that the plot appears to be that

of a piecewise-linear convex function. We also find that as the number of targets aimed for each

asset increases, the optimal value decreases. This implies that, if the number of assets is kept fixed

then as the size of the attack increases (i.e nk increases for each k) the defense's arsenal must be

increased at a greater rate to maintain the same level of performance. This gives the offense a

tremendous advantage because, if we keep the kill and lethality probabilities fixed, then a small

increase in the offense's arsenal has to be countered by a larger increase in the defense's arsenal if

the defense wishes to maintain the same level of performance.

5.2 Optimal Solution Sensitivity Analysis

In the previous subsection we considered what happens to the optimal value as various problem

parameters were varied. In this section we will see what happens to the optimal solution of the

problem as each of the parameters is varied.

We will use the same baseline problem that was used in the previous subsection Because of the

symmetry of the problem, the solution can be completely characterized by the number of defended
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assets. Note that in the solution to the problem, the same number of weapons is used to defend

each of the defended assets except one. The number of weapons assigned to this special asset is less

than the number assigned to each of the others. We will include this special asset, as a fraction,

in the number of assets defended. This fraction is the ratio of the number of weapons assigned

to defend the asset and the number of weapons assigned to each of the other defended assets. In

figure 5 we have plotted the number of defended assets vs each of the parameters p, 7r, M and n.
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C 1 0

CZ 5 -c 10

o 0
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10 (c) 10 (d)

ctl 8
0 0

probability (c) the number of weapons and (d) the number of targets aimed for each asset (with
M = 2N).

In plot (a) of figure 5 we have plotted the number of defended assets versus the kill probability.

Note that small changes in the kill probability can result in significant changes in the strategy. Plot

(b) contains the plot for the lethality probability. Here we find that changes in ar do not affect the

optimal strategy. This suggests that the lethality probability plays a small role in the optimization

problem. Plot (c) contains the plot for the number of weapons. As the number of weapons increases

more assets are defended until they are all defended. Plot (d) contains the plot for the number of
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targets per asset with a fixed 2:1 weapon to target ratio. Note the sudden change in the defense

strategy as nk changes from 12 to 13. For the case nk = 12 the defense assigns two weapons per

target to defend its assets. However, for the case nk = 13, two weapons per target is not enough

so it has to start using three weapons per target for 6 of the assets and two weapons per target for

one of the assets (which will be included as a fraction of 2/3). Therefore the defense only defends

62 assets.

6 Conclusions

We have presented an algorithm for producing sub-optimal solutions to the Asset-Based WTA

problem under the assumption of target dependent kill and lethality probabilities. Computational

experimentation suggests that the solution produced by this algorithm is either optimal or near

optimal for most problems. We conjecture that, if this approach is used as a heuristic for the case

of multiple weapon classes then the resulting solution will also be near-optimal.

We also presented some sensitivity analysis results which will prove helpful in choosing parame-

ter values for the problem. The optimal value and optimal solution of the problem is quite sensitive

to changes in the kill probability, but appears to be insensitive to changes in the lethality proba-

bility. Furthermore, if the number of assets, and the kill and lethality probabilities are kept fixed

then, as the number of offense weapons increases, the number of defensive weapons must increase

at a greater rate if the defense wishes to maintain the same level of performance.
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