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ABSTRACT

This. paper is concerned with the optimal control of discrete-time
linear systems that possess randomly jumping parameters described by finite
state Markov processes. For problems having quadratic costs and perfect
observations, the optimal control laws and expected costs-to-go can be
precomputed from a set of coupled Riccati-like matrix difference equations.
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optimal constant control laws which stabilize the controlled system as the
time horizon becomes infinite, with finite optimal expected cost.
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1. Introduction and Problem Formulation

Consider the discrete-time jump linear system

Xkfl = Ak(rk)xk+ Bk(rk)uk = k = k ,... 1N

Pr~r r =i p ij) (2)
k+l jr k = Pk+

where the initial state is

x(kO ) = X r(k ) = r

Here the x-process is n-dimensional, the control u 6 R ' and the form

process {rk:k=kol .. .,N} is a finite-state Markov chain taking values in

M = U1, 2, . . ., M.-, with transition probabilities Pk(i,j).

The cost criterion to be minimized is

I P4N-1

k(Xr ) = El / [u'kRk(rUk + x Q k+ (rk )x I (3)
Ik k k k k+l k+1 k+1 k+

k=k
+ x NKT(rN) X 

The matrices Pk( j), QK+ikj), . and KT ) are positive-sernmidefinite for each i

and k. In addition, we assume that

I I

Rk(j) + 8'k Pk+(i)Qk+ I B(j) i(> 0 (4)J

i=i

The role of this condition will become clear in the sequel. Note in

particular that (5) is satisfied if Rk(J) > 0 and Qk(j) > 0 for all i e M

at all times k.

This kind of problem formulation can be used to represent the control
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of systems subject to abrupt phenomena such as component and

interconnection failures. We call this the jump linear quadratic (JLQ)

control problem. The continuous-time version of this problem was

apparently first formulated and solved by Krasovskii and Lidskii [2]. The

problem was studied later by Wonham [3]. He obtained sufficient conditions

for the existence and uniqueness of solutions in the JLQ case, and also

derived a separation theorem under Gaussian noise assumptions for JLQ

control problems with Markovian forms and noisy x (but perfect r)

observations. Sworder [4] obtains similar results using a stochastic

maximum principle and has published a number of extensions with his co-

workers, including [4] - [9]. Stochastic minimum principle formulations

for continuous time problems involving jump process have also been

considered by Rishel [10] Kushner [141, and others. Robinson and Sworder

[11,12] have derived the appropriate nonlinear partial differential

equation for continuous-time jump parameter systems having state and

controi-dependent rates. A similar result appears in the work of Kushner

and an approximation method for the solution of such problems has been

developed by Kushner and DiMasi [13].

Discrete-time versions of the JLQ-control problem have not been

thoroughly investigated in the literature. A special case of the x-

independent JLQ discrete-time problem is considered in Birdwell [15-17],

and the finite-time horizon x-independent problem is solved in Blair and

Sworder [16]. Minor extensions are discussed in r17]. In this paper we

develop necessary and sufficient conditions for the existence of steady-

state optimal controllers for the discrete time JLQ problem. These

conditions are much more complicated than in the usual discrete-time linear

quadratic regulator problem. Specifically, these conditions must account
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for the difference in the stability properties of the closed loop system

for different values of rk. For example, it is possible for a particular

component of x to diverge when rk takes on a particular value, if rk

takes on this value rarely enough and if this component of x is

stabilized sufficiently when the system is in other structural forms. Thus

one finds that

stable closed-loop dynamics in each or all of the structural forms
is neither necessary nor sufficient

stabilizability of the dynamics in each form is neither necessary
nor sufficient

controllability of the dynamics in each form is neither necessary
nor sufficient

for the existence of steady-state optimal controllers yielding finite

expected cost.

In the next section we review the basic form of the solution to the

discrete-time JLQ problem over a finite time horizon and in Section 3 we

present examples that illustrate several qualitative features of the

solution. In Section 4 we present the rather complicated necessary and

sufficient conditions for the existence of a steady-state solution for

time-invariant JLQ problems over infinite horizons, and in Section 5 we

present an example illustrating this condition and several other examples

which serve to show that simpler conditions such as stabilizability or

controllability are neither necessary nor sufficient. Section 6 contains

simpler sufficient conditions for the existence of solutions in the

infinite horizon case, and Section 7 contains a brief summary.
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2. Problem Solution

The optimal control law can be derived using dynamic proqramming. Let

Vk(xkrk) be the expected cost-to-go from state (xk rk) at the time k

(after x'k (r kXk is charged):

Y.L[XNrN] = X'NKT(r t)x

Vk[xk,rk ] = min E u'kR (rk )U k + x kflQ k+ (k+l) kl5)

uk I 
k + Vk+ l k+l ' x k+1

Proposition 1: Consider the discrete-time noiseless Markovian-form jump

linear quadratic optimal control problem (1) - (4). The optimal control

law is given by

u = -L (j) xk for rk 1 i M
k-1 k-l k-l k-!

k = k,: ko+l: ... ,N

where for each possible form j the optimal qain is given by

L (j) = .RBk + BlQij)B J'I )Q [EJ (6l)
k-i k-l + k- l' k+ 8 k-l k-l kJAki .i-l

where

.:-kM
Q (jp) = ' (il) [ Qki) + Kk(i)) (7)

i=l

Hence the sequence of sets of positive semi-definite symmetric matrices

(Kk (l j): i 6 M) satisfies the set of M coupled matrix difference equations

K(j) = A' (j)Q (j) [A (j) - B () L (j)) (8)
k-D Timeak-1 k iAk-1 ) -B-1 
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with terminal conditions

KN (j) = KT(i).

The value of the optimal expected cost (3) that is achieved with this

control law is given by

X"<OKko(r )x 

The proof of this result appears in [1] and is sketched in the appendix.

An earlier and essentially identical result was established in [161.

Note that the {Kk(J): i e M} and optimal gains {Lk(J): i e Ml can be

recursively computed off-line, using the M coupled difference equations

(6 )-(8). The M coupled Riccati-like matrix difference equations cannot be

written as a sinqle nM-dimensional Riccati-equation.
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3. Examples

In this section some qualitative aspects of the JLQ controller given

in Proposition 1 are illustrated via a time-invariant scalar example with

M=2 forms. This example serves to point out issues that arise in the

consideration of steady-state JLQ controllers in the following sections.

k+ = k + blk if k = 1

xk+1 = a2v k + buk if r k = 

p(i,j) =Pij

F·J-1

I N-1 2 2 2
min E ' [ x2 r + u (r k ) ] + x KT (9

k+1 kl k..k NTN

I_ k=O

In this case the cost matrix sequences {Kk(i), i 6 M} may or may not

converge as k decreases from N, and furthermore, xk may or may not be

driven to zero, as shown in the following.

Example 1: Consider the following choice of parameters for (9):

xk+1 = k f k if r k = 1

x+ =2xk + 2u k if Y = 2Xk+1 k k=k

Pij = .5, KT(i) = I = 1 R(j) = 1 for i = 1,2

The optimal costs, control gains and closed-loop dynamics are given in

Table 1, for four iterations.

As the table indicates, in this case the optimal costs and gains

converge quickly. Furthermore, note that in the "worst case" of rk = 2 for

all k,

lim IxNI > lim (.5)
N -1 x = O.

N-->oo N-->oo

Thus x is driven to zero by the optimal controller.
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This example demonstrates the "passive hedging" behavior of the

optimal controller. That is, possible future form changes and their

associated costs are taken into account. To see this, consider the usual

LQ regulator gains and cost parameters (as if p 1 l=p2 2 =1 and P12=P21=0),

which are listed in Table 2.

Comparing Tables 1 and 2, we note that for k < N-2 the gains of the

Proposition 1 JLQ controller are modified (relative to LQ controller) to

reflect future form changes and costs. The JLQ controller has higher r=l1

gains to compensate for the possibility that the system might shift to the

more expensive form r=2. Similarly, the r=2 gains are lower in the JLQ

controller reflecting the likelihood of future shifts to r k=. l

Example 2: Here we choose the parameters of (9) so that the optimal

closed-loop systems in different forms are not all stable, although the

expected value of x is driven to zero. Let

Xk+ 1 = k+if k 1

xk=1 = 2xk + uk if rk = 2

P11 = P21 = P12 = P22 = .1

where

tKi), = 0, Q(j) = 1 j = 1,2

R(1) = 1, R(2) = 1000

Thus there is a high penalty on control in form 2.

This system is much more likely to be in r=l than in r=2 at any time.

We might expect that the optimal control strategy may tolerate instability

while in the expensive-to-control form r=2, since the system is likely to

return soon to the form r = I where control costs are much less.

Computation for four iterations demonstrates this, as shown in Tables 3

and 4.
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As our analysis in subsequent sections will confirm, these quantities

converge as (N-k)-->oo , Note that the closed-loop system is unstable

while in r=2.

Direct calculation of the expected value of xk, given x0 and r0, shows

that IE (xk)I decreases as k increases. This is shown in Table 5. In

four time steps4 E{x} is reduced by over 95% if initially the system is in

form 1 and 68% if it starts in form 2. Note that if the system starts in

the expensive-to-control form r=2, x is allowed to increase for one time

step (until control while in r = 1 is likely to reduce it).
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Kk(l)=Lk(1) Kk( 2 )=Lk( 2 ) al-blLk(1) a2 -b 2 Lk(2)

k=N-1 .5 .8 .5 .4

k=N-2 .623 .868 .377 .263

k=N-3 .636 .875 .364 .251

k=N-4 .637 .875 .363 .249

Table 1: Optimal Cost and Controller Parameters, and closed-loop
dynamics for Example 1.

Kk(1) = Lk(1) Kk(2) = Lk(2)

(with Pl = 1) (with p22 = )

k=.lf-1 .5 .8

k=N-2 .6 .878

k=N=3 .615 .883

k =N-4 .618 .883

Table 2: Standard LQ Solution for Example 1.

Kk(1) Kk( 2 ) L (k') Lk (2)
k"k k

k=N 0 0 --

k=N-1 .5 3.996 .5 1. 998x10 3

k--N-2 .649 7.385 .649 3.672x10 3

k=N-3 .699 9.269 .699 4.603x10 3

k=N-4 .719 10.198 .718 5.060x10

Table 3: Optimal gains and costs of Example 2.
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al-blLk (1) a 2 -b 2Lk(2)

k =N-1 .5 1.998

k=N-2 .359 1.996

k=N-3 .301 1.995

k=N-4 .281 1.995

Table 4: Closed-loop optimal dynamics of Example 2.

if r, = 1 if ro = 2

xO 1.0 1.0

x1 .281 1.995

E x 2.} .132 .938

E{x.,- .069 .491

EUx ,- .045 .319

Table 5: E{x k - for Example 2.
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4. The Steady-State Problem

We now consider the control problem in the time-invariant case as the

time horizon (N-kO) becomes infinite. Specifically consider the model

(1),(2) with Ak (rk ) = A(rK), Bk(rk) = B(rk) and Pk+(i) = pij. We wish

to determine the feedback control law to minimize

I N-1 I
El [u'k R(rk)uk + Xk+ Q(r k+ )xk+ + X NKT(rN)X NXo' r0 i (10)

lim __ k k k+ k+
k=k 

(N-k )-->oo

For future reference, from Proposition 1 the optimal closed-loop

dynamics in each form i 8 M are

Xk+1 = Dk(rk)X k

where

Okt~i) = -.I -8ot i)E~ti)+D .. k+I( )B~j)] Bj) k+lj)} A(j)

where Q kfj) is defined in (7) (in the time-invariant case, of course,

only Kk(j) in (7) may vary with k).

Before stating the main result of this section, we recall the

following terminology pertaining to finite-state Markov chains:

· A state is transient if a return to it is not guaranteed.

· A state i is recurrent if an eventual return to i is guaranteed.

State i is accessible from state i if it is possible to begin in
i and arrive in i in some finite number of steps.

· States i and j are said to communicate if each is accessible from
the other.

A communicating class is closed if there are no possible
transitions from inside the class to any state outside of it.

A. closed communicating class containing only one member, j,
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is an absorbing state. That is, pj 1.

A Markov chain state set can be divided into disjoint sets T,
C1 ..,Cs where all of the states in T are transient, and each C.
is a closed communicating class of recurrent states.

Define the cover C . of a form j G M to be the set of all forms

accessible from i in one time step. That is,

C = {i £ M: p(j,i) X O}.

The main result of this section is the following:

Proposition 2: For the time-invariant Markovian JLQ problem the conditions

described below are necessary and sufficient for the solution of the set of

coupled matrix difference equations (6)-(8) to converge to a constant

steady-state set

{K(j) > 0: ji M)

as (N-k0 )-->oo. In this case the K(j) are given by the M coupled

equations

K(j) = A'(j)Q*(J.)D(j) (12)

where D(j) is defined as in (11) with Q .i() replaced by Q (j). In

turn, Q *ij) is defined in (7) with Kk(j) replaced by K(j); that is

M
Q (j) = \ pi [Q(i) + K(i)] (13)

/

i=O

Furthermore the steady gains L(j) in the steady-state optimal control law

u(rk,X k) = -L(rk)xk (14)

are given by

L. = ER(j) + 8'(j)Q*(j)B(j)]- 1 8'(j)Q* (j) A(j) (15)

Thus under the conditions described below the optimal infinite horizon cost
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is

V(xOrO ) = x' K(ro)Xo

The conditions to be satisfied are as follows. There exists a set of

constant control laws

Uk = -F(J)xk j = 1,. . .,M (16)

so that

Condition 1:

For each closed communicating class, Ci, the expected cost-to-go from (xk =

x, rk = i 6 C ) at time k remains finite as (N-k)-->oo. This will be

true if and only if for each closed communicating class Ci, for all forms

j e C,, there exists a set of finite positive semi-definite n x n

matrices { Z1 , 2' "ZCil } > satisfying the IC I coupled equations1 2 I Cil

I
oo t

\ p. j [ -A B) ]F {Q. + F.j R.Fj}[Aj - BF It]

I t=O
+

Z. = I

t=1 i q e Ci
I oi Q iI

(17)

Note that in the case of an absorting form i (ie., a singleton

communicating class) Z. reverts to the quantity

00
\ [A. -S.F.] t {Q. + F'.R.F . [A- B F t

t=0

Cnce we are in an absorbing form our problem reduces to a standard LQ
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problem and Condition 1 in effect states that unstable modes in such a form

that lead to nonzero costs must be controllable.

Condition 2:

For each transient form j e T E M, the expected cost-to-go is

finite. This is true if and only if set of finite positive semi-definite

n x n matrices { G1,G 2, ... GiTI } satisfying the ITI coupled equations

I I
I oo I

t=i 
+ 

3 

I />' 3 1 qi i ' q jqq l i 

t= Iq T q M-T I I
I II q . i q .jq

I 1 t _ I

(18)

Condition 1 states that it is possible to achieve finite expected cost

after the form process leaves the set of transient states and enters one of

the closed communicating classes. Note that for absorbing states (i.e.

IC. I =1), Condition I reduces to the usual LRQ c;rdition. Condition 2 states

that the expected cost from any transient form is finite. This precludes

the possibility of an unstable mode of xk growing without bound in mean

square either leading to infinite accrued cost while the form resides in

the transient state set (this occurs if the xk mode is observable through

the cost in transient forms) or to infinite cost once the form jumps into

a closed communicating class (if this mode becomes observable after the

transition). D
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The proof of the proposition, which is given in [1], is quite

straightforward, and we confine ourselves here to sketching the basic idea.

Necessity is clear, since if conditions 1 and 2 are not satisfied for any

control law of the type (16) then the finite horizon optimal control laws

cannot converge to one with finite cost as (N-k0 )-->oo . To show

sufficiency, one first shows that if one applies the control law (16),

then, under conditions 1 and 2, the expected cost is finite as (N- k)-->oo.

In fact it is given by

x'(k 0 )Z(r(k0 ))x(k 0) if r(k0 ) 6 M or T

x'(k 0) G(r(k0))x(ko) if r(k0) G T

This establishes an upper bound on the optimal cost matrices Kko (j) for the

finite time horizon problem for the particular case when the terminal costs

KN(J) = 0. Furthermore, in this case the Kko (j) are monotone increasing as

(N-k0) increases, and thus they converge. It is then immediate that the

limits

lim Kk (j) = K(j)

(N-k0)--> oo

satisfy (16). Straightforward adaptations of standard LQ arguments then

allow us first to extend the convergence result to the case of arbitrary

terminal cost matrices for the finite horizon problem and, secondly, to

show that there is a unique set of positive definite solutions of (16).

Conditions 1 and 2 of Proposition 2 take into account

. The probability of being in forms that have unstable closed loop

dynamics

The relative expansion and contraction effects of
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unstable and stable form dynamics, and how the closed-loop

eigenvectors of accessible forms are "aligned". That is, it is not

necessary or sufficient for all (or even any) of closed-loop dynamics

corresponding to sufficient forms to be stable, since the interaction of

different form dynamics determines the behavior of Ex' kxk}.

These various characteristics will be illustrated in the examples in

the next section. The Conditions in Proposition 2 differ from those of the

usual discrete-time linear quadratic regulator problem in that necessary

and sufficient Conditions 1, 2 replace the sufficient condition that the

(single form) system is stabilizable. Unfortunately these conditions are

not easily verified. There is no evident algebraic test for (17),(19) like

the controllability and observability tests in the LQ problem. The use of

the conditions in Proposition 2 will be demonstrated in the examples that

follow.

It is important to note that even if the conditions of Proposition 2

are satisfied, we are not guaranteed that Xk--->0 in mean square. One

obvious reason for this is that Conditions 1 and 2 are trivially satisfied

(with F(j), Z(j), G(j) all zero) if Q(j) = 0 in all forms. Of course, the

same comment applies in the usual linear-quadratic problem. In that case, a

set of conditions that guarantee that Xk-->0 in mean square are the

stabilizability condition mentioned previously and the requirement that

(AQ 1 2 ) be detectable.

Example 3:

One might conjecture, given the LQ result, that Conditions 1 and 2

together with the requirement that (A(j),Q (j)) be detectable for each i

might be sufficient for the JLQ problem. This is not the case, however, as

one can certainly construct deterministically-jumping systems (i.e. time-

varying linear systems) which are counterexamplessuch as the following.
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A(1) = 0 2 (1) = : 1 0 B(1) = 0
: 1/2 :0 0 :

A(2) = : 1/2 : Q(2) = 0 0 B(2) = 0
2 0 :0 :

P12 P 21 

The following corollary presents one sufficient condition that guarantees

that Xk -->0 in mean square.

Corollary 1: Consider the time-invariant JLQ problem, and suppose that the

Conditions I and 2 of Proposition 2 are satisfied. Suppose also that the

closed loop transition matrix (ij)-Bej)L'j) is invertible for all ). Then

E x k --->0 if the matrix -(j) + L(j)l R(j)L(j) is positive definite

for at least one form in each closed communicating class. 0

Before sketching the proof of the corollary it is worth providing an

example that illustrates the types of situations that motivated the

inclusion of the assumption that A(j)-B(j)L(j) is invertible for all j.

Ex armpIle 4:

Consider a scalar system with form dynamics illustrated in Figure 1 where

A(1) = 2 i (2) = 0 : A(3) = 1

E:(1) = 8(2) = B(3) = 0

Q(1) = Q(2) = 0, Q(3) = 1

In this case, assuming that the initial form is not 2, it is not difficult

to show that E[x 23-->oo, while the cost incurred over the infinite horizon

is zero, even though Q(3) = 1. The reason for this is that the form process

is likely to remain in form I for too long a time, but this large value of
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3/4

Figure 1: Form Structure in Example 4.
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the state is not penalized because of the nulling of the state at the time

of the first transition to form 2. Note also that in this case, although

E[Xk23 diverges, xk-->oo with probability 1. 1

For simplicity in our proof of the corollary, let us assume that there

is a single closed communicating class. The extension to several classes

is straightforward. First let us denote by j* the form specified in the

Corollary; i.e., j* is in the closed communicating class, and

. [Q(j*) + L(j*)'R(j*)L(j*)] = X > 0 (19)
min

where 6min (A) = smallest singular value of A.

Note next that if we apply the optimal steady-state control law as

specified in Proposition 2, and if rk=j, then the cost accrued at time k is

x' [Q(j) + L(j)' R(j) L(j)] xk

Suppose that {t.i is any sequence of strictly increasing stopping times so

that rti = i* Then under the conditions of Proposition 24 the optimal cost

J is finite, and in fact:

00

co > J ' = E x x'kIQ(r) + L'(rk)R(rk) L(rk) k0 k J E + k kLr ) x

k=O

00

E xti[ Q(j*) + L'(j*)R(i*)L(j*)J]x/ ti

i=0

From this we can immediately conclude that

i--oooD icrete Time Mrkoin Optimal ontrol Pae 1ti
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What we wish to show is that

lim E C HxkIl2J = 0, (22)
k -->oo

and we do this by contradiction. Specifically suppose that (22) is not

true; that is, we can find an e so that for any positive integer m: there

exists another integer K(e,m)> m so that

E[ tx 112K( > e (23)

We will show that this supposition contradicts (21) by constructing a

sequence of stopping time for which (21) does not hold if (23) does. Let

to = The earliest time after K(6,O) that the form process
is in state j*

tk = The earliest time after both K(G,k) and t(e,k-1)
that the process is in state j*

Denote by U m the set of form trajectories that beSin in state m and end in

state j* without any intermediate visits to j*. For any U S Urn let

D(Mu) denote the closed-loop state transition matrix along the trajectory

u Then

2 2
Eixtk t ] = E IE XtkI{ { XK(e k): rk = m] 

E IE [ ili(u) XK(e k)II I XK(e,k)' rk = mi I

I I
E x K(ek) E [ '(uk) $(uk) I rk = m ] K(e,k) (

l_ ' _{ (24)

where uk denotes the form trajectory from K(e,k) to tk. Note that the

invertibility assumption immediately implies that
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X = r min E [C '(uk) $(uk) I r k =m )} > O

Letting

)X = min m
m

we see that (23)and (24) together imply that

E [II x tkl 2 ]
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5. Examples

The following simple scalar example illustrates the conditions of

Proposition 2.

Example 5: Consider the form dynamics depicted in Figure 2,where the x-

process dynamics are autonomous in all forms:

k- 1= a(r )k rk 6 {1,2,3,4,5,6,7}Xk+l k k

and Q(j) > O, ¥ j. Here 6 is an absorbing form, {3,4} is a closed

communicating class, and T = {1,2,5,7} is the set of transient forms. For

the absorbing form r = 6, condition 1 yields

(i) a (6)<1

and in this case

Z(6) = Q(6)

I-a _ _6)

For the closed communicating class {3,4,> (17) gives the coupled equations

Z(3) = Q(3) + a (3)Z(4)

Z(4) = Q(4) + a (4)Z(3)

Consequently
1

Z(3) = --- ( [Q3) + a'(4) Q(4)]
i - a (3)a2(4)

2 2Z(4) = --------------------- [Q(4) + a (3) .(3)]1-a (3) a (4)

Thus for Z3, Z4 to be positive (as in Condition 1) we must have

(ii) a (3) a2(4) 4 I

(i.e. the two-step dynamics corresponding to the form transitions 3-4-3 or

4-3-4 must be stable). For the transient forms {1,2,5,7:., (18) yields

G(1) = Q(1) + a 21) G(2)
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4337 .

Figure 2: Form Structure for Example 5.
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G(2) = Q(2) + a2 (2) Cp21G(l)1 + P23 Z(3) + p2 ; Z(6)

0 t-1 2t
G(5) = Q(5)+ \ p a (5) r Q(5)p55 + P5 3 Z(3) 3

t=1

t-i 2t
G(7) = Q(7) + P77 a (7) [ Q(7)P77 + P72G(2) I

t=1

From the equations for G(1) and G(2),

Q(1) + a (1)Q(2) + [P2 3Z(3) + p2 6 Z(6) 3 a 2 (1)
6(1) =

2 2 ---
1 - a (1) a (2) P21

2
Q(2) + a2(2)Q(1)P21 + p Z(3) + p26 Z(6)

G(2) - 2--_ _
-a (1) a (2) P21

So for 0 < G(1), G(2) < oo we have

(iii) a (1 ) a (2) P21 < 1.

From the expression for G(5) we see that for 0 ( G(5) < oo we have

wiv) p5 5 a (5) < 1

with the resulting

0(5) + P53 a (5) Z(3)
G(5) = -------

1 - P55 a2(5)

From the expression for G(7) we see that for 0 < G(7) < oo we have

(v) P 77 a (7) < 1

with

Q0(7) + P7 2 2 (7) G(2) ]
G(7) =

1 -P 7 a (7)
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The conditions (i)-(v) above result from the necessary and sufficient

conditions of Proposition 2, applied to this problem. For this example we

see that

- The absorbing form (r=6) must have stable dynamics; (i)

- one of the forms in the closed communicating class j3,4}
can be unstable as long as the other form's dynamics make
up for the instability; (ii)

- transient forms r = 5,7 can have unstable dynamics as long
as the probability of staying in them for any length of
time is low enough; (iii),(v)

- some instability of the dynamics of forms r = 1,2 is okay
so long as the probability of repeating a 2-->1-->2 cycle
is low enough;(iv).

In the proof of the LQ problem, the existence of an upper bound can be

guaranteed by assuming the stabilizability of the system. This does not

suffice here (except for scalar x), as shown in the following example.

Example 6: Stabilizability not sufficient for finite cost

Let M = 2 where

1,/2 : B1 = : 0

= : 0 1/2: 0

1/2 0 : = : 0
A, = : 10 1/2 : 0

with P 1 2 = 21 and p = 0 (a "flip-flop system as in Figure 3).

Both forms have stable dynarnics (eigenvaiues 1/2, 1/2) and hence are

trivially stabilizable. However

1 00.25 5
x k+2 : 5 .25 xk if r k 1
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P12 = t

1 e e 2

P =1
21

Figure 3: From Structure for Examples 6,7 and 8.
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.25 5

Xk+2 5 100.25 : xk if r k 2

which is clearly unstable. Thus xk and the expected cost-to-go become

infinite as (N - k0) goes to infinity.

In fact, controllability in each form is not sufficient for finite

cost, as demonstrated below.

Example 7: Controllability not sufficient for finite cost

Let M = 2 where

: 0 2 : : 0
A! = :0 0 : 1

= : 1 :

0 0 
A., = :2 0 : : : :

2 =

Thus in each form (r = 1,2) the system is controllable, and the closed-loop

systems have dynamics

Xk+l = D(rk) xk
where

: 0 2 : f3 f4: 4 f4

(1) = : f f2 D(2) = : 2 0

where fl, f2 ' f3, f4 are determined by the feedback laws chosen. Now

suppose that we have a "flip-flop" system as in Fiqure 3. Then

2k kI [D(2) (1)I 3 xif ro = 12k [D(1) 0(r2) 3k if ro = 2

where
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f '1 '4 f" 3 ' '2 '4 .. 4 .D(2)D(1)=: 1 4 3 4 D(1)D(2)=

0 4 : f f3 + 2f2 fl f4

Both D(1)D(2) and D(2)D(1) have 4 as an eigenvalue. Thus xk grows without

bound for x 0 . 0 as k increases. Controllability in each form allows us

to place the eiqenvalues of each form's closed loop dynamics matrix D(i) as

we choose, but we cannot place the eigenvectors arbitrarily. In this

example there is no choice of feedback laws that can align the

eigenstructures of each of the closed loop systems so that the overall

dynamics are stable. I

The following example demonstrates that (for n > 2) stabilizability of

even one form's dynamics is not necessary for the costs to be bounded.

Example 8: Stabilizability not necessary for finite cost

Let M = 2 with

A(1) = : 1 -1 : B(1) = : 0
: 0 1/2 : : 0

A(2) = : 1/2 1 : 8(2) = : 0
: 0 1: :

Both forms are unstable, uncontrollable systems so neither is

stabilizable. We again take the form dynamics as in Figure 3.

Then

k
X2k = (iA(2)A(1)) x0 if r0 = 1

I (A(1)A(2)) x0 if r0 = 2
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where

A(I)A(2) = A(2)A(i) = 1/2 0
0 1/2:

Thus x --- >O, and hence the cost is finite. We next show that this
2k

example does satisfy Condition 1 of Proposition 2. From (17) with F(1) =

F(2) = 0 we have

Z(1) = Q(1) + A(1)'Z(2)A(1)

Z(2) = Q(2) + A(2)'Z(1)A(2)

Suppose, for convenience, that Q(1) = Q(2) = 1. Then we obtain from the

first equation above that

C:2 : = : :,.2t221 I + 2) -z. () .+(1/2)Z (2)Z11 1 2 = i + e 121 1 2

- Zl (2 )+'/ 1 2+Z21 (2) (2)-Z, (2) ·
Z21: : : 21 +21

(1/4)Z 2 2 (2)

and plugging this into the second equation:

Z1 2) 22) ) = 5/4 +(1/4)Z (2) 1/2 +(1/4)Z1 (2) :
:112 12 1 1

7(2) 2) : : 2 +(1/4)Z21(2) 3 +(1/4)2 -(2)
21 22-21 ' 2 .22)

This yields four equations in four unknowns. Solving we find

Z 11 (1) 2 1 (1) 6 -14/3

Z (1) Z22(1) : -14/3 13/3
Z211 22

and

Z (2) Z (2) : 5 2/3

2 1 (2) 2 2 (2) = : 2/3 4
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which are both positive definite. Thus Z1 and Z2 satisfy condition (2) of

Proposition 2. D

Discrete Time Markovian JLQ Optimal Control Page 30



6. Sufficient Conditions for Finite Expected Cost

In this section we examine sufficient conditions for the existence of

finite expected costs-to-qo that replace the necessary and sufficient

Conditions 1-3 in Proposition 2, and are somewhat easier to compute, in

terms of the spectral norms of certain matrices. Recall that for any

matrix A, the spectral norm of A is

HAtl = max (IIAuilI = [max eigenvalue(A'A))1/2

Htull = u'u = 1 (25)

Corollary 2: Sufficient conditions for the existence of the steady-state

control law (and finite expected costs-to-go) for the time-invariant JLQ

problem are that there exist a set of feedback control laws

krkXk) = -F(rk)Xk

such that

(1) for each absorbing form i (Pii = 1), the pair

(A(i),B(i)) is stabiiizable.

(2) for each recurrent nonabsorbing form i and for each

transient form i 6 T that is accessible from

a form i E C: i in its cover (i Xi):

0 t-1 t 2
E Pii I A(i)-B(i)F(i)) 1 < c < 1 (26)

t=1

(3) for each transient form i e T that is not accessible from

any form j e C i in its cover (except itself):

0 0 t- t(i 2
E \ p A(i)-B(i)F(i)) I oo (27)

t=1

The proof of this CorollAry is immediate. A similar result for continuous-

time systems is obtained by Wonham r3;Thm 6.1], except that stabilizability
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and observability of each form is required, and a condition like (26) is

required for all nonabsorbing forms.

Condition (2) is motivated as follows. The cost incurred while in a

particular transient form is finite with probability one since, eventually,

the form process leaves the transient class T and enters a closed

communicating class. If a particular transient form i e T can be repeatedly

re-entered, however, the expected cost incurred while in i may be infinite;

(26) excludes such cases. Note that the sufficient conditions of Corollary

2 are violated in Example 8 (in both forms). This demonstrates that they

are restrictive, in that they ignore the relative "directions" of x growth

in the different forms (i.e. the eigenvector structure). We consider next

a sufficient condition that is easier to verify than Corollary 2, but is

even more conservative.

Corollary 3: Sufficient conditions (1)-(2) in Corollary 2 can be replaced

by the following: There exists a set of feedback control laws

u(rklx k) = -F(rk)x k

such that

II (A(i)-B(i)F(i) II < c <I . (28)

The proof of this corollary is also immediate. 0

Note that if (28) holds then conditions (i)-(3) of Proposition 2 hold.

Note also that we are guaranteed that lxkkl -->O with probability one, if

(28) holds only for recurrent forms. However this is not enough to have

finite expected cost, as demonstrated in the following examples.

Example 9: Let

Af) = : a 0 A(1) = : 0 0 : B(1) = : : = B(2)
: 0 a : : 0 0 : : 0 

where a > 1, and with Q(1) = I, Q(2) = O, Also, let
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where a > 1, and with Q(1) = I, Q(2) = 0, Also, let
Pll P= P22

p12 = l-p P 0 

In this case

min HlA(1)-B(1)F(1) = 11 : a 0 :11 = a > 1
F(1) II Cf a :1I

i1 · . Ii

min 11 A(2)-B(2)F(2)11 = 0

and for r=l

El / X k Q(r k) k + u' k R(rk )u k
I k=0 k k k k k k
I _ _

2 (a2 k

/?

k =0

If a 2 el i, then the expected cost is

ilx iH
< oo

2 1 _ a pHowever, if a p >! then the expected cost-to-go is infinite. This

demonstrates that (28) holding only for nontransient forms is not

sufficient for finite expected cost-to-go. Specifically, as this example

demonstrates, the cost-to-go will be infinite if one is likely to remain

sufficiently long in transient forms that are unstable enough. 0

Example 10: Let

x .1 1 k if r 1,3
k+1 k k

XkSi : a 0: xk if rk = 2
Xk+1 = k:0 a:

where the form transition dynamics are given in Figure 4. We also assume
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P12

P

/123

=2 322 -

Fi sgure 4: Form Transition for Example 10.
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Qi > i = 1,2,3.

If the system is in form 1 or 3 for three successive times (rk = rk+ 1

rk+2 = 1), then xk+2 = (0 0) for any xk. In form r = 2, the expected cost

incurred until the system leaves (at time t) given that the state at time

k is (xk, rk 2) is

I t- I I oo t t
\ x' (2)x= x' \ P22 (A't) Q(2)A(2) Ixk

_ t=k _l _ t=0 _

For this cost to be finite we must have

/ t t t t 2t
p22('2) Q(2)A(2) = (2) / p22 a < o

t=0 t=0

which is true if and only if

a p22 < 1. (29)

Thus we would expect that the optimal expected costs-to-go in Proposition 2

will be finite if and only if (29) holds. We next verify that the necessary

and sufficient conditions of Proposition 2 say this.

The matrix

A(3) = 1 1
-1 -1 :

is nilpotent; hence the absorbing form r = 3 is stabilizable (so condition

2 of Proposition 2 is met). For transient forms (1!,2- we must have

0 < G(1), G(l) < oo where

G(1) = / 1 t A'(l) -Qt(1) A(1) t l)t 12G(2)A(1)
t=0 t=l
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00 00

\ t t~~ ~~~~ 2,t Q(2)
2) t A(2)t Q(2) A(2 )t = Q(2) /__ a -

t=O t=0 1 - P22 a2

Thus for G(2) to be positive definite we have the condition (29). Finally

since A(1 )t = 0 for t > 2, we have

G(1) = Q(1) + A'(1) [P1lQ(!) + P1 2G(2)] A(1)

P1 2 Q(2)
= Q(1) + A'(1) [ p 11Q(1) + ---- A(1)

1 - p22a

which is positive-definite since Q(1), Q(2) > 0. Thus the necessary and

sufficient conditions of Proposition 2 here reduce to (29). Note that he

sufficient condition (28) of Corollary 3 is never met for r = 1 and r = 3,

since IIA(1)11 = IIA(3)11 = 2, and to meet (28) for r = 2 requires lal < 1.

On the other hand, the sufficient conditions for Corollary 2 are met if

(29) holds because forms (1,2> are 'non-re-enterable' transient forms

satisfying (27). a
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7. Summary

In this paper we have formulated and solved the discrete-time linear

quadratic control problem with perfect observations when the system and

cost parameters jump randomly according to a finite Markov process. The

optimal control law is linear in xk at each time k, and is different (in

general) for each possible set of parameter values. Proposition 2 provides

necessary and sufficient conditions for existence of the optimal steady-

state JLQ controller. These conditions are not easily tested, however,

since they require the simultaneous solution of coupled matrix equations

containing infinite sums . In Corollaries 2 and 3, sufficient conditions

are presented that are more easily tested.

Perhaps the most important contribution of this paper is the set of

examples that explore the reasons for the complexity of the conditions of

Proposition 2. For example we have shown that stabilizability of the

system in each form is neither necessary nor sufficient for the existence

of a stable steady-state closed-looD system. Issues such as the amount of

time spent in unstable forms, and the differences among the stable and

unstable subspaces in different forms have been illustrated.
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