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Abstract

Most research in the area of packet-radio networks has been confined
to one-hop hearing topologies. This paper investigates tandem networks
which are multihop networks. We assume that the nodes of the tandem have
infinite buffers and they share a common radio channel for transmission of
data packets. We also assume that each node transmits whenever it has a
packet ready for transmission. We treat two tandem networks here. The
first is a tandem having arbitrary number of nodes and packets arrive to
the network only at the "top" node. The second is a four-node tandem net-
work where packets arrive to all the nodes. The arrival processes to the
nodes here might, in general, be dependent.

For these networks we derive the joint generating functions of the
contents of the queues at the nodes in steady-state. From the generating
functions, any moment of the queue lengths can, in principle, be derived
as well as average time delays in the network. We also give an example
for independent Bernoulli arrival processes.

*This research was carried out at the Massachusetts Institute of Technology,
Laboratory for Information and Decesion Systems with partial support provided
by the National Science Foundation undger grant'NSF-ECS-8310698.

**Moshe Sidi is with the Department of Electrical Engineering, Technion-
Israel Institute of Technology, Haifa 32000, Israel. He is currently a
Post-Doctoral Associate at the Laboratory for Information and Decision
Systems, M.I.T., Cambridge, MA 02139, USA.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DSpace@MIT

https://core.ac.uk/display/4378956?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1. Introduction

In packet-radio networks, many contending devices share a common

radio channel in a given locality. It is well-known that within such an

environment the outcome of the transmission of a packet by a node depends

on both the states and the actions of neighboring nodes. This dependence

in general inhibits any attempt to obtain explicit analytic results for

general networks.

As an initial attempt to understand the behavior of multi-hop packet-

radio networks, there is need to first analyze accurately typical configurations.

Such configurations are tandem networks that are the issue of this paper.

Packet-radio nodes in tandem have recently received some attention in the

literature [1]. A schematic figure of such a network is depicted in Fig. 1.

The network consists of N nodes having infinite buffers. The nodes transmit

data over a common shared radio channel. Fixed-length data packets enter

the system at the nodes from corresponding sources. Time is divided into

slots of size corresponding to the transmission time of a packet and trans-

missions are started only at the beginning of a slot.

The nodes of the tandem have radio transmitters with omnidirectional

antennas and their transmission range is such that a transmission at node

i (2<i<N-1) can be heard only by nodes (i-l)-and (i+l). Nodes 1 and N can

be heard at nodes 2 and N-l respectively.

The final destination of all packets is a station (Fig. 1) that

receives the packets transmitted by node 1, and packets entering the net-

work at any node i are forwarded via nodes i-l, i-2,...,1 till they finally

reach the station. We assume that a node can transmit only one packet in a

given slot
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Two main features characterize packet radio nodes that use a common

shared channel for transmission of packets: (a) if two or more nodes

transmit packets simultaneously, then a node that hears both these trans-

missions cannot receive any of them successfully; (b) a node cannot trans-

mit and receive a packet simultaneously.

In tandem packet-radio networks these two features imply several

facts: (i) The transmissions of node 1 are always successful since no

other node can interfere; (ii) The transmissions of node 2 are successful

only if node 1 is not transmitting at the same time (because of feature

(b)); (iii) The transmissions of node i (3<i<N) are successful only if

both node i-l (because of feature (b)) and node i-2 (because of feature

(a)) are not transmitting at the same time. From this discussion it is

clear that the status of a node i (empty or not) affects the behavior of

the queues at other nearby nodes, a fact that implies statistical dependence

between the nodes.

We note that there is a distinct difference between tandem networks

with up to three nodes and networks with more than three nodes. In the

former no two nodes can successfully transmit a packet simultaneously,

while in the latter, nodes i, i+3, i+6... can both transmit successfully

at the same time, though they share the same channel. This phenomena

is known as spatial reuse of the radio channel. In [2] a three-node

tandem packet radio network with general arrival processes has been

analyzed and the joint generating function of the queue lengths distribution

has been obtained.

A tandem packet-radio network in which packets arrive only at the

"top" node (node N) has been considered in [1]. The nodes in [1] use a
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random access scheme in which a nonempty node i transmits a packet with

probability pi, and the probabilities Pi obey certain constrains (polite

scheme and fair scheme). For such access schemes it has been shown in

[1] that the maximal throughput is 4/27. However, it has been also indicated

that if each node transmits whenever it has a packet ready for transmission

i.e. p = -1- l<i<N, then the maximal throughput is 1/3. The only parameter

that has been considered in [1] is the maximal throughput and not the detailed

statistical behavior of the network.

In the present paper we shall consider the statistical behavior analysis

of tandem networks where each node transmits whenever its queue is nonempty.

We shall first analyze a tandem network where packets arrive only at node N

(the "top" node) and shall give explicit expressions for the generating

function of the queue length distribution at each node, for the average

queue length, for the -average time delay at each node and for the total

average delay in,the network. Then, we shall analyze in detail a tandem

network with four nodes where packets arrive to all the four nodes from

corresponding sources. Here the analysis is much -harder due to the possi-

ble reuse of the channel by nodes 1 and 4, but we can still obtain expres-

sions for the joint generating function of the queue length distribution

at the nodes for general arrival processes, as well as the average quantities.

2. N-Node Tandem: Packets Arrive Only at the Top Node.

In this section we analyze in detail the statistical behavior of

an N-node tandem packet-radio network in which packets arrive only at

node N. As said before, we assume that each node transmits whenever its

queue is nonempty. In Fig. 2 we show how packets advance through the net-

work. It is easy to see that the only node that can have more than one
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packet at any instant is node N. All the other nodes (1,2,...,N-1) can

have at most one packet at a time.

Let a(i) i=0,1,2,... be the probability that i packets arrive at node

N during a slot, and let F(z) be the generating function of this arrival

process, i.e.

00

F(z) = I a(i)z . (1)
i=O

In steady-state the average arrival rate into each node is the same

as the departure rate from this node and therefore, in our case, is the

same as the average arrival rate into the next node in the tandem. Let r

be the average arrival rate at node N, i.e.

0O

r = i ia(i). (2)
i=l

Then r is the average arrival rate into each node of the tandem. Let L.

be a random variable denoting the number of packets at node i (l<i<N)

at an arbitrary slot. Since L. is either 0 or 1 for l<i<N-l we immediately

obtain:

0 O with probability 1-r
Li - (3)

1 with probability r

If we denote the generating function of the queue length distribution

in steady-state at node i by Gi(z) l<i<N we have:

Gi(z) = rz + l-r 1<i<N-l. (4)
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In addition, from the description of the network we notice that the activity

at nodes 1,2,...,N-3 does not affect node N at all. Therefore, in order

to obtain GN(z) we only have to consider a three-node tandem network in

which packets arrive only at the "top" node. A three-node tandem network

has been analyzed in [2] for general arrival processes. Applying the

results of [2] to our case we obtain:

GN(z) = F(z) (1-3r)(l-z)
F (z)-z (5)

and the condition for steady-state is that r < I. Alternatively, GN(z)

in (5) can be obtained by analyzing node N as a single discrete-time queue

with arrival process with generating function F(z) and a packet leaves

the node (if any) every third slot.

From (3) we see that the average number of packets at node i (l<i<N-l)

is given by:

Li. = r (6)

and the average time delay at these nodes is one slot (no queue at the

nodes).

LN - the average number of packets at node N is given from (5) by:

6r +3w
LN = r + 2(1-3r) (7)

where

d F(z) (8)

dz2 z=l

Applying Little's law [4] to the whole network we obtain the average

time delay in the network - T:
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T = N + 2 3/r) (9)
2 (1 -3r)

The first term in (9) expresses the total time to transverse the tandem

and the second term expresses the average waiting time at node N.

If we try to extend the model of this section and assume that

packets arrive only to nodes N, N-1,...,N-k (N>k+3) from their correspond-

ing sources, then it is clear that in order to analyze such a network we

have first to analyze a tandem network with k+3 nodes and packets arrive

to all nodes. The reason is that in such a tandem network, nodes

1,2,...,N-(k+3) do not affect at all the k+3 nodes at the top of the tandem.

In the following section we shall analyze a four-node tandem network.

This analysis is, as said above, equivalent to the analysis of N-node tandem

network in which packets arrive only to nodes N and N-1.

3. Four-Node Tandem: General Arrival Processes

In this section we analyze a four-node tandem packet radio network

when the arrival processes into the nodes are arbitrary. Let A. (t) l<i<4

t = 0,1,2,... be the number of packets entering node i from its corresponding

source in the interval (t,t+l). The input process {Ai(t)}1 is assumed

to be a sequence of independent and identically distributed random vectors

with integer-valued elements and let the corresponding probability distribution

and generating function be:

a(i4,i3,i2,i l) = Prob{A4 (t)= i4, A3(t) - i3, A2(t) = i2, Al(t) = i}

(10)
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4 A-(t))
F(z) = E 1lI Zi. (11)

where here z = (z4,z 3,z 2,zl).

In the following we shall assume that packets do arrive at node 4,

otherwise the network degenerates to a three-node network.

3.1 Steady-State Analysis

To describe the evolution of the system we need several notations.

Let L i(t) 1 < i < 4, t=0,1,2,... be the number of packets at node i

at time t. Let U i(t) 1 < i < 4, t=0,1,2,... be binary valued random

variables defined as follows:

i 1 L1(t) > (12a)

(0 otherwise

=U2(t1 L,(t) = 0, L2(t) > 0

0 otherwise (12b)

U (t) = 1 Ll(t) = L2(t) = 0, L3(t) > 0

0 otherwise (12c)

~U4(t = $1 L2(t) = L3(t) = 0, L4(t) > 0

0 otherwise (12d)

From the description of tandem networks it is easy to see that for

t = 0,1,2,... the system evolves according to the following equations:

Li(t+l) = Ai (t) + Li(t) - Ui(t) + U i+(t) 1 < i < 4 (13)

where U5(t) 0- .
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Consider now the steady-state joint generating function of the queue

lengths:

4 L.(t)
G(z) = lim Ef l zi } (14)

tco i=l

Here we assume that the Markov chain {Li(t)}iil is ergodic, i.e.,

G(z) I > 0.

Zl=z2=z3=z4=0

From (13), using a standard technique we obtain:

G(z 4 ,z 3 ,z 2,Z 1) = F(z 4,z 3,z 2 zl1 ){G(O,O,,Ov) +

+ [G(z4,0,0,0,)-G(O,O,O,O)]z 4 z3+[G(z 4,z3,0,0)-G(z4,0O,,0)]z3 z2+

+ [G(z 4,,0,O,z)-G(z 4,0,0,0)-G(O,O,O,z1)+G(0,0,0,O)](z4
1 z3z1 -z 1 )+

+ [G(z 4,z 3,z 2,0)-G(z 4,z 3,0,0)]z2 z +

-1
+ [G(z 4'z 3 'z2' z 1 )-G(z 4 z3',z 2 ,0)]z 1 } ' (15)

The complexity of the problem lies in the fact that in order to determine

G(z) uniquely we have to determine the five boundary functions G(z4 0,0,0,),

G(z4,z 3,0,0), G(z4,z3 ,z2,0), G(z4,0,O,z1) G(O,O,O,zl) and the constant

G(0,0,0,0).

Determination of G(z4 ,0,,0) and G(O,O,O,zl)

In order to determine G(z4,0,0,0) and G(O,O,O,zl) let z2 0+ and

3 + 0 in (15). Then
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G(z 4,, F(z0,0,,Zl)fG(O,O,O,O)+[G(0,0,0,zl)-G(O,o,O,O)]z 1

+ G'(z 4 ,0,0,0)z l} (16)

where here we use G! (z) to denote the partial derivative of G(z) with

respect to z..

Now let zl + 0 in (16). Then,

G(z4,0,0,0) = F(z4,0,0,0)[G(0,0,0,0) + G1(0,0,0,0)]. (17)

By substituting z4 = 0 in (17) we immediately obtain:

F (z4 ,0,0,0)G(O,0,0,0,O)

G(z4,0,0,0) = F(0,0,0,0) (18)

(Note: It is easy to see that for steady-state to exist we must have

F(0,O,0,0) > 0, i.e., the probability that no packet will arrive to the

system in a given slot is strictly positive.)

From (18) we see that the boundary function G(z4,0,0,0) is determined

up to the constant G(0,0,0,0).

To obtain G(O,O,O,zl) let z4 -+ 0 in (16). Then we obtain:

G(o0,0,,O)(1-zl )+G?(0,0,0,0)z
G(O,O,O,Zl) = F(O,O,O,Z - (19)

l-F(O,O,O,zl)zl

By applying Rouche's Theorem [3] we can show that the equation z1 = F(O,O,O,zl)

has a unique solution in the unit circle 1z11 < 1. Let z1 be this solution.
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Then since G(0,0,0,zl) is an analytic function for lzll < 1 we obtain

from (18) that

^-1
z - 1

G2(0,0,0,0) = ^ G(0,0,0,0) (20)

z 1

Substitution of (20) in (19) yields G(0,0,0,zl) in terms of the constant

G(0,0,0,0).

Now, from (14) using (15) we obtain:

H1 (z)+H 2(z)G((z4 ,,0,0)+H 3 (z)G(z 4,z 3 ,0 ,O)+H )G() ( z 4 ,zz 0)
G(z) = F(z) -

1 - F(z)z 1

(21a)

where

H1 (z) = G(0,0,0,0)(l-z,1 )[l-z 1zzI1 +F(z4, 0,0,zl)(z4Z 3z1 -Z1 J + (21b)

1 -4 -3 -4 - 4

-1 -1 -1 -1+ G(z4,0,0,0)[z4l z 3- z3 z2 +z4 z3z1 -z1 ] ++ G(0,0,0,z 1)(z4 z3z1 -Z1 )[l+F(z 4,0,,zl)zl ].

-1
H2(z) = F(z4,0,0,z1)(z4 z 3 -) (21c)

-1 -1H3 (z) = z3 z 2 - 2z 1 (21d)

-1 -1
H4(z) = z2 Z l-Z (21e)

From (21b)-(21e) we see that the functions Hi(z) 2 < i < 4 are known and

the function Hl(z) is known up to the constant G(0,0,0,0). We still have

to determine the three boundary functions G2(z4,0,0,0), G(z4,z3,0,0) and



G(z4,z3,z2,0).

Determination of G'(z 4,0,0,0)

To determine G2(z4,0,0,0) let us use the following substitution

in (21):

2 3
z2 Z= 1; Z3 Z1 (22)

With the notation(3) = ( 4 z ' z l ) we have from (21) and (22) that:

H3z(3)) = H4(z (3) = 0, (23)

and therefore

(3~) - ,(3*)~ H1l(Z
( ) + H2(z ))G2(z4',0,,0)

G(z(3) F(z(3) - -1
1 - F(z (3 ))z1l (24)

Applying Rouche's Theorem we can show that for Iz41 < 1 the equation

3 2
Z1 = F(z4,zl,Zl,z 1 ) has a unique solution in the unit circle Izll < 1.

Let us denote this unique solution by f3(z4). Then since the function

G(z(3 )) is analytic in the polydisk Iz1 j < 1, Iz4 1 < 1 we obtain from

(24) that:

H (z f3 f23 f )

G2(z 4,O,O,0) H 3 (25)
H2 (z4 , f 3 ',f3' f 3)

Thus, G2 (z 4,0,0,0) is determined up to the constant G(0,0,0,0).
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Determination of G(z4,z3,0,O)

To determine G(z4,z3,0,O) let z= Z in (21). Then:

GCE(2)) F(2))H I (z ) )+H(2 ) )GH(z4 0,0,0)+H( )G(z 4 ,z3,00)
G Lz (2) F~z ( 2) 2 Fz2 4)

1 - F(z(2))z[1 (26)

where z(2) = (z4,z3,z2ll) Applying Rouche's Theorem we can show that

when Iz31 < , Iz41 <1, the equation z1 = F(z4,z3,z1 ,z1) has a unique

solution in the unit circle jzl l<1. Denote this unique solution by

f2(z4 ,z3). Then, since G(z(2 )) is analytic in the polydisk 1zll < 1,

Iz31 < 1, Iz41 < 1 we obtain from (26):

H (z4' z3'f2'f 2 )+H 2 (Z4 ' z3'f 2 f 2 )G2 (z4'0,0,0)G(z 4 ,z 3 ,O,O) = (27)

H3(z 4 'z 3,f 2 ,f 2 )

so using (25) we see that G(z4,z3,0,O) is determined up to the constant

G(o,o,o,o).

Determination of G(z4,z 3,z 2,0 )

Using Rouche's Theorem, we can show that when [zil < 1, 2 < i < 4,

the equation z1 = F(z4,z3,'z2,Z 1) has a unique solution in the unit circle

1zll < 1. Denote this solution by fi(z 4,z3,z2). Since G(z) is analytic in

in the polydisk Izil < 1, 1 < i <-4 we obtain from (21):
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G(z4,z3,z2,0) =

H i(z) =f +G2(z4,0,0,0)H 2 (z) =f+d(z 4, z 3 0,)H 3(z) z=f (28)

H4(z)|

so the function G(z4,z3,z2,0) is determined up to the constant G(O,O,O,O).

Determination of G(O,O,O,O)

The constant G(O,O,O,O) is determined from the normalization condition

G(1,1,1,l) = 1. For j=1,2,3,4 we substitute z. = 1 1 < i < 4, i $ j and

a.F(z)
let z. +- 1 in (15) and use the notation ri . Then

for j=l we obtain:

l-r1 = - G(1,1,,O,) + 2G(1,1,1,0). (29)

For j=2 we obtain:

-r 2 = - G(l.,O,OO) + 2G(1,1,O,0) - G(l,l,1,O0). (30)

For j=3 we obtain:

-r3 = G(1,0,0,0) - G(1,1,O,0) + G(1,O,0,1) - G(0,0,0,1) (31)

Finally, for j=4 we obtain:

r4 = G(1,0,0,1) - G(oO,O,1). (32)

From (29)-(32) we obtain:

G(1,0,,0) = 1-3r4-3r3-2r2-rl. (33)
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Therefore, from (1.8) we finally obtain:

G(o0,0,, ) = F( ,0,0,0) (1-rf-2r2-3r3-3r4) (34)

Consequently, the condition for steady-state is:

r 1 + 2r2 + 3r3 + 3r4 < 1. (35)

This concludes the analysis of a four-node tandem packet radio network for

general arrival processes. As explained before, this analysis can be used

to analyze a general tandem network where packets arrive only at nodes N

and N-1.

From the joint generating function G(z) any moment of the queue

lengths at the various nodes can, in principle, be'derived. Specifically,

the average number of packets at node i (1 _ i _ 4) is given by:

aG(z)
L. = (36)

az 3'1=Z2=33=34= 1

In addition, applying Little's law [4], we' can also obtain the average

time delay at node i (1 < i < 4) which is given by:

L.
T = (37)

i 4
r.

J=1



-15-

4
since the total arrival rate at node i is given by . r.. Finally, the

j=i J

the total average delay in the network is given by:

4

X L.
T = (38)

4
r.

i=l

3.2 Independent Bernoulli Arrival Processes

In order to give some numerical results we assume that packets arrive

at the nodes according to independent Bernoulli arrival processes, i.e.,:

4
F(z) = i (ziri + ri) (39)

i=l

where r. = l-r..
1 1

The explicit expressions for the generating functions, for the average

queue lengths and for the average time delays-very complex. In the appendix

we provide such expressions for the latter quantities only.

As an example we plot in Fig. 3 Ti 1 < i < 4, the average time

delays at node i 1 < i < 4 respectively and the total average delay T

versus y --the total throughput of the system when ri = r 1 < i < 4

(i.e. y = 4r).

4. Discussion

Two multi-hop tandem packet-radio networks have been analyzed in

this paper. The first is a tandem having arbitrary number of nodes and
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packets arrive to the network only at the "top" node. Since we assume that

each node transmits whenever it is non-empty we have shown that the tandem

topology imposes perfect scheduling within the network. As a result, node

N - the "top" node transmits successfully once every three slots if it has

packets and the transmissions of all other nodes are always successful.

This regular behavior of the network enabled simple analysis.

The second tandem packet-radio network considered, consists of four

nodes that packets may arrive to all of them. We have shown that there is

strict difference between this network and a three-node tandem network, due

to the possible simultaneous use of the radio channel by nodes one and

four. The analysis of this network was shown to be very complex because

of the need to determine six boundary terms (five boundary functions and

one boundary constant) in order to obtain the joint generating function

of the queue lengths at thenodes. Clearly the joint generating function

does not possess a product-form, therefore no decompositions are possible.

It is also clear that the analysis will become much more complex (if pos-

sible at all), as the number of nodes grow, since the number of boundary

terms to be determined will also grow.

Regarding the steady-state condition in a tandem network: we have a
N

conjecture that in an N-node network we need that r1+2r2+ E 3 ri < 1
i=3

where ri is the arrival rate of packets to node i from its corresponding

source. We have proved this conjecture for up to five nodes.
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APPENDIX

For a four-node tandem packet radio network with independent Bernoulli

arrival processes we obtain after very tedious algebra:

r. + A.
T. = 1 1 1 < i < 4 (A1)i 4

Z r
.3- J

where
r2 + r + r

A 2 3 4 (A2)
A1 = 1- r1

rl(r1 r2 + r3 + r4) + r2(r 2 + r3 + r4)
A = (A3)

2 - ~~r 1 ( 1 - r1 - 2r2 )

3 A 2( 2 r3) - (A1 + A 2 )( 1 - rl - r2 - r3)A (A4)
3 1 - rl - 2r2 - 3r3

A' + +2r + + 2 r3 + 4 + r4G()/rA 4 2 3 4 - 4r 4-
4 1- r l 2r2- 3r3 - 3r4

The constants A' and AZ are given by:

A' = r2+2r3+3r4+rlr2+rlr3+-r (rl2r2+3r3+3r4 ) +

+ G'(l,0,0,1) - G (0,0,0,1) (A6)- 1

A' = r r2+rlr3+rlr4+2r 2 r+2r2r4+3r34 r Al(- 2 3 4 ) -

- A 2(1-r -2r2-32r2r - A3(-r-2r-3r - A7)
21 2 34 311 2 3 3r4) ~~~~~~~~(A7)



The constants G1(0,0,0,1) and Gi(1,O,O,L) are given by:

( t1l~l t-l_l
(1++ )(12 4 ) - rlr234 rt

G4(0,0,0,1) = r r3r G(O) +

(1-r2r3r4)

+ rlG(,O,O,1) (A8)

G'(1,0,0,1) = rlr2r3[G(O,O,O,1) + Gz (1,O,O,O)] +

+ r3r2[G(O) - G(O,O,O,1) + G2(1,0,0,0)]+ G(0,0,0,1). (A9)

Finally t, G(O,O,O,1), G2(1,0,,O0) and G(O,O,O,O) are given by

l-r r r rt = (A10)
1-rlr2r3r4

t-llt -1

G(O,O,O,1) = r 2 r4G(O) (All)

1-r2r3r 4

r4 + (1-r2r3)G(0,O,O,1)
G2'(1,0,0,0) = _(A12)

r2r3

G(O) = (1-r&)(1-rl-2r2-3r3-3 r4) . (A13)
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Fig. 3 - Four-node tandem packet-radio network: delays

versus y.versus ¥.


