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ABSTRACT

This paper presents a new inverse scattering method for reconstructing

the reflectivity function of symmetric two-component wave equations, or the

potential of a Schrodinger equation, when the reflection coefficient is rational.

This method relies on the so-called Chandrasekhar equations which implement

the Kalman filter associated to a stationary state-space model. These

equations are derived by using first a general layer stripping principle to

obtain some differential equations for reconstructing a general scattering

medium, and by specializing these recursions to the case when the probing

waves have a state-space model.
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1. Introduction

Over the years, several methods have been developed to solve the

inverse scattering problem for the one-dimensional Schrodinger equation

and for two-component wave equations. These inverse scattering methods

can be divided roughly in two categories, depending on whether they use

integral equations [1] - [8] or a differential formulation [9] - [14] to

reconstruct the potential of the Schrodinger equation, or the reflectivity

function of the two-component wave system. However, even the most efficient

of these techniques such as the fast Cholesky recursions described in [11] -

[14] require a large volume of computations. It is therefore desirable to

exploit any additional property that the scattering data may possess. Such

a case occurs when the left reflection coefficient of the scattering medium

is a rational function. In this case, several inverse scattering procedures

have been proposed [15] - [19]. However, these methods were primarily

concerned with the problem of obtaining closed-form solutions of the inverse

scattering problem for reflection coefficients with one, two, three or more

poles, rather than with that of obtaining recursive and computationally

efficient reconstruction algorithms.

In this paper we present a new inverse scattering procedure for the

case when the reflection coefficient is rational which relies on the so-called

Chandrasekhar equations [20] - [21] of linear filtering theory. These equations

are recursive and require only 0(n) operations per discretization step, where
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n is the number of poles of the reflection coefficient. To obtain these

equations, the inverse scattering problem for symmetric two-component wave

equations is formulated in Section 2, and by using a layer stripping

principle based on the method of propagation of singularities for hyperbolic

partial differential equations, the fast Cholesky recursions are derived

for reconstructing the reflectivity function of the two-component wave

system layer by layer. By specializing these recursions to the case when the

probing waves have a state-space model, the Chandrasekhar equations are

obtained in Section 3. The fact that these recursions arise both in

inverse scattering theory and in the Kalman filter implementation for a

stationary state-space model is then interpreted by using earlier results

of Dewilde and his coworkers [11], [221 - [23] which formulate the input-

output estimation problem for a stationary stochastic process as an inverse

scattering problem.

2. Fast Cholesky Recursions

The lossless scattering medium that we consider is described by symmetric

two-component wave equations

Px + Pt = - r(x)q(x,t) (la)

qx - qt = - r(x)p(x,t) (lb)

which are of the type discussed by Zakharov and Shabat [7], and Ablowitz and

Segur [8]. Here r(x) is the reflectivity function and p(x,t) and q(x,t) are

the rightward and leftward propagating waves in the medium at point x and time



-5-

t. Note that if r(x) - 0 over some interval, then

p = p(x-t), q = q(x+t) (2)

over this interval, so that p and q correspond effectively to waves propagating

rightward and leftward with unit velocity. In the following, it will be

assumed that r(x) = 0 for x < 0, and that r e L [0,-), so that for x < 0

and as x -+ , the waves p(x,t) and q(x,t) have the form (2).

By taking the Fourier transform of (1), we obtain

d Pl -JW -r(x) 
(3)

and the waves p(x,w),r $(x,w) are such that

P(x,w) = L()e , q(x,w) = q (W)eX (4a)

for x < 0, and

p(x,L) = P R(W ) e-j wx ( ) = (w)eR (4b)

as x + co. The outgoing waves ( R(W), q L()) can be expressed in function of

the incoming waves (PL (W) q (W)) as

irR1 s (W) (5)

qL L ( ) qR (W)

where

TL(W) RR(W)

S(0) = (6)

RL(W) TR (W)



-6-

denotes the scattering matrix associated to the medium (1).

Since the medium (1) is lossless, the matrix S(w) has the property

of being unitary, i.e.

S (w)S(u) = I (7)

for w real, and also satisfies the reciprocity relation

A A

TL(X) = TR(W) . (8)

Physically, this relation means that the transmission loss through the

medium is the same going in either direction. In addition, it can be shown

[8] that the assumption that r e L1[0,o) implies that the system (3) has no

bound states, an observation which, when combined with (7) and (8) implies

[5] that the entries of S(M) can all be computed from either L(w) or RR(X).

The objective of the inverse scattering problem is to reconstruct r(x) from

R (i)).

Over the years, a variety of methods have been devised to obtain r(x)

from RL(W). One of these methods, on which we will focus our attention, is

the fast Cholesky or downward continuation procedure described in Dewilde

et al. [11], Bube and Burridge [12], Bruckstein, Levy and Kailath [13], and

Yagle and Levy [14]. In this approach it is assumed that the medium is

originally at rest, and is probed from the left by a known rightward propagating

wave

p(0,t) = 6(t) + p(0,t)u(t) (9)

which is incident on the medium at t = 0. Here 6(.) denotes the Dirac delta
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function and

1 for t > 0

u(t) = (10)

0 for t < 0

is the unit step function. Note that the main feature of p(O,t) is that it

contains a leading impulse which is used as a tag indicating the wavefront

of the probing wave. The measured data is the reflected wave

q(0,t) = q(0,t)u(t) (11)

recorded at x = 0. In the special case when p(O,t) - 0, q(0,t) = R (t) is

the impulse response of the scattering medium, where RL(t) denotes the inverse

Fourier transform of the left reflection coefficient iL(P).

Since the medium is causal and is originally at rest, the waves p(x,t)

and q(x,t) inside the medium have the form

p(x,t) = 6(t-x) + p(x,t)u(t-x) (12a)

q(x,t) = q(x,t)u(t-x) (12b)

where p(x,t) and q(x,t) are smooth functions. By substituting (12) inside

(1), and identifying coefficients of the impulse 6(t-x) on both sides of (lb),

we find that

Px + Pt = - r(x)q(x,t) (13a)

qx - qt = - r(x)p(x,t) (13b)

and

drx = r = -2 x
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The recursions (13) - (14) constitute the fast Cholesky or downward continuation

recursions. The initial data for these recursions are the measured waves

p(O,t) and q(O,t). The identities (13) - (14) can be viewed as using a layer

stripping principle to identify the parameters of the scattering medium. Thus,

assume that the waves p(x,t) and q(x,t) at depth x have been computed. The

reflectivity function r(x) is obtained from (14) and is used in (13) to compute

the waves p(x+A,t) and q(x+A,t) at depth x+A, as shown in Fig. 1. The effect

of the recursions (13) - (14) is therefore to identify and then strip away

the layer [x, x+A).

The fast Cholesky recursions have a large number of applications, such

as for the factorization of a Toeplitz operator in causal times anticausal

Volterra operators [24]. These recursions have the feature of being com-

putationally very efficient. If L is the maximum depth over which we want

to reconstruct the scattering medium, and if we use a difference scheme with

step size L/N to propagate the recursions (13) - (14), the total number of

operations required to recover r(-) is O(N2 ) [13]. In addition, it was shown

by Bultheel [251 that these recursions are numerically stable.

To apply the inverse scattering procedure described above to the case

when the underlying physical system is modeled by a Schrodinger equation

instead of the two-component wave system (1), we observe that if p(x,t) and

q(x,t) satisfy (1), then

(x,t) = p(x,t) + q(x,t) (15)

satisfies the wave-like equation

-xx - ~tt = V(x)f(x,t) (16)
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where

d r(x) + r 

Taking the Fourier transform of (16) gives the Schrodinger equation

2
)xx + (2 - V(x)) f(x,W) = 0 (18)

and the special form of the transformation (15) implies that the scattering

matrix S(M) associated to (18) is identical to that of (3). Consequently,

given the left reflection coefficient f L(W), to reconstruct the potential

V(-) we can first use the fast Cholesky recursions (13) - (14) to compute

r(.-), and then use the expression (17) to obtain V(-).

Alternately, we may observe that if the waves p(x,t) and q(x,t) have

the form (12), then

c(x,t) = 6(t-x) + 4)(x,t)u(t-x) (19)

where f(x,t) = p(x,t) + q(x,t), and substituting (14) inside (17), the

potential can be expressed as

dxV(x) = - 2 dx (x,x) . (20)

3. Kalman Filter Solution

In spite of their relative efficiency, the fast Cholesky recursions

still require a large volume of computations in order to recover r(-). It is

therefore desirable to exploit as much as possible any additional structure

that the left reflection coefficient RL(W) may have. In the case when RL(W)

is rational, several methods have been proposed by Kay [15], Szu et al. [16],

Jordan and Ahn [17], and Pechenick and Cohen [18], to reconstruct the potential
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V(-). A review of these inverse scattering procedures, as well as a study

of the case when V(x) 7 0 for x < 0, is given in Sabatier [19]. However, these

methods are not particularly attractive from a computational point of view,

since they require the computation of a matrix determinant, or the solution

of a system of linear equations of size equal to the number of poles of L( ),

for each value of x.

In this section, we derive a new reconstruction procedure for r(-) and V(-),

which is more efficient, and which relies on the introduction of a state-space

model for the waves p(x,t) and q(x,t). This reconstruction procedure is

recursive and takes a form identical to the Kalman filter of linear filtering

theory.

Our starting point is the assumption that the measured waves p(0,t) and

q(0,t) can be represented as

p(0,t) = C eA t K(0) (21a)

At
q(0,t) = C e L(O) (21b)

where A is an nxn matrix, C is a lxn vector, and K(O) and L(0) are some nxl

vectors. In the Fourier domain, this corresponds to assuming that

p(0,W) = 1 + C(jWI - A) K(O) (22a)

q(0,w) = C(jWI - A) L(0) (22b)

where I denotes the nxn identity matrix. Two special cases will be of interest:

(i) K(0) = 0, L(O) = B; and (ii) K(0) = L(0) = B, where B is some nxl vector.



In case (i)

RL(w) = q(o0,) = C(jwI-A) B (23)

so that the triple (A, B, C) is a state-space model of the left reflection

coefficient RL\ (), which is therefore rational. Conversely, given a rational

R L(), there exists a variety of ways [26] to realize it in state-space form

as in (23). Furthermore, if this realization is minimal, i.e. if (A, B) is

controllable and if (C, A) is observable, the size n of the state is equal

to the number of poles of RL(W). In case (ii)

RL(W) = q(O,W)/p(O,W) = k(w)/(l + k(c)) (24)

with

A -1
k(w) = C(jWI-A) B , (25)

so that the left reflection coefficient RL(M) is also rational, but instead

of computing a state-space realization for R L(), we construct one for k(c).

In this case, the relation

p(O,t) = q(O,t) = k(t) (26)

where k(t) denotes the inverse Fourier transform of k(c), indicates that a

perfect reflector is located to the left of the scattering medium at x = 0.

This reflector corresponds for example to the surface of the earth for the

case of a land seismogram in geophysics. Such a reflector appears also in

the inverse scattering formulation of the linear filtering problem for a

stationary stochastic process, as shown in Dewilde et al. [11] and [14] (see

also Fig. 2).
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The special form (21) of the waves p(O,t) and q(O,t) suggests that

the waves at depth x should be written as

A(t-x)
p(x,t) = C e K(x) (27a)

A(t-x)
q(x,t) = C e L(x) . (27b)

By substituting (27) inside the fast Cholesky recursions (13) - (14), and

assuming that the pair (C, A) is observable, we find that the nxl vector

functions K(x) and L(x) must satisfy the differential equations

dx K(x) = - r(x)L(x) (28a)

d

d L(x) = - 2AL(x) - r(x)K(x) (28b)
dx

with

r(x) = 2q(x,x) = 2CL(x) . (29)

Conversely, if K(x) and L(x) obey (28) - (29), then the waves p(x,t) and

q(x,t) given by (27) satisfy the fast Cholesky recursions (13) - (14). The

equations (28) - (29), along with the initial conditions K(0) = 0, L(0) = B

for case (i), and K(0) = L(0) = B for case (ii) constitute our reconstruction

procedure, which is therefore recursive. These equations can also be used to

reconstruct the potential V(') by observing from (20) that

V(x) = - 2C d (K(x) + L(x))

= 4(- CAL(x) + CL(x) (CL(x) + CK(x)) . (30)

Since K(x) and L(x) have size n, the recursions (28) - (30) require 0(n2 )

operations per step if the matrix A has no special structure, and O(n) if A
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is in canonical form 126]. By comparison, the fast Cholesky recursions

(13) - (14) require O(N) operations per step, where N is the total number

of points used to discretize the interval [O,L] and where L is the maximum

depth over which we want to reconstruct r(-) and V(-). In general n << N,

so that the recursions (28) - (30) are computationally quite efficient.

By eliminating r(x) from equations (28) - (29), we obtain

d K(x) = - L(x)L T (x)C (31a)

d

d L(x) = 2(A-K(x)C)L(x) (31b)
dx

which are the so-called Chandrasekhar equations of linear filtering theory.

These recursions were originally developed in more general form by Chandrasekhar

in the context of radiative transfer [20], and were then used by Kailath [21]

to obtain the Kalman filter associated to a stationary state-space model.

Thus, let i(-) be a stationary process described by

d
d-x (x) = At(x) + u(x) (32)

where A is a constant matrix and u(') a white noise process with constant

intensity. Given some scalar observations

y(x) = CS(x) + v(x), x > 0 (33)

where C is a constant row vector and v(') a white noise process uncorrelated

with u(-) and with unit intensity, the linear filtering estimate U(x) of i(x)

is given by the Kalman filter
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d C(x) = At(x) + K(x) (y(x) - C(x)) (34)

with (0) = 0. It is shown in [21] that the Kalman gain K(2x) satisfies

the recursions (31), where if P(x) denotes the state error variance, L(x)

is the square-root of - d P(2x), i.e.

d T
d P(2x) = L(x)L x) , (35)

and where the initial conditions are

K(O) = L(O) = NCT (36)

with HA steady-state variance of E(-).

The fact that the same algorithm can be used to solve the inverse

scattering problem with a rational reflection coefficient, and the linear

filtering problem with a rational state-space model is not a coincidence.

It was observed in [11], [14] that given some observations

y(x) = z(x) + v(x) , x > 0 (37)

of a stationary process z(-) with covariance k(x) = E[z(x)z(0)], the problem

of finding the filtering estimate of z(x) from the observations y(.) could be

formulated as a modeling problem where the objective is to model y(-) as the

output of a scattering medium described by symmetric two-component wave

equations and driven by white noise, as shown in Fig. 2. The left reflection

coefficient of this scattering medium was shown to be

RL (W) = k(W)/(l+k(w)) (38)

where k(w) denotes the Fourier transform of the one-sided covariance k(t)u(t).
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Then, by applying the fast Cholesky recursions to the waves p(O,t) = 6(t) +

k(t)u(t), q(O,t) = k(t)u(t) corresponding to (38), the modeling filter for

y(-) was reconstructed, and the associated reflectivity function r(-) was used

to obtain the optimum estimation filter for z(x) via the so-called Krein-

Levinson recursions [11].

In the special case considered here, we have z(x) = C (x) and k(x) =

C e CT , which explains why the recursions (31) with initial conditions

(36) can be used to solve the linear filtering problem for z(x) and i(x).
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FIGURE CAPTIONS

Fig. 1: a) Update of p(x,t); and b) update of q(x,t) via the fast
Cholesky recursions.

Fig. 2: Two-component scattering model of the process y(.).
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Fig. 1

a) Update of p(x,t); and b) update of a(x,t) via
the fast Cholesky recursions.

y(t) . v(t)(white noise)
Scattering
Medium

perfect
reflector

Fig. 2

Two-component scattering model of the process y(').


