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ABSTRACT

The Schur algorithm and its times-domain counterpart, the fast

Cholseky recursions, are some efficient signal processing algorithms

which are well adapted to the study of inverse scattering problems.

These algorithms use a layer stripping approach to reconstruct a loss-

less scattering medium described by symmetric two-component wave equations

which model the interaction of right and left propagating waves. In this

paper, the Schur and fast Cholesky recursions are presented and are used

to study several inverse problems such as the reconstruction of nonuniform

lossless transmission lines, the inverse problem for a layered acoustic

medium, and the linear least-squares estimation of stationary stochastic

processes. The inverse scattering problem for asymmetric two-component

wave equations corresponding to lossy media is also examined and solved by

using two coupled sets of Schur recursions. This procedure is then applied

to the inverse problem for lossy transmission lines.
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I. Introduction

The Schur algorithm [1] - [21 is a fast algorithm well-suited to high-

speed data processing. This algorithm is obtained by using a layer stripping

procedure to reconstruct a lossless scattering medium described by symmetric

two-component wave equations. Two-component wave equations describe many

real-world physical phenomena, and the purpose of this paper is to examine

several inverse problems which can be solved efficiently by using the Schur

algorithm. The problems that we will consider include the reconstruction of

nonuniform lossless transmission lines, the inverse problem for an acoustic

layered medium and the linear least-squares estimation of stationary stochastic

processes.

In addition, we will consider the case when the scattering medium that

we want to reconstruct is lossy and is described by asymmetric two-component

wave equations. It will be shown that in this case the medium can be recon-

structed by using coupled Schur recursions, and this procedure will be

illustrated for the case of nonuniform lossy transmission lines.

The Schur algorithm has a breadth of applications which is nothing

short of astonishing. It is used for example in the Schur-Cohn test [3]

for checking the stability of discrete-time polynomials, and in the Darlington

procedure [3], [4] for synthesizing an impedance function by a cascade of

elementary lossless sections of degree one terminated by a resistor. The

fast Cholesky recursions, which constitute the time-domain version of the

Schur algorithm, may be used to obtain a lower triangular-diagonal-upper
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triangular (LDU) factorization of a Toeplitz matrix [5] - [7]. The continuous

parameter version of this algorithm, which will be employed throughout

this paper, similarly performs a causal-anticausal factorization of a Toeplitz

operator [8].

This paper is organized as follows. In Section II, we consider the problem

of reconstructing a lossless scattering medium described by symmetric two-

component wave equations and we show that the medium can be reconstructed

layer by layer by using the fast Cholesky recursions or the Schur algorithm.

This procedure is then used in Section III to solve the inverse problem for

nonuniform lossless transmission lines, and scattering concepts such as

those of impedance, reflection coefficient, right and left propagating waves

are illustrated. In Section IV the inverse problem for an acoustic layered

medium is examined, and the Schur algorithm (which is known in this context

as the dynamic deconvolution algorithm [9]) is used to reconstruct the

medium parameters from scattering data. The data are obtained by probing

the medium with plane waves, first at normal incidence and then at non-

normal incidence. In Section V, the problem of linear least-squares

estimation of a stationary stochastic process in white noise is discussed. It is

shown that the forwards and backwards estimation residuals satisfy two component

wave equations and that the lattice estimation filter obtained by discretizing

these equations can be constructed from the spectral function of the observed

process by using the Schur algorithm. In Section VI, the inverse problem

for a lossy scattering medium is considered, and is solved by using two
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coupled Schur recursions. As an example of this result, the inverse problem

for lossy nonuniform transmission lines is examined. Section VII contains

some conclusions and suggests topics for future research.

Notation

Unless specifically identified otherwise, all variables are scalar.

Fourier transforms will be designated by a carat, e.g. x, and partial

d2f
derivatives by subscripts: dxdt = fxt' Dependent variables will generally

be omitted for brevity.
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II. The Continuous-Time Schur and Fast Cholesky Algorithms

In this section, we quickly review the continuous-time Schur and fast

Cholesky algorithms. No derivations will be attempted since all results

can be found in the given references. We consider a lossless scattering

medium described by the symmetric two-component wave equations

Px + Pt = -r(x)q(x,t) (la)

qx - qt = -r(x)p(x,t) (lb)

which constitute a special case of the equations discussed in [10] - [11].

Here r(x) is the reflectivity function and p(x,t) and q(x,t) are the

rightward and leftward propagating waves in the medium at point x and

time t. Note that if r(x) E 0 over some interval, then

p = p(x-t) q = q(x+t) (2)

over the interval, so that p and q correspond effectively to waves

propagating rightward and leftward with unit velocity.

In the following, it will be assumed that r(x) - 0 for x<O and that

r e L1[0,0) , so that for x<O and as x-*, p(x,t) and q(x,t) have the form (2)

The Scattering Matrix

By taking the Fourier transform of (1), we obtain

P j-ia -r(X) P

dxq -r (x) j J q

and a simple discretization of x in (3) gives the elementary scattering
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section described in Figure 1. This figure shows that r(x)A is the fraction

of the rightgoing wave ^ which is reflected by a section of thickness

A at depth x inside the medium. The discrete ladder structure displayed

by Figure 1 has been used to design signal processing architectures for

speech processing [12], digital wave-filter synthesis [13], spectral

estimation [14] and linear estimation [4], [15] - [16].

The elementary scattering layers of Figure 1 can be composed by using

the rules of composition for scattering layers described in Redheffer

[17]. The resulting aggregate medium is described by the scattering

matrix

T (W) R R(W)

S (W) = J (4)

L' ( ) R ()J

which relates the incoming and outgoing waves appearing in Figures 2a and

2b. In Figure 2a, the medium is probed from the left by a rightward

-jWx jukx Cox
propagating wave e , and RL (e and L (w)e are respectively

the reflected and transmitted waves. Figure 2b corresponds to the case

when the medium is probed from the right. More generally, for arbitrary

waves p(x,w) and q(x,w)

P(x,') = pL()e i a(x, ) = qL(w)ej (5a)

for x<O, and

^, --j0x ^ jwx
P (x, ) pR(W)e gq(x,w) = q R()e (5b)

and x->, and



= S (6o) (6)

qL (qR ()

expresses the outgoing waves (PR, qL in function of the incoming waves
R L

(PL' R

If

a (x,t) = [ i = 1,2 (7)

qL (x, @)

A
are two arbitrary solutions of (3), and if Z = diag(l,-l), the system (3)

has the property that

d (a (x,w) Z a2(x,w)) = 0 (8)
dx

and

d W(a (x,w), a2 (x,)) = 0,(9)

where H denotes the Hermitian transpose, and where

W(a1,a2) p1l 2 - q 1 2 (10)

is the Wronskian of a1 and a2. The relation (8) expresses the fact

that the medium is lossless and it can be used to show that the matrix

S(w) is unitary, i.e.

SH (w)S(w) = I (11)

This property is valid only when the two component system (3) is symmetric,

whereas the identity (9) holds even for asymmetric two-component systems

of the type that will be considered in Section VI.

A consequence of (9) is that

TL () = TR (). (12)
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Physically, this means that the transmission loss through the system is the

same going in either direction. It can also be shown (see [10]) that the

assumption that r e Llt[0,o) implies that TL(W) has no poles in the lower

half-plane, so that the system (3) has no bound states. By combining this

observation with (11) and (12), we can conclude [18], [19] that the entries

A, .\A

of S(W) can all be computed from either RL(W) or RR(U). This property is

very important, since in some inverse scattering applications such as the

inverse seismic problem, we have access to only one side of the scattering

medium. Note that our sign convention for the Fourier transform is the

opposite of that of [18] - [19], which explains why we use the lower half-plane

to study the properties of S(w), instead of the upper half-plane in [18] - [19].

Fast Cholesky Recursions

To obtain the fast Cholesky recursions, we assume that the medium is

quiescent at t=O, and that is is probed from the left by a known rightward

propagating wave

p(O,t) = 6(t) + p(O,t)u(t) (13)

which is incident on the medium at t=O. Here 6(-) denotes the Dirac delta

function and

1 for t>0

u(t) = (14)
0 for t<O0

is the unit step function. Note that the main feature of p(O,t) is that

it contains a leading impulse which is used as a tag indicating the

wavefront of the probing wave. The measured data is the reflected wave

q(0,t) = q(0,t)u(t) (15)

recorded at x=O. In the special case when p(O,t) - 0, q(O,t) = RL(t)
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is the impulse response of the scattering medium and its Fourier transform

PL(M) is the left reflection coefficient. Note that tL () can also be

measured by sending into the medium sinusoidal waveforms at various

frequencies and measuring the magnitude and phase shift of the reflected

sinusoidal wave. In the following, for convenience we will omit the

subscript L of RL(t) and RL(w).

Since the medium is causal and originally at rest, the waves p(x,t)

and q(x,t) inside the medium must have the form

p(x,t) = 5(t-x) + p(x,t)u(t-x)

(16)

q(x,t) = q(x,t)u(t-x)

where p(x,t) and q(x,t) are smooth functions. By substituting (16) inside

(1), and identifying coefficients of the impulse 6(t-x) on both sides

of (lb), we find that

r(x) = 2q(x,x) (17)

and

Px + t = r(x)(xt) (18a)

qx -qt = -r(x)(x,t) (18b)

The recursions (17) - (18) constitute the fast Cholesky recursions [20],

and have also been called the downward continuation recursions by Bube

and Burridge [21].

The initial data for these recursions are the measured waves p(O,t)

and q(0,t). The algorithm (17)-(18) can be viewed as using a layer stripping



principle to identify the parameters of the scattering medium. Thus,

assume that the waves p(x,t) and q(x,t) at depth x have been computed.

The reflectivity function r(x) is obtained from (17) and is used in (18)

to compute the waves p(x+A,t) and q(x+A,t) at depth x+A. The effect of

the recursions (17) - (18) is therefore to identify and then strip away

the layer [x,x+A).

The Schur Recursions

The medium can also be reconstructed by using the recursions (3)

for the transformed waves p(x-w) and q(x,w) with the expression

r(x) = 2q(x,x)

= lim 2jw exp jBx q(x,w) (19)

where we have assumed that the waves p and q have the form (16). The

recursions (3), (19) constitute the frequency domain counterpart of the

time-domain recursions (17)-(18).

An alternate method is to consider the left reflection coefficient

A(x,w) = q(x,c)/p(x,w ) (20)

which is associated to the section of the scattering medium extending over

[x,-). The expression (20) assumes that the medium is probed from the

left and that no wave is incident from the right. By using the recursions

(3) for p and q, we find that ,(x,w) satisfies the Riccati equation

R = 2jwR + r(x) (R -l1) (21)and the initial value theorem can be used (see [20

and the initial value theorem can be used (see [20]) to show that
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r (x) = lim 2jA (x,w). (22)

When (22) is substituted in (21), the Riccati equation (21) can be

propagated autonomously and provides a way of reconstructing the

reflectivity function r. The initial condition for these recursions is

(O,w) = ) (c) , (23)

and is obtained from the measured waves p(O,w) and q(O,w), or from direct

frequency-domain measurements of the reflection coefficient R(w).

It should be emphasized that (17)-(18), (3) and (19), and (21)-(22)

are all just different versions of the same algorithm and are thus inter-

changeable. In this paper, we will refer to (17)-(18) as the fast Cholesky

recursions, and to (3) and (19) or to (21)-(22) as the Schur algorithm,

but all of these are just different forms of the Schur algorithm. Note

that the Riccati equation (21) for the reflection coefficient A is well-

known in scattering theory [22] and is direct consequence of the rules

of composition of scattering layers [17]. This equation was in fact

used by Gjevick et al. [23] to develop an iterative method for reconstructing

the reflectivity function r(x). What distinguishes the Schur algorithm

from these results is the observation that the relation (22) can be used

to compute R(x,w) recursively for increasing values of x.

The recursions (21)-(22) are the continuous version of an algorithm

obtained by Schur [11-[2] for testing the boundedness of a function R(z)

which is analytic outside the unit disk. Given R(z), Schur showed that

|R (z) < 1 outside the unit disk if and only if the reflection coefficients

r obtained from the recursions
n
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R (z)-r
n n

nR~ ) z(l-r R (z) R (Z) = R(z) (24a)
n+l z(1-r R (z)) 0n n

r = lim R (z) (24b)
n n

z+~

are such that Ir l < 1. Some recursions similar to (24) can in fact be

obtained by performing a backwards-difference discretization of the

Riccati equation (21). Similarly the fast Cholesky recursions (17)-(18)

were used in [8] to perform the causal-anticausal factorization of a

Toeplitz operator and constitute the continuous counterpart of a discrete

algorithm which was obtained in [5]-[7] to construct the LDU factorization

of a Toeplitz matrix.

Finally, it is worth noting that the layer stripping principle which

was used here to solve the inverse scattering problem for the two-

component wave system (1) can also be used for other physical models

of scattering media. Some inverse scattering techniques based on a layer

stripping principle were in fact developed in [24], [25] for the telegrapher's

equation, and in [26] for the Schrodinger equation (see also [20]). How-

ever, instead of considering separately the inverse scattering problem

for a Schrodinger equation,we can use the results developed above for

two-component wave equations.

The Schrodinger Equation

Consider the equation

Yxx-Ytt = V(x)y(x,t) (25)

which is associated to an elastically braced string [27], where y(x,t)
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denotes the displacement of the string at point x and time t, and V(x) is

the elasticity constant at x. We assume that V(x) is localized,

i.e. V(x) = 0 for x<O and

00

(l+x) IV(x) Idx <
0

so that as x<O and x4-

y(x,t) = Yl(x-t) + Y2 (X+t) (26)

is the superposition of rightward and leftward propagating waves. Taking

the Fourier transform of (25) yields the Schr6dinger equation

%Yx + ( 2 - V(x))y(x,c) = 0 .(27)

Then, the inverse scattering problem for this equation is expressed in

terms of the solution L(x,o) and ^R(xw) such that
-L YR

Je + RL(o)Me for x<O
L

L (X,cW) = (28)

TL( )e i as x-0w

and

j(T )eJ~X for x<O

YR(X'W) = (29)

e jwx + Rmxe -jw as xt

which define the scattering matrix S(t) associated to V(x). These solutions

correspond to the case when the cstring is probed from the left or from the

right by an impulsive wave. The problem is to determine V(x) given the
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reflection coefficient function ML(u) or AR()'.

Several solutions of this problem based on the Gelfand-Levitan

procedure [181-[19], [28] or on trace formulas [29] have been proposed.

We will now show that the Schur algorithm provides a solution which is

computationally quicker. To see this, note that by taking the derivative

of the two-component system (3) with respect to x, we obtain the matrix

Schrodi.nger equation

(d2 2 ' 2 r - rxJ F J(X) O (30)

N dX2 2! {-rx r~u/ [q(x,W)J

where 12 denotes the 2x2 identity matrix. By making the change of variable

y (x,) = p(x,0) + q(x, ) (31a)

Y2 (X,') = p(x,W) - q(x,w) (31b)

this equation can be decoupled into two scalar Schro.dinger equation

Ylxx + (w2Vl (x))Yl (x,) = 032a)

1 cxx 1 2(32b)

Y2xx + ( V2(x))Y2(x,'W) = O (32b)

where

Vl( x) = r (x) - r (x) (33a)

V2( x) = r (x) + r (x) (33b)

In addition, we observe from (31) and from the definition of the scattering

matrix S(M) of the two-component system (3) that the scattering matrix

associated to V1(x) is identical to that of (3), and that the scattering

matrix S2(03) associated to V2 (x) is given by
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()L() -^~R(W)
aS2W ) ( = E S(w)Z , (34)

i.e. it is obtained by changing the sign of the reflection coefficients

RL and RR of (3).

Consequently, given a potential V(x), we can always view its left

reflection coefficient RL () as arising from a two-component system such

as (3). Then, given L(w) or the impulse response RL(t), we can use

the Schur or fast Cholesky recursions to reconstruct the reflectivity function

r(x), which in turn can be used to recover V(x) from the relation (33a).

The relation (33a) is known in soliton theory as the Miura transformation

[10], [27], and it maps solutions of the modified Korteweg-de Vries

equation into solutions of the Korteweg-de Vries equation.

If the potential V(.) extends only over a finite interval [O,L],

the interval [O,L] may be divided into N subintervals of length A = L/N,

and the Schur and fast Cholesky recursions may be discretized accordingly.

It is shown in [20], [21] that the resulting procedure requires only

O(N2 ) operations to recover r(-) and V(-), instead of O(N 3 ) if we dis-

cretize the Gelfand-Levitan equation and solve the resulting system

of linear equations. The Schur and fast Cholesky algorithms are therefore

quite efficient. Note however that if we exploit the structure of the

Gelfand-Levitan equation and use the Levinson recursions to solve this

equation [20], we obtain a reconstruction procedure which is as efficient

as the Schur algorithm.
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fII. The Lossless Nonruniform Transmission Line

In this section we study the inverse problem for the lossless non-

uniform transmission line, and show that its solution is given by the Schur

or fast Cholesky algorithms (see [30] for an earlier solution of this problem).

In the process, we give a scattering interpretation of transmission line

phenomena such as waves, reflections, impedances.

Consider an infinitesimal section of length A of a lossless non-uniform

transmission line. Such a section is illustrated in Fig. 3. Note that L(x)

and C(x) represent inductance and capacitance per unit length, i.e. they are

distributed quantities. Writing equations for Fig. 3, we have

v(x,t) = LitA + v(x + A, t)

(35)
i(x,t) = CvtA + i(x + A, t)

Dividing by A and letting A -+ 0, we obtain the telegrapher's equations

v + L(x)i t = (36)

(36)

i + C(x)vt 0

which also arise in acoustics [24] and in studies of the human vocal tract

[251, [31] under the assumption of losslessness.

For a uniform line, it is well known (see [32]) that (36) admits wave

solutions, and that for such waves the ratio of the amplitudes of the voltage

1/2
and current is the characteristic impedance ZO = (L/C) . Since the quantities

p and q appearing in the two-component wave equations must be dimensionally

equivalent, this suggests defining for the non-uniform line the dimensionally

equivalent variables

V(x,t) = Z01/2 v(x,t)
0 (37)

1/2 i (x t)
I(x,t) = ixt)
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1/2
where Z (x) = (L(x)/C(x)) / Substituting (37) in (36) yields

V + (LC) / 2 d n V(x,t)
x 2 dx 

(38)

I + (LC)1/ V 2 d n Z I(x,t)
x t 2 d 0 x

In order to make the dependent variables x and t dimensionally equivalent,

we replace x with the travel time z defined by

1/2
z(x) = (L(u) C(u)) du (39)

Since (L(x) C(x))-1/2 is the local wave speed at x, z(x) is the time required

for a wave, starting at x = 0, to reach position x. Making the additional

change of variables

1 (40a)
p(z,t) = 2 (V(z,t) + I(z,t))

q(z,t) = 2 (V(z,t) - I(z,t)) , (40b)

and defining the reflectivity function

1d
r(z) = 1 dz n z (z) (41)

we obtain the two-component wave equations (1). The relations (40) provide

an interpretation of the right and left propagating waves in terms of the

normalized voltage and current.

Interpretation of the Reflection Coefficient

Suppose a uniform transmission line is terminated with a load Z . Then a

wave travelling down the line will be reflected back by the load. Define R(L),

the reflection coefficient for the load, to be the ratio of the Fourier transforms
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of the primary and reflected voltage waves, at the frequency W. It is easy

to show (see 1321) that

R(A REFL ( L 0
R(W) = (42)

v (w) ZL (W) Z

For the non-uniform transmission line considered here, since there is a

one-to-one correspondence between position x and travel time z, we will use x

instead of z in the qualitative analysis to follow. Then, at point x on the

line, the load perceived due to all of the line to the right of x is (see Fig. 4)

ZL (x,W) = ~V(x,w)/i(x,w) (43)

By substituting this expression in (42), we find that for the non-uniform

transmission line, the reflection coefficient at point x is

W v/l-Z C~x) V/I - l^
R (x, o) = =__

v/i + Zo (x) /I + 1

= q(x,w)/p(x,W) (44)

This is precisely the expression (20) for the left reflection coefficient of the

section of the two-component system (1) extending over [x,-).

We see therefore the meaning of R(z,W). For a given point x on the line,

and any given frequency w, it is the ratio of the reflected and primary voltage

waves, with the reflection due to the inhomogeneity of the line at x. From

Section II, we know that R(z,j) satisfies the Riccati equation (21), and that

r(x) may be found from R(x,w) by using (22). Also note that if the line is

dZ0

locally uniform at point x0, dx (x0 ) = 0 hence r(x 0) = 0 and no reflection
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occurs. Reflections occur only where the line is inhomogeneous.

Inverse Problem

Suppose now that the line characteristics L(x) and C(x) are unknown and

that we want to determine them from the measured impedance Z(c) = Z L(O,). This

problem arises not only when we want to find the characteristics of an existing

transmission line, but also if we want to synthesize a transmission line with

prescribed impedance Z(w). It is assumed here that we have access to only one

end of the line. The line characteristics can be partially reconstructed as

follows. First, set Z0(O) = 1 and consider the reflection coefficient

R(Xw) Z(M) - 1 (45). z(w) +1

Then, run the Schur recursions (21) - (22), using R(() as initial condition,

to obtain r(z). Alternately, we may compute the inverse Fourier transform R(t)

of R(N), and use the fast Cholesky recursions (17) - (18) to obtain r(z). Given

r(z), the expression

Z (z) = exp 2 {r(u) du (46)
0 1/2

0enables us to recover the characteristic impedance Z0(z) = (L(z)/C(z)) / as a

function of the travel time z. However, we cannot reconstruct L(x) and C(x)

separately as functions of the position x.

The same difficulty will appear in Section IV for the inverse seismic problem

of geophysics, except that in this case we will be able to use an additional degree

of freedom, the angle of incidence of the probing waves, in order to reconstruct

the medium completely.
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IV. The Inverse Seismic Problem

In this section we examine and solve, using the Schur algorithm, the

inverse problem for a one-dimensional acoustic medium probed with plane waves.

We will consider first the case of plane waves at normal incidence, and then the

offset problem in which the probing waves come in at an angle, as shown in Fig. 5.

For the normal incidence case, the equations we will obtain are almost

identical to those of last section, and even though the physical situations are

quite different, the inverse problem is the same as for the lossless non-uniform

transmission line.

A simple transformation will allow the offset problem to be solved by using

the same procedure as for the normal incidence problem. By probing the medium

at two different angles, it will be shown that the medium density and velocity

profiles can be reconstructed separately as functions of depth. The use of the

Schur algorithm to solve the offset problem has not to our knowledge appeared in

the literature.

The Normal Incidence Problem

The problem to be considered in this section corresponds to the case when

the angle of incidence 0 = 0 in Fig. 5. The acoustic medium that we want to re-

construct is constituted of a homogeneous half-space with known density p0 and

sound speed c6 extending over x < 0, and of an inhomogeneous half-space with

unknown density p(x) and unknown local sound speed c(x) extending over x > 0.

For convenience, we assume that inhomogeneities are localized, so that for x > L

the density P1 and sound speed cl are constant. Physically, the region x < 0
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corresponds to the air or ocean located above the medium to be probed, and

the region x > L corresponds to the substrate or bedrock located below it. An

impulsive plane pressure wave, propagating downwards, is incident upon the in-

homogeneous region at t = 0, and the reflections or reverberations making their

way back to the surface of the inhomogeneous medium are measured either at the

surface of this medium (land case) or above the surface (marine case). Our goal

is to botain profiles of p(x) and c(x) as functions of depth. The presentation

will follow that of [333 - [36].

The two basic equations we start with are the acoustic equation [33], [35]

Pwtt = P (47)tt x

and the stress-strain equation

2
P = - pc w , (48)

where w(x,t) and P(x,t) denote respectively the displacement and pressure (negative

stress) at depth x.

The first step is to change variables from depth x to travel-time z(x), which

is the time it takes for a wave starting at the surface of the inhomogeneous medium

to reach depth x. (Recall a similar definition in the last section). Thus we

have

z (x) = du/c(u) (49)

By substituting (49) inside (47) - (48), and defining

Z(z) = p(z)c(z) = characteristic impedance (50a)

v(z,t) = w t (z,t) = particle velocity (50b)t
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we obtain the system

P = -Z(z)v
z t

(51)
-1

v = Z (z)Pt

which in the Fourier domain takes the form

P = - jWZ(z)v

(52)

A -1

v = - j Z (z)P
z

Then, if

T(z,t) = Z-1/2(z) P(z,t) = normalized pressure (53a)

4(z,t) = Z / 2 (z) v(z,t) = normalized velocity (53b)

and if we make the change of variables

p(z,t) = 2 (T + 4)

(54)

q(z,t) = 1 (t - 4)

the system (51) can be transformed into the two-component wave system

Pz + Pt= -r(z) q(zt) (55)

qz - qt = - r(z)p(z,t)

where the reflectivity function r(z) is given by

1 d
r(z) = 2 d n(z) . (56)

2 dz

The definition of the normalized variables T(z,t) and f(z,t) and of the

waves p(z,t) and q(z,t) is identical to the one we used in last section for the

normalized voltage and current V(z,t) and I(z,t) and the associated right and

left going waves. The inversion problem for the 1-D acoustic medium probed by
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plane waves at normal incidence is therefore the same as that for the nonuniform

lossless transmission line.

The data which is used in the inversion is obtained by sending a downward

impulsive plane pressure wave which is normally incident upon the inhomogeneous

half-space at t = 0. Then, for the land case, we measure the particle velocity

v(O,t) at the earth's surface as a function of time. Since the difference in

density between the air and the earth is very large, the earth's surface acts

like a free surface, i.e. the pressure on it is zero for positive times. We

can therefore express the pressure and velocity on the surface as

P(O,t) = P 0(t) (57a)

v(O,t) = v (6(t) + 2hi(t)u(t)) (57b)

where P /vO = Z(0). After normalization, the downgoing and upgoing waves p(O,t)

and q(O,t) take the form

p(O,t) = 6(t) + h(t)u(t)
(58)

q(0,t) = - h(t)u(t)

and the fast Cholesky recursions (17) - (18) or the Schur recursions (3) and (22)

can be applied to these waves to reconstruct the reflectivity function r(z).

For the case of a marine seismogram, the reflected pressure wave R(-) is

measured at some point inside the homogeneous half-space x < 0. The pressure and

velocity in this half-space are

P(x,t) = P0(6(t-x/c0) + R(t + x/co ) u(t + x/co))

(59)

v(x,t) = v (6(t-x/c0) - R(t + x/cO ) u(t + x/c))
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so that at the surface of the inhomogeneous medium (the ocean floor), the

downgoing and upgoing waves are given by

p(0,t) = 6(t), q(0,t) = R(t)u(t) . (60)

These can then be used to reconstruct the reflectivity function r(z).

Given r(z), the impedance Z(z) can be obtained by using (46). Thus,

as in the case of the nonuniform lossless transmission line, the best we can

do is to reconstruct Z(z) = pc as a function of the travel time z. We cannot

recover p(x) and c(x) separately as functions of depth. The procedure consisting

of using the Schur recursions to reconstruct the impedance Z(z) is commonly

called dynamic deconvolution. It was developed first, using the discrete

Schur algorithm, for the case of a layered medium divided up into homogeneous

layers of equal travel-time (the so-called Goupillaud model) and it is described

in [9].

Another feature of this reconstruction method is that the quantities p(x,t)

and q(x,t) represent respectively downgoing and upgoing waves. So when we run

the fast Cholesky or Schur recursions on the experimental data, we are decomposing

the pressure and particle velocity at each depth into a superposition of upgoing

and downgoing waves. Thus, we gain not only information about the medium

parameters, but also information about what is happening to the medium. This

could prove useful in evaluating how realistic the model is.

The Offset Problem

We now consider the problem in which an impulsive plane pressure wave is

obliquely incident on the medium at an angle 0 to the vertical, as shown in

Fig. 5. In this case, the impulse response R(t, y; 0) is a function of the

horizontal coordinate y (in the normal incidence case there is of course no
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horizontal variation). We will once again obtain a dynamic deconvolution

procedure that uses the Schur algorithm to recover an impedance as a function

of travel time, although this impedance differs slightly from (50a). However,

running the offset experiment twice for two different angles of incidence

6 = 81, 82 will allow us to recover p(x) and c(x) separately, as functions

of depth, a significant improvement over the normal incidence experiment.

The problem is set-up as in [37] - [39].

An impulsive plane pressure wave P0 6(t-(x cos 8 + y sin 6)/c ) is

incident at an angle 68fromthe vertical, where x and y are as in Fig. 5.

The Fourier transform of this wave is Poe (x y, where k = 0 cos 6/c0

and k = w sin 6/c0 are the vertical and lateral wavenumbers in the upper

homogeneous half-space. For the case of a marine seismogram, the pressure

field for x < 0 is therefore

-jk y -jk x jk x

P(x,y,W;) = Pe Y (e x + R(L;e)e (61)

(compare this to the Schrodinger equation boundary condition (28)). This

shows that in the time domain the impulse response R(t,y;e) has the form

R(t,y;6) = R(t-y sin 8/c0;0) (62)

where R(t;8) is the inverse Fourier transform of the reflection coefficient

R(o;e). This form is also valid for the case of a land seismogram. Thus,

in theory it should only be necessary to measure R(t,y;8) at a single

surface point (e.g. y = 0). However, in practice we need to take data for

a range of y and filter or stack it to the form (62). This is because any

real-world impulsive wave can only be locally planar, while the form (61) of

the pressure field assumes an incident plane wave of infinite extent.
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With y dependence added, the acoustic and stress-strain equations (47),

(48) become

Pwtt = - VP(x,y,t) (63a)

P(x,y,t) =- p V - w(x,y,t) (63b)

where the displacement w(x,y,t) is now a vector. Then, if v = w t is the

particle velocity, and if v and vY are its vertical and lateral components,

by taking Fourier transforms we obtain

xPx = - jwp(x)v (64a)

P = - jwp(x)vY (64b)

p(x)c 2 (x)(v + vY) = _ jiP. (64c)x y

Since the medium properties vary only with depth x, the horizontal

wavenumber k is preserved, and we may write, as in 137]
y

-jkyy
P(x,y,w) = T(x,w)e (65)

Substituting this expression in (64b) yields

vY = (sin O/p(x)co)P , (66)

and by inserting (66) in (64c) and using Snell's law

sin 9(x)/c(x) = sin e/cO = ray. parameter (constant) (67)

where O(x) is the local angle that a ray path makes with the vertical,

we get

\2 ,^x 2
p(x)c2 (x)v = - j cos G(x)P (68)

X
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Now, define

c'(x) = c(x)/cos 9(x) = local vertical wave speed (69)

z(x) = f du/c'(u) = vertical travel time to depth x (70)

z(z) = p(z)c'(z) = effective impedance . (71)

Using (69) = (71) in (64a) and (68) gives

AX
P = - jc Z(z)v (72a)

^x -1 -
v = - jw Z (z)P , (72b)

and once again defining the downgoing and upgoing waves as

P(z,y,c) =1 ( l/2y(zy,) + /2 x (z,y,)) (73a)
2

1 -1/2 /2,x
q(z,y,w) = (Z P (zy,Cy) - Z V/2(Z,y,W)), (73b)

we obtain the two-component wave system

Pz j - r(z)q (74a)

= - r(z)^p + jq (74b)

where the reflectivity function r(z) is given by (56). Here y is fixed at

whatever value of y we measure R(t,y;0) (e.g. y = 0), and 6 is a parameter on

which all quantities depend.

Note that once again the quantities in the wave system (74) are the

Fourier transform of the downgoing and upgoing waves, so that the vertical

motion of the medium is again decomposed into upgoing and downgoing waves.
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Furthermore, for both the case of a land and marine seismogram, these

waves have the form (16), so that we can use the fast Cholesky or Schur

recursions to reconstruct the effective impedance Z(z) given by (71).

Now, suppose that the offset experiment is run twice, for two angles

of incidence 8 = 81, 02. Two different imepdances Zl(zl) and Z2(z 2) are

obtained, which are functions of two different travel times zl and z2. From

(69) - (71), we get

dz

dz = cos 0 (x)/cos 02(x) = 2(z2)/Zz (75)

which can be solved or integrated numerically to obtain the monotone increasing

function zl = Zl(z2). This unables us to express Z1 and Z2 as functions of

the same travel time z2. Then, using (67) and (69) - (71), we can reconstruct

P(z2 ) and c(z 2) separately as functions of the known impedances Z1 and Z2.

Finally, inverting (70) and using (69) gives the effective travel time z2(x),

yielding p(x) and c(x) separately, as functions of depth.

This reconstruction procedure has only been sketched, since it has nothing

to do with the Schur algorithm; it is presented in more detail in [38]. Note

however that the dynamic deconvolution method described above to compute

the impedances Zi(zi) i = 1, 2 is new. An alternate reconstruction procedure

was described in [39] which recovers p(x) and c(x) recursively by operating

directly on the need to compute the impedances Z.(z.) i = 1, 2 as a

preliminary step.

The reason that the profiles p(x) and c(x) recursively by operating directly

on the waves associated to 81 and 82, thereby obviating the need to compute

the impedances Zi(zi) i = 1, 2 as a preliminary step.
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The reason that the profiles p(x) and c(x) can be recovered separately

for the oblique incidence problem, but not for the normal incidence problem,

is that by running the oblique experiment twice information has been gained

along two different ray paths. This option is not available for the normal

incidence problem.

Note that along any given ray path the ray parameter (67) is constant,

so that unless the angle of incidence 8 is less than the critical angle

sin (c /max c(x)), the angle 0(x) will become imaginary at some depth.

Physically, this situation results in evanescent waves, in which the pressure

field decays exponentially with depth. This causes no difficulty in the

Schur algorithm until the ray path becomes horizontal, prior to turning

back up. When this turning point is reached, Ir(x) I + C. However, since

no new information can be gained beyond the turning point,- the exceeds a

pre-set value. For the reconstruction procedure described above, this means

that we can recover p(x) and c(x) only until a turning point occurs in either

of the two oblique incidence experiments.

V. Linear Estimation of a Stationary Stochastic Process

In this section the problem of finding the linear least-squares estimate

of a stationary stochastic process given some observations of this process over

a finite interval is posed as an inverse scattering problem, and solved using

the Schur algorithm. This formulation of the estimation problem for a stationary

stochastic process is due to Dewilde and his coworkers [4], [15], [16], [40].

The basic problem to be considered is as follows. Let

y(t) = z(t). + v(t) (76)
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be some observations of a zero-mean stationary stochastic process z(-)

with covariance

E[z(t)z(s)] = k(It-sI), (77a)

where v(.) is a white noise process with unit intensity, i.e.

E[v(t)v(s)] = 6(t-s) . (77b)

We assume that z(-) and v(-) are uncorrelated and that k(-) e L1 [O,~), so

that its Fourier transform

k() = k(t) exp-jwt dt (78)

exists. In this case, the spectral density of y(') is ^w(w) = 1 + k(w)

+ k(-w).

Given the Hilbert space

Y(t; x) = H(y(t+s), -x < s < x) (79)

spanned by the observations over the interval [t-x, t+x], our objective is

to compute the forwards and backwards linear least-squares estimates of z

at the endpoints of this interval. These estimates can be denoted as

^x
z(t+x) Y(t; x)) = A(x; u) y(t+u)du (80a)

-x

z(t-xlY(t; x)) = J B(x; u) y(t+u)du , (80b)
-x

where A(x; -) and B(x; -) are the optimal forwards and backwards prediction

filters, respectively. Note that since the process z(.) is stationary the

filters A(x; ') and B(x; -) do not depend on t, the center of the interval

[t-x, t+x]. Then, if the forwards and backwards residuals are defined as
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e(t,x) = y(t+x) - z'(t+xIY(t; x)) (81a)

b(t,x) = y(t-x) - z(t-xjY(t; x)), (81b)

by using the orthogonality property

e(t,x), b(t,x) I Y(t; x) (82)

of linear least-squares estimates, we find that the filters A(x; *) and

B(x; -) satisfy the Wiener-Hopf equations

A(x; s) + { A(x; u) k(Iu-sj) du = k(x-s) (83a)
-x

B(x; s) + B(x; u) k(Iu-sl) du = k(x+s) (83b)

-- x

with -x < s < x.

Applying the operators x + and a to (83a) and (83b) respectively,

and using the linearity of the resulting equations yields the Krein-Levinson

recursions [15], [41]

(- + D) A(x; s) = - r(x) B(x; s) (84a)

( - D-) B(x; s) = - r(s) A(x; s) (84b)

with - x < s < x, and where

r(x) = 2A(x; -x) = 2B(x; x) (85)

is the reflectivity function. The last identity in (85) is obtained by noting

from a time-reversal argument that B(x; s) - A(x; -s). The Krein-Levinson

recursions (84) have the same form as the fast Cholesky recursions. However,

as noted in [20], these two sets of recursions differ by the fact that the
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Krein-Levinson recursions correspond to a boundary value problem where

r(x) is computed at every step from

r(x) = 2(k(2x) - A(x; u) k(x+u)du), (86)
-x

whereas the fast Cholesky recursions give rise to an initial value problem.

The recursions (84), (86) can be used to compute efficiently the filters

A(x; -) and B(x; -). Furthermore, if we apply the operators x+ xt to the
ax Dt

definition (81) of the forwards and backwards residuals e(t,x) and b(t,x)

and use the Krein-Levinson recursions (84), we obtain

( --t) e(t,x) = - r(.x) b(t,x) (87a)

(X + a-) b(t,x) = - r(x) e(t,x) (87b)

This shows that the residuals satisfy a two-component wave system, where

e(t,x) and b(t,x) propagate respectively leftward and rightward, and where

the waves at x = 0 are given by

e(t, 0) = b(t, 0) = y(t) . (88)

As a consequence of this observation, the process y(t) can be viewed as the

output of a modeling filter driven by e(t,x) as shown in Fig. 6a. This modeling

filter is obtained by aggregating infinitesimal ladder sections of the type

described in Fig. 6.b.

The scattering matrix associated to the two-component wave system (87)

can be identified by noting that as x + 0

e(t,x) = 'F(t+x), b(t,x) = V B(t-x) (89)

where VF () and V B( -) denote respectively the forwards and backwards

innovations processes associated to y(-) [41]. The processes VF(' ) and V B(')

are white noise processes and are related to the observations y(-) through
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the identities

y(w) = F(W) VF(W) (90a)

y(o) = F(-O) OB (o) (90b)

where y(o), VF(oW) and V B(o) denote formally the Fourier transforms of

Y('), V F() and VB(' ) , and where the shaping filter F(o) is the outer

spectral factor of w(o), i.e.

w(o) = IF(o)I2 (91)

on the real axis, and F(o) and F (to) are analytic in the lower half-plane.

The relations (88) and (89) imply that the scattering matrix S(o)

satisfies

v B (W)cY(o) (c

= S(o) (92)

Ly (W) LVF (')

and by substituting (90) inside this relation, we obtain the identity

[F-I (-t)]= L: TR I L toj (93)

for the entries of S(t). By using the properties (11), (12) of the scattering

matrix, this gives after some algebra

RL ( =) (94a)
L 1 k()

F F a (W)9(
TL (t) = TR(W) (94b)

1R l + k(t)
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-k (-w) F (W)
RR(1) F(-=) (94c)

i + k (.W)

where the left reflection coefficient RL( ) depends only on the covariance

data given by k( ).

Then, we observe that the Krein-Levinson recursions (84) and the system

(87) for the residuals e(t,x) and b(t,x) are parametrized entirely by the

reflectivity function r(x). Consequently, the linear least-squares estimation

problem over an arbitrary finite interval will be solved completely once we

reconstruct r(-). This problem can be formulated as an inverse scattering

problem where RL(w) is given in the form (94a), and where we want to recover

r(x).

To do so, one method is to apply the Schur or fast Cholesky recursions

directly to RL( ) or its inverse Fourier transform RL(t). However, the

special form of (94a) can be exploited by selecting

p(O,t) = 6(t) + k(t)u(t)

(95)

q(O, t) = k(t)u(t)

as probing waves (see [8], [40]), to which we can then apply the fast Cholesky

recursions. In this case, as a byproduct of the fast Cholesky algorithm, we

obtain a factorization of the covariance operator w(t-s) = 6(t-s) + k(It-sI) in

terms of causal times anticausal Volterra operators [8]. Furthermore by noting

that

F(W) l 1 + k(w)

SM= S(L) (96)

we see that as x + A, the rightward propagating wave £'(x,w) corresponding to
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the probing waves (.95) takes the form

p(x,w) = F(r) exp-jcx,, (97)

so that the Cholesky recursions provide an approximation of the spectral

factor F(L) of W(W).

The inverse scattering formulation of the linear least-squares estimation

problem that we have described above can also be used to study the properties

of orthogonal ladder filters of the type described in Fig. 6b. For example,

the stability and lack of sensitivity of these filters to roundoff errors are

a direct consequence of the losslessness property of the scattering medium

[4], [42]. These properties, as well as the modularity and pipelinability of

ladder filters have motivated their widespread use for adaptive equalization

[43], speech processing [12], t44], and spectral estimation [14], [45].

VI. Inverse Scattering for Asymmetric Two-Component Wave Systems

In this section, the inverse scattering problem for asymmetric two-

component wave equations is examined, and solved by using two coupled sets

of Schur recursions. The systems which are described by asymmetric two-

component wave equations are not necessarily lossless, and we can therefore

use these equations to describe a larger class of physical phenomena than

those that we have studied in the previous sections. Our results will be

illustrated by considering the inverse problem for a nonuniform transmission

line with losses. It is worth noting that a solution of the inverse
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scattering problem for asymmetric two-component wave equations was presented

in [10] and was used by Jaulent [46] to solve the inverse problem for lossy

transmission lines. However, this method relied on the solution of two

coupled Marchenko equations, whereas the solution that we present here is

differential, and uses the layer stripping principle that we have been

advocating throughout this paper.

The system that we consider is described by the asymmetric two-component

wave equations

dx [q [-r(x) ij [ (98)

which, in the time-domain correspond to

Px + Pt = -s(x) q(x,t) (99a)

q - qt = -r(x) p(x,t) (99b)

It is assumed that r(x) = s(x) = 0 for x < 0, and that r, s e L [0,),

so that r(x) and s(x) are localized, i.e. they go to zero as x + c .

Then, the scattering matrix S(w) can be defined as in Section II by

relating the outgoing and incoming waves appearing in Fig. 2. In addition,

T
the property (9) for the Wronskian of two independent solutions a. (x,) =

(P^ (X,), qi(x,)) i=l, 2 of (98) remains valid, and by applying it to the
1pi~w' qi1

waves al(x,W) and a2(x,w) appearing in Figs. 2a and 2b respectively, we

obtain the reciprocity relation

ZL(w) = T R(W) (100)
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However, if aT (x,w) = (q(x,o), a(x,w)) is an arbitrary solution of (98),

we have

d . - q) = 2(.r:(:x) - s(x)) Re(p^(x,C)q*(x,w1)) (101)

so that the scattering medium associated to (98) is not lossless unless

r(x) = s(x) which corresponds to the case when the two-component wave

equations are symmetric. This implies that S(w) is not a unitary matrix,

and consequently we cannot recover S(w) from the knowledge of the left

reflection coefficient i (w) only.

Inverse Scattering Procedure

The inverse scattering method that we develop here relies on the

observation that if time is reversed (i.e. t is changed to -t in (99), or

w is changed to -w in (98))., and if the waves p and q are interchanged,

we obtain an asymmetric two-component wave system

pA+ pA = -r(x) q (x,t) (102a)
x t

A A A
qx -qt = -s(x) p (x,t) (102b)

where r(x) replaces s(x) and vice-versa. The scattering matrix associated

to this system is

S (
t) = [ Sl(-1 ) [( 1

H1 0 1 

= (SH(w)) -1 (103)
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where to obtain (103) we have used the reciprocity relation (100). The

system (102) is a fake system, which does not exist really, but its scattering

matrix is entirely specified by the knowledge of S(W).

Then, in order to reconstruct r(x) and s(x), we assume that the true

system (98) and the fake system (102) are probed simultaneously by some

waves which have the form

p(x,t) = 6(t-x) + p(x,t) u(t-x)

(104)

q(x,t) = q(x,t) u(t-x)

and

p (x,t) 6(t-x) + p (x,t)u(t-x)

(105)

q (x,t) q (x,t)u(t-x)

By substituting these waves in (98) and (102), we obtain the system of coupled

fast Cholesky recursions

Px + Pt = -s(x) q(x,t)
(106a)

qx - qt = -r(x) p(x,t)

and

-A -A -A

Px + Pt = -r(x) q (x,t)
(106b)

4A -A -a
x - qt = -s(x) p (x,t)

with

r(x) = 2q(x,x), s(x) = 2q (x,x) (106c)
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which can be propagated recursively for increasing values of x, starting

from x = 0. The specification of the initial conditions for these recursions

is very important, since as noted above, the system (102) does not exist

really and cannot be relied upon to provide some experimental waves p (O,t)

and q (0,t).

The initial conditions that we select are

-AA
p(O,t) = p (O,t) = 0 (107a)

q(O,t) = RL(t) , q (O,t) RL(t) (107b)

L L
A ~ ^A

reflection coefficients RL () and RA (w)-R L(W) can be measured directly,

and from (. 3)

,A -H
() = (S (L))21 (108)

i.e. RL(W) is the (2, 1) entry of the inverse of SH(w). Thus, R (C) can be

expressed as a function of the whole scattering matrix S(w), and it will be

specified provided that we can measure all the entries of S (). This implies

that we must have access to both ends of the scattering medium. In some cases,

such as for the inverse problem of geophysics, this is impossible; but for

some other problems, such as for the reconstruction of nonuniform transmission

lines, the medium can be probed from both sides, and all the entries of S(C)

can be measured.

Instead of expressing our reconstruction procedure in terms of the

coupled fast Cholesky recursions described above, we can use a set of coupled
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Schur recursions. Let

R(x,w) -(x ') and R (x,) = (x,109)
p(X, W) p Ax, )

be the left reflection coefficients for the true and fake systems over the

A A
interval [x,-), where the waves P, i, p , q in the definition (109) are

^A
assumed to have the form (104) - (105). Then, R(x,w) and R (x,w) satisfy

the Riccati equations

A
2

R = 2jwR + s(x). R - r(x) (110a)

AA ^A + A2
R = 2jWRA + r(x) R - s(x) (110b)

with intial conditions

AA A

R(O,W) = RL()), R (0,w) = R) . (111)

By using the initial value theorem for the reflection coefficient (109), and

taking into account the form of the waves (104) - (105), we get

lim 2joR(x,w) = r(x) (112a)

lim 2jwR (x,W) = s(x) (112b)

A
which can be combined with (110a) and (110b) to propagate R(x,w) and R (x,w)

recursively, and to reconstruct r(x) and s(x) for all x. This algorithm

constitutes the generalization of the Schur algorithm (21) - (22).

Reconstruction of Non-uniform Transmission Lines with Losses

In Section III, the reconstruction problem for a nonuniform lossless

transmission line was solved using the Schur algorithm. We now consider
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the more general case where some losses, in the form of series and shunt

resistances per unit length have been addded to the transmission line.

This reconstruction problem is then solved as an asymmetric two-component

inverse scattering problem, using the method obtained at the beginning of

this section. The problem is set up as in [46].

An infinitesimal section of the line is shown in Fig. 7. R(x) is the

non-uniform series resistance per unit length, representing the finite

resistance of the wires, and G(x) is the shunt conductance per unit length,

representing leakage current between the wires. The circuit equations are

v(x,t) = (Lit + Ri)A + v(x+A, t)

(113)
i(x,t) = (Cvt + Gv)A + i(x+A, t)

Dividing by A, and letting A + 0 yields the transmission line equations

v + Li t + Ri = 0
x t

(114)

i + Cv t + Gv = 0 .

As in Section III, we replace the position x by the travel time z(x)

given by (39), and we introduce the dimensionally equivalent variables

V(z,t) = Z 1 / 2v(z,t), I(z,t) = Z1 / 2 i(x,t) (115)

where Z(z) = (L(z)/C(z)) / is the characteristic impedance. Then, the

equations (114) take the form

V + It = I - m(z)V
z L

(116)
I +V t =m(z) I C V
z t C

where

d
m(z) =- n Z(z) . (117)

2 dz
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Making the change of variables

1 1
p(z,t) = - (V+I), q(z,t) = (V-I) (118)

2 2

gives

Pz + Pt = -a(z)p(z,t) - (m(z) + b(z))q(z,t) (119a)

qz - qt= - (m(z) - b(z))p(z,t) + a(z)q(z,t) (119b)

which is almost in the desired form, and where

1G R lG R
a(z) = - (- + L) , b(z) = - ( - L) (120)

2 C L 2 C L

Considering the scaled variables

rz
pl(z,t) = p(z,t) exp a(u) du (121a)

0

ql(z,t) = q(z,t) exp - a(u) du , (121b)

0

and taking Fourier transforms yields the asymmetric two-component wave

equations

Pz1 -jjw lI ((Z ,' ) - S(z)q(z,W)

(122)

q= - r(z)p (z,c) + jW q (z,W)

where

fZ1 d L 1 G R R G
r(z) = (m-b) exp -2 a(u)du = ( z(n) exp ( + )o du

0Ja_4 4dz C 2 C L 0L C

(123a)

iz 1 d L 1 G R R G
s(z) = (m+b) exp 2 a(u)du = ( z (n ) exp f + -)du

0 4 dz C 2 C L L (12

(123b)
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Thus, if we are given the scattering matrix S(W) associated to the

system (122), the coupled fast Cholesky or Schur recursions (106) and

(110C-(112) may be used to reconstruct the rather bizarre quantities r(z)

and s(z). Further, these two quantities are the most information about

the line that can be obtained from this data. Although r(z) and s(z) may

seem to be peculiar quantities, this result is in agreement with [46].

Note that in the event

R(z)/L(z) = G(z)/C(z) (124)

we may recover Z(z) and R(z)/L(z) by multiplying and dividing r(z) and s(z),

and then solving two differential equations. Thus, in this case it is

possible to recover R(z), L(z), C(z), and G(z) in various ratios quite

easily. This case is referred to as the Heaviside condition for a distortionless

line [32], since if (124) holds then the true characteristic impedance

((R + jwL)/(G + 3jC)) 1/ 2 which relates the current and voltage for a wave

travelling down the line, is real. Thus, the current and voltage for such a

wave are in phase, just as in the lossless line, and it is not surprising

that ratios of various line parameters can be recovered, as in the lossless

case.

VII. Conclusion

In this paper, the widespread applicability of the fast Cholesky and

Schur recursions for the study of inverse scattering problems has been

demonstrated. These algorithms were derived by using a layer stripping

principle to reconstruct a scattering medium described by symmetric two-

component wave equations, for the case when the medium is probed by impulsive
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waves. The applicability of these algorithms to the reconstruction of a

nonuniform lossless transmission line, and to the inverse problem for a

one-dimensional layered acoustic medium was demonstrated. In addition,

it was shown that the linear least-squares estimation problem for a

stationary process could be posed as an inverse scattering problem, and

solved by the Schur algorithm.

Next, an asymmetric two-component inverse scattering problem was

considered and solved by using a coupled set of fast Cholesky or Schur

recursions. This was then applied to the inverse problem for non-uniform

transmission lines with losses.

There are several topics which have not been discussed in this

paper and which deserve further investigation. One of them is the study

of the numerical properties of the Schur algorithm in the presence of noise

or modelling uncertainties. The discrete-parameter Schur algorithm was

recently shown to be numerically stable by Bultheel [47]. However, a

numerically stable algorithm can perform poorly if it operates on ill

conditioned data, which could happen for several of the physical problems

that we have examined in this paper. This issue deserves therefore to be

addressed. An additional feature of the layer stripping principle that we

have used here to derive the fast Cholesky and Schur recursions is that it

is quite general, and it is applicable to more general physical systems than

those described by second order differential equations. For example, in

[48], [49], it is shown that this principle can be applied to the reconstruction

of a one-dimensional elastic medium described by four coupled first-order

differential equations. A natural extension of this result would be to the
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study of general Hamiltonian systems.
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FIGURE CAPTIONS

Fig. 1-: Elementary scattering sections obtained by discretizing the
two-component wave equations.

Fig. 2: (a) Scattering for an impulsive wave incident from the left,

and (b) from the right.

Fig. 3: Infinitesimal section of a lossless non-uniform transmission line.

Fig. 4: The perceived load to the right of x.

Fig. 5: Inverse Problem for a layered acoustic medium.

Fig. 6: (a) Aggregate modeling filter for y(-), and (b) infinitesimal

ladder sections associated to the Krein-Levinson recursions.

Fig. 7: Infinitesimal section of a lossy non-uniform transmission line.
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