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Abstract

All failure detection methods are based on the use of redundancy, that

is on (possible dynamic) relations among the measured variables. Conse-

quently the robustness of the failure detection process depends to a great

degree on the reliability of the redundancy relations given the inevitable

presence of model uncertainties. In this paper we address the problem of

determining redundancy relations which are optimally robust in a sense

which includes the major issues of importance in practical failure detection

and which provides us with a significant amount of intuition concerning the

geometry of robust failure detection.
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1. Introduction

In this paper we consider the issue of robust failure detection. In

one way or another all failure detection methods generate signals which tend

to highlight the presence of particular failures if they have actually

occurred. However, if any model uncertainties have effects on the obser-

vables which are at all like those of one or more of the failure modes, these

will also be accentuated. Consequently the problem of robust failure de-

tection is concerned with generating signals which are maximally sensitive

to some effects (failures) and minimally sensitive to others (model errors).

The initial impetus for our approach to this problem came from the

work reported in [5, 13] which document the first and to date by far most

successful application and flight testing of a failure detection algorithm

based on advanced methods which use analytic redundancy. The singular

feature of that project was that the dynamics of the aircraft were decomposed

in order to analyze the relative reliability of each individual source of

potentially useful failure detection information.

In [2] we presented the results of our initial attempt to extract the

essence of the method used in [5, 13] in order to develop a general approach

to robust failure detection. As discussed in that reference and in others

(such as [3, 7-9]), all failure detection systems are based on exploiting

analytical redundancy relations or (generalized) parity checks. These are

simply functions of the temporal histories of the measured quantities which

have the property that they are small (ideally zero) when the system is

operating normally. In [2] we present one criterion for measuring the re-

liability of a particular redundancy relation and use this to pose an

optimization problem to determine the most reliable relation. In [3, 19] we

present another method which has some computational advantages not found
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in the approach described in [2].

In this paper we describe the major results of [2, 3, 19]. In the

next section we review the notion of analytic redundancy for perfectly

known models and provide a geometric interpretation which forms the start-

ing point for our investigation of robust failure detection. Section 3

addresses the problem of robustness using our geometric ideas, and in that

section we pose and solve a first version of the optimum robust redundancy

problem. In Section 4 we discuss extensions to include three important

issues not included in Section 3: scaling, noise, and the detection/robust-

ness tradeoff.
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2. Redundancy Relations

Consider the noise-free discrete-time model

x(k+l) = Ax(k) + Bu(k) (2.1)

y(k) = Cx(k) (2.2)

where x is n-dimensional, u is m-dimensional, y is r-dimensional, and A, B,

and C are perfectly known. A redundancy relation for this model is some

linear combination of present and lagged values of u and y which should be

identically zero if no changes (i.e. failures) occur in (2.1), (2.2). As

discussed in [2, 3, 19], redundancy relations can be specified mathemati-

cally in the following way. The subspace of (p+l)r-dimensional vectors

given by

G I W CALA] =o} (2.3)

is called the space of parity or redundancy relations of order p. The reason

for this terminology is the following. Suppose that w e G. Then (2.1) -

(2.3) imply that if we partion w into (p+l) subvectors of dimension r

= [W ' ].,W' (2.4)
p

then at any time k

p i-l

r(k) =i0 w! [y(k-p+i) - Z_ CAi Bu(k-p+j)] = 0 (2.5)i=- = 0 (2.5)

The quantity r(k) is called a parity check. A simpler form for (2.5)

(which we will use later) can be written in the case when u = 0 (or, equiva-

lently, if the effect of the inputs are subtracted from the observations

before computing the parity check). In this case
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y(k-p)

r(k) = w' Y (k-p+l) (2.6)

y(k)

To continue our development, let us assume that

X # 0 (2.7)
p

Let us denote the components of wi as

W' = [W il,,w ] (2.8)
i ill''ir

Since at least one element of w is nonzero, we can normalize w so this
p

component has unity value. In order to illustrate several points, let us

assume that the first component, pl = 1. In this case (2.5) can be re-

written as

p-1 p r

Yl(k) = i Wil Yl (k-p+i) - s2 is Ys(k-p+i)

p i-l

+ iO j0 'i CAi-j-1 Bu(k-p+j)] = 0 (2.9)

There are two very important interpretations of (2.9). The most

obvious is that the right-hand side of this equation represents a synthetic

measurement which can be directly compared to Yl(k) in a simple comparison

test. The second interpretation of (2.9) is as a reduced-order dynamic

model. Specifically this equation is nothing but an autoregressive-moving

average (ARMA) model for Yl(k). (From the pointof view of the evolution

of Y1 according to (2.9), Y2''','Yr and the components of u are all regarded

as inputs). This second interpretation, allows us to make contact with the

numerous existing failure detection methods. Typically such methods are

based on a noisy version of the model (2.1), (2.2) representing normal

system behavior together with a set of deviations from this model
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representing the several failure modes. Rather than applying such methods

to a single, all-encompassing model as in (2.1), (2.2), one could alterna-

tively apply the same techniques to individual models as in (2.9) (or a

combination of several of these), thereby isolating individual (or specific

groups of) parity relations. For example, this is precisely what was done

in [5, 13]. The advantage of such an approach is that it allows one to

separate the information provided by redundancy relations of differing

levels of reliability, something that is not easily done when one starts

with the overall model (2.1), (2.2) which combines all redundancy relations.

In the next two sections we address the main problem of this paper,

which is the determination of optimally robust redundancy relations. The

key to this approach is the observation that G in (2.3) is the orthogonal

complement of the range Z of the matrix

[I C~~ ~~~~~C l A~~~~-](2.10)

Thus (assuming u = 0 or that the effect of u is subtracted from the obser-

vations) a complete set of independent parity relations of order p is given

by the orthogonal projection of the window of observations y(k),

y(k-l),...,y(k-p) onto G.
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3. An Angular Measure of Robustness

Consider a model containing imperfectly known parameters n, process

noise w and measurement noise v:

x(k+l) = A(n)x(k) + B(n)u(k) + w(k) (3.1)

y(k) = C(Tn)x(k) + v(k) (3.2)

where nl is a vector of unknown parameters and where the matrices A, B, C

and the covariances of w and v are functions of n. Let K denote the set

of possible values which n can take on. In their work 12] Chow and Willsky

used the following line of reasoning. If the parameters of the system were

known perfectly and if there were no process or measurement noises, then

according to (2.5) we could find a vector w' = [w ,...,w'] and a vector

1 = [110 ... pP-1] with

= Z W' CAJ-i- B (3.3)
1 j=i+l 1

so that

P p- 1

r(k) = Z w y(k-p+i) - = 1' u(k-p+l) 0 (3.4)
i=0 i i=0 I

In the uncertain case, what would seem to make sense is to minimize some

measure of the size of r(k). For example one could consider choosing Q and

P that solve the minimax problem

min max E [r(k)] (3.5)

0P T nIeK x0 (n)

I 11- 1U

Here the expectation is taken for each value of n and assuming that the

system is at particular operating point, i.e. that u(k) - u and that x (n)
is the corresponding set point value of the state. This criterion has the

is the corresponding set point value of the state. This criterion has the
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interpretation of finding the approximate parity relation which, at the

specified operating point, produces the residual with the smallest worst-

case mean-square value when no failure has occurred.

Let us make several comments concerning the procedure just described.

In the first place the optimization problem (19) is a complex nonlinear

programming problem. Furthermore, the method does not easily give a sequence

of parity relations ordered by their robustness. Finally the optimum parity

relation clearly depends upon the operating point as specified by u and

x (n). In some problems this may be desireable as it does allow one to

adapt the failure detection algorithm to changing conditions, but in others

it might be acceptable or preferable to have a single set of parity rela-

tions for all operating conditions. The approach developed in this paper

produces such a set and results in a far simpler computational procedure.

To begin, let us focus on (3.1), (3.2) with u = w = v = 0. Referring

to the previous discussion, we note that it is in general impossible to

find parity checks which are perfect for all possible values of n. That is,

in general we cannot find a subspace G which is orthogonal to

c(n)

Z(1n) = Range C(r)A(n) (3.6)

c(n)A(n)p

for all n.

What would seem to make sense in this case is to choose a subspace G

which is "as orthogonal as possible" to all possible Z(Tn). Several possible

ways in which this can be done are described in detail in [3]. In this

paper we focus on the one approach which leads to the most complete picture

of robust redundancy and which is computationally the simplest. To do this,

however, we must make the assumption that K, the set of possible values of
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n is finite. Typically what this would involve is choosing representative

points out of the actual, continuous range of parameter values. Here "repre-

sentative" means spanning the range of possible values and having density

variations reflecting any desired weightings on the likelihood or importance

of particular sets of parameter values. However this is accomplished, we

will assume for the remainder of this paper that T takes on a discrete set

of values n=l,...,L, and will use the notation A. for A(nl=i), Zi for Z(1n=i),

etc.

To obtain a simple computational procedure for determining robust re-

dundancy relations we first compute an average observation subspace Z which

is as close as possible to all of the Zi., and we then choose G to be the

orthogonal complement of Z . To be more precise, note first that the Z. are
0 1

subspaces of possibly differing dimensions (dim Zi = V\) embedded in a space

of dimension N = (p+l)r. We will find it convenient to use the same symbols

Z1 ,...,ZL to denote matrices of sizes NxV., i=l,...,L, whose columns form

orthonormal bases for the corresponding subspaces. Letting M = + ...+L'

we define the NxM matrix

Z = JZ . ZL. (3.7).L

Thus the columns of Z span the possible directions in which observation

histories may lie under normal conditions.

We now suppose that we wish to determine the s best parity checks (so

that dim G=s). Thus we wish to determine a subspace Z of dimension N-s.
0

The optimum choice for this subspace is taken to be the span of the (not

necessarily orthogonal) columns of the matrix Z which minimizes

z

IlZ - Z0IIF (3.8)

subject to the constraint that rank Z = N-s. Here II' II F denotes the

Frobenius norm:
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IDl2 =2 Id. 12 (3.9)
IDF j i dij

There are several important reasons for choosing this criterion, one

being that it does produce a space which is as close as possible to a

specified set of directions. A second is that the resulting optimization

problem is easy to solve. In particular, let the singular value decomposi-

tion of Z [14, 15] be given by

Z = U Z V (3.10)

where U and V are orthogonal matrices, and

[1 0' (3.11)

Here l1 < C2 < .'< O N are the singular values of Z ordered by magnitude.

Note we have assumed N < M. If this is not the case we can make it so

without changing the optimum choice of Z by padding Z with additional

columns of zeros. It is readily shown 117, 18] that the matrix Z minimiz-
o

ing (3.8) is given by

-0 0

Z = U s+l 0 V (3.12)

0 0 N

Moreover, since the columns of U are orthonormal, we immediately see that

the orthogonal complement of the range of Z is given by the first s left

singular vectors of Z0, i.e. the first s columns of U. Consequently

G = [Ul :.. u ] (3.13)

and u1,...,us are the optimum redundancy relations.

There is an alternative interpretation of this choice of G which



provides some very useful insight. Specifically, recall that what we wish to

do is to find a G whose columns are as orthogonal as possbile to the columns

of the Z.; that is, we would like to choose G to make each of the matrices

Z!G as close to zero as possible. In fact, as shown in [3], the choice of

G given in (3.13) minimizes

L

J(s) = i ' IIZiGlIF (3.14)

yielding the minimum value

S 2

J(s) = i 0i (3.15)

There are two important points to observe about the result (3.14),

(3.15). The first is that we can now see a straightforward way in which to

include unequal weightings on each of the terms in (3.14). Specifically,

if the wi are positive numbers, then

L L
z Wi IIZ'iGlI = izl II (3.16)

i=l F i=l z i F

so that minimizing this quantity is accomplished using the same procedure

described previously but with Zi replaced by v7. Z.. As a second point
1 1 1

note that the optimum value (3.17) provides us with an interpretation of

the singular values as measures of robustness and with an ordered sequence

of parity relations from most to least robust.
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4. Several Important Extensions

In this section we address several of the drawbacks and limitations of

the result of the preceding section and obtain modifications to this result

which overcome them at no fundamental increase in complexity.

4.1 Scaling

A critical problem with the method used in the preceding section is that

all vectors in the observation spaces Zi are treated as being equally likely

to occur. If there are differences in scale among the system variables this

may lead to poor solutions for the optimum parity relations. To overcome

this drawback we proceed as follows. Suppose that we are given a scaling

matrix P so that with the change of basis

5 = Px (4.1)

one obtains a variable E which is equally likely to lie in any direction.

For example if covariance analysis has been performed on x and its covariance

is Q, then P can be chosen to satisfy

-l -(
Q = P (') (4.2)

and the resulting covariance of E is the identity.

As a next step, recall that what we would ideally like to do is to choose

a matrix G so that

C. C.P - 1

G'1 i i i A , A
G'CI ~ i x G G'C G (4.3)

CiAip C.APP-1
ii I J1

is as small as possible. In the preceding section we considered all directions

in Zi = Range (Ci) to be on equal footing and arrived at the criterion (4.4)
i 1
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Since all directions for C are on equal footing, we are led naturally to the

following criterion which takes scaling into account

L

J(s) = z IIci'G IF (4.4)
i=l

Using the result [17] cited in the previous section we see that to

find the Nxs matrix G (with orthonormal columns) which minimizes J(s) we

must perform a singular value decomposition of the matrix

C = [C1C2:...:C ] = U E V (4.5)

2 2 2
where 1 < < ... < N and U = [u u2 ]. Then u1 is the best parity

2
relation with ao as its measure of robustness, u2 is the next best, etc.,

and J*(s) is given by (3.15). Finally, in anticipation of the next subsection,

suppose that we use the stochastic interpretation of i, i.e. that

E[rC'] = I (4.6)

In this case if we define the parity check vector

p. = G'C. (4.7)
1 1

then

E[IHpiu 1 2 = IIC!G'12 (4.8)

4.2 Observation and Process Noise

In addition to choosing parity relations which are maximally insensitive

to model uncertainties it is also important to choose relations which suppress

noise. Consider then the model

x(k+l) = A.x(k) + D.w(k) (4.9)
1 1

y(k) = C.x(k) + v(k) (4.10)

where w and v are independent, zero-mean white noise processes with covariances
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Q and R, respectively.

Let

y(k)

= G' [ (4.10)

y(k+p)

Then using the interpretation provided in (4.7), we obtain the following

natural generalization of the criterion (4.4):

L
J(s) = z Ei.[.1 1 21] (4.11)

i=l

where Ei denotes expectation assuming that the ith model is correct. Assuming

that M(k) = Px(k) has the identity as its covariance, using the whiteness of

w and v, and performing some algebraic manipulations we obtain [3]

L 2
J(s) = E Ilc GII 2 + IIS'GII 2 (4.12)

I F F
i=l

where S is defined by the following:

0 0 .0

C.D. 0
1 1

D. C.A.D. C.D. . (4.13)
1 1 1 1 11

0

C.AP-ID. C.AP-2 D .... C.D.
11 1i 1 1 1 1 1

Q = diag (Q,...,Q) (p times)

R = diag (R,... ,R) ((p+l) times) (4.14)

L
N= 7 DiQD! + LR = SS' (4.15)

i=l

From (4.12) we see that the effect of the noise is to specify another

set of directions, namely the columns of S, to which we would like to make

the columns of G as close to orthogonal as possible. From this it is evident
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that the optimum choice of G is computed by performing a singular value

decomposition on the matrix

[c ... C:S] = U E V (4.16)
1. : L(4.16)

As before (4.16) provides a complete set of parity relations ordered in terms

of their degrees of insensitivity to model errors and noise.

4.3 Detection Versus Robustness

The methods described to this point involve measuring the quality of

redundancy relations in terms of how small the resulting parity checks are

under normal operating conditions. However, in some cases one might prefer

to use an alternative viewpoint. In particular there may be parity checks

which are not optimally robust in the senses we have discussed but are still

of significant value because they are extremely sensitive to particular

failure modes. In this subsection we consider a criterion which takes

such a possibility into account. For simplicity we focus on the noise-free

case. The extension to include noise as in the previous subsection is

straightforward.

The specific problem we consider is the choice of parity checks for the

robust detection of a particular failure mode. We assume that the unfailed

model of the system is

x(k+l) = A (n)x(k) (4.17)

y(k) = Cu (n) x(k) (4.18)

while if the failure has occurred the model is

x(k+l) = Af ()x(k) (4.19)

y(k) = Cf(n) x(k) (4.20)

In this case one would like to choose G to be "as orthogonal as possible" to
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Zu(r) and "as parallel as possible" to Z (1n).

Assume again that n takes on one of a finite set of possible values, and

let Cui and Cfi denote the counterparts of C. in (4.3) for the unfailed and
U1 fi 1

failed models, respectively. A natural criterion which reflects our objective

is

L 2

JCs) = min Z {I .ui GllF (4.21)
G'G=I i=lF 

If we define the matrix

H = [Cul Cu2 CuL Cfl Cf2 FL] (4.22)

M 1 columns M 2 columns

J(s) = min tr{G'HSH'G} (4.23)
G'G=I

where

M1 M2

I. 0 M1

S = .?] , (4.24)

0 . I M 2

It is straightforward (see [31) to show that a minor modification of the

result in [17] leads to the following solution. We perform an eigenvector-

eigenvalue analysis on the matrix

HSH' = U A U' (4.25)

where U'U = I and

A = diag (X1'. ' N) (4.26)

with X1 < < 2< ... <X and U = [ul .UN]. Then the optimum choice of G

is

G = [u1 ... u s ] (4.27)
1. . s
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and the corresponding value of (4.23) is

S

J*(s) = Z k. (4.28)
i=l 1

Let us make two comments about this solution. The first is that as many

as M2 of the .i can be negative. In fact the parity check based on u. is
2 1 1

likely to have larger values under failed rather than unfailed conditions

if and only if A. < 0. Thus we immediately see that the maximum number of

useful parity relations for detecting this particular failure mode equals

the number of negative eigenvalues of HSH'. As a second comment, let us

contrast the procedure we use here with a singular value decomposition, which

corresponds essentially to performing an eigenvector-eigenvalue analysis of

HH'. First, assume that the first K of the .i are negative. Then, define

2 2 2
G1 = ' a2 =2' ' K K'

2 2
K+ = X'N N (4.29)
K+l K+l' 'N N

From (4.25) we have that

HSH' = UZESU'

where

Z = diag(aol,.. N) (4.31)

Assuming that Z is nonsingular, define

V = E U'H (4.32)

Then (4.31), (4.32) imply that V is S-orthogonal

VSV' = S (4.33)

and that H has what we call as S-singular value decomposition

H = UEV (4.34)
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