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ABSTRACT

A new hypothesis on traveler behavior in a network is described which

is based on empirical findings in the theory of travel budgets. It is

translated into an assignment principle for characterizing the distribution

of travelers, as well as the demand and mode split. A numerical technique

is proposed, and it is applied to several examples to illustrate qualitative
features.

The new hypothesis is significant because it considers all travel
decisions--whether or not to travel, where to go, and what mode to use--
in a single, unified way. The feedback from travel time and money costs
on links and modes to traveler behavior is explicitly considered.
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1. INTRODUCTION

1.1. Purpose

The purpose of this paper is to introduce a new model of traveler

behavior in a transportation network. This model incorporates a mechanism

which treats route, mode and destination choices, and the decision of

whether or not to travel, in a single, unified formulation.

Models and computation techniques have been studied (Dafermos, 1974;

Dafermos, 1980; Florian and Nguyen, 1974; Leblanc and Abdulaal, 1980)

which treat these issues in an integrated way. However the models of

individual decisions are based on different assumptions. (For example,

route choice is often based on the logit model.) Some of the choice models

(such as the logit models) appear to be convenient methods of summarizing

local survey data rather than representations of universal human behavioral

mechanisms.

We use the term "behavioral principle" to be a set of statements that

characterize the choices made by individuals in a transportation system.

We use "assignment principle" to mean a set of statements that characterize

flows of vehicles or travelers in a system. One of the purposes of this

paper is to emphasize the relationship between the two. An assignment

principle is limited in its validity and predictive power unless it is

based on a single, unified behavioral principle.

The models presented in here are based on the following behavioral prin-

ciple. Travelers have maximum amounts of time and money that they are willing

and able to spend traveling during a day. They may spend less but not more.

Within these constraints, they maximize the benefit they obtain from traveling.

This benefit is determined by the links and nodes of the network a traveler

passes and on the mode he employs.

An important concept is that of a journey. Travelers start and end their

journeys at the same point: a residence. They travel in a continuous path,

possibly with several loops. This differs from existing models, in which the

fundamental unit of travel is a trip.



1.2 Outline

Section 2 of this paper derives two versions of an assignment principle

from the behavioral principle mentioned above. A numerical technique is pre-

sented in Section 3. Sections 4 and 5 contain a set of examples. The small

examples in Section 4 are intended to help explain the behavioral and assignment

principles; the large example of Section 5 demonstrates their realism and

applicability. Further research topics are suggested in Section 6.
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2. BEHAVIORAL AND ASSIGNMENT PRINCIPLES

Traffic Assignment is the computation of vehicle and traveler flows in

a transportation network. It is based on data on the travelers such as their

origins, possible destinations, and car ownership; and on the physical attri-

butes of the network such as its structure and its link flow capacities.

Because travelers make important choices that affect the distribution of flows

(such as whether or not to travel, and where to go), all assignment schemes

should be based, explicitly or otherwise, on a model as a behavioral principle;

when it is translated into a statement about flows it is an assignment

principle.

The major theoretical advance described in this report is a new assign-

ment principle. This principle combines the travel budget theory of Zahavi

(1979) and others (Kirby, 1981) with a detailed representation of a network.

It extends the current state of the art by combining demand, mode split, and

route assignment in an integrated formulation. Because this formulation is

based on the travel budget theory, it has solid empirical backing.

In Section 2.1, we review the user-optimization assignment principle of

Wardrop (1952). We show the relationship between an assignment about the be-

havior of individuals in a transportation network and the widely used state-

ment about flows in the networks on which most modern assignment computation

techniques are based.

We state a new behavioral principle which is not new, it is the basis of

Zahavi's (1979) UMOT (Unified Mechanism of Travel) model. Its novelty comes

from its new context. The new principle is based on the concept of travel budgets:

travelers and potential travelers are assumed to have certain maximum daily

expenditures of time and money for transportation. These budgets depend

on such attributes as household sites and household income, Following the

same development as for user optimization, a set of statements about flows

in a network is derived from the individual behavioral principle.
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Two versions of the new assignment principle are presented. The first,

described in Section 2.2, assumes that budgets are equal for all members of

each class of travelers. The second, in Section 2.3, allows budgets to differ

for various members of the same class. The second formulation, which is more

nearly in agreement with reality, allows the same traveler to choose different

travel patterns on different days. Important features of the new principle

are discussed in Section 2.4.

The new principle differs from formulations based on Wardrop's principle

in many ways. First, daily travel behavior is considered, not single trips.

That daily travel is important is indicated by the work of Clarke et al. (1981)

whose empirical evidence shows that trip taking behavior must be treated in the

context of household size and age, and of the full day's transportation needs.

Consequently, instead of assuming fixed origins and destinations, we assume a

fixed origin, the traveler's residence location. Travelers are assumed to have

daily journeys that start and end at that point. Second, following Zahavi,

travel is viewed not as a disutility, but rather as a utility, providing

travelers with access to opportunities, and paid for out of limited budgets.

2.1 Review of Wardrop's Assignment Principle

2.1.1 Assumptions on Individual Behavior

Wardrop (1952) asserted two principles which were intended to charac-

terize the bahavior of travelers in a transportation network. One, which has

since been called user optimization, is based on the premises that

a. Travelers have fixed origins and destinations.

b. Travelers seek paths which minimize their travel time.

This principle has been of great importance in the development of

transportation models. Its evident limitations have provoked many researchers

to suggest extensions to include elastic demand (Florian and Nguyen, 1974)

multiple modes (Leblanc and Abdulaal, 1980) and other modifications.

4



2.1.2 Resultant Statements about Flows

To calculate flows, the above statements about individuals must be

translated into a set of statements about flows. For the purposes here,

it is convenient to discuss path flows; these statements can also be expressed

in terms of link flows (Dafermos, 1980).

Let i be an index representing an origin node and a destination node

in the network. Let Di be the demand, in vehicles per time unit (most

often hours) for origin-destination pair i. That is, D travelers per hour

wish to go from a. (the origin) to b. (the destination). Let j be a path

in the network that connects a. and b., and let J. be the set of all such

paths. Let x. be the flow rate of vehicles in path j.

The flow rates satisfy

x. > 0 , j e Ji' all j, (2.1)

7 x. = D i. (2.2)
jeJ. 

1

Let t. be the travel time of path j. This travel time is the sum of

the travel times of the links that constitute path j. The choice of the

shortest path can be represented by considering the flows and travel times

of any pair of paths.

Let j, k e J.. Then,

xj > 0, xk > 0 => tj . (2.3a)

tj > t => x= 0. (2.3b)j k D

That is, since travelers choose the shortest path, if both paths have

flow, they must have equal travel time. If one path has greater travel time

than the other, no travelers will take it.

Path travel time is the sum of link travel times:

t. = EAjQ- (2.4)



where TQ is the travel time of link Z,and AjQ is the path-link incidence

matrix x. That is,

I1 if link Z is in path j,

~~~A g jz~~~~~~~= ~(2.5)I0 otherwise .
Link travel time is a function of link flow. Let fz be the flow rate of

vehicles on link Z. Then,

f = Ajxj . (2.6)

This is, the flow on a link is the sum of the flows on all paths that pass

through that link.

Finally, ZQ is a function of f, the vector of link flows in the network.

2.1.3 Limitations

This principle neglects certain important features of traveler

behavior. In reality, origins and destinations are not fixed; the decision

if and where to travel (i.e., the demand) depends on congestion which

in turn depends on the demand on the network. Demand also depends on the

money cost of travel which is not considered at all.

Ways of treating some of these features have been proposed by many

researchers. However the resulting formulations often require parameters

that are difficult or impossible to obtain. They also require a new calibration

for each application, so they have limited predictive value (Zahavi, 1981).

2.2 New Principle - Deterministic Version

2.2.1 Assumptions on Individual Behavior

Many authors have observed certain regularities about travelers' behavior.

(Kirby, 1981). In developed countries throughout the world, the average

traveler spends between 1.0 and 1.5 hours every day in the transportation system.

Furthermore, travelers who own cars spend about 11 percent of their income on travel,

and those who do not own cars spend 3 to 5 percent (Zahavi, 1979). This must

6~ ~ ~ ~ ~~ ~~~~~~~-·-'· · ---· ---·'· ----- · ·--;- ·---- -- ·-·· ------ ··- 



influence the amount and kind of travel that each individual uses.

A behavioral principle that takes these empirical observations into account

must treat daily travel, not single trips. This is because the travel time

budget is an amount of time spent each day. We define a journey to be the path

in the network that an individual takes during a day. It is made up of several

trips.

In the course of day, most travelers start and end their journeys

at the same point: their residences. (A small number of people do not,

including travelers starting or returning from business or vacation trips.)

These journeys need not be simple loops . For example, some workers go home

for lunch; some people travel to work and home, and then out again for shop-

ping or entertainment.

We assume that such journeys are feasible for an individual only if the

total travel time is less than his daily budget T, and the total money cost

is less than his budget M. The money costs include fixed costs for a car as

well as running costs if he drives; or fares if he takes transit or, of course,

both if he takes a car for part of his journey (evening shopping or enter-

tainment) and transit for the rest (work trips).

Here, we assume that each traveler has fixed budgets which do not vary

from day to day, and which are the same as those of all others in this class.

In Section 2.3, we relax these assumptions.

Classes are defined as sets of travelers with the same origin node

(residence location) and with the same budgets for time and money to be

spent each day for travel. These quantities are determined by such socio-

economic indicators as household income and number of travelers per house-

hold. (Zahavi (1979) asserts that one's daily travel time and money budgets

are influenced by such factors as travel speed; we treat both budgets as

fixed at this stage of the analysis.)

Of all the journeys that satisfy these budget contraints, which will

be chosen by a traveler? Zahavi suggests .that travelers attempt to maximize

their access to spatial and economic opportunities. He indicates that

the daily travel distance may not be their precise objective, but is quite

adequate as a first approximation for a given urban structure and transport

network.
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Because we are treating a detailed representation of a network, we can

represent other objectives. For example, we can assign a value to each link

and each node in the network, and add the values encountered on a -journey

to yield the value of the journey. These values can differ from class to

class: that is, the value of a given node (e.g., the location of an extreme-

ly expensive shopping mall) can depend on whether the traveler is rich or

poor. Other formulas for calculating the value of a trip are also amenable to

this analysis.

To summarize: a traveler in class a chooses a journey p, among all

journeys pa available to him, to

maximize wp , the value or utility of journey p (2.7)

pepa

subject to the time and money budget constraints:

t < Ta (2.8)
p -

m < Ma (2.9)
P-

2.2.2 Resulting Statement about Flows

Equations (2.7) to (2.9) by themselves are not adequate to characterize

network flows. For this purpose,they must be expressed in a form which is

analogous to that of Section 2.1.1: a set of equations, inequalities, and

logical relations involving flows.

Let x be the flow of class a travelers on journey p. Then, x must
p P

certainly satisfy

x > 0, (2.10)
P -

Z x = Da , (2.11)
pepa p

where D is the total number of travelers available in class a. As we indicate

below, D can include people who will choose not to travel. We measure x and Da
p



in units of travelers per day.

To characterize flows, we must specify a set of relations that are con-

sistent with (2.7) to (2.9). That is, if the demand Da is changed by a small

amount, representing one more traveler, the new distribution must-be consistent

with the behavior of the new traveler.
a

Assume that for each class a, the journeys p E P are indexed in order of

increasing utility. That is, if P > P2, w >w . We assume that no two journeys
' 2 p P 2

have the same utility value and that Da > 0. (Pairs of journeys are allowed to have

the same utilities by Gershwin, Orlicki, and Platzman, 1981.)

The journeys p e pa are divided into four sets:

1). Infeasible journeys: are those for which

t > Ta
p

and/or

m > M
P

If p is an infeasible journey, x = 0.

2). Constrained journeys are those for which

t = Ta and m < Ma
P p-

·or

t < Ta and m = Ma
P-- p

3). There is at most one special journey p* such that

xp* > 0,

p*t < Taa

p

If no special journey exists, then we define p* as the smallest index of the

constrained journeys.

4). Unutilized journeys are those for which

p < p* (i.e., w < wp*)

and

x = 0. 9
p



To demonstrate that these conditions are consistent with (2.7) -to(2.9),

add a small increment 6D to the demand D a. Then,the time and money costs

associated with whatever journeys P are chosen by the new users comprising

ODa are t + at ,and mp + Sm respectively. Assume that 6tp > 0,and mP > 0.

Consider the effect of St and am on the four possible sets of
P P

journeys:

1). Infeasible journeys remain infeasible since m + &m > m > Ma
P P p p

and/or t + dt > t > T a . Therefore, 3x = 0.
P P P P P

2). Constrained journeys may not accept more flow and still remain

feasible since t + at >T a
. Therefore, 5x = 0.

p P P p

3). If a special journey exists' it accepts more flow since

t* + at < T
p p-

m* + Sm < Ma
P P-

for sufficiently small 6D . Note that Da may cause the special path to

become a constrained path.
Le

If there does not exist a special journey for the original equilibrated

system, new flow is then assigned to an unutilized journey which then becomes

a special journey.

4). Unutilized journeys remain unaffected since the newly reduced flow

will be assigned to the higher utility, still available, special path.

2.3 New Principle - Stochastic Version

While the principle in Section 2.2 captures a greater variety of phenomena

than the user optimization principle of Section 2.1, there are several important
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features with which it cannot deal.

The first difficulty is the fact the different members of the same socio-

economic class may have different budgets on the same day, and that the same

person may have different budgets on different days. Zahavi (1979) shows that

there is a consistent coefficient of variation in both budgets among a wide

variety of populations.

Therefore, we redefine a class to be a set of people with the same residence

location and with a common probability density function for time and money budgets.

The probability that an individual of class a will have a time budget between

u and u + Su and a money budget between n and n + Sn is

fa (u,n)6u Sn (2.12)

The number of travelers of class a who have time budgets between u

and u + Su and money budgets between n and n + (Sn is

Dafa(u,n)Su n . (2.13)

Let R be a region in (u,n) space. The number of travelers whose budgets

fall in that region is

Da fa(u,n)u Sn. (2.14)
R

To state an assignment principle, we relate flows to integrals of the

form (2.14). Let

pa a a a
= {P' P2,''' Pk

be the set of journeys available to travelers in class a and, following the

convention stated in Section 2.2, let pl be the least desirable journey and

Pk be the most desirable. The utilities of all the journeys are assumed to
a abe distinct. Let xl,... ,xk be the flows on those journeys and define

k
X.a = xa . (2.15)



a a a a ta
That is, Xa is the total demand on journeys p pai+ll Pki LetaX. on journeys a ~Let
a a

and m be the time and money costs of journey pi'
i

Since pk is the most desirable journey, the total flow on-this journey

is the number of travelers whose time budgets are greater than,or equal to,

tk,and whose money budgets are greater than,or equal to,m That is,

Xk = Da f(u,n)du dn . (2.16)

na
n_>m k -

Define

Ra fnu~n~lu > a }
Rk = {(u,n)u > n > m k}, (2.17)

Uk = Rk (2.18)

This region is illustrated in Figure 2.1. Using the new notation, (2.16) can

be written

Xk = Da f(u,n)du dn . (2.19)

Uk

To characterize the rest of the flows, we define

a a a (2.20)
R- {(u,n)lu > t?, n > (2.20)

the set of expenditure levels that equal or exceed the required expenditures

on path i. The people who can afford journey Pi or better are those whose

budgets fall in any region R., i < j < k. Define

a a
U a = R . (2.21)

j>i

Then the number of travelers X. that take journey p. or better is the number
1 1

whose budgets fall in region Ua . That is,

Xa = Da f(u,n)du dn. (2.22)

U1

Equations (2.20) to (2.22) are a complete statement of the assignment

principle in the stochastic case. The statement is remarkably concise
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(tk, m k )

t

Figure 2.1: Region of Integration for Most Desirable Journey
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compared with that required in the deterministic case, especially in light of its

greater information content. In addition, a simple numerical technique for

solving (2.20) to (2.22) suffices (Section 3).

Equation (2.21) can also be written

a a a(2.23)
U = Ui+l U i ' 0 < i < k-l (2.23)
1 i+l UR.1

Figure 2.2 illustrates Ua 1 R a and Ua. Note that the boundary of U. always
i+lg i sat i

has a staircase-like structure, with a vertical half-line at the left and a

horizontal half-line at the right.

The flow on path i satisfies

a a xa
i 1 1i+1'

so that

i D a fa(u,n)du dn . (2.24)
1 U a

i i+l

a a
The region U. - U is the oddly shaped rectangular polygon in Figure 2.2

1 i+l
whose lower left-hand corner is (ta, ma).

a a a
Note that if t . and m. are sufficiently large, R ifalls entirely inside

a a a a
of Uil In that case,U - U i+l = 0 and X = 0. This is intuitively

reasonable. Journey i is the least desirable of those currently under considera-

tion (i, i + 1,...,k) because of the ranking contention. If both its travel

time and its money cost are greater than those of all better paths, it attracts

no flow.

Equations (2.20) to (2.22) have been constructed to be consistent with

(2.7) to (2.9). The region Ua contains all budgets that are greater than,or
a a a

equal to,the expenditures on journeys p, Pi+l, .. 'Pk · Equation (2.22) implies

that if an individual has budgets that are in U., he will choose one of these
a a a

journeys and not journeys pl, P2,''- Pi '
1.

14
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u, 0 Q

li · t~~~~~l~

Figure 2.2: Region of Integration for Ordinary Journey
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In particular (2.24) implies that if his budgets fall in Ui- U he
a a U i+l'

awill take journey pa. If he can afford to take journey Pi' but he cannot affordPa+1 * Pp he will choose pan This is e::actly what the formulation (2.7) to
Pi+l' ''''Pk 'h e wi' choose Pi'

a 2.
(2.9) says:- pa is the best journey (the ordering convention requires that the

utility values of pa,' ' ,pa- 1 are less than that of p.) whose costs are less

than ,or equal to,his budgets.

2.4 Discussion of New Principles

There are several features of the new principles that are not determined

by the reasoning presented above. Certain choices have been made in constructing

all the examples to follow. These choices are described here. Alternative

choices could easily have been made with no difficulty.

2.4.1 Null Journey

It is convenient to introduce a null journey for each class. This is a

journey that requires no travel time or money, that has less utility than any

other journey available to its class, and whose flow does not affect the

travel or money costs on any other journey in the network. The people who

take the null journey are the people who stay home; their budgets are in-

sufficient to allow them to do any traveling at all.

2.4.2 Costs

In the numerical examples to follow, the travel time for a journey is

the sum of the travel times on its constituent links. The money cost of

travel is computed in the same way with an additional term due to either the

fixed cost for owning a car or a fare for transit. Neither the statement of

the equilibrium conditions nor the algorithm in Section 3 depends on the method

of calculating the costs.

2.4.3 Utility of Journeys

We have assumed that utility is constant, depending on the geography

of the network, and not depending on flows, delays, or money costs. We assume

that the utilities of journeys available to the same class are distinct, and

that journeys may be ranked in order of utility, with the null journey the

worst.
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In this model, what is important about a journey is not its utility value,

but rather its utility ranking. It is important that one journey be better than

another; not how much better.

This feature obviates a precise determination of utility. Such a deter-

mination may be expensive or impossible. It is a reasonable assumption at

least on an individual basis: each individual chooses the best journey he can

afford, without being concerned with how much better it is than other journeys.

On the other hand, different individuals may rank journeys differently, particu-

larly if they are similar.

In the examples discussed below, it is assumed that utility, like travel

time, is accumulated as one traverses a journey. A utility value is assigned

to each node, and the value of the journey is the sum of the utilities of the

nodes passed through.

This choice is made in an effort to build on, and further refine, Zahavi's

ideas. Zahavi (1979) suggests that a reasonable approximation to Jtravelers'

behavior is to assume that they maximize the distance they cover within their

time and money budgets. He points out that distance is only a surrogate for

travelers' real objectives, which are to work, shop, be entertained and generally

take advantage of as many of the facilities in the region as possible, within

bounds of time and money constraints. The utility value of a node is simply

a measure of the number of these facilities that can be found at each location.

We say that utilities are additive if the utility of a journey is the

sum of the utility values of the nodes and links through which the journey

passes.

Again, neither the statement of the equilibrium conditions nor the algorithms

presented in the next section depend on the formula for calculating the utility

ranking.
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2.5 Related Work

There are similarities between the model suggested here and a model

discussed by Schneider (1968) and Dial (1979). In their model, both time and

money costs are important, but individuals do not have budgets. Rather, each

traveler seeks to choose a trip (not a day's journey) i that minimizes a dis-

utility which is a linear combination k tti+k mmi..

Travelers differ by having different coefficients kt and ki. This principle
a .

leads them to a graph like Figure 2.2, but where U. is replaced by a convex

polyhedron. Trips that have both greater time and greater money costs than

other trips get no flow. This is also true in the present model unless such

journeys have superior utility values.



3. SOLUTION TECHNIQUE FOR STOCHASTIC VERSION
OF NEW ASSIGNMENT PRINCIPLE

3.1 Statement of Equilibration Procedure

Let x be the vector of all path flows in the network. Define g(x) to

be the vector of the same dimensionality as x whose component corresponding

to journey i of class a is

gi(x) D a fa (u,n)du dn (3.1)

i i+l

The dependence of g on x is due to the dependence of Ua and Ua on x.

These sets depend on x because they are determined by the time and money costs
a a

of journey Pi and of all the journeys better than p for class a. These costs,

in turn, depend on the costs of the links that make up those journeys, and the

link costs depend on the link flows, which are the sums of all the journey

flows that pass through those links. It is clear that, in general, ga depends

on all the journey flows in the network.

Equations (2.20), (2.21), and (2.24) (which together are equivalent

to (2.20) to(2.22)) can be written

x = g(x). (3.2)

Thus,we seek a solution to a fixed point problem. It is observed that

g(x) is a continuous function on the compact set

xa > 0, (3.3)
1-

a a

x = Da (3.4)
i 1

to which x is restricted. Consequently, at least one solution to (3.2)

exists (Dunford and Schwartz, 1957),

Equation (3.2) suggests a procedure;

x(O) specified,

x(q+l) = (l-X)x(q) + Xg(x(q)), (3.6)
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where

O < X < 1 . (3.7)

In our experience, (3.5), (3.6) converges whenever X is sufficiently small.

Convergence is considered to have occurred when

max x.a(q) - gi(x(q))l < e (3.8)
a,i

The main effort in executing (3.6) is evaluating the regions U., and then

performing the required integrals. This is described in the following section.

3.2 Calculation of Integrals

It is.convenient to write the iteration process as

e. (q+l) = (1-X)a(q) + X fa(u,n)du dn, (3.9)

U. (q)

a a a
x. (q+l) - X(q+l) - X (q+l), (3.11)
. 1 i+l'

where X.a(q) is the class a flow on journey pa or better. The index k refers
I

to the best (highest utility) journey for class a and, as usual, the journey

index numbers increase with increased utility.

In Section 3.2.1 ,we characterize the regions U.a (q). In 3.2.2,we demon-
1

strate how to evaluate the integral in equation (3.9).

3.2.1 Regions of Integration

Region U. is defined by equations (2.18), (2.20), and (2.23) (where

the argument q is suppressed). It always has the characteristic staircase

shape of Figure 2.2, of which Figure 2.1 is a special case. To perform

the integration in (3.9), a list of the corners of Figure 2.2 is

required. The corners of U are displayed in Figure 3.1.
i+l

20
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rI -(Uu2 , nl)
(u 3 , n2)

(u4 l , X (u 4 , n3)
(Ut,'_' , ! X /--(U5, n 4 )

L /__ /_ _,:-(u6,n 5)
(t ,. mP.)~ -f - - - -...

(U 4,n 4) U5 , n 5) 

(U 6, n 6)
_igure 3.1: Corners of Ui~l and t

Figure 3.1: Corners of U + and U.
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The components of a corner of the form (u., n.) are the travel time

and travel money costs of some journey of class a better than journey i.

Heretofore,they have been listed in order of increasing utility. To perform

the integration, they must be listed as they are in Figure 3.1, in order of

increasing travel time and decreasing money (or vice versa) . Furthermore,

the costs of journeys i such that Ra is a subset of U must not appear~1 ~ ~i+l
in this list. (See the remarks following (2.24).)

Let La be the list required to perform the integration over U. It is
1 1

defined inductively from La based on (2.23). From (2.17) and (2.18), we define
i+1

a [ta a)] (3.12)

where Pk is the best path. Let

a [(uln (u ,n )) ,, (3.13)

where

u1 < u2 < ' < ur, (3.14)1 2 r

and

n1 > n2 > > n . (3.15)

If, for some j, 1 < j < r

t a > U
1- ]

(3.16)
a

m. > n.
1- j
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then,

L = La (3.17)
i i+1

This is because journey i has lower utility than the journey whose costs

are (uj, nj). Since its costs are also greater, there is no reason to take

this journey. Geometrically, Ra is a subset of Ua ,and (tfalls inside
1 i+l z 1

of Ua
z+l'

Otherwise, let a be the largest integer such that

u < ta (3.18)

and let 8 be the smallest index such that

n < ma (3.19)

(In Figure 3.1, a = 2, 8 = 4.) Then,the list L-. is constructed from list
a a a

Li+l by replacing all the points (ul, n+),...,(u, n) with (ti, +i).

That is, if

La i+l i+l
i+l = Cl ri+l = l(c1 I...Icr :i (3.20)

i iL_ = c 1 , . .. , c ]

then,

i i+l

] 3

c ( = Ct,
Ca+=(l m ' (3.21)

i i+l
cj = c--2+j j = a+2,...,s

s r-f+ai+2

In Figure 3.1,

i+l= [(u1 ,n
l) ' ''' '(U6 n6) 

] '

Lia = [(uln 1) (u2,n2 ) (t ma (u 4

(u,m 5), (u6,m6)] 
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Note that the numbers of corners in U. (i.e., s) may be greater than the

number in U a+1 (i.e., r) by 1, or it may be equal, or it may be fewer if
i+l

6 > a+2.

3.2.2 Calculation of Integrals

Once list La is determined, the integral in (3.9) can be written

s-1

fa(u,n)du dn = f a(u,n)du dn

U Si

+ a(u,n)du dn, (3.22)

where s is the number of corners of U., S. is the strip.

Sj = {(u,n)u < u < u+ 1, n > } (3.23)

and Q is the quadrant

Q = {(u,n)lu > us, n > n} (3.24)

In all the examples described below, we have assumed that the budgets

are independent. As a result,

fa(u,n) = (a(u)4a(n), (3.25)

and

jfa (u,n)du dn = L a(u)d d a(n) d (3.26)

f (u,n)du dn = [ a (u)du [ (n)dn (3.27)

The integrals in (3.26), (3.27) are particularly easy to calculate when the

P and 1 density functions are piecewise linear. We have observed that numerical
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results are not sensitive to the detailed shapes of these distributions

although they are sensitive to their means and variances.

3.3 Algorithm Behavior

In the following sections, we discuss a number of numerical examples. (Other

examples are presented in Gershwin, Orlicki, and Zahavi, 1981.) We restrict our

attention to the behavior of the solution of the system (2.20) to (2.22). Here,

we present an informal summary of our observations on the behavior of the

iteration procedure (3.6).

The convergence properties of the algorithm are sensitive to two sets of

quantities: A, and the variances of Xa ( ) and ka( ).

The larger the variances, the greater the reliability of convergence.

When the variances are small, it is very easy for the algorithm to overshoot

the equilibrium distribution and oscillate wildly.

We conjecture that this behavior is due to the fact that, when the

variance is small, the travelers in a given class are similar to one another.

If the cost of a given journey is too high, all the members of that class will

react in the same way, and most of the flow will be removed from that journey

by the integral in (3.9). If the costs are too low for the present flow on

a journey, the integral in (3.9) willtend to redistribute most of the flow of

that class onto that journey. If the variances are large, only a small amount

of flow will be affected by an error in cost.

The step size X also affects algorithm behavior. When X is small,

the change from iteration to iteration is small, and although convergence is likely

it is time-consuming. When x is large, overshoot is a danger, and oscillations

can be observed.

The amount of computer time that the algorithm requires is also greatly af-

fected by the computation required to evaluate the integrals on the right-hand

side of (3.26) and (3.27). Distributions that require a great deal of airthmetic

(such as a normal, Erlang, or gamma) require much more total computer time

than others (such as the uniform or a piecewise linear density).
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It is clear that these observations can be combined to enhance the

efficiency of the algorithm. First, X can be increased as the algorithm

shows signs of slowing down; i.e., reaching equilibrium. Second, the variances

can be initialized at much larger values than the required variances, and

decreased gradually when the algorithm seems to be converging. Finally, if

it is necessary that results be computed with difficult-to-calculate dis-

tributions, the algorithm can be restarted after first converging with an easy

distribution.
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4. NUMERICAL EXAMPLES

In this section, we describe several examples of small-size networks

that we analyze using the numerical technique of Section 3. These examples illus-

trate various qualitative properties of the assignment principles of Section 2 and

of the iteration process, A network of more realistic size and complexity is

presented in Section 5.

4.1 Four-Link Network

There are five journeys in the network of Figure 4.1: the null journey and

the four that each traverse one link once. The flow that takes journey i, which

traverses link i, is xi. The flow on the null journey is x0. The four links

have identical delay functions given by

t. = +(-L .X. 4

ti +25 (4.1)

The journeys have different utility values: journey 4 is better than journey 3,

and so forth.

Figure 4.2 displays the flow levels as a function of total demand when the

time budget has a triangle distribution with mean 2.00 and variance 1.95. The

triangle density function is displayed in Figure 4.3. The money budget is set

high so as to be a non-binding constraint.

When the demand is near zero, nearly all flow is attracted to journey 4.

Journey 4 is the best journey and the delay is small, so nearly all travelers can

afford to choose it.

As the demand increases,the flow on journey 4 increases. However, some

travelers are excluded from it since its delay has increased, so they take

journey 3. Eventually,journey 3 becomes expensive and travelers move to journey

2, journey 1, and the null journey. In the limit as D-*o,

Xi + c*, (4.2)
1

O + D - 4c*, (4.3)
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Figure 4.1: Four-Link Network
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Ficure 4.3: Triangle Density Function
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where c* is a limiting flow, and x0 contains all the travel demand that is

unmet.

Figure 4.2 illustrates the relationship between the deterministic and

stochastic versions of the principle. When the demand D is as indicated by

the arrow, two journeys are approximately at budget levels (constrained

journeys), one has less travel time than the budget level (special journey),

and two have nearly no flow(unutilized journeys).

In the deterministic case, Figure 4.4 describes the behavior of the flows.

Again, limits (4.2), (4.3) are valid. Here c* is the solution to

T = . + 4, (4.4)

where T = 2.00 is the value of the time budget so that c* = 293.5. Clearly,

at the arrow, journeys 4 and 3 are constrained, journey 2 is special, and

journeys 1 and 0 are unutilized.

4.2 Small Network with Interacting Journeys

Figure 4.5 is a network with three nodes and five links. Node and link

numbers are indicated. The link time cost functions are given by

TI(f) = Tzl + 2 (4.5)

and the link money cost functions by

V%(f) = V1 + .5 (4.6)

where the parameters are listed in Table 4.1.

Several examples are treated that are based on this network. In each,

the budget density functions 0 and G are uniform.
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Figure 4.5: Three-Node Network
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Table 4.1 - Network Parameters

link Z 
lR2 Z1i

1 0.25 2oO 0

2 O.25 .o

. o,3o 400 Q. SO

4 0.50 jO0 .0

5 0.50 200 0

Case 1

The time budget is uniform between 2.0 'and 2.5 and the money budget is

uniform between 3.0 and 3.5. The total demand is 200. Table 4.2 lists the

journeys in increasing order of utility, as well as the equilibrium flow,

travel time, and money cost.

Table 4.2 - Results of Case 1-

Journey Flow Time Cost

null (1) 0 0 0

: - 3 - 1 (2) 0 1.03 .74

1 - 2 - 1 (3) 114.31 16d 1e61

I - 2 - 3 - 1 (4) 85.69 2.29 2.64

Journey 4, which is the most desirable, is like a constrained journey in

that there are some travelers on it who are spending their entire travel-time

budgets. Journey 3 is analogous to the special path of the deterministic

formulation since no traveler is spending either of his full budgets on travel.

Journeys i and 2 are unutilized. It is noted that this interpretation of the

relationship between the stochastic and deterministic principles does not

always hold. It works here because the uniform density is zero outside of

a certain range.

Case 2

Case 2 is the same as Case 1 except that the demand is raised to 300.

Results are presented in Table 4.3.

34



Table 4.3 Results of Case 2

Journey Flow Time Cost

null (1) 0 0 0

1 - 3 - 1 (2) 97.12 1.20 .93

1 - 2 - 1 (3) 176.24 2.16 2.29

1 - 2 - 3 - 1 (4) 26.65 2.46 2.87

In the previous network, when the demand is increased, it fills up the cur-

rent "special" path, and then overflows onto the next. Here, all the flow

is redistributed. In particular, there is less flow on the best path in Case 2

than in .Case 1.

The reason for this is that the time required to traverse journey 4 has

increased from 2.29 to 2.46, which is almost at the upper limit of the time-

budget distribution. This increase in time is due to the increased flow on

journey 3, which shares link 1 with journey 4: and on journey 2, which shares

link 5. Again, the stochastic version of the assignment principle mimics the

deterministic in that there are constrained, special, and unutilized journeys

in the proper order. Note that the flow on journey 4 is now smaller than it

was in case 1.

Case 3

It is observed that journey 2 has time and money costs which are less than

one-half of the upper limits on the budget distributions. Some travelers might there-

fore be expected to go around the loop twice. Consequently we have added an

additional journey: 1 - 3 - 1 - 3 - 1. The utility of this journey is greater

than that of journey 2 and less than the utility of journey 3.

To our great surprise, no redistribution takes place after the new journey is

added. That is, the new equilibrium is such that the flow on the new journey is 0,

and the flows on the othrs are the same as those of Table 4.3. The time cost of

the journey, 2.40, is greater than that of journey 3. (2.16) although its utility

is less. (The money costs are irrelevant since they are less than the lower limit

of the money budget density function). Consequently, no travelers who are capable
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of switching from 1 -2 - 1 to 1 - 3 - 1 - 3 - 1 (i.e., those on 1 - 2 - 1 wnose

time budgets are greater than 2.40) have any incentive for doing so.

This indicates the marketing aspect of providing travel service. When a

new travel alternative is offered (in this case, a new journey), it is not

enough to ascertain that it is better than some existing alternatives that are

used, and that it is affordable by (i.e., within the budget of) some travelers.

The new alternative will be used only when there are some travelers that can

afford it, and for whom it is better than their current transportation choice.

This result may be seen in terms of the integration regions U.. Figure

4.6 shows the uniform joint-density distribution of budgets for travelers

in the network and the Ui regions for journeys 2, 3, 4, and the new journey.

The integrals of regions of the budget joint density are performed in order'

of utility, with the region for the highest utility journey evaluated first.

The new journey we propose has utility greater than journey 2, and less than

those of journeys 3 and 4 of the original network. Figure 4.11 shows that by

the time the integral of f(.) over the region U for the proposed flow is
new

evaluated, all potential users of the new journey have already been assigned

to journeys 3 and 4. The travelers having budgets in the joint density con-

tained in the region U3 - U2 are the only candidates still unassigned, and they

cannot afford the new journey. Thus, even though a journey with higher utility

than a presently employed path is available which has costs in the feasible

budget region, it may go unused depending on its value to travelers relative

to other journey choices.

4.3 Circular Network

Figure 4.7 contains a network consisting of 13 nodes and 40 links in

the shape of two concentric circles. The details of this network are presented

in Gershwin, Orlicki, and Zahavi (1981).

Here, the effect of the shape of the distribution is investigated. Two

runs are compared that are identical -- 5 journeys for each of two classes; time

budgets means are 1.25 hours and variances 0.5 (hour) ; money budgets means

are 3.00 dollars and variances 1.5 (dollars) --in all respects except one. One

run has gamma distributions and the other has uniform distributions. See Table 4.7.
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Figure 4. 7: Circular Network
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The resulting corresponding journey costs are nearly identical. The

corresponding flows are also close to one another. If larger variances were

used, we assume that the flows would be even closer. (Larger, more realistic,

variances could not be used because one of the distributions was uniform.

There is a limit on the variance of a uniform distribution whose mean is specified

and whose lower limit is required to be zero or positive.) This assumption

follows from the observation that the journey costs are similar in the two

cases and from our experience that large variances tend to reduce the sensi-

tivity of the distribution of flows to journey costs.
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5. LARGE NETWORK

In this section, we show that a system of realistic size and complexity

can be treated using the technique described here and that it yields reasonable

results.

Relatively crude models for mode delays and costs are used. For example,

parking fees are not included. Only a single kind of car is represented, and

a single global average of 1.5 occupants per car is used for all economic

classes and all residential locations. Walking, which is an important trans-

portation mode in the dense downtown area, is not considered.

For details, and more variations on the basic network, see Gershwin,

Orlicki, and Zahavi (1981).

5.1 Discussion of System

5.1.1 Network

The network is presented in Figure 5.1. It has 144 nodes and 264 links.

It is symmetric about its vertical and horizontal axes. Its total length is

343.2 kilometers. Lengths of links are indicated in the figure. Roads are

most dense near the city center and become less dense toward the periphery.

All streets are one-way,

We calculate the utility of a journey by counting the number of nodes that

the journey passes through. This count is multiplied by 1.1 for car journeys

to represent the attractiveness of a car over that of a bus. All nodes are

equally desirable. Because of the greater density of nodes near the city

center, journeys going inward are more valuable than those going outward.

Journeys are paths in the network that start and end at the same resi-

dential node. Between 76 and 81 journeys are made available to each class.

No mixed-mode journeys have been considered.
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Car journeys are allowed to go anywhere in the network as long as path-

continuity and link directions are respected. Bus journeys are more restricted.

They have the same freedom as cars in the inner city; that is, among nodes 40,

45, 100, and 105. However, outside of that region they may travel only on

certain links. These are the links that connect the following nodes: 13-24;

37-48; 97-108; 121-132; 2, 14, 26,...,134; 4, 16, 18,...,136; 9, 21, 33,...,141;

11, 23, 35,...,143.

5.1.2 Population

The population consists of 300,000 people divided into 2 income groups

and 16 residential locations. The wealthier group has a household income of

35,000 dollars per year and the poorer has a household income of 15,000 dollars

per year. Households are assumed to contain 3 people, on the average; and years

have, on the average, 320 days of regular travel, so these incomes are 36.46

dollars per day per person and 15.63 dollars per person respectively.

The locations at which people live and their class designations are listed

below. Classes 1 to 16 are the wealthier people; classes 17 to 32 are the poorer.

-The number of people in each class is 9375.

Node Class

14 1, 17
16 2, 18
21 3, 19
23 4, 20
38 5, 21
40 6, 22
45 7, 23
47 8, 24
98 9, 25

100 10, 26
105 11, 27
107 12, 28
122 13, 29
124 14, 30
129 15, 31
131 16, 32
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Because of the great size of this system, techniques have been sought to

reduce computation time. A very effective technique is to use a triangle density

function (Figure 4.3) rather than a gamma or other distribution. Calculations

involving the triangle are simple and, as we argued in Section 4.3, probably

accurate when variances are large.

The time budget distribution for all classes is triangular with mean 1.1

hours and variance 0.43 (hours) for each traveler, which yields a coefficient

of variation of 0.6. This is consistent with Zahavi's (1979) empirical findings.

The money budget is also triangular, with means of 11 percent, or 6.00 and 2.55

dollars per traveler. The variances are 17.50 dollars and 3.10 dollars2

respectively.

5.1.3 Time Costs

The time for a journey is the sum of the times for its constituent links.

In the case of bus journeys, an additional delay of 0.2 hours per transfer is

added to represent the time spent waiting for a bus.

Link travel time for cars is given by

t, =t 1 (1 + 0.15 C, (5.1)

where tI 1 , and cI are constants. The capacity, c., is 24000 vehicles per day.

The free-flow time, TI1 is the length of each link (as indicated in (Figure 5.1)

divided by the free-flow speed, which is assumed to be 50 km/h. Link travel

time for buses is assumed to be twice that for cars.

The flow, fi'is given as

f =afc + c f b Q (5.2)

c b
where f and f are the total car-traveler flow and bus-traveler flow through

2 Z
link Z. That is,

f E cr A . (5.3)

b - E ba

rfZAi =
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where the second sum in (5.3) is over all car journeys, and the second sum in

(5.4) is over all bus journeys. The quantities ac and ab represent the impact

of a single traveler on the total car-equivalent flow.

We choose

a = 1/1.5
c

since we assume a car occupancy of 1.5 travelers, and

ab = 0.125.

This is obtained by dividing the bus equivalency factor (3) by an average

bus occupancy of 24.

5.1.4 Money Costs

The cost of most bus journeys is a fare of 1.00 dollars. There are a small

number of journeys that involve multiple loops. That is, some nodes, other

than the residence node, are visited more than once. We assume that travelers

tak:ing such journeys are making stops that do not allow free transfers, so

they are charged one dollar per loop.

The cost of a car journey is given by

1 F D T
m. =.5 (m + m + mtj), (5.5)

F
in which m is the fixed cost of owning a car and is assumed to be 5.00 dollars/day.

This value has been chosen to account for the cost of purchasing a car as well as

other fixed costs such as insurance. The divisor 1.5 is the average car

occupancy and reflects the occupants sharing the car's costs. The other terms

are due to the empirical findings of Evans and Herman (1978) who found that

the fuel cost of a car is linear in the distance and the time it travels.

We have increased their coefficients to account for other running costs such
D

as repairs and maintenance. We assume m is 0.0672 dollars per kilometer times
t

the length of a journey, and that m is 2.322 dollars per hour.
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5.2 Basic Network Results

Table 5.1 lists summary results for this network. Note that more wealthy

people take cars than buses; more poor people take buses. More wealthy people

travel. Note that car behavior is similar for all people who take cars, and

bus behavior is the same for all bus riders; the major difference in behavior

is due to the different fractions of each class who take each mode.

Note that more people travel in the inner city (i.e., more of those who

originate at nodes 40, 45, 100, and 105) and more stay at home in the suburbs.

Wealthy people gain more benefits, i.e., utility, from travel, than poor

people. They spend more money, and more of them take cars. Poor people spend

more time traveling. Note that all times and speeds are door-to-door times

and speeds.

5.3 Fare Change

Table 5.2 summarizes the behavior of the network when bus fares are raised

by 50 percent. Bus riders are profoundly affected, particularly those of lower

income. Car commuters are almost unaffected. It is important to see that, in

this network, when fares are raised, people do not switch from buses to cars

(except for a very small number of the poor). Instead, they switch from travel-

ing in buses to not traveling at all.

It should be noted that a crucial modeling assumption may have had a

profound effect on this result. Travelers are assumed to be independent, with

independent time and money budgets, In reality, members of a household may

share the money available to the entire household. If this is the case, increas-

ing bus fare may have little effect on bus travel in households where some members

travel by car. Instead it may increase the expenditures of the bus traveling

members which reduces the funds available for the car travelers. Thus, it may

decrease car travel.
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5.4 Tolls

An experiment has been run to assess the effect of adding tolls on certain

links entering the inner city. The intention is to discourage the use of cars

in the inner city, so only cars are subject to the fee. The links are 45-44,

100-101, 40-52, 105-93, and the amount charged is 1.00 dollar.

As Table 5.3 indicates; the desired effect is achieved. Fewer people

travel by car, and those who do drive tend to drive less. The effect of tolls

is greater on the wealthy than on the poor since it is the wealthy that drive

more. The average daily money expenditure of wealthy car drivers goes up, while

that of all others is nearly constant. The automotive travel of the poorer

people who do use cars, however, is affected much more than that of the wealthier.

Sus ridership increases enough so that there is only a small decrease in total

travel o

5.5 Prohibitions

Table 5.4 displays the effects of forbidding cars from traveling on certain

4inks. The links are the same as those studied in Section 5.4. 'In fact, the

method used is to impose a 50 dollar toll on those links, which very effectively

limits their use.)

The effect of prohibiting travel is only a little greater than that of

imposing tolls on the same links. Most of the numbers in Table 5.4 are quite

close to those of Table 5.3. One significant difference is the average daily

expenditure of wealthy car riders. When a 1.00 dollar toll was imposed, enough

of them were willing to pay it that the expenditure went up. However, a 50.00

dollar toll was unreasonable and they refused. Because they lost opportunities

to spend their money, their expenditure decreased.

It seems reasonable to conclude that as the toll increases from zero (the

base case in Section 5.2) the expenditure of wealthy car riders will increase,

reach a maximum, and decrease. The maximum expenditure is limited by the bud-

get distributions. Additional study is required to verify this conclusion

and to make it precise.
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5.6 Computer Costs

The results described here were calculated using the MIT Multics timesharing

system on a Honeywell 68/DPS computer, Typical runs required 5-8 iterations

when executed from scratch, i.e. when the initial flows were set to 0. The number

of iterations depended on the value of X . Values of X in the range of .5-.8

were used. Variational runs, such as those in Sections 5.3-5.5 typically required

only 1-2 iterations, Such runs were executed with X near .9.

A typical run took 40 cpu seconds for initialization and post-processing

and 22 seconds per iteration.

Memory requirements are dominated by the number and size of journeys. For

this example, approximately 110 kilobytes were required.

Considering the substantial size of the network, these costs are remarkably

small. Four-fold symmetry was exploited in exploring this example but we see no

obstacle to the study of larger unsymmetric networks or the implementation of

these results on a smaller computer.
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6. CONCLUSIONS AND FURTHER RESEARCH

The demand/distribution/assignment principles described in Section 2 and the

algorithm presented in Section 3 promise to be valuable tools for the understanding

and prediction of travel behavior in a city, Additional research can enhance

the usefulness of these tools. This research is of three types.: modeling,

analytical, and empirical.

6.1 Modeling

6,1.1 Time-stratified Travel

As Stephenson and Teply (1981) show, changes in network conditions can lead

to changes in the time of day that people travel, Clarke et al (1981) demonstrate

that travel decisions vary during the course of the day and depend on the scheduling

of events such as work, school, and shopping hours, Consequently, the variation

of the distribution of traffic in a network as a function of hour of the day can

be important.

In principle, this can be treated using the approach introduced here. Journeys

now become paths in space-time and not merely in space. That is, to describe a

journey, one must not only list the links and nodes that the journey passes through,

but the time of day that each link and node is reached. Two journeys that pass

through the same points in the network are now considered different if they reach

those points at different times. Utilities may be assigned according to when a

visit to a node or link takes place. (This is important: food shopping after work

is worth much more than shopping before work if there is no intervening stop at

home). Link costs vary with the time of day according to the time-varying conges-

tion.

The difficulty is that the number of possible journeys increases enormously.

A formulation is required that summarizes the effects of the availability of an

infinite number of travel alternatives without enumerating,

6.1.2 Subjective Utility Ranking

In the present model, the number of people in a class that choose a journey

depends on the journey's costs and on the desirability ranking of all the journeys.

The utility values of the journeys are not considered, except to determine the

ranking.
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This is reasonable when journeys are not similar., However, when they

are nearly the same, we can expect that different people will have different

opinions on relative rankings. Therefore, the model should be changed to renre-

sent the effects of having journeys with nearly equal utilities. One approach is

to incorporate into the density function fa(...) an indication of ranking. That

is, if there are k journeys available to class a let T be a permutation of

{l,...,k}, which represents a possible ranking of the journeys. Then let

D fa (u,n,T))du dn,

be the number of people in class a with time and money costs between u and

u + du and n and n + dn, respectively, and who have preference order I. The

analysis that has led to equations (2.20) to (2.22) must be repeated for each

possible preference order. If, as we suspect, there are not many likely

permutations, the increase in complexity that this causes will be limited

and manageable.

6.1.3 Probalistic Preference Modeling

It may be argued that preferences are almost never as clear cut as we

have modeled them here. That is, there is rarely a universally agreed preference

order among travel alternatives, even among those of the same socio-economic

class.

In that case, a better behavior principle may be the following. For class a

and path i, let ai be a probability that depends on W., the utility of path i, in

a known way. For example, ia may be proportional to Wi. Let the probability

that a given traveler of class a who can afford to take path i be equal to T .

6.1.4 Correlations Within Households

We have modeled all individuals as being completely independent. In fact,

members of a household share resources and responsibilities. For example, they

share income so a reduction in one member's expenditure may lead to an increase

in another's budget. In addition, if one member goes to a supermarket on a given

day, others are less likely to go to a supermarket. On the other hand, if one
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member goes to a movie, others are more likely to.

Incorporating this correlation may have an important effect on network

results. For example, as pointed out above, reducing bus fares may increase car

travel, since the amount of bus travel is likely to be unchanged and more money is

available for car travelers.

6.1.5 Residential Choice

We have considered only some of the choices available to travelers that affect

their travel behavior. In particular, we have not allowed them the freedom to

choose their residences; we assume that their residential locations are fixed. A

more realistic and comprehensive model would include a representation of residential

choice.

The choice of residential location is greatly influenced by the trans-

portation system: when a household considers a new residence, it carefully

considers how much access it has to locations of work, shopping, and where

other needs are fulfilled. Other factors must be considered as well, such

as housing cost. Housing cost itself is determined in part by these same

transportation considerations.

It is desirable to include residential choice in the model pre-

sented here to assess long-term effects of changes in the transporta-

tion system. To do this, the following modifications of the method must

be considered:

a. Classes no longer have fixed origins but rather can choose journeys

anywhere in the network. Some of the nodes on each resulting journey

become residential locations.

b. A precise model of individual behavior incorporating both residential

and travel decisions is required. This may be an extension of (2.7)

to (2.9). It is hoped that the utility can be extended to include

the intrinsic utility (i.e., independent of transportation considera-

tions) of a house or apartment, and that the money budget can be

enlarged to include housing as well as travel costs. It is also
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hoped that such a model can be transformed into a principle that

describes flows and demands for housing which is analogous to (2.20)

to (2.22).

c. A model of housing cost is required. The cost of owning or renting

a house or apartment depends on its physical characteristics (such

as its size, the size of the plot of land it is on, its state of

repair), and on market factors such as interest rates. It also

depends on the demand for residences in its vicinity which in turn

depends on transportation considerations. These modifications will

extend the model described here. Travelers will be represented as

making both travel decisions and residence decisions. Both phenomena

must be considered simultaneously if long-term changes in urban structure

are to be understood.

5.2 Analytical Research

A major limitation to the new assignment principle is in its computational

complexity and large data base requirements when large networks are treated.

Most important, as the network grows, the number of journeys (possible journeys

as well as those actually used) increases, The lengths of these journeys, measured

in the number nodes passed through, may also grow. In the example reported here.

the journeys were all generated manually, In the large network, simple loops

were generated by hand and the computer examined all concotenations to form journeys.

A.,n efficient exact or heuristic method is required to generate journeys in large

networks.

The computational difficulties are exacerbated by some of the extensions

described above. Further research to accelerate the equilibration process, or to

replace it altogether, will help mitigate these difficulties. Of greater value

will be a procedure for aggregating the network so that a reduced network can be

used which will produce approximately equivalent results.

There are important qualitative issues that must be understood, such as the

number of equilibria. We have briefly touched on the effect of the shape of the

budget distributions. Other sensitivity issues, such as the effect of the shape

of the link delay functions should be considered.
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If the full benefits of symmetry are used, very large networks can be treated,

particularly concentric circle networks, such as in Figure 4.7. Although such

studies will have no direct application, they will be useful for the study of

the behavior of travelers in large abstract city networks, That is, general

principles for understanding transportation systems can be developed by con-

sidering such special cases.

Optimization techniques based on this model are required. Such techniques

will seek the best of a class of network modifications or the best of a class

of control policies. They will minimize such costs as total funds expended, ag-

gregate delay, energy consumption, or maximize such objectives as mobility

while taking into account travelers' responses to the change, These optimization

techniques will be of great value to system planners and managers.

6.3 Empirical Research

Various assumptions have been made in formulating the examples, Most

important may be the assumption that utility is additive along journeys. Such

assumptions must be tested and verified or modified.

A study can be undertaken to apply the methods described here to a real

city. The city, of course, should be small and well-documented in order to assess

the predictive power of the model.
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