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ABSTRACT

In this paper, we develop an approximate model for the flow of

parts in a transfer line with unreliable machines. Using a stochastic

model, we establish that the normalized flow converges weakly to a

diffusion process in a bounded domain as the storage capacities increase.

This diffusion process is reflected at oblique directions on the

boundary. We develop a strong sample-path characterization of the

boundary process of this reflected diffusion, and use this characteri-

zation to establish weak convergence of the local time processes. The

approximation results are shown to be consistent with exact analytical

results for two machine transfer lines. We use the approximate model

to develop equations which describe the ergodic distribution and the

average lost production for a three machine transfer line.
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1. INTRODUCTION

An important class of systems which arises in manufacturing, chemical

processes, computer networks and power systems, is where material moves

through a network of unreliable links between storage Ltations. Transfer

lines are networks where all of the storage stations are arranged sequential-

ly; figure 1 describes a typical line network. The presence of storage

stations serves to compensate for link failures by maintaining the flow up-

stream and downstream of a failure, thereby decreasing the effect of a

failure on the rest of the network. When the operation of a link is modeled

as a random process, exact analysis of the flow of material is a difficult

task. In this research we develop an aggregate model of the flow through

the network based on the physical assumption that the storage capacities

are large but finite. This aggregate model is developed as the limit of a

sequence of probabilistic models for the flow of material through the line

network. Based on this aggregate model, we can approximate properties of

the long-term behavior of the line network. Although storage capacities

are assumed large, saturation of individual storage stations occurs and is

considered in the method here.

Analytical studies of line networks using a probabilistic approach were

first studied by Vladzievskii (1952). A number of authors have studied the

flow rates of lines with storages of infinite capacity; some of these are

Hunt [1956], Suzuki [1964], Barlow and Proschan [1975]. Unreliable line

networks with one storage station have been studied by a number of authors

(Buzacott and Hanifin [1978], Gershwin and Schick [1980a], Gershwin and

Berman [1981]). These papers have bibliographies of work in this area.

Systems with more storage stations are difficult to analyze because of the



complexity of interfaces when storage are either full or empty. For some

special systems, Soyster, Schmidt and Rohrer [1979] have obtained exact

probabilistic analysis of networks with more than one storage. Gershwin

and Schick's results [1980b] are more general, but still limited. Neverthe-

less, exact analysis of networks with more than one storage is a difficult

computational task.

The aggregate model described in this paper is established as a con-

sistent long-term approximation by verifying that an exact model based on

the formulation of Gershwin and Schick [1980b] converges weakly to the

aggregate model in a probabilistic sense. For a discussion of weak con-

vergence of probabilistic measures, the reader should consult Billingsley

[1968]. The arguments of convergence depend heavily on the averaging

results of Khasminskii [1966a,b].

The aggregate model obtained in this paper is a diffusion process.

Diffusion approximations in queueing networks have been studied by a number

of authors, notably Borovkov [1965], Iglehart and Whitt [1970], Kobayashi

[1974], Reiman [1977], Burman [1979] and Harrison [1978]. Although queue-

ing networks feature storages of infinite capacity, many of the techniques

used in the analysis of these networks are used here. In particular, the

construction of reflected Brownian motion in Harrison and Reiman [1979]

provides a valuable introduction to these results.

2. MATHEMATICAL MODEL OF MATERIAL FLOW

In this paper, we will assume that individual objects are of infini-

tesimal size, so that whe flow of objects through a network is a continuous

variable. Using the diagram of figure 1 as reference, objects flow from an
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infinite source to an infinite sink across storage stations and unreliable

links. The failure and repair processes of the links are assumed to be

independent jump processes with constant failure and repair rates. It is

also assumed that there is no creation or destruction of objects in the line.

Let x.,, i=l,...k-l denote the amount of material in storage element i.

Let aj, j=l,...,k denote the state of the link preceding storage element j.

The variable a. can take two values, 1 or 0, indicating respectively that

link j is operating or not. By assumption, a. is a random process, with

transition probabilities

Prob{aj(t+ A) = 1 j ai(t) = O} = r.A + o(A)

(2.1)

Prob{aj(t+A) = 0 a jit) = 11 = pjA + o(A)

From the theory of representation of jump processes (Davis [19761), we can

describe aj by a stochastic differential equation driven by Poisson processes.

Thus, one obtains

da.(t) = -aj(t)dFj(t) + (1 - aj(t))dRj(t) (2.2)

where Fj, Rj, Fi are independent Poisson processes with transition rates

Pj, rj, Pi for any j,i.

Let N. denote the capacity of storage j. Denote by N. the flow capacity

on link j. The flow rate is assumed to be of maximum capacity whenever

possible. Since no objects are created or destroyed, we can describe the

storage process by the differential equation
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dx.
dt1 i - Bi+lei+l ; 0 < x. < N. (2.3)Ij 1 i+l *i+1 1 1

i=l,...k-l

T T
Define the vectors x = (xl,...,xk) , a = (ao,...,c k ) as the state of the

system. Let s = (x,a). Equations (2.2) and (2.3) provide a system of

stochastic differential equations which describes the evolution of the

probabilistic state s(t) whenever all of the storage elements are away from

their limits. However, when a storage element is either empty or full,

equation (2.3) must be modified so that conservation of flow through the

line network applies.

Consider the situation when storage i becomes full. Then, equation

(2.3) must become

dx.
< 0 (2.4)dt

Since the storage element filled up, the incoming flow must be reduced to

match the outgoing flow. That is, the rate pi is modified so that

.ai < < i+lai+l (2.5)

This implies

' < i ifc = 1i - i+ i+l+l il

Consequently

! = min(p, Pi+lai+l) (2.6)

if a.=l and x.=N..
1 1 1
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Notice that ai(t) cannot equal 0 if storage i just fills up.

When storage i empties, the outgoing flow b must be reduced to match

the incoming flow. That is,

pi+l = min(pi+l' (ii) (2.7)

when ai+l = 1 and x. =0. Note that ai+l is not zero when storage i empties.

When more complex combinations of full and empty storages occur, new

production rates are defined to enforce conservation of flow. The full

stochastic differential equations for the x process is given by

dx.
dt i(s) a i (s)+a (2.8)d i - i+lSi+l

where pi(s) satisfies the boundary conditions described by equations (2.6),

(2.7) anii, t:'hoir cxtensions to higher order cases. These extensions are

discussed in greater detail in section 5.

3. SCALING

In order to develop an aggregate model of the system, we will assume

that all of the storage capacities are large. Mathematically, we assume

B.
N. 1 3.i=l, ,k-l (3.1)
1 c

for some small E, and constants B i. Without loss of generality, we will

assume that all B. are equal to 1. Otherwise we can introduce constants to

keep track of the relative scaling. Define a scaled variable yi(t) as the

fraction of storage used:

x.(t)
y i(t) (3.2)

Yi (t ) N.
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thus, equation (2.8) becomes

d
Ni dt Yi ai=i() - i+lpi+l(S) (3.3)

Equation (3.3) represents a random evolution for the y(t) process, with a
k--1

discontinuity in drift when the process exits the open domain D = (0.1 

Aggregation of random evolutions has been studied by a number of authors;

Hersh [1975] has compliled a comprehensive survey of the work in that area.

However, none of that work can incorporate the local discontinuity of the

drift as the process reaches the boundary.

The process y(t) has coordinates with values between 0 and 1, represent-

ing the fraction of capacity used in storage. The boundary effects described

in section 2 will occur whenever one of the coordinates of y(t) is either

0 or 1. Let Ydenote the time of first exit of the y(t) process from its

interior. That is,

y(w) = inf{t > 0 | y(t,) D }

We will develop an approximation to the y(t) process until its time of

first exit from the domain D.

Denote by z(t) the process in R whose evolution described by

dz.
N a -(3.4)Ni dt aipi ai+lpi+l

zi (O) = Yi(°O)

where Vi. are the constant flow rates when y is in D.
1

Note that the sample paths of the z(t) process agree with the sample
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paths of the y(t) process until time y(w). The process z(t) represents

the evolution of the normalized storage process if no boundary adjustments

were made.

Define T as Et. In this time scale equation (3.4) becomes

dz.

dT () i - i+li+l

Notice that the Markov process (z(T), a(T)) has components varying

in two different time scales. The z(T) process has variations on the slow

scale T, and the a(T) process has transitions in the t scale. This separation

of scales is a consequence of the assumption that N. is large, and will be

exploited to obtain aggregate models. In the next section, we will establish

that the process z(T) can be approximated by a Markov process which does

not depend on the jump process a(T); this approximation can be used in com-

puting expectations of the process z(T).

4. AGGREGATION

The a(t) process described in equation (2.2) is a jump process with a

finite number of states. Each of the components has independent transitions,

and is strongly ergodic. The ergodic measure of the jth component is

(1-ac)pj + a.r.
P 3 ) =. 3 r. 3(4.1)

Pj (clj) =~ i j + 'j J 

The overall ergodic measure is given by

k 
P(a) = I P.(aj) (4.2)

j=l i

As the parameter £ approaches zero, the separation between the time
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scales T and t increases. Hence, more transitions of the a process occur

between significant changes in the y(T) process. One would expect that a

good approximation for the evolution of the z(T) process would be provided

by the expected drift, in terms of the ergodic measure of the a(t) process.

This result is established in this section.

Define the average drift Fi as

F. = ~ (iti - ai+l)i+l)F() (4.3)

Combining equations (4.1) and (4.3) yields

F = ri+i + +p (4.4)
1 ri+ Pi ri+l + Pi+l

Define z (T) as

z (T) = zi(0) + FiT (4.5)
i i 1

The processes z (T) represents the average evolution of the z(T) process.

The next results specify the accuracy of this approximation.

Theorem 4.1. Let T be an arbitrary finite positive number. Consider the

processes z(T) and z0(T), 0 < T < T. As £ -* 0, the process z(-) converges

0
uniformly in the mean to z . That is,

lim sup E{Iz(C) - z (T)I} = 0 (4.6)
-'0d 0T<T

Proof. The proof is a straightforward application of Theorem 1.1 of

Khasminskii (1966).
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The fact that the rates pi are constant enables us to establish a

stronger result than uniform convergence in the mean. We can establish

that z(-) converges to z (-) almost surely, and examine the distribution of

its deviations.

Theorem 4.2. Under the conditions of Theorem 4.1, the process z(-) converges

to the process z (-) almost surely as +0O. Furthermore, let

v1 zVi (T) (Z i ( ) - Zi(T)) (47)

The process v(T) converges weakly to a zero-mean Wiener process w with

covariance

E w(T)w (s)} = Z min (T,s)

2 2
|iPiri WilPir+lri+l

i = 2 + (4.8)
r1 3 +r
(Pi + i) (Pi+l + ri+l)

-212 i+lPi+lri+l
r i,

(Pi+l + riv+l)

Ei = ° l i-Jl > 2

Proof. The proof is included in the appendix. The weak convergence of the

v(T) process is a direct result of Khasminskii [1966], Theorem 3.1.

Theorems 4.1 and 4.2 define aggregate models for the evolution of the

z(T) process, independent of the ca(T) process. These aggregate models are

established as consistent by the convergence of the true process as E -+ 0.
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The models are developed in the slow time scale T = et; they are most useful

when the line network is unbalanced in the mean. That is, when the average

drift in the system, F, is of order 1.

When all of the drifts in the system, Fi, are of order c, the approximation

given by equation (4.5) is not of much use, because no significant trends

occur in times of order 1/£. Such cases are referred to as balanced line net-

works. However, in a still slower time scale, an aggregate model can be

obtained.

Let T1 = c t be a slow time scale. In the T1 scale, equation (3.4)

becomes

d 'ai+l (T1)i+l + li(T1 )' 1
dTll zi( 1) 1 (4.10)

Assume additionally that

Fi fi . i = l,...,k-l (4.11)

Then, we can write (4.10) as

. aii - ai+lpi+i - 1f

1Edll +i Cfi (4.12)

Let Q denote the infinitesimal generator of the Markov process a(t).
k k

The operator Q can be viewed as a singular matrix mapping R + R . Denote

vectors in R by the functions g(a_). Suppose that

gi(c) = - i+l i+l + alii - sf.1-- 1+ 1+1 1 1 1

h.L - i i Ui+l i+l
1 - r. + Pi ri + Pi+l

1 ~~i+l Pi+l
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By its definition, the matrix Q can be expressed as

Qh(a) = r ri(h(c.) - h(_))

°C i

Pi(h(ca) - h(ca))
1 -1

O.li

= {rj (1-a) + pjaj}{h(aC) - h(a)}

where

a. Ca I .. 1, 1-a i ai+l ... 

Then,

Qhi(a) = (ri(1-ci) + Pii)ri +i

(ri+l (-ai+l) + Pi+lCLi+l) i+l (i+l

ri+l + Pi+l ri+l + Pi+l

H-iri 1 i+lr+ 1
r. + p.- Pi0i + Pi+li+l - r. + 

= -gi (a)

Consider now an arbitrary bounded function h(z) in C 2R k - 1 ) , the space

k-i
of real valued, twice continuously differentiable functions of ]Rk Denote

by L the infinitesimal generator of the Markov process (z,a) in the T1 time

scale. Then
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k-1 k-i
E = Q + 1 (~i'i_~i+iFii+l'cfi ] at C a
e i= 1 1 i 1I

Let L denote the diffusion operator

k-l k-l k-l 2

L iaz. 2 Y- r i (4.13)
i 1Z i=1 j=1 Uz

where Z is defined in (4.8) and (4.9).

Notice that L is the generator of a pathwise unique strong Markov

process in R k -1 (Stroock-Varadhan [1979]).

Theorem 4.3 When the line network is nearly balanced, the process z(T1),

0 < T1 < T, for arbitrary finite T, converges weakly as £ + O to the unique

diffusion Markov process v whose infinitesimal generator is L. Moreover,

all the moments of z converge to the moments of v as E -+ 0,

The proof of these results is a direct application of Theorem 1 in Papanicolaou-

Kohler, [1974] because the a process is ergodic, hence it is strongly mixing.

5. DIFFUSION APPROXIMATIONS WITH BOUNDARY CONDITIONS

The results of section 4 provide an approximation to the normalized

storage process y(t) until its time of first exit from the interior of the

region D. In this section, those approximations will be extended to cover

arbitrary intervals of time. In this case, the boundary conditions described

in section 2 have to be explicitly considered.

Consider the process z(T) defined in equation (3.5). Define the com-

pensating processes Co(t,z), Cl(t,z) for any continuous real valued function

z as
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C0 (t,z) min {0,z(s)} (5C.)_
O<s<t

Cl (t,z) = max {O,$(s)-l} (5.2)
O<s<t

The functions C0(t,z) and Cl(t,z) represent the excesses of the function z(t)

outside the interval [0,1]. Hence, for any function z(t), we can define the

compensated function z (t) as

z (t) = z(t) - CO(t,z) - Cl(t,z) (5.3)

1

The function z (t) does not take its values in the unit interval, because

the effect of two compensating processes drive the new function outside.

However, one can define a sequence of functions z j(t) inductively as

zj l(t) = z (t) - Co(tzj(t)) - Cl(t,zj(t)) (5.4)

For any bounded interval [O,T], and any continuous function z(t) on [O,T],

zj (t) is a continuous function.

Consider the process z(t) defined in section 2. The failure-repair

process a(t) is a Markov jump process which describes the evolution of z(t).

Since the rates of evolution of z(t) are constant except for the effects

of a, the probabilistic distribution of increments of z(t) is independent

of the value of z(t); that is,

Pr{z(t+A) - z(t) C B I z(t), a(t)} =

Pr{z(t+A) - z(t) c B | a(t)}

The process y(t) has a similar property, except for the effects of the
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boundary conditions. We would like to incorporate the effects of these

boundary conditions as compensating processes, in the manner of equations

(5.3) and (5.4). This is the purpose of the next result.

Consider an arbitrary sample path z(t), t G [O,T]. Define the sequence

of times t. as

to = inf{tjC 0(t,zj) # 0 or Cl(t,zj) $ 0 for some j}

i iti = inf{tlCC(t,zj) O0 or C (t,zj ) 0 o for some j} (5.5)

Assume that, at time to, the trajectory z( ) must be compensated

or else it will leave D. Let us consider the effect of compensation.

If Cl(t,z.)> O for t <to , we need to define

zj.(t) = z.(t) - Cl(t,zj )

in order to maintain zj(t) in D. The compensator Cl(t,zj) represents the

excess flow which is blocked due to the capacity of storage j. This

excess flow must accumulate in the previous storage. That is,

zj (t) = z (t) + C 1(t,zj)

Similarly, if C 0(t,z.)< 0, then

1
z. (t) = zj(t) - C (t,zj)

z+ l(t) = zj+ l (t) + C (t,zj)

For more complicated boundary conditions, when more than one storage

level is on the boundary, we proceed to the general construction.



The times t. represent times when the compensated processes zi would require1

additional compensation to stay in D. Now, define an integer valued function

on the time sequence ti as

i in(t ) = max {jIz.(ti) = 1 and Cl(t,zj) > O, t > ti} (5.6a)

If the set of such indices j is empty, let n(ti) be

n(t) = min {k-l+jlz (ti) 0 and Co(t,zj) < 0, t > t.}
1<j <k-1

(5.6b)

Notice that, if only one storage level reaches the boundary at time ti,

then n(ti) identifies that storage, and indicates whether it is empty or

full. Whenever two or more storage levels reach the boundary simulataneously

at time ti, the function n(ti) selects a storage by the following rule:

Select the storage which saturated farthest downstream. If

there is no storage which is saturated, then select the storage

which emptied farthest upstream.

This selection rule serves to ensure that the compensatton process at

any one time requires no more than 2k iterations. This is because the

effects of saturation propagate upstream, whereas the effects of starvation

propagate downstream.

We can now define a sequence of compensated functions zi recursively,

as

z (t) = z(t)

i+l i
z. (t) = z(t) - Co(t,zj)I{n(ti) = k-l+j}

- Ci(t,zj.)I{n(ti j) CO(t,zj )I{n(ti ) = k+j-z, j $ 1}

+ Cl(t,z3+l){n(t i ) = j+l, j # k-l} (5.7)
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Equation (5.7) expresses the conservation of flow equations

throughout most of the domain D. Notice that, because of our convention

for selecting n(ti), the process z (t) is compensated in a finite

number of steps near most corners. This is due to the one-directional

propagation of saturation and starvation effects. In fact, the exceptional

corners of D can be characterized as corners where this construction breaks

down. These corners correspond to situations where adjacent storages xi

and xi+1 are respectively empty and full. Define the neighborhood set

N6 as:

N = x D : For some i=l,...k- x , x < 6,>

Define the stopping time T1 6 (z) as

i+l
T] 6 (z) = min {t >O : z (t) E N } (5.8)

Equation (5.7) describes the evolution of the flow up to time T16 (z), for

each sample path z. Assume that, for t > T1 6' we have

Ci(t,z ) = Ci (T (z),z ) for all j, i; (5.9)

This corresponds to stopping the compensator processes when the compensated

trajectories enter N6 . Denote the compensated trajectory, for 0 <t < T,

(1)
as z( (t). Note that, due to the construction of the compensating processes,

z (t) E D for t < T1

( R k-l k-L

Lemma 5.1 The map G( 1) : C{[O,T];R } - C {[O,T];R } which maps

z( ) + z( ) is continuous in the supremum topology.

Proof: Due to the definitions of the compensating processes, the neighborhood

N6 , and conditions (5.8) and (5.9), the map G( 1 ) is a finite composition

of continuous maps (CO and C1 and I), hence it is itself continuous.

- --- ·---·-----"-P""l~~""~---1
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We now proceed to describe the evolution of the compensated flow process

while it resides in N6 . Divide N6 into regions of the form N6 , where

i
N = { x.D xi > 6 , xi+1 < l-6

Within each N i , we construct the compensated process in a manner similar to

equation (5.7), except for the storages i and i+l, which must be treated

separately. Figure 2 illustrates the difficulties associated with compensating

for excesses in storage i+l in N

Assume for simplicity that there is only one i such that

.(1) < (1) 
1Zi (T ) < 6 Zi+l (T16 -

The more complicated cases require greater ennumeration, but offer no con-

ceptual problems. Define the compensator process

U(t,x,y) = max {-x(s), y(s) - 1, 0} (5.10)

s<t

Define the sequence of times

(1) (1)91 (1) U(1tz
t) inf { t,T C(t,z ) or (t,z i+l) or

9I n 1 i+l

(1)- i
z (t) C D- N2 = 1,...k-i, j-i, i+l; n=0,1 }(5.11)

(1)0O (1) (1)9
where z = z , and z will be defined recursively. Define the integer

valued function

n C(1 t m)) = max {j : z( (t (1 ) = 1 and C (t,z( ) )> 0 for
m m 1

1 < k-l 1
joi,i+l t >t m (5.12)

-- ~~~~~~~-~~
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As in equation (5.6b), if this set is empty, n( 1) (t( 1) ) would be
m

redefined accordingly. Notice that equation (5.11) represents the proper

indices for recursively computing the coupling of boundary effects between

neighboring storages, as in equation (5.7), except for the boundary effects

(1) (1)
of storages i and i+l. If n (t ) is still undefined, it means that

m

one of the last two conditions of equation (5.11) is in force. Let

(1) (1) Mm (1)m (1)
n (t ) = 2k if U(t, zi ,i ) > 0 for t > t( ) (5.13)

(1) (1)
n )(t ) = 2k+l otherwise.

m

Define the compensated process z (l)m(t) as follows:

Starting with z(1)m (t), apply the compensation algorithm described in

equation (5.7) for n( (t )) smaller than 2k - 1. For n () (t ) = 2k,
m m

(1) m+l
define z as

(l)m+l (l)m lm (l)m
zi + ) ( zi + t) = U(t),z ,zi~l i i+l

(1)m+l (1)m (lm (1m+l
zi (t) z (t) + U(t,z i z )m+ (5.14)

(1)
For n(t (1 ) = 2k + 1 , all of the compensating processes are stopped,

m

(1)
including U, for times t larger than t . The resulting compensated trajectory

m

from t = 0 to t = T is denoted as zz )(t). Note that z (t ) is outside

i (1)
of the neighborhood N in this case. Define T26 as equal to t if

m
(1) (1)

n (t ) = 2k + 1.
m
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Lemma 5,2 Th G(2) CT[0hT] Rmk-lL2 [0 T] Rk-l which

maps z ( )- z ( ) is continuous in the supremum topology.

(2) _
Furthermore, z( (t) e D for 0 < t < T26 .

The proof is a consequence of the one-directional propagation of

saturation and starvation effects. Essentially, a finite number of

compensators must be added to take into account the boundary effects.

The construction of the process with boundary y (t) from an

arbitrary sample path z(t) in C [0,T];R kl can be completed inductively.

Away from N6, the process is adjusted using the compensators (5.5)-(5.7).

In N , the process is adjusted using the algorithm of equations (5.8)-

(5.11). Let Ti6 be the sequence of entrance times into N6, and

exit times from N2 6 , and let z(i) be the resulting compensated pro-

cess. For any finite 6> 0, the continuity of any sample path z( ),

coupled with the results of Lemmas 5.1 and 5.2, will guarantee that

the sequence of stopping times T.i is unbounded; hence, for any 6 > 0

the above construction describes y as a continuous mapping of z in

the supremum topology in C I[O,T]; Rk- I . The next result establishes

that, for sufficiently small 6, y ( ) is independent of 6

Lemma 5.3 There exists w > 0 such that, for 6 c w,

y 6t) = y (t) for 0 < t < T, where y (t) is defined as

6 (i)
y (t) = lim z (t).

i-oo

The proof of this result is in the appendix. The main idea is to

establish that the compensating processes used in N 6 correspond exactly

to the compensating processes used in D - N 6 , modulo a nondifferentiable

change of coordinates which is reflected in the definition of U. The only
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points at which any difference is observed corresponds to corners where

Yi(t) = 0, Yi+l(t) = 1, for some i. It is easily seen from (5.10) that

the compensator U is independent of 6 at such corners. In fact, our

compensation procedure is entirely based on an additive decomposition

which is essentially independent of 6, since the values of U and the

respective Ci's agree up to the time when the above corners are reached.

The reason for introducing the neighborhoods N6 into the construction

of the process is to isolate points where the map between z( ) and the

compensating processes Ci at each boundary is discontinuous. Although

the map from z into U is continuous, the decomposition of U into compensa-

ting processes at each boundary, C0 (t,zi) and Cl(t,zi+l) is discontinuous

due to the nondifferentiable coordinate transformation. This implies that

we must treat the corners in a special way, requiring the previous cons-

truction.

The next lemma is a consequence of Lemmas 5.1-5.3:

Lemma 5.4 The map G: z( ) -a y( ) specified as

y(t) = lim z() (t)

is a continuous map from CI[0,T]; R k into CI[O,T]; D for any finite

T.

Notice that Lemmas 5.1 to 5.4 establish that the trajectories of the

normalized storage process with boundary conditions are a continuous map

of the trajectories of the process without boundary. Furthermore,

Theorems 4.1 and 4.2 establish weak convergence, as C -H0, of the process

without boundary to a diffusion process with support in C I [0,T];DI
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Denote this diffusion process as v(t), 0 < t < T. Then, theorem

5.1 of Billingsley [1968] establishes that, for an arbitrary interval,

the process y(t) converges weakly as c-0 to the process with support

in C [0,T]; DI; whose distributions are given from the map G of

Lemma 5.4. This discussion can be formalized as

Theorem 5.5 Assume that the process z( ) converges weakly in

C I[O,T]; Rk-11 as £ - 0 to v( ), a diffusion process. Then, the

process y( ) converges weakly in CI[0,T];R k-1 to the process G(v).

We can establish a stronger result. For any fixed trajectory of

z( ), we can write the process y( ) as

(i)
y(t) = z (t), t< T id6

Consider the time interval t < T1 6, and assume that t< ti as defined by

(5.5). Then,

yj(t) = zj(t) - C (t,z 1 )I n(t 1 ) = k-l+jl

-C (t m-1) I I n(t) j-
m=l 1 j (in-i

i
+ Z C (tz. 1) I I n(tml) = k+j-2, jl

m=l 0 3- -

i
+ Z C (t,z j_ ) I 1 n(t ) = j+l, j n k-l 2 (5.15)

m=l 1 I

It is easy to establish inductively that the first sum is constant

except when yj(t) = 0. Similarly, the second, third and fourth sums are

constant except when yj(t) = 1, Yj-l(t) = 0, and yj+l(t) = 1 respectively.

-- ~ ~ ~ ~ ~ ~ ~ ~ 33 ~
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Hence, we can represent yj(t) implicitly as

o 1 1 0
yj(t) = zj(t) + U.(t) + t -U (t) - U (t) (5.16)

3 ]j j+i 3 j-1

where U. (t), Uj (t) are increasing processes which increase only when

yj(t) = 0 or yj(t) = 1. This representation holds up to time T1 6

For times t in [T1 , , T2 6 i, the process y(t) lies in N2 6 for some

i. A similar expression to equation (5.15) can be obtained, with the

exception of the effect of the compensator U, which can be rewritten

as

U(t,zi,zi+l) = max max ;-z i( s),O I , max zi+l (S) - 1,0
s <t S<t

= max -C (t,zi), C1 (t,zi+l)t

C (t ,zi+ 1) - C0 (t,zi) - min i-C 0(t,zi) Cl(t,z i+l) (5.17)

Note that the last term is an increasing term which increases only when

Yi(t) = 0 and yi+l(t) = 1. Hence, for T1 6
< t < T26 , we can represent

y as

yj(t) = z () (t) + (t) Ut) -U (t) + U (t) - V (jt) (5.18)
i3 3 j -1 U-1 jj+l

0 1
where Uj, U , Vj j+l are increasing processes which increase only when

yj = 0, yj=l, or yj=O and Yjl = 1 simultaneously, respectively. We can

combine these processes with the processes obtained from equations (5.15)

and (5.16) to obtain a global description of the compensating processes

up to times T2 6 . This construction can be extended inductively to define

the compensating processes for all times t in [0,T].

The unique feature of this construction is the presence of corner

compensators V il(t), which are basically defined in N . These



- 24 -

compensators motivated us to treat compensation in N 6 as a separate

problem. Although it is important to recognize the existence of these

corner compensators, the next result will enable us to ignore them in

the approximation.

Theorem 5.6 The set of all trajectories z( ) in C [0,T];Rk-l

such that Vii+ (t,z) = 0 for all i < k-l, for all t ' T, has

Wiener measure 1.

The proof follows from the fact that, at any corner Yi = 0,

Yi+l= 1, the only set of admissible directions which keep the process

at that corner is - dyi = dyi+l >0. Unless the Wiener process is

degenerate, this implies that the local time at the corner will vanish,

thereby establishing the theorem.

When the process z (t) is nearly balanced, the process y(t) will

be a diffusion process, with instantaneous oblique reflection at the

boundary. The equation describing y(t), which neglects V. (t)

terms because of Theorem 5.6, is

yj(t) = z.(t) + U.j(t) U(t) - U (t) + U (t) (5.19)
jj j j-l j+l

0 1
The compensating processes Uj U j , are related to the local time of

this diffusion process on the boundary of D. For a detailed explanation

of this relation, the reader should consult Watanabe [1971].
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The directions of reflection can be obtained directly from equation (5.19)

For instance, on the face

yj = 0

the equations for the evolution of yj(t are

dyZ dz t

dt (t ) dt (t) Z # j, j+l (5.20)

dy. dz. dU?
dt (t = d t ) + d (t)
dt dt dt

dy dz.
dy_ (t) = + 1 (t ) d Uo(t)
dt dt dt J

Hence, the direction of oblique reflection on the face yj = 0 is given by

the effect of the compensating processes U , corresponding to reflection in

the direction

d = (0,...,0, + 1, -1, 0,...,0)

j-l

When the transfer line is nearly balanced, the limiting process spends

no scaled time on the boundary, on the time scale T = c t. However, the

limiting process has a local time function at the boundary, which can be

used to obtain an expression for the real time t spent on the boundary.

This characterization will be useful in later sections, when we evaluate

expressions for the throughput of the transfer line. From equation (2.8),

the equation for throughput rate (in normalized units and scaled time) is

given by
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T
T(T) = (

The quantity represents the average lost production rate due to

starvation of the last machine.

The result expressed in Theorem 5.5 defines a reflected diffusion process

as the limit process. This process is defined uniquely in the weak sense,

in terms of a continuous mapping on the sample paths of a standard diffusion

process. This construction depends strongly on three assumptions: constant

flow rates on links, constant failure and repair rates, and the geometry of

line networks. When any of these three conditions are violated, the limit

process must be constructed using a different argument. This is a nontrivial

problem because of the lack of smoothness of the domain D, a closed unit cube.

6. APPROXIMATION WITH LEVEL DEPENDENT FAILURE RATES

In this formulation of the previous sections, the failure and repair

processes of the machines in the transfer line are independent of the levels

of storage. However, a common practice in manufacturing networks is to turn

off machines which are either starved or blocked, thereby eliminating the

possibility of a machine failure during intervals of time when that machine

is not processing any material. A mathematical model with these properties

is described in Gershwin and Schick (1980b), and Forestier [1980].

The main difference in such a model is to introduce a feedback path

from the continuous storage level x to the discrete state process a, occur-

ing when x reaches its boundary. In terms of the normalized storage process

y, there are two situations where a machine is on, but not processing any

material. The first situation, called blockage, occurs when machine i+l is
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off, and storage i is full. Then, the adjustment process described by (2.6)

yields pi = 0. Hence, machine i is assumed not to fail.

The second situation occurs when machine i is off, and storage i is

empty. The adjustment process for machine i+l yields

Ui+1 = 0.

We call such a machine starved, and assume it cannot fail.

The equations for the a process can be modified to describe starvation

and blocking as follows.

dai = (1-i)dR. + ai(l-I{i:=0})dF. (6.1)

where the last term has been modified to prevent failures during non-production

intervals. The function pi(yY,) depends on the complete state of the system

in a memoryless, fashion, given by the adjustment rules for conservation of

flow.

Essentially, the description of the y process is decomposed into an

internal description, describing the evolution of the process away from the

boundary, and a boundary description which illustrates what happens to the

process near a boundary. Our purpose in this section is to show that the

modified (y,a) process given by (5.8) and (6.1) converges weakly to the same

diffusion process given in Theorem 5.4.

Throughout this section, we assume that the transfer line is nearly

balanced, so that the appropriate time scale T is £ t. Let y l(T;s) denote

the scaled process defined in section 5, and P the induced probability

measure on C{[O,T]; Ikl. Similarly, denote by y 2(T;s) the resulting
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scaled process when starvation and blockage affect the probability rates,

and P2e it corresponding measure. The main result of this section is stated

in the following theorem.

Theorem 6.1. In the topology of weak convergence on C{[O,T], Rk- l

IC 2s
lim p = lim p2
Cz*O +-*O

The proof is given in the Appendix. Basically, Theorem 6.1 is a con-

sequence that, as s+O, the process spends less percent of the time at the

boundary. The evolution of yIC and y c are identical outside the boundary,

and they leave the boundary in the same direction. Hence, as the time spent

on the boundary decays, the two processes approach each other. The differences

in the behavior of the a processes associated with y2£ and y2C do not appear

in the slow time scale T = C t. If the transfer line was not nearly balanced,

the appropriate time scale would be T = et, and these differences would be

noticeable in the approximate model.

Theorem 6.1 has served additionally to establish that the limiting

process is instantaneously reflected at the boundary DD, by showing that

the Lebesgue measure of the occupation time has expectation zero. This is

consistent with the representation of the limiting process as instantaneously

reflected Brownian motion.

7. ERGODIC DISTRIBUTION OF TWO MACHINE TRANSFER LINES USING DISSUSION
APPROXIMATIONS

The simplest network one can construct consists of two unreliable

links with a storage center in the middle, connecting an infinite source
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to an infinite sink, as depicted in figure 3. In the context of manufactur-

ing networks, many authors have studied the long term behavior of this simple

network. Gershwin and Schick (1980b) provide the basic equations for the

description of the Markov processes (x(t),a l(t),a 2(t)).

Assume that the flow rates on each link is equal to 1; that is

= 2 = 1

Then, the basic flow equation for the storage process is

dt (a= a2) (7.1)dt = (1 - l2)

when the storage buffer is neither empty nor full. Assuming that the

capacity of the storage process N is large, the normalized storage equation

is

dy
dt = ( a2)

= x =(7.2)

The processes ai are jump processes with failure and repair rates Pi, ri

respectively, i = 1,2.

In Gershwin and Schick (1980a), this model is studied in detail,

obtaining an exact expression for the ergodic probability distribution of

the (x,al,a2) process. We will assume that starvation and blockage prevent

machines from failing as in section 6.

Let N = 1/s, and T = 2t. Then,

dy 1 (73)(7,3)dTe g
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Assume that

- = Em (7.4)
rl + Pi r2 + P2

Equation (7.4) indicates that the network is nearly balanced, validating

the use of the E t time scale.

From Gershwin and Schick (1980a), the marginal ergodic distribution

of the x(t) process is given by:

d
p(x < d) = f g(x)dx + P(x=0} + P{x=N}.I{N < d} (7.5)

0

p(x = 0) = C ( rl +) 1 + 1 (7.6)
P2 rl Pl+P2

iN rlr+r2) 1 
p(x = N) C e ( p + 3 (7.7)

P1 2 2P+P2

g(x) = C e x (1 + l+2 )2 (7.8)
Pl+P2

1 1
(P2rl - P lr2) 2+P ) (7.9)

P2 2 +r1

Define X = X/s. Then, a simple integral establishes

C-1 r r 2 1 (rl+r 2) 1+ 1 XN
C C (1 + + + e

P2 1 Pl+P2 P 2 Pl P2

+ X (e - 1) + (+P 2) 2 (7.10)

The ergodic distribution of y(t) is given in the following equations:
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P{y = 01 = P(x = 01

P{y = 1) = P{x = N)

P{y G [y,y+dy)} = g(y/1 ) dy

Let N = 1/E. As c+O, X is of order E, hence we have

lim C- 1 lim X (eX 1) 1 + (7.11)
c->O -O + P 2

Thus,

lim 1 g(y/) X eX. (7.12)
640 X

e - 1

Furthermore,

lim P{y = 0 = lim P{y = 11 = 0 (7.13)
6-NO 6-)0

because X is of order c, by assuming that the transfer line is nearly

blanced.

The ergodic distribution indicated by equation (7.13) reflects the

long-term behavior of the z(t) process. The diffusion approximation v( )

generated in section 5 for the balanced line case has as its infinitesimal

generator

+ 1 2
L = m + a (7.14)

2p1r1 2p2r2 (7.15)

(P1 + rl) (P 2 + r2)
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with domain

D(L) = {f I f is bounded, twice differentiable on (0,1)

and -D-)v (0) = (1) = 0}.

Hence, the ergodic distribution p(v) is given by

-mp + a = O2
-m 2 v = 0

av 2 D
Tv

-m p(O) + 2 P (0) = v

-m p(l) + a p (1) = o (7.16)

The solution of (7.16) is

p(v) = K e+Ky (7.17)

-1+ e

2m
where K = m. To show that (7.17) and (7.12) are alike, we have to

establish that

lim K - Xj = 0
From equations (7+04) and (7.11)

From equations (7.4) and (7.11)
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2 2

~IK-XKl= (P 2 u-r- i (P1+r1) (p 2 +r 2

K Plrl(P2 +r2 ) + P2r2(P1+r1)
3

(P 1 P2_ 2 Irl(P2+rr2) Plrl(P2+r2 )

Pr
(P2 + rPl)(r2+rl) I (pl+rl)2 (P +r )2 (P1 1

Since the transfer line is nearly balanced, we have

r 1 r 2

__=__ + 0(e)
rl + P1 r2 + P2

r1P 2 - r 2 P 1 = 0(C) (7.19)

rl P2
=+ + p (2 9

rl + P1 r2 + P2

Hence, the first two terms in the right hand side of equation (7.18) are

bounded as 6 + 0. The last term can be expanded using equation (7.19) as

1- (P1+P2+)(rl+r 2) (P 1 prl(P2+ P 2 r2r 

(Pl+P2r+2) 2) (pl+r l 2 (P 2 +r 2 ) 2 (Pl+r

(Pl+P2+rl+r2) t Plr2 P 2 rl + 0(
1- (pl+P2) (rl+r2) P1 + rl P2 + r2 

1 (Pir 2 P2r 1 (p1l+r lr1
- (p1+P2)(rl+r 2) Plr 2 + P2rl + rl +P r2 + 0(£)j

(p1+pp r rl~~~2
+ plrr2

| (Pl p2)(rl+r 2)1r 2 + P2rl + P2r2 + Plrl+ 0(c) |

o0 ()
(Pl+P2) (r+r2 2)
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which establishes

lim JK - XI = 0.
s40

Hence, the ergodic distribution of the diffusion approximation is consistent

with the ergodic distribution of the original model. Theorem 5.5 indicates

that continuous functionals of the process, such as expected exit times,

will converge in the same fashion.

8. THREE MACHINE TRANSFER LINES

The three machine transfer line is the first nontrivial example of

coupling between the storage buffers. Figure 4 describes a typical three

machine transfer line with two storages present. We will assume that blockage

and starvation affect machine failure rates, as indicated in section 6.

Assuming that N1 = N2 = l/£, and that the transfer line is nearly

balanced, the normalized equations of flow in the time scale T = £ t are

dy1 1
= { (N1a l a2 (8.1)

dY2 1
dr E (21 2 1 - 3a3) (8.2)

when (Y1,Y2) £ (0,1) x (0,1)

On the boundary, the adjustment rules for conservation of flow must apply.

In terms of the compensating processes, this means

dy 1 1 d d 1 d 1 (T;)
dTr £ (pa - 2 + T Ud (; ) - dT U1 (T; ) + U2 (; )

(8.3)
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dy 2 1 d2- P U) + d °(; ) -4)
=T E ( 2 2 3-3 dT 2 - U2 (r I -'as (84)

where we have explicitly depicted the dependence of the compensators on T.

The results of Theorem 5.5 and 6.1 let us represent the approximating dif-.

fusion process as

v 1 (T) = W1 (T) + U1 (T) U1 (T) + U()-U 1 ) U2

(8.5)

v2T) = 2 (T) + U2(T) - U (T) - U (T)

where (w1 , 2 ) is a diffusion process with parameters (m,Z), given by

Ulrl -2r2

m rl p1 r 2 + P2
m = = (8.6)

m2 :12r2 P3r 3

\ r 2 + P2 r3 + P3

2 2 2

2l1Plr l 2 p2P 2 r 2 _________

(pl+rl) 3 (p 2 +r 2 )3 (P 2 +r2)

_ = \ 1 (8.7)
2 2 2

-2__2P2r2 212p2r2 2 3 p3r3

(P 2\r 3 (P2+r 2) (P + 3/

Equation (8.5) corresponds to a diffusion process on the unit square

with oblique reflection at the boundaries; the directions of reflection are

illustrated in figure 5.
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The processes Ui, Ui are continuous, increasing processes, which are

bounded almost surely at each time T. This implies that the processes v (T),

v2(T) are semimartingales, and thus we have a generalization of Ito's

formula (Kunita-Watanabe [1967], Harrison-Reiman [1979]). Let f be a twice

continuously differentiable function on D. Denote by L the infinitesimal

generator of (W1 ,2), that is

2 2 2

I f(ol O2 ) = I mi aoi f(@l@2) -2 i- -ij (
i=l 1 i=l 1 ]

j=l

Then, we have

f(v l1 ( T ),V 2 ( T ) ) - f(vl(0),v2( 0))

T

f L f(vl(s),v 2 (s))ds +
0

fI av f(v1(s),v2(s))dwl(s) + f I v f (s),v2 (s))d 2 (s)
o 1 0 ( (v1(s),v 2(s))dw2(s)

f By2- - ) (Vl(S),V 2(s)dU (S)o 1 2

0 N 0

tic taf f-(- l - Dv ( )I (v l s))dU s (s)
0 1

o v 1 (s) ,v 2 (s))dU20 (s)

where the last four terms represent the contributions of the four parts of

DD. Notice that, if f were such that f c D, the set of all twice con-
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tinuously differentiable functions such that

1. af af on =

2. vl 2 = on = 1

3. aDf = 0 on v =1

3Df ~ f on v
Dv1

4. af 0 on v 2 = 0,

the equation (8.9) implies

E{f(vl(T),v2 (')) I vl(O),v 2 (O)} - f(Vl(0),v 2(0)) =

E{ f L f(vl(s),v 2(s))ds I vl(O),v2(0)} (8.10)
0

The infinitesimal generator of the (vl,v2) process is thus seen to be

T, with its domain P including the class of functions D° .

The process (v1(T),v 2(T)) is a diffusion process in a compact domain,

with a positive probability of visiting all states ., even the

corners of D. Hence, there exists a unique ergodic probability density

function p*(vl,v2) such that

Ep* {f(vl (T),v2(T))} = Ep* {f(vl(O),v 2(0)} (8.11)

for all T > 0.

Using (8.10) and (8.11) yields a characterization of p*(vl,v2) as

Epn{ L f(vl,v2)} = 0 for all f E D (8.12)



- 38 -

Representing the expectation as an integral gives

1 1

f f L f(x,y)p*(x,y) dx dy = 0 (8.13)
0 0

for all f £ DP If p*(x,y) is smooth enough, equation (8.13) can be integrated

by parts to obtain an equation for p*(x,y). The smoothness of p*(x,y) in

D follows from Weyl's lemma, as stated in McKean [1969]. Writing (8.13) at

length yields

1 1 1 1
f f L f(x,y)p*(x,y)dx dy =f f m1 * p*(x,y )dx dy
0 0 0 0

+f f m2 ' P(,- dX dy1 1I f m )- p*(x ,y )dx dy

1 1 2

J I 12 ( fx2 y ) p*(x ,y )dx dy0 0 x
1 1 

I J 22 ( 2 ) p*(x , Y)dx dy (8.14)
0 0 ay

We will integrate each term by parts. Denote by S1 the surface x = 0;

S2 is Y = O, S3 is x1 = 1, S4 is Y = 1. Then, we can integrate (8.14) by

parts, to obtain:
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f f -P* dxdy =
D

2 2
f E ( 2 2 P* + P* + p*
D f{ 11 2 12 1xDy 2 22 Pxay

m p * - m2 y-P} dx dy
1 3x 'm2 ay

+I ff{-mlP* + 27 11 aPx tdyZ-J P 12 af + 2 faxy+ -f{- P* a* - P* P} dy
+s 2 +1 + P{12 ay 2 x y

s1 s1

5 p* + 1 -p* 1 p *dx 1 d
+ cf{- 2 22 ay 2 3 x - m2P* t x f P* 2 22 dx,s wy 2 sx 22 ay

+ f 1 -3p* + m p*}dy + f {L: •3f +1 dyf
f{-11 x 1 P 12 3y 2 11 Dx

S3 S3

* + m2P,}dx + f P* f dx2 
s 4 2 22 ay 12 DX 2 2 22 ay

(8.15)

where the arguments of the integrals are implicit in their integration sets,

Now, assume that f is twice continuously differentiable, and vanishes

in a neighborhood of 3D, denoted by N(aD). It is clear that f is in the

domain of L, because all derivatives vanish near the boundary aD. For such

f, equation (8.15) reduces to

f T f-p*dx dy = f f{ L*p*Jdx dy (8.16)
D D-N(aD)

where
2 2 2

L*p* = .. p* m. (8.17)
i=l D1 i=l X

j=1

Since f is an arbitrary smooth function in D-N(3D), and the neighborhood

N(3D) can be selected arbitrarily small, equation (8.13) implies



- 40 -

L*p*(x,y) - 0 (8.18)

for all (x,y) in D. Now, consider only function f which are in D , and

which are bounded, and are zero outside of a neighborhood N(aD). For these

functions, the definition of D°0 implies:

On S a = af
' x ay '

On af
2 -y

On af 0,
3 ax

On af = af
4 x ay

Hence,

P*(z 1 2 -a + Il ~-9) dy = (fp*(0,1) - fp*(O,O))(E12 + 2

-l(Z +2 +- S f dy (8.19)
S 1 ay

1 p,3f d 1

f P* 22 f dx = 0 (8.20)
f 2 22 ay

2

P*{E Df 11 af dy} dy =P12 y 2 Dx

S3

S3

P* 22 af dxy 2 Z22 fp*(l,) - 2 22 fp*(0,(O1)

4 (8.22)

2 2 E f P* dx (8.22)-/ 2 z22 ax
S4

Substituting (8.19)-(8.22) into (8.15) yields, for these functions f,
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f L f p* dxdy = f f* L*p* dxdy
D N(DD)

+ J f *{2' 111 ax + 11 ly 12 ay 1 mlP*}dY
S 1

• , f 1 DP* +, zpP* 3p m *Jd
S '22 ay + ap m2p*}dx

+ f f {- zl ax - 12 a 1y + mlp*}dy

1 p* +i p ap* p*}dx
+ f f {- 2 22 ay 2 22 ax 12 x 2 p

S 4

7'11 11 22
+ fp*(O,O) (Z12 + )+ fp*() + fp*(O,) ( 2

12 2 2 12

Z22
+ fp*(1,1) (z12 + 2 ) + fp*(1,O)(- 12) (8.23)

Since f can be arbitrary in Si, and the neighborhood N(DD) can be reduced,

equations (8.23) and (8.13) imply

- D +± 1P + -m = onS (8.24)2 1 ax 2 11 ay 12 ay m 1 (8.24)

z 2 ay + 12 7 - m2P* = Oon S2 (8.25)

z ap* 1 P+* 8.26)

2 22 ay 2 22 ax 12 ax m 2P* = on S4 (8.27)
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p*(o,O) = 0 unless 1 + = 0
12 2

22
p*(l,l1) = 0 unless - + 12 = 

2 12

p*(0,1) = 0 unless l1 + 2Z12 + 22

p*(1,0) = 0 unless Z12 = 0 (8.28)

From equation (8.7), we can verify that p*(l,0) = p*(0,1) = 0. How-

ever, when machines 1 and 2, or machines 2 and 3 have identical failure

and repair rates, the values of p*(O,O) and p*(l,l) can be nonzero. In

these cases, the intensity of the coupling term !12 matches and cancels

the oblique flow along the boundary, resulting in decoupled reflecting

conditions. This can be seen from equations (8.24) and (8.27), which,

11 22 = -2Z12, reduce to

2 11 ax - ml* = 0 on S1 (8.29)

2 22 Py - m2 P* = 0 on S (8.30)

Obtaining exact solutions for equation (8.18) satisfying (8.24)-

(8.28) is a difficult problem, which can seldom be solved in closed form.

However, the markov process (vl(T), v2 (T)) can be approximated in the weak

sense by a Markov Chain, as in Kushner [1976], and the ergodic distribution

of this chain can be computed as an approximate solution to these equations.

Assume that the stationary probability distribution p*(x,y) has been

determined. Let E* denote the measure on the path space induced by p*.

Following the development of Harrison-Reimnan [1980], let f be any bounded,
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twice continuously differentiable function on D. Then, equation (8.9)

implies, from Fubini's theorem,

f Lf p* dv ldv 2 + *{av - a (s))
D 12 o v1 v2 1

IC aE af 1 T 3f
+ E*{( ) (s) + E*(- (s) }

0 D v1 2 U 0 1

T f 
+ E* v dU 2(s) = 0 (8.31)

0 2

Define measures on S1, , S S3, S4 as

-( E1 T I S)B) dU (s)} for BC S

V3(B) = I T E*{I(v 2(s)cB) dU (s) , BC S3T 0

V4(B) = 7 E*{I(v2(s)EB)dU2(s)} , BC S30 T 1

The measures vi are the occupation time, or local time, measures on the

boundary, defined in Donsker-Vardhan [1975]. It is easy to show that,

for any T,

O < E* {U (T)} < .

Hence, we can use Fubini's theorem to reduce equation (8.31) to

I Pf p*dvldv2 + ( -- ) af (dy)
D S 1 2

S Dv 2 v2(dx) + -

+2 a (dy)

Df an ,+1 (- --- v (dx) = 0 (8.32)
S Dv1 Dv2 4

4 f a
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Equation (8.32) can be evaluated for selected functions f, to obtain

the properties of the process when it reaches the stationary limit. For

instance, recall that the throughput rate in section 5 was given by

T U (T)
T(T) = T I p33 ds 2 (8.33)

The expected stationary throughput rate is just

TS = E*(T('T))

0

P3r3 __2___ (8.34)= r +p - E*{ }
r3+P3

p3 r 3

r 3 +p 3 - v 2(S 2)

-vr2a
Let f = ae 2/a. f is bounded, and smooth, hence (8.32) implies

1 22 -v 2/ p.
I (22 m2) e p*(v1,v2 )dv1 dv2

-X2/cO
+ f e V1(dv2)

S 1

+ f - v 2 (dvl)
S2

+ f e-/a v4(dvl) = (8.35)

4Letting a approach zero in (8.35) yields

Letting a approach zero in (8.35) yields
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vj(S2) ( = f 2 Z22 P*(vl,O) dvl (8.36)

2

Hence, knowledge of p*(vl,v2) would be sufficient for computation of

v2(S2), and thus the average throughput rate.

9. CONCLUSION

In this paper, we have presented a methodology for approximating the

flow of material through a transfer line of unreliable machines with finite

storage buffers. Under the assumption of large but finite storages, the

flow of material is approximated by a diffusion process with reflecting

boundary conditions, independent of the process which describes the failures

and repairs of the machines. This approximation reduces the number of

states which must be considered by a factor of 2 , where k is the number

of machines in the transfer line.

The structure of the approximation was exploited in the case of 2 and

3 machine transfer lines to obtain equations for the stationary distribution

of the approximate diffusion process. In the two machine case, these

equations were solved explicitly, and found to be consistent with the

results of Gershwin and Schick [1980a]. The equations for the stationary

distribution of the three machine transfer line were too complicated to

solve in closed form, although numerical algorithms for their solution are

currently under study.

The methodology derived in this paper can be applied to transfer

lines of arbitrary length without ignoring the coupling effects of starvation

and blockage. As such it represents a significant generalization of the

previous works mentioned in the introduction. Work is currently in progress
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to generalize these results to arbitrary network topologies with nonconstant

flow rates and storage dependent failure rates. For these problems, the

techniques used in this paper will not apply, because of the dependence

of the failure-repair processes on the levels of storage. Key theoretical

questions concerning the existence and uniqueness of the limit process must

be answered. These problems are currently under investigation, and will

be reported in later publications.
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APPENDIX

Proof of Theorem 4.2

Weak convergence of the v(t) process is a consequence of Theorem 3.1 of

Khasminskii [1966]. To establish the almost sure convergence of z(t), rewrite

z(t) as

z. (t)= z (O)+ fc (s)ds - (s)ds

o o

The process z(t) can be defined entirely in terms of the cumulative process

S(t), where
t

Si (t) = .(s)ds

The strong law of large numbers for cumulative processes implies (Doob [1953])

lim S (t) ri a.s.
1 =_ 1

t-aon t ri+Pi

Let T = st. Then, for fixed T,

lim Si (t) r.i lim Si(T/s) ri

t-*00 t r +P F-- O /E: ri p i1 o m ri+Pi 1 ri+Pi

= 0 a.s.

Hence, for any T,

lim zi (T) - z (0) - iriT + p+lr+TI= 0 a. s.

Pr-o ri+Pi ri+p

Completing the proof.
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Proof of Lemma 5.3

Consider any 6>0. Assume without loss of generality that z( ) (T ) is
16

~~~~i ~(2) iin a neighborhood N , and that the process z (t) will leave N26 before

entering any other N~ . Under these assumptions, for coordinates z g, i#i,

i+l, the adjustment rules (5.6)-(5.7) represent a continuous map of

z(I) -* z (2), because the compensator U does not feed into these equations.

Hence, we can focus our attention on (5.14).

Equations (5.10) and (5.14) imply that z j+) (t)<l and z)j+l (t)>O for
i+l a

all X1 <t<T Furthermore, if z >0, then U(t, z z (2)) = C (t al 1 6- -2 6' i i+l 1 t, 

(2 )jA similar statement applies to zi+) < 1. Hence, we see that, independent ofi+l

6, U(t, z )i z i ) j) is a continuous extension of C and C1 for t< T 1 to

the interval T1 6 <t<T26 . The only difference occurs when zi)i = 0

(2) j+l
Zi+l = 1, which occurs inside N6 for all 6>0. Since the adjustment rule

(5.14) is independent of 6, this establishes that z ( 2 ) (-) will not depend on

6 for 6 small enough.

Proof of Theorem 6.1

It is sufficient to establish that the finite dimensional distribution of

pie and p2 E converge to the same limit, since the sequence piE has been shown

as tight. Let A denote the infinitesimal generators of the processes

(y , a ) i = 1,2 and T the associated semigroups. Consider a bounded

continuous function f(y) in the domain of Al . Note that f(y) will be in the

domain of A2 s also, by its independence from a. Hence

t

Tt f(y) - T2 5 f(y) =f Tt (A2 6- A 1 E ) T26 f(v)ds
t t-S S s 0
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Since A1l and A2
q differ only on aD, we have

t

IT f - Tt fj K| Tt I{yEDD}ds

o

where

K = Ifl · sup II(A2E- A f, (y, a)I

y£aD

lf, I = 1

f,(y,)sED(Al )

The constant K is finite because the difference between A2 and Al can be

expressed as a bounded matrix, because it consists of the a transitions which

are not allowed under p2 . Hence, the proof is completed if

t

lim fT1 I{y£aD}ds = 0

0o

Now,

t t

T1 I{yeDD}ds = E{fI{y sD}ds}

o o

Suppose we consider the boundary Yi=0. Consider an arbitrary positive smooth

ag
bounded function g(yi) with ag > d on Yi=0.

d Tla a
t Tt) i= i - i+li+1 l

dt g(Yi) = g yi(Yi) I{Yi>0}

1 a
+i {max{a.p.-a. ilPl, 0} - g(yi)I{yi=0}

r~~ ---- ---- --- --- ----- -·-- ~ ~ ~ ~ ~ Dy
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neglecting the effects of corners. Hence,

Tt g(Yi) - g(Yi Ts Ag(y i)I{y.i>0}ds =JT A g(yi)I{yi=Olds

O O

As s decreases, the terms on the right hand side are all bounded, since

t t

lim T A g(y)I{y >O0ds =T A g(y)Ify >Olds

O O

That is, T1 coverges to the corresponding diffusion operator T with generator

A in the interior of D. The terms on the right hand side, for csmall, converge

to

Ey, { max{s ii }- a Y g(yi)I= ds

t

£ Ye a i is i i+l i+ y ) 1 
0

t

C2 EY {I(Yi=0)}ds

0

where C2 is a constant representation the net expected drift. That is,

C2 = E {max(ci~i - at. pi , 0)}
2 a{ 1 i 1+li+l

which is of order 1, if there exists a configuration a such that

ciPi a i+1i+l <0. This expectation can be computed using the ergodic measure

for small E. Hence,

t

lim fE {I(Y (S) = 0)}ds = 0 .

A-* '
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This argument can be extended to the entire domain aD, by recognizing that,

there are no points in aD, where the allowed drifts dYi will have the same
dt

ergodic average as the unconstrained drifts in D° , thereby establishing that

the equivalent constant C2 is of order 1.
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