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1. Introduction

The problem of making a given system follow a certain signal in the

presence of disturbances is, of course, a basic one in controller design.

Several versions have been under study since the very beginnings of control

theory. In recent years, much attention has been paid to the underlying

algebraic structure of the problem. The central issue here is to decide

on solvability or non-solvability of theproblem for a given set of para-

meters. Of course, in practice the parameters are not known precisely,

and the yes-or-no answer which comes from the algebraic analysis is related

in a nontrivial way to the hard/easy scale that is much more familiar to

the engineer. Still, we may expect that a good understanding of the cases

in which the problem is not solvable will be of help in identifying the

crucial features of those control problems that should be classified as

'intrinsically difficult'. Moreover, if the answer to the algebraic problem

is constructive in the sense that it provides an algorithm to find a solu-

tion if there exists one, then this algorithm may also be used as a starting

point for the development of software that would be applicable under a

minimum of assumptions on the system to be controlled.

Among other factors, these considerations have played a role in the

development of several different approaches to, what we shall call, the

algebraic regulator problem. State space methods were used in [1-7],

resulting in a constructive solution for a fairly general version of the

problem. It was felt, however, that a solution in terms of transfer

functions would provide a better starting point for investigations in-

volving (small) parameters changes, and this was one of the incentives for

a number of papers using techniques like coprime factorization of transfer
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matrices ([8-16]). The solvability conditions obtained, however, are in

part inattractive from the numerical point of view (cf. the conclusions of

[15]).

The purpose of the present paper is to re-state the case for the state

space approach. We shall use some new ideas to obtain a constructive

solution for a general version of the regulator problem, involving output

stability, internal stability, and disturbance decoupling. The main

feature of the approach adopted here is that it incorporates (dynamic)

observation feedback in a natural way. (The intricacy of working with

observation feedback in earlier state-space treatments has sometimes been

mentioned as a reason to prefer transfer matrix techniques: see [10]).

We shall give several equivalent formulations of the main result, among

which there will be an explicit matrix version that could be a starting

point for calculations. This paper improves on the results in [18]. The

organization of the paper is as follows. After having introduced some

notation and preliminaries in section 2, we motivate our formulation of

the regulator problem in Section 3. Section 4 contains necessary conditions

for this problem to be solvable. These conditions are shown to be also

sufficient in section 5, and hence we obtain our basic result. In section

6, we show that this result leads to a completely constructive solvability

criterion. The 'internal model principle' is briefly discussed in Section

7, and conclusions follow in section 8. An appendix is added in which

it is shown that the problem considered here is a strict generalization

of the one considered in [1] (see also [2], Ch. 7).
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2. Notation and Preliminaries

We shall consider only linear, finite-dimensional systems over B]. In

general, vector spaces will be indicated by script capitals, linear mappings

by Roman capitals and vectors by lower case letters. Further conventions

in the use of letters are as follows. The generic description for a system

is

x' (t) = Ax(t) + Bu(t) + Eq(t) x(t) e X, u(t) e U (2.1)

y(t) = Cx(t) y(t) e Y (2.2)

z(t) = Dx(t) z(t) e Z . (2.3)

Here, x(t) is called the state of the system at time t, u(t) is the input,

q(t) the disturbance, y(t) the observation, z(t) the output. Our con-

trollers will be devices that produce a control function u(t) from an ob-

servation function y(t) in the following way:

w' (t) = Aw(t) + Gcy(t) w(t) e W (2.4)

u(t) = F w(t) + Ky(t) , (2.5)

This is called a compensator; w(t) is the compensator state and W is the

compensator state space. We can combine the equations (2.1-3) and (2.4-5)

to form the extended system:

d x/A+BKC BF\ x E

dt w) G C A c ) () + q(t) (2.6)

z(t) = (D 0) ) (t) . (2.7)

We denote



A+BKC BF

A c (2.8)
G C A
e c Ac

and call this the extended system matrix. This mapping acts on the extended

state space Xe: = X @ W. There are two natural mappings between Xe and

X: the natural projection P: Xe -+ X, defined by

p(X) = x (2.9)

and the canonical imbedding Q: X - Xe, defined by

x
Qx = (0) . (2.10)

A typical form of a control problem is now: given the system (2.1-3),

find a compensator of the form (2.4-5) such that the closed-loop system

(2.6-7) has certain properties. For the algebraic regulator problem, these

properties can be specified in terms of invariant subspaces of the extended

system matrix. We shall denote the ' bad subspace' of A by e (A), so

Xb(Ae) = ker(XI-A ) (2.11)
Re X>0 ne3/

This subspace of Xe contains the 'unstable modes' of A , i.e., the eigen-
e

directions corresponding to non-decreasing solutions. We say that we have

output stability in the closed-loop system if

Xb(A ) C ker(D 0) . (2.12)

This means that the output z(t) will converge to zero, if no external dis-

turbance is present (q(t) = 0). Another property of interest is disturbance

decoupling: we say that the closed-loop system had this property if there
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exists an A -invariant subspace M such that

im(0) C M C ker(D 0) . (2.13)

This means that the behavior of z(t) is completely unaffected by that of

q(t). If we have both output stability and disturbance decoupling, then

the output z(t) converges to zero regardless of the behavior of q(t).

Note that these properties can also be formulated in terms of subspaces

of X: (2.12) is equivalent to

PXeb(A ) C ker D (2.14)

and (2.13) is the same as

im E C Q- M c PM C ker D . (2.15)

A third property will be discussed below.

For a while, let us concentrate on the pair (A,B) of system mapping and in-

put mapping (see (2.1)). A subspace V of X is said to be (A,B)-invariant if there

exists a 'state feedback mapping' F: X->J such that V is (A+BF)-invariant.

If V is (A,B)-invariant, the set of all mappings F:X-NU such that (A+BF)VC V

is denoted by F(V). An alternative characterization of (A,B)-invariance

can be given as follows ([2], lemma 4.2):

Lemma 2.1 A subspace V of X is (A,B)-invariant if and only if

AVc V + im B. (2.16)

From this, it is easily seen that the set of (A,B)-invariant subspaces

is closed under subspace addition. Consequently, the set of (A,B)-

invariant subspaces that are contained in a given subspace K
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(which set is never empty, because the zero subspace is (A,B)-invariant)

has a unique largest element which is denoted by V*(K). An algorithm

to construct V*(K) for any given K can be found in [2], p.91.

Given an (A,B)-invariant subspace V, it will be important for us to

know how the eigenvalues of A+BF can be manipulated when F may be chosen

from the class F(V). To describe the situation, it is convenient to intro-

duce the following notation. If L1 and L2 are invariant subspaces for

some linear mapping T, and L1 c L2 , then T: L2/L1 will denote the factor

mapping induced on the quotient space L2/L1 by the restriction of T to

L2. In matrix terms, this simply means that if the matrix of T can be

written, with respect to a suitable basis, in the block form

T = l T22 23 (2.17)

t mt o T33T

then the matrix of T:L2/L1 is T22. If L1 = {o}, we shall write T:L 2 in-

stead of T:L2/{O}. We can now formulate the following result ([24]; see

also [2], Cor. 5.2 and Thm. 4.4):

Lemma 2.2: Let V be an (A,B)-invariant subspace. Then the smallest

(A+BF) -invariant subspace containing im B n V is the same for all F C F(V).

Denote this subspace by R, and let S be the smallest A-invariant subspace

containing both im B and V. Then S is (A+BF)-invariant for all F, and we

have for all F l, F2 e F(V):

A + BFl:X/S =A:X/S (2.18)

A + BF :V/R =A + BF2:V/R . (2.19)
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Moreover, for any real polynomials pl(X) and p2 (X) with deg(pl) = dim S - dim V

and deg(p2 ) = dim R, there exists an F CF(V) such that the characteristic

polynomials of A+BF: S/V and A+BF: R are equal to pl(X) and P 2(X), re-

spectively.

The content of this lemma can conveniently be expressed in the form of a

diagram, in which the words 'free' and 'fixed' refer to the eigenvalues of

A+BF when F may be chosen from F(V):

S
free

V (2.20)
fixed

free R
{0}

A+BF

(FeF (V))

An (A,B)-invariant subspace V is called a controllability subspace if

O(A+BF:V) is free ([2], p.102), and it is called strongly invariant if

c(A+BF:X/V) is fixed. If there exists an F e F(V) such that O(A+BF:V)

C {X e IRe X < 0}, V is called a stabilizability subspace.

For brevity of notation, let us write

cg = {X e IRe X < 0} cb = C \ (2.21)

(Other partitionings of the complex plane may be used, for instance to

express stronger stability requirements. The effects on the theory will

be none, provided that the partitioning is symmetric with respect to the

real axis, and C Cn/R# 0.) We already introduced X (Ae), and the notations
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Xe(A ), X (A), %X(A) etc. will refer in an obvious way to the modal sub-

spaces corresponding to the part of aC indicated by the subscript. For any

subspace L, we use the following notation for the smallest A-invariant

subspace containing L and for the largest A-invariant subspace contained

in L:

<AlL> := AkL (2.22)
keZ

+

<LfA> = AL -k . (2.23)
ke2

A strongly invariant subspace of particular interest is

X X (A) + <Alim B> (2.24)
stab g

which is easily seen to be the largest stabilizability subspace in X.

More generally, one can prove ([19], p.26; [2], p.114) that the set of

all stabilizability subspaces contained in a given subspace K has a unique

largest element, which will be denoted by V*(K). Let V be an (A,B)-invariant
g

subspace. It is seen from Lemma 2.2 that there exists F e F(V) such that

C(A+BF:X/V) C C if and only if S + X (A) = X, where S = <Alim B + V>. In

this case, we shall say that V is outer-stabilizable . It is easily proved

that <A lim B + V> = <Afim B> + V, and so we obtain the following characteri-

zation of outer-stabilizability.

Lemma 2.3. An (A ,B)-invariant subspace V is outer-stabilizable if and only

if

V + X = X (2.25)
stab
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Everything what has been said above about the pair (A,B) can be dualized

to statements about the pair (C,A) of output mapping and state mapping.

We shall quickly go through the most important notions. A subspace T of

X is said to be (C,A)-invariant if there exists a mapping G:Y - X such

that T is (A-GC)-invariant, or, equivalently, if

A(Tn ker C) C T (2.26)

The set of all mappings G: Y + X such that (A-GC)T C T is denoted by G(T).

A(C,A) -invariant subspace T is said to be a detectability subspace if there

exists G e G(T) such that O(A-GC:X/T) C -g. To every subspace E, there is

a smallest detectability subspace containing it, which will bedenoted by

T*(E). We define
g

Xdet := T*({O}) = XD(A) n <ker CIA> .(2.27)

We now return to the specification of properties for the closed-loop

system (2.6-7). It is easily seen that the subspace QXdet is always A -

invariant, and that A:Xdet is similar to A :QX det The subspace P (Xdet +

Xstab) is also always A- irv ariant, and Ae: /P (X +X is similar to
e e det stab

A:X/Xd + X b). This leads immediately to the following result.

Lemma 2. 4 For any compensator of the form (2. 4. -5) applied to the system

(2. 1-3), the extended system matrix A e given by (2. 8) will satisfy
e

dim Xb(A ) > dim X + codim (X +X (2.28)b e det det stab

We shall say that the closed-loop system (2.6.7) is internally stable if

equality holds in (2.28). This nomenclature will be explained in the next

section.
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Finally, we shall need a concept that is related to the triple A,B and C.

A (C,A,B)- pair ([17]) is an (ordered) pair of subspaces (T,V) in which

T is (C,A)- invariant, V is (A,B)-invariant, and T C V. The following result

([18], lemma 4.2) will be instrumental.

Lemma 2.5: Let (T, V) be a (C,A,B)-pair. Then there exists a mapping

K:Y -+ U such that (A+BKC)Tc V.

This means that in situations where we are allowed to replace A by A+BKC

(applying a preliminary static output feedback), it is no restriction of

generality to assume that AT C V. Note that the properties we discussed above

for the pair (A,B) are all feedback invariant: they would have been the

same for any pair of the form (A+BF, B). Likewise, the properties relating

to the pair (C,A) would have been the same for any pair of the form (C,A-GC).

Consequently, the change from A to A+BKC changed neither the input-to-state

nor the state-to-output structure, which makes it a transformation that is

applicable under many circumstances. If we have to do with several (C,A,B)-

pairs (T., Vi) (i=l,...,k), there does not necessarily exist a K such that

(A+BKC)Ti C V. for all i; we shall say that the pairs (T., Vi) are compatible

if such a K does exist.



3. Problem Statement

A common control set-up for a 'plant' to follow a reference signal

in the face of disturbances is depicted in Fig. 3.1.

disturbance

generator

l . l... .

reference it t p a th 
Ielemets toectlter iscaw tt th p e rror
rerence generatoer, the d rbanegeneator and the plant Then dagramI 11 I _______.

L_ _ en era r er c feedback r 

l- - I---- r----- -l

Fig. 3.2 Control Scheme

reference generator, the disturbance generator and the plant. The diagram

can be re-organized to display more clearly the interface between the given

elements and the elements that are to be constructed, in the following way:

disturbanc
generator l error

reference

generator
plant : ~ lan

control_

feedback 1 observation
compensator-i

c Icanpensato

Fig. 3.2 Re-organized Control Scheme
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The scheme can be simplified and generalized at the same time, as follows:

(external)

disturbance system ' output

(=error)

control _ compensator

input

Fig. 3.3 Simplified and Generalized Control Scheme

All the given elements have been taken together under the name 'system',

and the control elements are represented by one feedback processor called

the 'compensator'. Also, an additional external disturbance has been added

for which no knowledge of dynamics is assumed. (This may be quite natural,

for instance, when this disturbance is used to model a lack of information

about certain system parameters.) The error has been re-named as simply

'output'; the longer term 'variables-to-be-controlled' is also sometimes

used.

We are now in the situation described in the previous section. The

system is described by the equations (2.1-3), the compensator equations

are given by (2.4-5), and the closed-loop system as a whole is described

by (2.6-7). The question is, of course, whether we are still able to

properly define our control objectives in the present context, in which

the distinction between plant, disturbance and reference has seemingly

disappeared.

To answer this question, we break down the system mapping A using the

chain of invariant subspaces {O} C Xdet C Xdet + X C X. Taking 
det det stab
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into account the facts that Xdt C ker C and that im B C Xdet + X this

enables us to re-write the equations

x' (t) = Ax(t) + Bu(t) (3.1)

y(t) = Cx(t) 
(3.2)

in the following way:

x (t) ll A11 (t) + A12x 2(t) + A 13x3t) B U(t) (3.3)

x2(t) = A22X2 (t) + A23x3( t) + B2U(t) (3.4)

x; (t) A33 3( t) (3.5)

y(t) = C2x2( t) + C3x3 (t) . (3.6)

Picturewise, we have:

$ .....2 X3 i y(t)

FXg 4 i 

Fig. 3.4. Decomposition of a General Linear System

This makes it natural to interpret x2(t) (corresponding to A: Xdet) as

representing irrelevant plant variables. That is, we assume that we are

not in the fundamentally hopeless situation in which there are unobservable

unstable relevant plant modes. The vector x3(t) is naturally interpreted

as representing the state variables of the reference and (internal) disturbance
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generators. Again, supposing that x3 (t) partly represents plant variables

would bring us into a fundamentally wrong situation, this time because of

the presence of unstable uncontrollable plant modes. It can be argued (see

for instance [73) that it is reasonable to asssume that Xdet = {0}, but

we shall take the option of performing the mathematical analysis in full

generality, to see if the outcome agrees with our interpretations.

With this background, it is now reasonable to formulate the following

specifications for the closed-loop system. To ensure that the system output

(which represents the difference between reference signal and actual plant

behavior) will tend to zero in spite of the internal and external disturbances,

we ask for output stability and disturbance decoupling ((2.12) and (2.13)).

Moreover, we want the plant to be stabilized. Using the interpetation dis-

cussed above, this requirement is expressed by the condition of internal

stability:

dim X (A ) = dim X + codim X +X (3.7)

So the algebraic regulator problem that will be discussed in this paper is:

Given a system of the form (2.1-3), find necessary and sufficient conditions

for the existence of a compensator of the form (2.4-5) such that the closed-

loop system (2.6-7) has the properties of output stability, disturbance

decoupling, and internal stability; and give an algorithm to construct

such a compensator, if there exists one. We use the qualifier 'algebraic'

because this problem does not include issues like sensitivityto parameter

changes, response of the system to signals other than which it has been

designed for, efficient and numerically stable computational algorithms,

and so on. It will be shown in the Appendix that the algebraic regulator

problem as it is formulated here is a strict generalization of the problem
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considered in [1] (also in [2], Ch. 7).
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4. Necessity

We start with the following simple but basic observation (cf. [17]).

Lemma 4. 1 Let A e be an extended system matrix of the form (2. 8), and

suppose that M M..., k are Ae-invariant subspaces. Then the pairs (Q- MI

PM ),... (Q-lMk, PMk) are compatible (C,A,B)-pairs.

Proof Take i e {1,...,k}, and let x e Q-1 M. ker C. Then (x) e Mi. and

consequently

+BKC BF
(A+B9C BC) () = e M. (4.1)

c c

We see that Ax e M., showing that Q -1M. is (C,A)-invariant. Next, let
~1 ~~1

x e PM. and take w e W such that w) eM.. Then

(ACGcC )()= e M i . (4.2)

G GC Ao \ GoCx + AcWGC C C C+Aw

Hence, Ax + B(KCx + F w) e PMi which implies that Ax e PMi + im B and
c 1 1

that PM. is (A,B)-invariant. Finally, let x e Q 1 M.. We have
1 1

{A+BKC BF x A+BKC)x

\?c3 Ci C e M. (4.3)

which shows that (A+BKC)Q-1M. C PM.. Since K does not depend on i, this
1 1

completes the proof.

We now want to bring in the aspect of eigenvalue assignment. First, recall
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the following standard result.

Lemma 4. 2 Let T:X X be a linear mapping, and let L and L 2 be invariant

subspaces for T, with L1 c L 2. Then the following are equivalent:

c(T:L2/Lc) Cg (4. 4)

(XI-A) L n L2 = Ll VX b (4. 5)

(XI-A)L 2 + LI = L2 V X e Gb . (4.6)

Suppose that Vl and V2 are (A ,B )-invariant subspaces, and V C V2. We shall

say that (A,B) is stabilizable between V and V2 if there exists an

F G F(V1) n F(V2) such that G(A+BF:V 2/ 1 ) C G . We have the following

characterization of this property.

Lemma 4. 3 Let V -and V2 be (A,B)-invariant subspaces, with V C V2 Then

(A,B) is stabilizable between V1 and V 2 if and only if

(XI-A)V 2 + V 1 + im B = V 2 + im B VX CIb . (4. 7)

Proof. First, suppose there exists F e F(V2) ( F(V1) such that A+BF: V2/V1

is stable. According to Lemma 4.2, we then have

(XI-(A+BF))V 2 + V1 = V2 vX e b . (4.8)

Adding im B on both sides now leads immediately to (4.7), if one uses the

obvious equality

(AI - (A+BF))V2 + im B = (XI-A)V2 + im B . (4.9)

Next, suppose that (4.7) holds. Construct a mapping F0 C F(V1) n F(V2)
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by first defining F0 on V1 such that (A+BF )V1 C V1 then extending F0 on

V2 in such a way that (A+BF )V 2 C V2, and finally extending F0 in an

arbitrary way to a mapping defined on all of X. Consider the controllability

subspace

R2: = <A+BF Jim B n V2> (4.10)

Define A: = A+BFO:R 2, and let R:U+U be such that im BR = im B n V2. Write

B0: = BR. By definition, we have <Ao0 i m Bo> = R2, and so it follows from

lemma 2.3 that every (A0, B0)-invariant subspace of R2 is outer-stabilizable.

In particular, there exists an F :R2 + U such that (A +BFF1) (R2 n V1) C R2 V 1

and Y(AO+BoFi:R2/R2 V 1) )C G . The mapping F0 + RF1, which is defined only

on R2, can be extended to a mapping F: X +U in such a way that F e F(V 1) n

F(V ). We claim that this mapping F satisfies (A+BF:V2/ V ) C C

To prove this, first note that A+BF:(R2+V1)/V1 is similar to

A+BF: R2/(R2/ V1) = A +BF 1: R2/ (R2 CV 1) which is stable by construction.

Furthermore, we have given that (4.7) holds and this implies (using (4.9)

again)

(XI-(A+BF))V2 + V1 + im B = V2 + im B X e (4.11)

Taking intersections with V2 on both sides, we get

(XI-(A+BF))V2 + V1 + (im Bn V ) = V2 v2 e b . (4.12)

Because im B ) V22 R 2c V2 this implies

(XI-(A+BF))V2 + V1 + R2 = V2 v e a b (4.13)

which by Lemma 4.2, means that Y(A+BF: V2/(V1+R2 )) c a . The proof is done.
'~~~~2 1 g
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We are going to apply this lemma in the following way.

Lemma 4. 4 Let A e be an extended system matrix of the form (2. 8). If Ml

and M 2 are both A e-invariant subspaces satisfying M1 C M 2 and (A e:M 2/M ) C2 e 1 2 e

g:, then the pair (A,B) is stabilizable between PM 1 and PM2 .

Proof Take x e PM2 , and let w e W be such that e M2. Also, take X C b.

By lemma 4.2, there exists vectors () e M1 and (2) e M2 such that

( =(XI-A) /X2 + xi1 .(4.14)

In particular, we get

x = (XI-A)x2 - B(KCx2 + Fcw2) + x1 . (4.15)

This shows that

PM2 C (.I-A)PM2 + PM1 + im B v X e C. (4.16)

By the (A,B)-invariance of PM2, this is the same as

PM2 + im B = (XI-A)PM2 + PM1 + im B VX e cb . (4.17)

An application of Lemma 4.3 now gives the desired result.

Everything that has been said above about the pair (A,B) can be dualized

into statements about the pair (C,A). If T1 and T2 are (C,A)-invariant

subspaces such that T1 C T2, we shall say that the pair (C,A) is detectable

between T and T if there exists a G e G(T ) r G(T2) such that1 2 1 =2

G(A-GC:T2/Tl) C C . The following results correspond to Lemma 4.3 and

Lemma 4.4, respectively:
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Lemma 4.5 Let T l and T 2 be (C,A)-invariant subspaces, with TC T 2. Then

(C,A) is detectable between Tl and T 2 if and only if

(XI-A) 1 Tn T t ker C = T O ker C e ad (4. 8)
1 2 (1 'b

Lemma 4. 6 Let A be an extended system matrix of the form (2. 8). If Mle

and M 2 are both Ae-invariant subspaces, satisfying Ml c M2 and a(Ae:M 2/M1) c

g', then the pair (C,A) is detectable between Q -M and Q M12.

It is useful to note the following result, which is a direct consequence

of Lemma 4.3.

Corollary 4. 7 Suppose that V , V2 and V3 are (A,B) - invariant subspaces,

with V1 c V2 . If the pair (A,B) is stabilizable between Vl and V 2, then (A,B)

is also stabilizable between V( + V3 and V 2 + V3.

After these preparations, it is easy to give an extensive list of necessary

conditions for the algebraic regulator problem to be solvable.

Proposition 4. 8 Suppose that the-compensator (2. 4-5) provides a solution to

the algebraic regulator problem for the system (2. l-3); so there exists an A e-

invariant subspace M such that (2.13) holds and such that a(Ae:Xe/M)c Cg,

and moreover the dimensional equality (3. 7) holds. Write V: = PM, T:=Q -M,

V o:=PX e (Ae), and T = Q Xb(A ). Then the following is true:

(i) the pairs (To0 V0 ) and (T, V) are compatible (C,A,B)-pairs.

(ii) T 0 c T, and VOC V

(iii) im E c T V c ker D
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(iv) (A,B) is stabilizable between V0 and V and between V and X

(v) (C,A) is detectable between T o and T and between T and X

(vi) VO(Xdt +X tb) =Xdt 

Proof The conditions (i) to (v) follow immediately from, respectively,

Lemma 4.1, the fact that X (Ae) C M, the remark leading to (2.15), Lemma

4.4, and Lemma 4.6. To prove (vi), first note that TO is, by (v), a

detectability subspace. Therefore, Xdetc TO C V0 and so we have

(det 0 (det Xstab) (4.19)

From (iv), it follows that V0 is outer-stabilizable, so that V0 + Xstab = X

(Lemma 2.3). Consequently, the following dimensional relations hold:

dim(V 0 I (Xdet + Xstab)) = (4.20)

= dim V + dim(Xdet + Xstab) - dim X =

= dim V0 - codim(Xdet + Xstab) <

< dim Xb(A ) - codim(X + Xstab
- e det stab

=dim Xdet

This shows that in fact equality holds in (4.19).

The list is not completely economical; for instance, it is easy to

see that (ii) already implies that the (C,A,B)-pairs (To , V ) and (T, V)

are compatible. The extras have been obtained with little effort, however,

and the form of the list is convenient for the next section where we are

going to prove that the conditions given above are also sufficient.
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5. Sufficiency, Main Result

There is a general method of compensator construction, in which it

is also possible to keep track of the relation between invariant subspaces

in the constructed closed-loop system and certain (C,A,B)-pairs in X.

Here, we shall only need the following relatively simple result; more

elaborate versions are given in [18], Thm. 4.1, and [19], pp. 63-64. The

proof is basically easy, consisting mainly of using natural isomorphisms

between subspaces of X and of Xe, and can be found in the cited references.

Lemma 5.1 Let the system (2.1-3) be given. Suppose that we have a (C,A,B)-

pair (T c , Vc), an F CF(Vc ) such that ker FoTc, and a GC G(Tc) such that

im Gc V . Then a compensatorof the form (2. 4-5) can be defined as follows:

Let W be a real vector space of dimension dim V c - dim Tc . Let R be a mapping

from Vc onto W such that ker R = Tc , and let R be any right inverse of R.

c ccSet K - , Fe = FR ^ Gc =RG, and Ac = R(A+BF-C)R . The extended system

matrix, that is obtained as

/A BFR \

Ae { +
A ROGC R(AB F-GC)R (5.

has the following eigenvalues:

o(A ) = o(A+BF: Vc) u o(A-GC:X/r) . (5. 2)

Moreover, if (T, V) is a (C,A,B)-pair such that ATc V, T C T c V c V c ,

(A+BF)VC V and (A-GC)Tc T, then the subspace M of X defined

by

M: = {) xC {(Rx) x CV} (5. 3)

is Ae-invariant. The subspace
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Mc: = ( X x V (5. 4)

is also Ae-invariant, and the following similarity relations hold:

Ae:Xe/(M+Mc) A-GC: X/T (5. 5)

Ae: (M+Mc) /Mc Ae:M /(MnMc) A-GC:T/T (5. 6)

A :(M+Mc) /M A :Mc/(M Mc) A+BF:Vc /V (5. 7)

A :Mn M =A+BF:V . (5. 8)

Picturewise, the relations (5.5-8) can be described as follows:

X - X T Xe
a

a M+M
v

b M M
c c C

T IV b
C MnM

d d MMC

{O} {0}
A-GC A+BF Ae

Fig. 5.1 Regulator Construction

In order to translate data on a chain of (A,B)-invariant subspaces into

data on a feedback mapping, the following lemma is useful.

Lemma 5. 2 Suppose we have a chain of (A,B)-invariant subspaces

{O} = VC V C .. C .. V C V k = X. Also, let mappings F. C-F( V.i)F( V. )

be given, for i = 1,... ,k. Then there exists a mapping F CF(VI)n. .rF(Vk_1)

such that A-+BF:Vi/_ l =V A+BF.i:Vi/ for all i C {... ,k.i i-l C i i-l
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i 1 2 2 kProof Select basis elements {xi ...,xn l, Xl,...1 , Xn2·..·x }
____ x x .,x ,...,x ,.,xn k1 1 2 nk

such that {x1 ...,x l,. e ..,x } forms a basis for V. for alln'· '".X'l, " n. 1
~1 . i .

i e {1,...,k}. Define F by Fx. = F.x1 (i=l,...,k; j=l,...,n.). Then F
j 1z 1

satisfies the requirements.

To illustrate the proof, consider the block matrix representations for

the mappings A+BF. (i=l,...,k) and A+BF with respect to the selected basis:

* * · * * ·* * * * * * \ . * ' ' * * * ·

0 . . .... . 0 ~t·- ·

· · ·· · ··O ' '

' ' 0. . 0. . *
0 * * **0 *. * . l O * 0I. ...

A+BF A+BFk A+BF
· ·

It is now not difficult to show that the necessary conditions derived in

the previous section are also sufficient.

Theorem 5. 3 The algebraic regulator problem for the syostem (2.1-3) is

solvable if and only if there exist two compatible (C,A,B)-pairs (Tg VO)

and (T,V) such that

(i) TOC T, VOC V

(ii) im EC TC 1VC ker D

(iii) (A.B) is stabilizable between V 0 and V and between V and X

(iv) (C,A) is detectable between To and T and between Tand X
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(v) V0 n (Xdet + Xstab) Xdet

Proof In view of Prop. 4.8, it remains to show the sufficiency of the

conditions. Employing a preliminary static output feedback if necessary,

we may assume that AT C V0 and ATC V (see Lemma 2.5 and the remarks

following it). It follows that there exists an F1 G F(V ) with ker

F 1 TO. Using (iii) and lemma 5.2, we see that there exists an

F e F(V 0) f F(V) such that ker F D To and G(A+BF:X/V 0) C g . Using

(iv) and the dual of lemma 5.2, we find that there exists a G e G(TO)

G(T) such that C(A- ,C:X/TO) C C . Now we apply the compensator con-

struction of lemma 5.1, using T0 for T and X for V . The invariant

subspace M related to the pair (T,V) takes care of the disturbance

decoupling property, by condition (ii). From the relations (5.5-8),

we see that X(A )C M n M = { ( x)x e VI. Consequently, PXe(As ) C
D e c Rx e

VC ker D and we have output stability. In fact, we see from (5.8)

that dim IX(Ae) < dim VO . By condition (v), we have dim V0 <

codim(X + Xs ) + dim X , and we conclude that the compensator
det stab det'

constructed above ieads to internal stability as well.

The proof is constructive once the pairs (ToV ) and (T,V) are

given. We shall now proceed to discuss how the existence of these pairs

can be verified by an algorithm that will also construct such pairs,

if they exist.
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6. A Verification Algorithm

It may not seem easy to verify the conditions of Thm. 5.3 because

they are stated in terms of two (C,A,B)-pairs, which gives us four

variable subspaces. Without much effort, one can see that TO can always

be replaced by Xdet and T by Tg(im E), but that still leaves us with two

variable subspaces. It is possible to express the conditions in terms

of VO (as in [18] and [19]), but concentrating on V will lead to a

result that is more attractive from a numerical point of view. Before

we come to this, some preliminary work is needed.

Lemma 6.1 Let V be an (A,B)-invariant subspace, and let R be defined

by R <A+BFIim B n V > (F CF(Vl)). (This defines R uniquely:

see Lemma 2. 2) If V7 is an (A,B)-invariant subspace such that R V1 C V,

then V7 is (A+BF)-invariant for all F CF(V).

Proof Take F e F(V), and F0 e F(V1). We have (A+BF) V C (A+BF)V C V,

but also (A+BF)V1 C (A+BF )V1 + B(F-FO)V 1 C V1 + im B. Hence (A+BF)V lC

V ( (Vl+im B) C V1 +RC V1.

Lemma 6.2. Let V 0 be an (A,B)-invariant subspace contained in a

subspace K. The set of all (A,B)-invariant subspaces V contained in K

and containing V0, that are such that (A,B) is stabilizable between

V0 and V, contains a unique maximal element, which is given by V0 + V *(K).

Proof. It follows immediately from Cor. 4.7 that (A,B) is stabilizable

between V0 and V0 + V*(K). Conversely, let V be an (A,B)-invariant
subspace with C K, such that (AB) is stabilizable between and 

subspace with V 0C V c K, such that (A,B) is stabilizable between V and V.
0
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Then there exists an F e F(V ) () F(V) () F(V*(K)) such that a(A+BF:V/VO) C

*. By lemma 6.1, we automatically have F e F(V*(K)) as well. Now,
g g

on the one hand,

O(A+BF:V/(V )(V (K) + V ))) =
g 0

= c(A+BF: (V* (K) + V)/(V*(K) + V0 )) c

C (A+BF: V* (K) /V (K)) C b,

but on the other hand,

a (A+BF:V/CV (V* (K) + V )))C (6.2)

C G(A+BF:V/V) C g .

It follows that

c (A+BF:V/(V (n (V* (K) + Vo))) = ~ (6.3)

or, VC V* (K) + V0 .g 0

We can now re-formulate Thm. 5.3 as follows.

Thmin. 6.3 The algebraic regulator problem for the system (2.1-3) is

solvable if and only if there exists an (A,B)-invariant subspace V

such that

V C ker D (6.4)

V + X = X (6.5)stab

V ) (X +X b) = X + V*(ker D) (6.6)
det stab det g

T*(im E) C V . (6.7)
g
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Proof To prove the necessity, we assume that the conditions of Thm. 5.3

hold. So we have two compatible (C,A,B)-pairs (To, V ) and

(T, V) satisfying (i-v). We shall show that V0 + V* (ker D) satisfies
0 g

the conditions (6.4-7). From (i) and (ii) we immediately have (6.4),

(6.5) follows directly from (i) and (iii) with use of lemma 2.3, and

(6.7) is obtained from (ii) and (iii) by an application of lemma 6.2.

Finally, the obvious fact that V* (ker D) C X + X entails, by
g det stab

condition (v),

(V + V*(ker D)) n (Xd + X ) = (6.8)
g (det stab

= V f (X + X + V*(ker D) =
0 det stab g

= X + V*(ker D)
det g

For the sufficiency, we note that X C T* (im E) C V C ker D, and
det g

we consider the chain of (A,B) - invariant subspaces {0} C XdetC Xdet +

+ V*(ker D) C V C X. Cor. 4.7 shows that (A,B) is stabilizable between
g

X and X + V*(ker D), and (6.5) shows that (A,B) is also stabilizable
det det g

between V and X. By lemma 5.2, there exists an F e F(X )F)F(X +V g(ker D))
det det 9g

_1 F(V) such that ker F XdetX (A+BF:(X + V* (ker D))/Xdet ) C and
det'det g det g

C(A+BF:X/V) C C . Now, define V0 by

V0 = Xb(A+BF) . (6.9)

It is clear that Xdet C V , C and also that V0 (Xd + V*(ker D)) =
det 0 0 det g

Xdet . Using (6.6) we see that condition (v)of Thm. 5.3 is satisfied.

We also see that (iii) holds. The other conditions are easily verified,

defining TO = X and T = T*im E).0 det g
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The following slight variation of this result will be useful.

Corollary 6. 4- The algebraic regulator problem for the system (2.1-3)

is solvable if and only if

V*(;er D) + Xstab = X (6.10)

and there exists an (A,B)-invariant subspace V such that

V c V,*(ker D) (6.11)

V + (Xdet + (V*(ker D) Xstab)) = V*(ker D) (6.12)

V (r (Xdt + (V *(ker D) Xstab)) = X de + V*(ker D)

(6.13)

T* (im E)C V (6.14)
g

Proof. Necessity: (6.10) follows from (6.4) and (6.5), (6.12) is obtained

by intersecting both sides of the equality in (6.5) with V*(ker D), and

(6.13) is obtained in the same way from (6.6). Sufficiency: for (6.5),

add Xstab on both sides of (6.12) and use (6.10). Note that Xde t C V

by (6.13) (or (6.14)), and consequently

V )(Xde t + (V*(ker D) X sta)) = (6.15)

Xdet + ( Xstab ) =

=det + Xstab

Now use (6.13) again to obtain (6.6).

We see from Thm. 6.3 that the subspace V that we are looking for

must be in between X + V*(ker D) and V*(ker D), and the advantage ofdet g
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the corollary is that the crucial conditions (6.12-13) are formulated

in terms of these subspaces and of another subspace that is in between the
two, Xdet + (V*(ker D) / Xtab). Picturewise, the situation we are trying

to establish looks as follows:

x

V*(ker D)

V Xdet + (V*(ker D) n Xstab

Xdt + V*(ker D)
det g

R*(ker D)

{}

A+BF

Fig. 6.1 The Split-Off Property

The important point to note here is that we are talking about (A,B)-

invariant subspaces that all contain the subspace

R*(ker D): = <A+BFlim B l V*(ker D)> (F e F(V*(ker D))) (6.16)

and which are therefore, by Lemma 6.1, all invariant for each F e F(V*(ker D)).

This means that we can pick any F e F(V*(ker D)) and see if a subspace

V can be 'split off' as depicted in Fig. 6.1. This comes down to requiring

that the subspace

(Xd + (V*(ker D) ) Xstab))/(X + V*(ker D)) (6.17)

must decompose the quotient space V*(ker D)/(Xdet + V*(ker D)) with respectdet g
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to the mapping induced by A+BF on this space. This is well-known to be

equivalent to a linear matrix equation (see for instance [2], p.21). The

conclusion that we have now reached should be compared to Thms. 7.3 and

7.4 in [2]. In particular, the problem is trivial under the minimum

phase condition V*(ker D) = V*(ker D) ( Xstab: in this case, the only
g

solution of (6.11-13) is V = V*(ker D). (This condition is often

assumed in classical control theory, be it not quite in this formulation.)

To obtain a computational criterion, we may proceed as follows.

Noting that it is necessary that Xdet C V*(ker D), we may set up a basis

for X that is adapted to the chain of subspaces {O} C X + V*(ker D) C
det g

C Xdt + (V* (ker D) C' X tab) C V*(ker D) C X. Next, we form block matrix
det stab

representations for the relevant mappings and subspaces. We get

11 A12 A13 14 1T

A022 A23 A24 
A O A22 A23 A24 \ BB= , T* (im E) = sp 4

o o A33 A34 T3

41 A42 A43 A B T 

(6.18)
Here, the fact that A = 0 and A31 = 0 is explained by noting that

A(X + V*(ker D)) n V*(ker D) C
det g

C (X + V*(ker D) + im B) () V* (ker D) C
C Xdet g Ug~ker D) + (im B (ker D)) (6.19)

CX + V*(ker D) + (im B n V*(ker D)) =
det g

X + V*(ker D)
det g
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The same explanation goes for A32 = 0. We used the fact that

im B / V*(ker D) C Xdet + V*(ker D), which also entails B2 = 0 and

B3 = 0.

A subspace V satisfies (6.11-13) if and only if it can be repre-

sented, with respect to the selected basis, in the following way:

V = sp( 0 I (6.20)
0 /

where X may be any matrix of suitable size. Such a subspace is (A,B)-

invariant, by Lemma 2.1, if and only if there exist matrices Q and R

such that

0 A12X + A2 3 ) 1 2)

0 A3 0 I

41 A42X + A43 0 0/ \ 4

(6.21)

By elementary calculations, and using the fact that there exist, by the

(A,B)-invariance of V*(ker D), matrices Fi such that A4i + B4Fi = 0

(i=l,...,3), we find that such matrices Q and R exist if and only if

A22X + A23 = XA33 (6.22)

(This is, of course, Sylvester's equation ([2], p.21).) Furthermore ,

the condition (6.14) holds if and only if there exists a matrix S

such that
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T1 I 0

T 3 0 X

T 3 0 I 1) (6.23)

T4 0 0

This is true if and only if T4 = 0 and

T2 = X T3 . (6.24)

Our conclusion is as follows.

Corollary 6. 5. The algebraic regulator problem for the system (2. 1-3)

is solvable if and only if the following conditions hold.

V * (ker D) + Xstab = X (6.25)

T* (i m E)C V * (ker D) (6. 26)
g

and there exists a matrix X satisfying

XA 33 - A22X A 23 (6. 27)

XT 3 = T 2 (6. 28)

where the A- and T-matrices are defined as in (6. 18).

For any F e F(V*(ker D)), A 3 3 is the matrix of

A+BF: V*(ker D)/(Xde t + (V* (ker D) / X sta) (6.29)

and A22 is the matrix of



-34-

A+BF: (Xdt + (V*(ker D) X ))/(X + V*(ker D)). (6.30)
det stab det g

Under the conditions (6.25-26), the mapping in (6.29) is similar to

A:X/(Xdet + Xstab), and so we can say that A33 represents the signal

dynamics. In view of the interpretations of section 3 and of [2],

Section 5.5, the eigenvalues of the mapping in (6.30) may be identified

as the relevant unstable plant zeros. In particular, since we know

that the equation (6.27) has a unique solution if and only if the matrices

A22 and A33 have no eigenvalues in common ([26], p.225), we can say that

a sufficient condition for (6.27) to be solvable is that the signal poles

and the relevant unstable plant zeros are distinct.

It should be emphasized that quite a bit of numerical techniques

are available to verify the conditions (6.25-28). The computation of

V*(ker D) and related subspaces and mappings is discussed from the

numerical point of view in [20-22]. The equation (6.27) can be

solved efficiently, at least in the case where the eigenvalues of A2 2

and A33 are distinct, by the method of [23]. Note that the size of

A22 is the number of unstable plant zeros whereas the size of A33 is

the number of signal poles, and both numbers will be moderate in very

many situations. Finally, if (6.27) has a unique solution, then (6.28)

is just a matter of checking . All this gives hope that the solution

provided by Cor. 6.5 will be a good foundation for developing numerical

software for general regulator problems.
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7. The Internal Model

Francis [7] proved that, in the special case where the output is the same

as the observation (C=D), any compensator that solves the algebraic regulator

problem must contain a copy of the signal dynamics, the so-called "internal

model". A similar result was derived by Bengtsson [8] in a frequency-domain

setting. Another form of the internal model principle, which involves a certain

reduplication of signal dynamics, can be derived from strong robustness

requirements: see [2], Ch. 8. Below, we shall show how the internal model

can be obtained from the set-up presented here. Our result is slightly

more general than that of Francis.

Proposition 7. 1. Suppose that the compensator (2. 4-5) provides a solution

to the algebraic regulator problem for the system (2.1-3), in which ker DC ker C.

Then there exists an A c-invariant subspace W 0 of W such that A :WO is

similar to A:X/(Xde t + Xstab

Proof Write To A V =Q PX(Ae) We first show that TO = Xdet.

Being a (C,A)-invariant subspace in V0 C ker D C ker C, TO must in fact

be A-invariant. So we have To C <ker CIA>. It is easily checked that

Q(<ker CIA>) is A -invariant and that Q intertwines A: <ker CIA> and

A : Q(<ker CIA>). From this, it follows that To = Xdt

From Prop. 4.8, Lemma 2.3, and the formulation of internal stability

in (3.7), we see that

dim VC = dim LV(A .. (7.1)

This implies that there exists a mapping L:VO + W such that
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Xb(Ae ) = {(LX)l e V . (7.2)

Because V0 C ker D C ker C, we have, for x e V0,

e A LxAl) /(A+BFcL )x eX(A (7.3)c

Writing F: = F L, we find that (A+BF )V0 C VO and A cLx = L(A+BF )x for

x e V0. This means that W0: = im L is A -invariant, and that A :W

similar to A+BF :V /(ker L). Because ker L = Q Xb(Ae) = Xdet, it remains

to show that A+BF :Vo/Xdet is similar to A:X/(X det+X tab). By Prop. 4.8

and Lemma 2.3, we have

0 0 det(74)

A+BF0 : VO/(VO - (Xdet +Xstab))

A+BF: (V +(X + X ))/(X + X =
0 0 (det stab (det stab

A:X/(Xdet + Xstab

This concludes the proof.

The internal model principle does not have to hold if there are observations

available that are independent from the output (ker D ¢ ker C). Indeed,

the disturbance decoupling problem may be solvable in non-trivial cases,

and then any relation between the compensator dynamics and the disturbance

dynamics is quite effectively precluded, since we did not make any assumption

on the dynamics of the disturbance entering through E. The point is, of

course, that the availability of observations independent from the output

allows for a certain freedom of design, which may be used to advantage.
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The often-used assumption C=D is to be considered as a serious specializa-

tion. Let us conclude by showing, picturewise, how the internal model

fits into the structure discussed in previous sections:

~/ //~ signal dynamics

Unstable V*(ker D)
zeros /

/~ / t + bplant

dynamics

V 0< < (ke r D) X s

O *(ker D) + (X n p
sIaD/ plant

dynamics

{o} cW {o) c X

internal

model

Fig. 7.1 Structure of the Algebraic Regulator Problem

(1) X + V*(ker D)
det g

(2) Xdet + (V*(ker D) Xstab)

In this picture, only the presence of the internal model depends on the

assumption ker D C ker C; all the rest holds in general.
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8. Conclusions

We have been able to solve a general version of the algebraic regulator

problem, requiring output stability, internal stability, and disturbance

decoupling as well. The basic Thm. 5.3 has been derived in a quite straight-

forward way, using material that is essentially elementary, as it is also

likely to be useful for the analysis of other feedback design problems.

Among this material, especially useful are lemma 4.1, which gives the

connection between closed-loop invariant subspaces and (C,A,B)-pairs,

and lemma 4.4, which adds the stability aspects to this connection. On

the constructive side, the versatile compensator construction of Lemma

5.1 is important, and the 'paste-together' lemma 5.2 comes in handy. The

main drawback of the results that we get from this type of analysis,

like Thm. 5.3, is that the solvability condition involves the existence

of a number of (C,A,B)-pairs having certain properties, so that it remains

to be seen how this condition is going to be verified. For some problems,

it is possible to have canonical choices for the (C,A,B)-pairs in terms of

computable subspaces like Xet' T* (im E), etc. (Examples of this are
det' g

the disturbance decoupling problem with stability ([27], [28], [19]), which

is obtained as a special case of the problem treated here by taking

X = X, or the regulator problem under the minimum phase condition..)
stab

For the general problem under hand, this turned out to be not completely

possible. It was possible, however, to select one pivot subspace in

which the solvability condition could be expressed (Thm. 6.3), and to

derive a computational criterion for this subspace (Cor. 6.5) which also

had a geometric interpretation as a decomposability condition. In this

way, we obtained a fully effective solution.
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Life was also made somewhat easier by the use of the subspaces Xtab

and Xdet rather than the subspaces <Alim B> and <ker CIA> which were em-

ployed in [1] and [2]. There is a clear parallel here with the recent

trend in transfer matrix analysis to use factorizations in stable rationals

instead of polynomials (see for instance [12] and [14]).

The ultimate goal in solving the regulator problem is to identify

the essential properties that not only determine when the problem is

solvable for a given system, but that also lead to a concept of 'closeness'

of systems. This concept should enable one to set bounds for the deteriora-

tion of performance when the given system is replaced by another one that

is 'close' to it, while the controller remains the same. Other concepts

that will inevitably enter the discussion include a measure of performance,

a notion of distance between controllers, system sensitivity, and controller

robustness. Ideas like these are, of course, to be found in the classical

control literature (gain margin, phase margin, steady-state error, minimum

phase, etc.) and there is also important recent work on the subject (see

[29], for just one instance), but there are still quite a few issues to

be cleared up. The context here is analytic rather than algebraic; never-

theless, as emphasized in the introduction, studying the algebraic problem

should give us a a lead.

This, in turn, may be used as an argument as to what algebraic

approach should be preferred. We have used the state-space method here,

and we have built our most concrete results on explicit matrix representations.

One might object that a large amount of arbitrariness and irrelevance is

introduced by the choice of basis, and, moreover, there seems to be no way

to compare systems of different order. The transfer matrix approach seems to

offer better perspectives. However, the objective is to cut out as much
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Appendix

The purpose of this appendix is to prove that the algebraic regulator

problem in our formulation is a strict generalization of the regulator problem

with internal stability as studied in [1] (also [2], Ch. 7). In fact, RPIS

is obtained from the problem solved here by setting E=O in (2.1).

Proposition A. Consider the system (2.1-3) with E set equal to zero. The

algebraic regulator: problem is solvable if and only if RPIS is solvable in the

sense of [1], i. e., if there exists a feedback mapping F: X- U such that

ker F D <ker C JA > (A. I)

Xb(A+BF) 0 (<Alim B > + <ker CIA>) C <ker C IA> (A. 2)

X b (A+BF) c ker D. (A. 3)

Proof. First assume that there exists an F such that (A.1-3) is true, and

write V0 = Xb(A+BF). We shall show that V0 satisfies the conditions of

Thm. 6.1. Note that condition (ii) of this theorem becomes subsumed

under condition (iv) in the special case E=0. It is clear that conditions

(i) and (iii) hold (Xb(A+BF) is outer-stabilizable, of course). Also, it

follows from (A.l) that <ker CIA> is (A+BF)-invariant, and that

XdetC Xb(A+BF). So we get XdetC V0 f (Xdet + stab) To prove the

reverse inclusion, note that (A.2) is equivalent to

o(A+BF :(<AIim B> + <ker CIA >) /<ker C I A>) C Cg (A.4)

CY o(A+BF:<AIim B>/(<AIim B> n <ker CIA>))C Cg

t- Xb (A+BF) n <Ajim B> C <Alim B> n( <ker CIA>

++ Xb(A+BF)/) <A lim B> C <ker CIA >



-40-

irrelevant information as possible, in order to arrive at the essential

properties mentioned above. Even if the transfer matrix is used, the in-

formation contained in it must be cut considerably to obtain useful

criteria. In general, there is no 'natural' all-purpose topology either

in the state-space formulation or in the frequency domain that is suitable

for all problems, since it is a fact of every-day life that things that

are quite well interchangeable as a solution to one problem may give very

different results when used for another purpose. (A telephone and a paper-

weight, for instance.) So in either one of both approaches, one has to

work to get at the crucial properties. Use of the tranfer matrix is an

easy way to get rid of a bit of information that is irrelevant for control

problems, but the fact that this bit is part of the information that has

to be cut out is known and can also be used by the researcher who employs

the state-space description. The eigenvalues of the matrices A22 and A33

in (6.18), for instance, are called 'plant zeros' and 'signal poles' because,

to the control engineer, they are better known from the transfer function point

of view. However, they also come out of our state space analysis in a

quite natural way, and this does suggest that this type of analysis can

compete on an equal footing with the transfer matrix approach. Other

factors, such as the numerical feasibility of algorithms, may then be decisive.
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Because Xb (A+BF) ( <ker C IA >= X de t this is equivalent to

X (A+BF) f <Ajim B >C Xdet (A.5)

The subspace Xstab is the same for the pair (A+BF, B) as it is for the pair

(A,B), so we have

Xstab = X (A+BF) + <A l im B> = (A.6)

= X (A+BF) + (Xb(A+BF) n <A lim B>)

Intersecting the extremes of (A.6) with Xb(A+BF), we obtain

Xb(A+BF) n X tab = Xb(A+BF)n <Ajim B> (A.7)

The conclusion from (A.5) and (A.7) is

V stab C X det(A. 8)

We already proved that Xdet C Vo, and under this condition (A.8) is

equivalent to

V0 C7(X +X C (A.9)o ( det stab) det (A.9)

which is what we wanted to prove.

Conversely, let us suppose that there exists an (A,B)-invariant sub-

space V0 such that the conditions (i-iv) of Thm. 6.1 hold. Then we have

to construct an F satisfying (A.1-3). It follows from condition (iv), by

intersection of both sides of the equality with X (A), that

VO Xg(A) = {O}. (A.10)

It is clear from this that we can define F on V0 G Xg(A) in such a way that
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ker F Xg (A) and (A+BF)V0 D VO. We can also arrange that ker F C Xdet'

because Xdet C VO by condition (iv). It follows from condition (iii) that

VO n Xg(A) is outer-stabilizable, and so lemma 5.2 shows that F can be

extended to a mapping defined on all of X in such a way that

a(A+BF:X/(V0 6X (A))C C . We then have Xb(A+BF) C V0 C ker D, which

satisfies (A.3). Also, <ker CIA> = Xdet (<ker CIA> ( X (A)) C ker F.

Finally, it is seen from (A.4) and (A.7) that (A.2) is equivalent to

Xb(A+BF) nXstab (C <ker CIA> (A.ll)

But this is immediate from condition (iv) and the fact that Xb(A+BF) C VO.
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