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ABSTRACT

A methodology for designing the information structures for decision

makers who comprise the boundary between an organization and its

environment is presented. The environment is modeled as a source that

generates symbols or messages that the organization members must process

without being overloaded. Two basic information reduction strategies are

considered: 1) creation of self contained tasks, and 2) creation of

slack resources. The former leads to the partitioning of the input signal

and the parallel processing of the partition; the latter to alternate

processing where each decision maker receives signals according to some

deterministic rule but is given more time to process them, i.e,, a delay

is introduced. These two strategies are then integrated to produce a
variety of information structures for special cases,
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INTRODUCTION

An organization, perceived as an open system [1], interacts with its

environment: it receives signals or messages in various forms that

contain information relevant to the organization's tasks. These signals

must be identified, analyzed and then transmitted to their appropriate

destinations within the organization. The way in which an organization

accepts and processes these signals affects its internal structure and

has direct consequences on its performance. The sources of the signals

and their properties, the tasks to be performed, and the capabilities

and limitations of the individuals comprising the organization are key

factors in determining the structure of an organization.

A major simplification occurs when only the boundary between the

organization and its environment is considered. While the organization

members on the boundary may occupy different positions in the internal

organizational structure, their common characteristic is that they

receive direct inputs from the environment. In that sense, they

constitute a single echelon. However, individuals, or groups of

individuals, can have very different capabilities and limitations that

reflect, indirectly, their position in the organization. For example,

they can process only certain classes of signals (specialization) or

they can deal with limited levels of uncertainty. Since it is important

to remember that the single echelon may include commanders as well as

operators of monitoring systems, executives as well as clerks, the term

decision-maker is used to describe all members.

In this paper, a methodology for designing information structures for

single echelon organizations is developed. The choice of decision makers

(DMs) that comprise the single echelon (SE) and the rules for assigning

signals to them define the organizational form.

For the types of organizations considered, the performance of a task

is equivalent to the processing of information, where information is defined

to be the data received by the DMs in the SE. Galbraith has argued that

variations in the amounts of information (data) that are processed are

primarily responsible for the variations in organizational forms. [2]
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A tacit assumption in this work is that a single DM cannot process

the available data while simultaneously achieving the desired performance

level. When a DM has been assigned more data than he is able to process

in the prescribed time interval,while still maintaining a given perfor-

mance level, he can react in one of several ways. He may decide to reduce

the amount of data he has to process by either randomly (rejection) or

selectively (filtering) omitting data. The amount of data he may be

required to process may be reduced also by having it preprocessed.

He may decide to reduce the number of categories of discrimination,

i.e., approximate the inputs, or he may reduce the required level of

accuracy for processing the data and, in so doing, reduce the number

of different outputs. If these alternatives seem unsatisfactory, he

may decide to receive all the data,allowing queues to build up, de-

laying the processing during periods of peak loads and attempting to

catch up during slow periods. Otherwise the DM may simply choose not to

perform the task. J. Miller found that at moderate rates of information in-

put overload, all these methods described were used about equally. When the

input rate far exceeded a DM's processing capacity, however, random and

selective omission were the most significant methods of dealing with the

situation. [3].

An alternative to having the data preprocessed is the employment of

multiple parallel channels [4]. The concept of parallel DMs is analogous

to the idea of distributed information processing with each DM performing

a subtask. Many studies in the literature have revealed that as the

uncertainty of the tasks increases, the "flatter," i.e., more distributed,

an organization should become with respect to its DMs. [4]

Galbraith has suggested two information reduction strategies for

organizations to address this issue: (1) Creation of Self-Contained Tasks,

and (2) Creation of Slack Resources. [2] In the first strategy, the

original task is divided into a set of subtasks. This reduces the diversity

of inputs each DM receives as well as the diversity of outputs he must

produce. In the second strategy, the slack resource of interest is time.
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Thus, the trade-off between performance and delay in accomplishing the task

becomes an important design consideration.

Two types of processing modes will be considered, parallel processing,

which is associated with the first strategy, and alternate processing,

which is associated with the second strategy. These are fundamental

strategies as discussed first by Drenick [5], that can be used to pro-

cess the incoming signals without overloading any DM in the single echelon.

The two fundamental modes can be integrated in various ways so as to deve-

lop more complex organizational forms.

Parallel processing is introduced in order to reduce the amount of

information any particular DM receives. This assumes the task can be

divided into subtasks with each subtask requiring some subset (not

necessarily mutually exclusive) of the information. The subtasks

are selected and assigned to DMs in such a way that each DM is capable

of processing his data before his next input is received. This is refer-

red to as parallel processing because the subtasks are carried out in

parallel within the same time interval. This processing mode guarantees

that the expected delay of any processed input is equal to the mean input

interarrival time. The structure of the single echelon with parallel

processing is shown in Figure 1; S represents the source, z. the signal

received by the i-th DM and yi is the output he produces.

Z 1 71X
IMDMX

2 7r2X Y2

S DM, Y

Figure 1. Parallel Processing

Figure 1. Parallel Processing
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If signals arrive at a rate 6 , and a DM requires more than time 5

to process the information (queueing of information has been removed from

further consideration), additional DMs are introduced into the single

echelon; each DM is assigned a different input signal. The number of

additional DMs must be sufficient to receive and process information so

that no DM receives another input signal until the previous one he

received has been processed. This is referred to as alternate processing

because the assignment of the inputs alternates among the DMs in the SE.

The structure of a single echelon with one form of alternate processing

is shown in Figure 2. The precise rule for allocating inputs to the

various DMs determines the minimum number of DMs necessary to process

the inputs without any DM being overloaded.

7r.2(t)x 

DMM

Figure 2. Alternate Processing (Periodic)
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In general, parallel processing is associated with the partitioning

of the task into subtasks, in the absence of any slack in time. Alternate

processing is associated with the allocation of the slack resource (time).

The task is not partitioned, but each DM is allotted more time to carry

out complete tasks. In both parallel and alternate processing the input

rate is equal to the output rate; in alternate processing, however, a

delay that is strictly greater than the mean input interarrival time is

introduced.
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TASK AND DECISION MAKER MODELS

In this section, two elements of the design problem are modeled:

the task to be performed and the properties of the decision makers who

comprise the single echelon.

The single echelon is assumed to receive signals from one or more

sources external to it. Every Sn units of time on the average, each source

n generates symbols, signals, or messages x i from its associated alphabet

X , with probability p ni' i.e.,

n n n n n n

n

Pi = 1 ; n = 1,2,...,N'
ni

i=l

where y is the dimension of X . Therefore, 6-1 is the mean frequency of
n n n

symbol generation from source n.

The task to be performed is defined as the processing of the input

symbols x by the single echelon to produce output symbols. It is as-

sumed that a specific complex task that must be performed can be modeled

by N' such sources of data. Rather than considering these sources sepa-

rately, one supersource composed of these N' sources is created.

The input symbol x', may be represented by an N'-dimensional vector with

each of the sources represented by a component of this vector, i.e.,

x' (Xl,...,x ,...,x) ;x' X (2)
n N'

To determine the probability pj that vector x' is generated, the inde-

pendence between components must be considered. If all components are

mutually independent (see, e.g. [5]) then pj is the product of the pro-
]

babilities that each component of x! takes on its respective value from
-j

its associated alphabet:
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N'

pi =(3) (3)
n=l

When all components of the input vector are mutually independent this is

referred to as beingof finest grain. In many situations, this assumption

is unrealistic; it is more common to have some components probabilistically

dependent.

If two or more components are probabilistically dependent on each

other, but as a group are mutually independent from all other components

of the input vector, then these dependent components can be treated as

one new supercomponent with a new alphabet. Then a new input vector,

x, is defined, composed of the mutually independent components and these

supercomponents. This new x is of finest grain.

This model of the sources implies synchronization between the indivi-

dual source elements so that they may be treated as one input vector.

Specifically, it is assumed that the mean interarrival time for each

component n is equal to 6.

Finally, it is assumed that every component of each input vector must

be processed by at least one DM. If the objective is to minimize the

number of DMs necessary to process the input vector, then there is no

advantage to having a component processed more than once, since this

could require additional DMs. Alternatively, reliability considerations

may require that some redundancy in processing be present.

In general, each of the decision makers in the single echelon processes

some subset of the components comprising the input vector. Each DM is

distinguished by

· a processing time function, T, which yields the mean time for

processing a particular set of components,

* his specialization; i.e., Which components he is able or qualified

to process, and

· a cost function.

A DM is said to be overloaded when the time required for him to process the
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components he is assigned exceeds 6 , the mean interarrival time of input

symbols requiring processing.

The uncertainty of the input symbol generated and the number of

possible input-output pairs are two of the factors that affect the

mean processing time. Miller introduced a processing time function

which has an information theoretic interpretation while Hyman and Hick

provided experimental evidence that information, rather than the number

of inputs or outputs, was a more appropriate measure [3]. In order to

express analytically the mean processing time, it is necessary to des-

cribe first the partitioning of the input vector. Let the vector x be

partitioned into groups of components and let the k-th partition be

denoted by an sk-dimensional vector Zk. The k-th partition is derived

from the input vector x using the partitioning matrix fk' i.e.,

Zk =7 ' x (4)

where Srk is of dimension sk x N and rank sk. Each column of fr has

at most one non-zero element (unity) while each row has exactly one

non-zero element (unity). Since the order of the components in Zk

is of no consequence, any other matrix obtained by interchanging the

rows of fk yields the same partition.

The partitioning matrix assigned to the m-th DM, kk specifies

the set of symbols that he must process. The information structure,

I, for a single echelon consisting of M DMs is defined by the set of

M partitioning matrices associated with the DMs.

The mean processing time for the m-th DM who has been assigned parti-

tion k is defined to be:

-m m m
Tk t + c Hk. (5)

where Hk is the entropy associated with the set of components Zkj specified

by the partition matrix ffk' i.e.,
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Hk = (zkj) log p(z) (6)-kj -kj

and where tm and c are parameters characterizing the particular DM.

Since it has been assumed that all components in the input vector are

mutually independent, the entropy of Zk is equal to the sum of the entro-

pies of each of the components of Zk.

The expression of the mean processing time (5) may be obtained

by averaging, over all elements j in the k-th partition, the symbol pro-

cessing time given by

Tk = t - c log P(zkj) (7)
kj -kj

While the model for the mean processing time (5) is a plausible one and

is consistent with experimental data, the inferred model for the individual

symbol processing times is not (for a discussion, see [3]).

Consider now the M decision makers that are available to the orga-

nization designer. These DMs can be grouped in several ways according

to their mean processing time function (5), their specialization and

their cost.

In the simplest case, all DMs are identical. This implies the

same mean processing time,

-m -

Tk = Tk =t + c Hk for all m

no specialization, and equal cost.

Groups of identical DMs are considered next, Decision makers within

a specified group, M , g = 1,2,... ,G, possess identical processing time

functions, are able to process the same types of components and have

identical costs.

Decision makers are often experts or specialists in a particular area

of an overall task with an attendant reduction in the average processing

times for tasks in the given area. Another form of specialization is the
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use of machines which are often limited with respect to the types of data

they can process. Specialization can be thought of in the context of

this work as a constraint that allows the DM to access and process only

certain components of data.

Let G groups of DMs exist with identical DMs within each group M g ,

and let each of these groups be specialized so that it can be assigned

only components from a set of components Lg, g = 1,...,G. The cost of

each DM depends on the group he belongs to and his area of specialization.

The input vector has been constructed so that its components are in-

dependent. These components can be grouped together in terms of several

attributes. Components can be grouped so that within each group compo-

nents have alphabets of equal size and identical probability distributions.

Groups can be formed of components that must be processed together, even

though they are independent. Another attribute is dependent on the DMs and

their specialization. If each DM can process only certain alphabets or even

subalphabets, then the components (and their alphabets) can be grouped

together according to which DM can process them.

At this point, it is possible to state the first two steps in the

design of information structures.

STEP 1: Task

a) Construct a single supersource;

b) Restructure input vector so that its components are

mutually independent;

c) Identify groups of components with alphabets that

have identical probability distributions;

d) Identify components that must be processed together;

e) Identify alphabets and subalphabets that can be proces-

sed by specialized DMs.

STEP 2: Decision Makers

a) Group DMs according to their processing time functions;

b) Group DMs according to their specialization.

Once these steps have been carried out, the problem of designing the in-

formation structure for a single echelon can be formulated. Parallel

processing will be considered first.
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PARALLEL PROCESSING

In a parallel processing structure, partitions of the input symbol

are selected and assigned to the decision makers (DMs) in the

organization. The group of DMs who, together, process the entire input

symbol form the single echelon (SE). Each DM is constrained to process

a partition of components from those that do not overload him, i.e., from

those that result in a mean processing time of 6 or less.

Mathematical programming is an appropriate modeling approach for

this class of problems. This approach seeks "the optimum allocation

of limited resources among competing activities under a set of constraints

imposed by the nature of the problem being studied." [6] In this

context, the components of the input vector correspond to the limited

resources, the DMs correspond to the competing activities and the

constraint sets include processing time capabilities and specialization

limitations of each DM.

Explicit enumeration of all distinct partitions of components

results in a problem with very high dimensionality. Fortunately,

the mutual independence of the components of the input vector allows

an alternative formulation which reduces significantly the size of

the problem. This isaconsequence of not having the distinct partitions

enumerated explicitly. Rather, only the components and the DMs need

be considered explicitly.

In the implicit formulation, individual components are selected

and assigned to each DM in the model. The group of components

assigned to the m-th DM defines the partition vector. In this way,

the required M partition vectors are constructed implicitly,. The

conditions for selecting and assigning components are

a) every component is processed, and

b) no DM is overloaded.
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Let Y be a binary variable which equals one if the n-th component is
nm

assigned to the m-th DM, zero otherwise. To guarantee that every

component is processed once and only once, the following set of

constraints is established:

nm n = 1,2,.. N (8)
m=l-1

where

Y = 0,1 (9)nm

A network structure which links every component to every DM is shown

in Figure 3.

COMPONENTS DECISION MAKERS

xt ~ ii DMI

Figure 3. GN Formulation: Implicit Enumeration
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A DM will not be overloaded, if the average time he requires to

process the components assigned to him does not exceed 6. The mean

processing time (5 ) is assumed to be given by

-m m
T = stm + cmH (5')

where s is the number of components assigned to the DM and (t ,c ) are

parameters that characterize the m-th DM. Since the components have

been assumed to be mutually independent, the entropy H is equal to the

sum of the entropies of the s components. Since the components assigned

to the m-th DM are not known a priori, a binary indicator variable Y
nm

is introduced which includes the time for processing component x only

if it is assigned to the DM:

(tm + c H ) if Y = 1
n nm

(tm + cmH ) Y
n nm

0 if Y = 0
nm

Furthermore:

-m m
T = (tm + c H ) Y < m = 1,2,...,M (10)

n nm -

-m
i.e., T must be less than or equal to 6 to guarantee the m-th DM is

not overloaded.

The coefficients of the variables Y in constraint set (10) are
nm

clearly not restricted to unity or zero, implying that the formulation

is not a pure network. It is a generalized network (GN), however, since

each variable appears in at most two constraint equations. The sets of

constraints comprising this GN formulation are given by (8),(9) and (10).

The objective function for this problem that is to be minimized is

the number of decision makers required to process all the components

without overload.
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The information structure can be constructed from the optimal

solution to this problem.

Partitioning matrices, T k,corresponding to the set of components

x for which Y = 1, for each m, are inferred and then combined ton nm
define the information structure:

1 m M
l= (Tr ,..'rr.....

In the following sections, several special cases are presented

to illustrate the solution procedures for this class of problems.

Single Group of Identical DMs

All components are assumed one-dimensional and mutually indepen-

dent and all DMs possess identical properties. These simplifying

assumptions do not lead to a reduction in the dimensionality of the

GN, however. Each DM must be considered separately and his parti-

cu-lar assignment of components obtained. This knowledge would

be lost,if a single representative DM was used instead.

There is an alternative approach, however, to solving the problem

of selecting and assigning components to all DMs simultaneously, which

takes advantage of these simplifying assumptions. This approach consists

of sequentially solving M MP problems belonging to a class known as knap-

sack problems. A knapsack problem (KP) is composed of exactly one cons-

traint and variables which are all binary. The KP formulation for the

m-th problem is:

-m * m
T Y < 6 m = 1,2,..,M ; n £ L
n mn -

where Lm is the set of components available for assignment; i.e., not

assigned in one of the previous (m-l) KPs. The set Lm has dimension s

where

s = N -s m =1,2,...,M

m =1
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The first KP assigns as many of the N components as possible (s1) to

a DM. The second KP assigns as many of the remaining (N-s1) components

as possible to another DM.

This process is repeated until all N components are assigned, Very

efficient algorithms using Branch and Bound techniques exist to solve

these KPs. [3] This leads to the possibility that the M problems,

each with (l+s ) variables and one constraint, may require cumulatively

less total computer time than solving one GN problem with M'N variables

and (M+N) constraints.

The construction of the associated information structure proceeds

as described earlier in this section. Each partitioning matrix specifies

the components assigned to and processed by the m-th DM. Since the DMs

are identical, the particular assignment of partitioning matrices to

DMs is arbitrary.

Many Groups of DMs

The assumption that DMs in the g-th group, g = 1,2,...G possess

identical properties (G > 2), does not lead to a reduction in the

dimensionality of the GN. The alternative approach of solving M KPs

cannot be used either, unless the relative efficiency of DMs among groups

can be established and ranked, i.e., a DM from Mg can process any set of

components more quickly than any DM from M g . If this dominance with

respect to processing time functions exists, then the sequential approach

used in the previous section could again be used. In particular, if M g

contains the most efficient DMs and dg is its dimension, then the first

dg KPs would assign components to DMs from this g-th group. DMs from

the second most efficient group would be considered next and this procedure

would continue until all components were assigned.

Single Group of Identical Components

The third special case illustrates that under the assumptions that
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a) all components are independent and

b) all components' alphabets are of the same dimension

and have identical probability distribution functions,

the problem of selection and assignment of partitions of components to

DMs does not require a GN algorithm or any other mathematical programming

algorithm to solve it. A feasible solution, which requires the minimum

number of DMs, can be obtained directly with relatively few computations.

If the components of a partition vector are mutually independent,

then the entropy associated with that partition is equal to the sum

of entropies of each of the components in the partition, i.e.,

H(z H(xN l...XN) = H(xn) = N'H

The entropy of any partition of dimension s is equal to sH .

No restrictions have yet been placed on the DMs as to which

components they may process. Thus, any component(s) that the m-th

DM can process without overload may be assigned to him. Feasibility

with respect to mean processing time requires that

t m(s) + c H(z ) = st + c(sH ) < 6, m = 1,2,...,M. (11)
-S O -

The maximum number of components that the m-th DM can process

without overload, s , is derived from the inequality (11) as follows:

stm + cm(sH ) < 6 m = 1,2,..,M

=> s< 6 (tm + cmH)-1 m = 1,2,...,M

m o
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where L-i denotes the function that yields the greatest integer less than
or equal to its argument.

In order to minimize the number of DMs required to process the input

vector, components are assigned to those DMs who can process the greatest

number of components in time 6. The s 's are ranked in order of magnitude.
* -m *

The quantity smf is defined to be the f-th largest s , m = 1,2,...,M;

f = 1,2,...,M. If each of two or more DMs can process the same maximum

number of components, then the ranking among them is arbitrary.

To determine M , the minimum number of DMs necessary to process the

input vector, DMs are added until all components are assigned, i.e.,

*

sm f > N

Note that in this formulation there is no distinction in the cost

between DMs of different capabilities.

The DMs corresponding to f = 1,2,...,M will be included in the

information structure. Each of the first M -1 DMs will process partitions
*

of dimension Smf. The last DM will process a partition of dimension less

than or equal to smM*:

M -1

N - L Smf

f=l

Since the components all have alphabets with identical probability

distributions and DMs are not restricted as to which components they

may process, the number of possible assignments is

N

N!!/ _ h.
j=l

* * *

(s ,!)(sm ,) -... (smM *)
(Sml )Sm2- m 17-
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where h. is the number of groups of dimension j, j = 1,2,...,N. Let h.

be unity if no groups of dimension j exist. The generic information

structure is:

1 2 M

M

m *
where rk is the kf-th partitioning matrix of dimension Smf x N and

f * *
f = 1,2,...,M ; m = 1,2,...,M

Many Groups of Identical Components

Let there be G groups of components with components within a group,

Lg , g = 1,2,...,G, possessing alphabets with identical probability

distributions. All components are assumed mutually independent. A

component xg can represent each group L

All possible partitions can be implicitly considered by using only

the representative components and the dimension of each group, i.e.,

G representative components need be considered with each one being assigned

sg times. It is possible that the same representative component may

be assigned to the same DM several times. In order to allow for this

possibility, several of the constraints must be modified in the general

formulation of the problem. In particular, since a representative

component xg can be assigned more than one time, Y is no longer
gm

restricted to be binary. Rather,it is restricted to be an integer

with an upper bound of sg . The modified constraint set is:

Y = 0,1,...,sg = 1,2,...,G; m = 1,2,...,M. (12)
gm

To guarantee that every representative component is processed exactly

sg times constraint set (8) is modified to
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M

Y gm g = 1,2,...,G, (13)

Figure 4 illustrates the reduction of the number of components and,

consequently, of the overall dimensionality of the problem. As G,

the number of distinct groups, decreases, the dimensionality of the

problem is also reduced, since the size of the current problem is a

linear function of the number of components.

COMPONENTS DECISION MAKERS

Figre.Gou sof t DMCn

Figure 4. Groups of Identical Components

The information structure can be obtained in a manner similar to

that for groups of DMs. Each variable Y which has a nonzero value rg

implies that rg components from Lg , g = 1,2,..,,G, are assigned to the

m-th DM with the assignment of particular components being arbitrary.
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Specialization Among Decision Makers

Specialization restricts the types of components that can be assigned

to a particular DM. To imbed this constraint into the GN formulation

it is only necessary to restrict the variable Y
nm --

If x has five components and DM1 can only be considered for pro-

cessing components Xl,X2 and x3, then variables Y1 1, Y2 1 ' and Y31 would

be included in the formulation while Y41' and Y51 would not be. For

each DM let Lm be the set of components that may be assigned to him.

Then, the modified formulation is

M

= Y = - 1 n = 1,2,... ,N (14)
nm

nEL(m)

57m m(tm + cmH) Y < m = 1,2,...,M (15)
n_ m) n nm-

n6L m)

Y = 0,1 m = 1,2,...,M; n S L(m) (16)
nm

The reduction in dimensionality is a function of the size of the sets Lm

and the decouplinq, which occurs when sets of components can only be

assigned to particular sets of DMs.

For example, let M = (DM ,D1,DM2) M = (DM3,DM4), L =L = (xx 2,x3
3 4

and L = L = (x4 ,x5 ). Figure 5 illustrates the decoupling of this problem.

The specialization restriction reduces the number of variables Y that
nm

must be considered from 20 to 10. The decoupling effect allows two GNs

to be solved, one with 6 variables, the other with 4 variables, rather

than one GN with 10 variables. Since the complexity associated with the

Branch and Bound algorithm used to solve this problem increases nonlinearly

at a rate that is greater than unity, the ability to decouple the problem

is a significant benefit.
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COMPONENTS DECISION MAKERS

DM4(a) Original Problem

DM?
X3

(b) Decoupled Problem

Figure 5. Specialization

Prespecified Grouping of Components

Although components may be mutually independent, reasons may exist

which require certain components to be processed together. To guarantee

these components are all assigned to the same DM, supercomponents are

created. Let the set L(g) contain the set of components comprising this

supercomponent, H(g) be the set's entropy and s(g) be the set's dimension.

The set L of components comprising the input vector is redefined to be

the set of supercomponents L(g) which has dimension G.

The number of components that need be considered explicitly is G.

The only modification to be made to the GN concerns constraint set (10)

which is modified to account for the dimension of the supercomponents:
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(s(g)tm + cH ) Y < 6 m = 1,2,...,M (17)

The solution to the GN formulation is used to construct the information

structure. However, the actual components, not the supercomponents, must

be included in the information structure. For example, if Yll = 1, Y21= 1,

Y2 = 1, and L = (xl,X 2,3), L =(x4), and N = 4 then

x1 x2 x3 x4

l 2 3 4
l [l 1° 0 0j 2 = [0 0 0 1]

1 0 0 1 0

so that

11= (1 ' 2
1 2

Summary

In this section an implicit approach for allocating data among decision

makers for parallel processing has been presented. This approach does not

require each possible partition to be considered explicitly. As a result,

the size of the problem has been reduced drastically from order 2
N to

order N. The resource allocation problem was formulated as a generalized

network and solved using one of the efficient GN algorithms, Several

cases were examined in some detail under the assumption that all compo-

nents of the input need not be processed by more than one DM. The weake-

ning of this assumption is discussed in the next section.
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REDUNDANCY

Introduction of redundancy in the design of the single echelon

requires that the problem be viewed from a different perspective.

The concept of distributed database systems (DDSs) more clearly il-

lustrates the need for including redundancy.

Distributed database systems evolved to satisfy several needs.

One need was to have the data which required constant updating near

the users. A second need was to reduce vulnerability and thus allow

the uninterrupted flow of information, should one data center fail.

Redundancy, as interpreted with respect to SE structures, can be

integrated with the concept of DDS. The concept of storing processed

data requires a reexamination of what a SE structure is. It was

initially defined to be a group of DMs who (i) are not hierarchical

with respect to the boundary of the organization and (ii) perform

a complex task. Two types of tasks now concern the SE. The first

(original) task is to process the data of the input vector. The

second task is to store the data, be it processed or not. This

second task can be incorporated into the original problem by

introducing constraints into the system which cause the original

definition of efficiency to be violated. The original statement

of objective required that a complex task be performed accurately

using the minimum number of DMs while satisfying the constraints.

Implicit in this objective was that each component of the input

vector should be processed exactly once.

Each DM in the DDS processes and stores the entire partition of

components he receives. All components are again assumed mutually

independent. A subset of these processed components is also transmitted.

This subset can range from the entire partition of processed components

to the empty set. Time is required to process, store, and transmit

components. The storage time and transmitting time functions are
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assumed identical and are imbedded in a single processing time function,

T . The effect of redundancy on the ability to formulate the problem
k

as a GN as well as on the dimensionality issue is significant. Three

cases will be examined.

The first case requires that each component x be processed and

stored R times. If R is unity for all n, then this formulation
n n

defaults to the original GN formulation, for parallel processing.

If R > 1 for at least one component, then only a minor modification

is necessary. Constraint set (8) is modified so that

- I Y = -R n = 1,2,...,N (18)
nm n

m

The only difference in constructing the information structure is that

partitioning matrices and their associated vectors will not necessarily

contain distinct components.

The second case requires the Rg DMs must each process a specified

set of components. Supercomponents, composed of the specified sets

of components, are constructed. The formulation is identical to

that for prespecified grouping of components except that the right

hand side constants of constraint set (8) are now replaced with Rg.

The modified constraint set is

M
v Y = -Rg g = 1,2,...,G (19)

m=1 gm

The information structure is constructed in an identical fashion to

that for prespecified groupings of components. Again, the associated

partitioning matrices and vectors will not necessarily have distinct

components.

In the third case, a particular group of components d!, must be

processed and stored by each member of a prespecified group of DMs,

M1. It is assumed that these components do not overload these DMs,
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If, however, the time required by the m-th DM to process his assigned

components is strictly less than the available time 6 , additional

components may also be assigned to him provided they do not overload

him. An available processing time, 6 , is defined for each DM in Ml,

which is equal to the difference between the original available

processing time and the time required to process the specified

components.

Two modifications of the original GN formulation are made:

a) All components whose assignments to DMs have been

prespecified are omitted. To guarantee that each

of the remaining components is processed once and

only once the following constraint set is formulated,

M

_ ·y = -1 n £ L" (20)

where L" is the set of unspecified components,

b) To guarantee that no DM is overloaded the following

constraint set is formulated; each d is replaced

with the appropriate 6m.

L (tm + c mH ) Y < m = 1,2,... ,M (21)
nCL'

The variables, Y , are again restricted to be binary
nm

Y = 0,1 n L' ; m = 1,2,... ,M, (22)
nm

The partitioning matrix associated with each DM of the single echelon

(SE) includes all components he was preassigned and all components for

which Y = 1, n £ L'. For example, if N = 3 and if DM1 were pre-

assigned components (Xl,X2,x3) and also were able to process component x5

so that Y51 = 1, then his associated partitioning matrix would be:
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x1 x2 x3 x4 x5 x6 x7 x8

1 0 0 0 0 0

1 0 1 0 0 0 0 0 0

1 °= 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0

The information structure is constructed directly.
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ALTERNATE PROCESSING

Information structures based on alternate processing are appropriate

when the input vector cannot be partitioned, i.e., when the strategy of

creating self-contained tasks cannot be used to avoid overload. The

other strategy available to the organization designer is the creation

of a slack resource, in this case, time. Thus, each DM is given more

time to process the input assigned to him, which, as already mentioned,

introduces a delay strictly greater than 6 .

A deterministic strategy is one in which the ordering of the

assignment of the input vectors to the DMs is fixed. In order to

specify the optimal information structures associated with this strategy,

it is necessary to determine simultaneously:

a) the minimum number of DMs, M , necessary to

process the input vectors without any one being

overloaded and

b) the frequency, qm, with which each of these DMs

receives an input vector.

A very simple method for solving this problem exists. The over-

load constraint requires

< -m

where T is the average time for the m-th DM to process an input vector.

Without any loss of generality, the DMs may be re-indexed according to

their processing time functions: i.e.., let the first DM be the most efficient
-1 -2 -M

and the m-th DM be the least efficient, so that T < T <. T M The other

constraint on the problem is that all of the data be processed;

m=lq
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where M has yet to be determined. The solution proceeds by choosing

DMs in order of efficiency until

X+l -.X

/ > 1> ZE /m (23)
m=l m=l

If the right hand side of (23) is an equality, then the minimum
.

number of DMs, M , necessary to process the input vectors without over-

load is equal to X, and

/-~m if 1 <m< X

q Otherwise

If the right hand side of (23) is a strict inequality, then the

minimum number of DMs, M , is equal to X+l.

%+1
Because s?Because 6/Tm > 1, qm must be defined as

m=l

-m m
if 1 < m < X+1

qm

~0 ~ Otherwise

where m > 0 m=1,2,..,X+

X+iZ (S/Tm_m ) = 1

m=l

m
These £ may be set to ensure that all of the qm are rational, so that

a cyclical strategy can be used.
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A cyclical strategy is defined as a strategy in which the ordering

of the assignment of the input vectors to the DMs is repeated every S '

input vectors. In the case that the right hand side of (23) is an equali-

ty and at least one qm is irrational, a cyclical strategy cannot be used;

but it may be argued that since the T Is are usually estimated rather

than precisely calculated, they can always be chosen to be rational and

so a cyclical strategy may always be used. In this case, 6 ', the number

of inputs in one cycle, is the lowest common denominator of the qm's.

The information structures for a deterministic cyclical strategy may now

be completely specified.

Define F to be the ordered set of indices on one cycle of a' input

vectors: that is,

F _{ff = 1,2,...,{'

Now let Fm be a subset of F where

Fmi {f Flinput Xf is assigned to DM m} m = 1,2,...

With the indicator variable fm defined as

the only requirement on the assignment of input to DM m is that

m

fqF m = 1,2,...,M

Since input vectors only arrive once every 6 time units, xf is assigned

at time t = (k 6' +f) 6 , where k = 0,1,... determines the number of cycles

that have been completed at time t. Therefore, the information structure

for DM m at time t is given by
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I if f£Fm m = 1,2,...,M
eTm(t) = ,Tm [(k' +f)] = Othe (24)

0 Otherwise

A special case of the deterministic cyclical strategy is a periodic

one characterized by the following properties:

a) the length of the sequence is exactly M , the number

of decision makers, and

b) each DM is assigned exactly one symbol during the

execution of the sequence.

The information structure for the periodic strategy is given by

I t = (kM + m) 6

7m (t) =i m = 1,2,...,M ; k = 0,1,2,... (25)
0 Otherwise

The relative frequency for a DM receiving a symbol for processing in the

periodic case is

qm = 1/M for all m (26)

In order that no DM be overloaded, the mean symbol processing time must

satisfy the following inequality:

-m * *
T < M m = 1,2,...,M

In this section, special cases are again explored, as in the section on

parallel processing, to provide insight into the effect various properties

have on the design problem.

Identical Decision Makers

In the first case, all DMs are assumed to possess identical properties:
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a) the processing time functions of all the DMs are

identical,

b) the DMs are able to process any input symbol, and

c) they have identical costs.

Assumption (a) implies that only one mean processing time, T, need be

computed. Since the DMs are identical it follows that

q = q < / m = 1,2,...,M. (27)

The only other constraint requires

L q = M q = 1 (28)
m=l

Therefore, M is the smallest integer that satisfies eq. (28) subject

to the condition (27). The resulting strategy is periodic: the solution

only requires that the relative frequency of symbol processing by a DM

be 1/M

The corresponding information structure is

I for t (kM + m)

7r (t) = m = 1,2,...,M ; k = 0,1...

0 Otherwise

Groups of Identical Decision Makers

Let there be G groups of decision makers denoted by M
g , g = 1,2,,.,G

with the DMs within each group possessing identical properties. Let d be

the dimension of Mg and let g be the mean processing time for each member

of Mg . As in the introductory section on alternate processing, the groups

are re-indexed according to their processing time functions so that the
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DMs in M 1 are the most efficient and those in MG are the least efficient:

-1 -2 -G
i.e., T < T <...< T . Then groups of DMs are chosen in order of effi-

ciency until

A+l A

d ( )> 1 > d( 6 ) (29)

g=l -- g=1 g

If the right-hand side of (29) is an equality, then

M = d and
g.

g m £ M g ; g = 1,2,...; A

qm = 

<0O Otherwise

If the right-hand side of (29) is an inequality, then all of the DMs in

Mfi ) may not be needed. To calculate the minimum number of DMs from

M+1), X, necessary to add to the X groups of DMs already selected,

a procedure identical to that described in the introductory section on

alternate processing is employed. Then

M = d + X

-- - cm m CMg g = 1,2,..., or
-X+l A+l

m M C M where the
qm = "+l *

dimension of M = 

O Otherwise
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m > o

The information structures for both of these cases may be defined exactly

as in (24).

The alternate processing mode has been introduced as a means of

implementing the second information reduction strategy, i.e., creation

of a slack resource (time) to reduce information overload, as discussed

in the introduction to this paper.

-33-



INFORMATION STRUCTURES FOR SINGLE ECHELONS

In the previous three sections a detailed analysis of pure parallel

and alternate information structures for the single echelon was presented.

These two basic structures were explored under a variety of assumptions

for the input symbols and the decision makers. The emphasis in the

development was on procedures for allocating the input symbols and

for determining the minimum number of decision makers needed to im-

plement a specific structure. In the general case, however, the or-

ganization designer is given only the properties of the symbol source

and a limited number of decision makers who could form the single echelon.

What is needed is a methodology for the design of the information struc-

ture. Such a methodology, based on the results obtained so far is pre-

sented in this section. It is then applied to an illustrative problem

that requires integration of both parallel and alternate processing

modes.

The first two steps have already been presented, In the first one,

the task is modeled as a source that generates vector signals for the

organization to process. The second step consists of modeling the

decision makers according to their processing time functions and their

specialization.

STEP 3: Information Reduction Strategy

The two basic strategies are

a) creation of self-contained subtasks, and

b) creation of slack resources.

The first strategy is applicable when the input vector can be partitioned

into subvectors, The second strategy is feasible when the organization

can tolerate some delay (beyond the mean interarrival time d ) in the
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processing of the input vector. It is here that the organization

designer's understanding of the task to be performed by the organization

is crucial. He has to determine the extent to which parallel processing

can be used and estimate the maximum tolerable delay. The latter deter-

mines the extent to which alternate processing can be used. Assuming

that the overall task can be accomplished by various combinations of

alternate and parallel processing, he then has to assess the trade-offs

between subdivision into smaller independent tasks and longer delays.

Once he selects an integrated information reduction strategy, the

designer proceeds to Steps 4 to 6. When he evaluates the resulting

design, he can return to Step 3 and modify the strategy.

STEP 4: Mathematical Model

The next step consists of the formulation of the mathematical model

that represents the integrated information reduction strategy selected

in Step 3. There are four basic constraints, common to all strategies

considered so far, that must be expressed analytically.

a) All components must be processed. This is a key

assumption; if any data were to be rejected, then

their sources have to be eliminated from the super-

source model.

b) No decision maker is overloaded. This condition requires

that in the final design the mean processing time of each

decision maker in the echelon does not exceed the mean

interarrival time for symbols (or tasks) received by him.

c) Only decision makers who receive data from the supersource

are members of the single echelon. The decision makers

who are not used in the single echelon are assigned the

null or empty subtask.
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d) Each DM is assigned at most one subtask. Additional

constraints that are specific to the particular appli-

cation can be introduced.

STEP 5: Optimization Problem

Each DM is assigned a cost that may depend on his capabilities

and limitations in performing the tasks. Then the objective function

to be minimized is the total cost of the DMs included in the single

echelon. If the costs associated with each DM are assumed equal, then

the optimization problem reduces to one of minimizing the number of

members in the echelon.

In various cases, under particular simplifying assumptions, solutions

were obtained from reasonably simple and straightforward computations.

If this was not the case, mathematical programming proved an attractive

method for obtaining solutions. In particular, generalized network (GN)

formulations proved most attractive because of the efficient algorithms

which exist to solve them. Knapsack problems, and mixed integer linear

programs can also be used.

SETP 6: Information Structures

The solution to the optimization problem yields the number (and

identity) of the DMs comprising the single echelon and the assignment

of a task or subtask to each DM. The results are expressed formally

in terms of an information structure that consists of parallel or

alternate processing, or a combination of both. The structure is

evaluated to determine whether the tradeoffs between the number of

DMs and delays are acceptable; if not, then the designer should return

to Step 3 and revise the information reduction strategy.

The six steps are applied now to a design problem that illustrates

the methodology.
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Problem

Consider G distinct sources, each source generating a vector of

signals. The task is such that each source output has to be processed

intact, i.e., it cannot be partitioned. There are M decision makers

who can receive the generated signals and none of these DMs can process

the output of any of the G sources without being overloaded. A parallel/

alternate information structure seems appropriate.

STEP 1: Tasks

The supersource consists of G synchronized sources that generate

vector signals. The mean signal generation rate is - . The elements

of the input vector can be partitioned into G sets, each set corresponding

to the output of each of the individual sources. This is the finest grain

decomposition of the input.

STEP 2: Decision Makers

The DMs constitute a group of M distinct members.

STEP 3: Information Reduction Strategy

The decomposition of the input vector allows for the parallel

processing of the signals generated by the G sources. No further

division into subtasks is possible. Since every one of the G subtasks

arriving at a rate 6- 1 cannot be processed by any DM without causing

overload, the second information reduction strategy (creation of slack

resources) must be used. Alternate processing of signals generated by each

source would allow additional time for each DM to do the processing and

therefore, overload may be avoided, The resulting processing mode is an

integrated parallel/alternate processing.
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STEP 4: Mathematical Model

a) Since alternate processing is assumed for the output

of each source, the requirements that all signals be

processed reduces to the condition that the sum of

the symbol assignment frequencies for the output of

each source, q gm, must be equal to unity. This is

expressed as eq. (30)

mg = 1,2,.. .,G (30)

b) In order that no DM be overloaded, the frequency with

which each receives a signal for processing should be

sufficiently low so that his mean processing time

does not exceed the effective mean interarrival time.

This condition is given by eq. (31)

-m

qgm - g

cd) Any DMs that receive input for processing with zero

frequency are excluded from the single echelon. Further-

more each DM is allowed to receive inputs from at most

one of the G sources. Constraints (32) and (33) guarantee

these conditions where the binary variable Y is zero
gm

when the m-th decision maker is assigned the output of

the g-th source.

t Y = G-l m = 1,2,...,M (32)

Y ' q = 0 g = 1,2,... ,G; m = 1,2,...,M (33)
gm gm
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Y = 0,1 g = 1,2,...,G; m = 1,2,...,M (34)
gm

STEP 5: Optimization Problem

In a structure such as this, the number of decision makers that can

process the incoming signals is a reasonable objective function to be

minimized. Note that since the DMs do not have identical properties,

the problem cannot be decoupled into G distinct optimization problems

even though no decision maker is allowed to process signals from more

than one source. The resulting mathematical programming problem is

difficult to solve because of the nonlinearity of the constraint (33).

STEP 6: Information Structures

The information structure can be obtained directly from the solution

to the optimization problem (the nonlinear MP). The single echelon

is composed of only DMs for which the corresponding frequency q is
gm

strictly positive. The information structure, Figure 6, specifies the

decision maker, the group of components g he processes and the frequency

with which he is assigned these inputs. It is given by

if f £ F ; k= 0,1,...

7m(t) = r [(k6' + f) 6] (35)
g g g

Otherwise

where8 ' is the lowest common denominator of the q , m = 1,2,...,M and
g gi

Fm {fjinput x from source g is assigned to m-th DM}
g f

m = 1,2,...,M ; g = 1,2,...,G
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COMPONENT GROUPS DECISION MAKERS

Ml

\/* /-~DMm

L ' . MG

D1,

where A: input symbol generation time

Figure 6. Parallel/Alternate Processing

Note that while the inputs from the sources are received by the single

echelon simultaneously, the outputs are not synchronized, Indeed, each

DM introduces a different delay; the maximum delay is given by the

maximum value over m of

6 (l-qgm) / qgm

If this delay is unacceptable, then more efficient DMs are needed.

The solution to the problem is illustrated now with a specific

example.
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Let there be three distinct sources (G = 3) each generating a vector

g in synchronization and let the rate be S = 1.

L X {lX2,X 3 }

2
L : {x4}

3
L {x5,x 6}

Let the size of the alphabets of the elements of L1 be ten, of L2 four,

and of L3 eight. Assume that the corresponding probability distributions

are uniform. The M decision makers are assumed identical with processing

time functions given by

T = 0.5 + 0.25 E H(x.) for all m,g.
xiL

The processing times for each group g are computed readily:

m
= 0.5 + 0.25 x 3 x log 2 10 = 2.99

Tm 0.5 + 0.25 x 1 x log 2 4 = 1.0

T3 0.5 + 0.25 x 2 x log 2 8 = 2.0

Inequality (31) yields

ql < 1/2.99

q2m 1

q3m < 1/2

Application of (30) leads to:

q11 = q12 = q = 1/3

= 1q24 1

q35 q3 6 = 1/2

-41-



with all other qgm equal to zero. Constraints (32), (34) are satisfied

by choosing Y equal to zero when qgm 7 0 and equal to unity when q gm= 0.

To construct the information structure in accordance with (35), seve-

ral quantities must be defined. Clearly,

i = = 1 2

since a periodic alternating strategy is appropriate. Also

F1 = {1,2,3} with 1 = {2{ F =12 ; F =31

F = {11 with F1 = 1}
2 1

5 6
F =(1,2) with F = {1 ; F ={2
3 3 3

Then, for k = 0,1,2,..., the partition matrices are given by

I if f E F1

1Tm (t) = elm (3k + f) =

0 Otherwise

m 4
72 (t) = r2 (k + 1) = I

I i ff F3

Tr (t) = 'm (2k + f) =
~r3 (t) n3

t Otherwise

and, finally, the information structure can be constructed:

(t)= TWl l(t) 2 (t) TrW, 73 (t), 74 (t)) t1 1 1 2 4 3 /

The minimum number of DMs is six and the maximum delay is three units (i.e.,

3'S6's). The 11(t) specifies completely the allocation of input signals to

each member of the single echelon.
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CONCLUSION

An approach to the design of information structures for a single

echelon organization has been presented, This approach is based on

the properties of the inputs, the characteristics of the available

decision makers, and the constraints imposed on the organization by

the task. Two basic information reduction strategies, creation of

self-contained tasks and creation of slack resources, were modeled

as parallel and alternate processing, respectively. It was then

shown that complex information structures can be constructed using

combinations of parallel and alternate processing. The former is

appropriate when an overall task can be divided into subtasks; the

latter, when delays in producing an output can be tolerated and

the task cannot be divided.

The next major step in this research is the integration of the

single echelon with other parts of the organization. The single

echelon is responsible for transmitting the processed inputs to

the appropriate destinations within the organization. This trans-

mission of processed data to other members in the organization is

referred to as serial processing.

The design of multiechelon structures requires each echelon to

process its information without overload. The constraints on each

echelon, however, must be inferred from the constraints that are

imposed on the overall organization. This introduces a higher

level of complexity to the design problem.
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