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Summary = (1/c) gi(x) (1)

Consider a state process t e xE(t) evolving where x = x(t) is the state at time t and i = i(t),

in Rn whose motion is that of a pure jump process a jump process on (1,...,N) governed by (ak(x(t)),
in Rn, in the 0(1) time scale, upon which is super represents the mode in operation at time t. More
-imposed a continuous motion along the orbits of accurately and more concisely, a natural formulation
a gradient-like vector field g in Rn, in the 0(1/c) of the above situation is to say that t e (x(t),
time scale i.e. the infinitesimal generator of the
state process is of the form L + (1/c)g. If we i(t)) is a MarRov process on X = Rn fl,..,N}
consider observations of the form governed by A + (l/E)g.

dy = h(xc(t))dt + db(t) , t 2 0, One can generalize (1) in various directions.
For the purposes of system identification one may

then for each C > 0 the corresponding nonlinear replace (l,...,N) by an arbitrary parameter space
filter is infinite dimensional. We show however A (for related work see [3]). Alternatively, the
that the projected motion t * xE(t) onto the state space need not be Rn and may be replaced by

equilibrium points of g is, in the limit as c0 , any smooth manifold. In fact all of these situa-

a finite-state process governed by some explicit tions are subsumed by the following set-up:
L on the finite state space consisting of the
equilibrium points of g. We then show that the Let X be a smooth manifold and let g be a
corresponding filters converge to a finite-state smooth vector field on X. Let A be an integral
Wonham filter. operator on X given by

ACp(x) = fX (P(x') - c(x)) t(x,dx'), (2)

I. Variable Structure Systems for some measures B 4 p(x,B) depending on x in X.

For each c > 0 let t 4 xc(t) be a Markov process
In situations where the structure of a on X governed by A + (/)g

dynamical system varies in time, it is often the
case that the structural changes occur on a time The purpose of this paper is to study the
scale that is much slower than the dynamics in any limiting behaviour of these processes as 0. Our
given mode of operation. For example, in the main result is that while the original motion t 4
study of power systems, the swing equations are
sometimes thought of as occuring on a fast time xc(t) clearly blows up as c4O, in certain cases

scale when compared to the relatively slow time there is a reduced-order state space X and a pro-

scale of random faults or breakdowns. jection X X such that t (t) ())
jection : X * X such that t * xC(t) X ~(xC(t))

Suppose that gl'',. 'gN are vector fields on R
n, converges to a well-defined limit as cO. Thus

suppose that A(x) = ("a.(x)) 1 :!9 ij :9X N, is X may be regarded as the full-order state space
suppose that A(x) = (aij(x)), i s i, j N. is while A and g are the generators of the slow and
an intensity matrix for each x in Rn. If there fast dynamics respectively.
are N possible modes of operation of the system
and. if a (x) represents the infinitesimal tran- In general X should be chosen to be the limitIn general X should be chosen to be the limit

si n probability that a structural change fromset of the vector field g. In this paper we deal
sition probability that a structural change from with the simplest kind of limiting behaviour, when
mode j to mode k happens when the system is in the limit set of g is given by a finite number of
state x, then a natural formulation of the above states l = t .stf i in . Even in this case
situation is to consider the trajectories of states X = X. Even n this case

there are a number of novel features. Viewed as
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X to a finite state space X, a fact that radically



changes the level of computational difficulty of
nonlinear filtering and (partially or fully obser- E( c(x(t)) - (x(s)) - f L(cp)(x(r))dr- 9s)=o
vable) stochastic control problems associated to
the processes t 4 xE(t). for all c in Co(X) and all O s s s t 5 T. (3)

As an application of our main result we shall Recall that this equivalent to the statement that
see that while the nonlinear filters corresponding for any bounded s - measurable · : 2 4 R,
to the problem of estimating t 4 xc(t) in the pre-
sence of additive white noise do not converge as E((p(x(t)) - (x(s)) - jt Lr(cp)(x(r))dr) 1 )=O
e0O, it turns out that the projected filters do
in fact converge to a well-defined object, the for 0 5 s 5 t 5 T. By abuse of notation, the
(finite-dimensionally computable) finite-state measure P is referred to as the distribution of
Wonham filter. the Markov process t 4 x(t).

Our treatment here is based on the martingale Let Gtcp(x) a (at(x)) and set At= GtA G-t.
formulation an analogous theorem due to Papanicolaou, Consider the map a * 4 Q given by a (w)(t)
Stroock and Varadhan [4]. We therefore begin, for eC 
the sake of completeness, with a review of the mar- a (w(t)) and let P be the image of a given
tingale problem for A + (l/e)g. For a general t/e E
treatment of the martingale problem for Levy pro- munder the map a
cesses, see [5] Lemma. Pe is governed by A + (l/e)g if and only

2. The Martingale Problem for A + (l/C)g if P is governed by At/.
e t/

Let X denote a smooth manifold and let g be a This lemma is proven using integration by parts in
smooth complete vector field on X. Let B(X) be (3) exactly as in the proof of theorem (2.1) of [6].
the space of all bounded Borel functions on X, and Since At/E is an integral operator the methods of
let at, -- < t < -, denote the flow of g. The chapter 3,[2] yield the fact that there is one and

domain of g is the set . of all functions c in B(X) only one measure P for any given initial distribu
such that there is a * in B(X) satisfying -tion governed by the operator At/e. Thus

c(at(x)) - cp(a(x)) = t (a(x))dr Proposition. There is one and only one Markov
t s s r process on X governed by A + (1/e)g, for any given

for all x in X and 0 s s : t s T. Any such * is initial distribution. Moreover (3) above holds
then denoted by g(p) and we emphasize that there with Lt = A + (1/e)g for any cP in the domain & of
may be more than one g(cp) associated to a given cp. g, and
If c is sufficiently smooth, however, then there is
a natural choice of g(cp) given by P (t e x(t) is a finite disjoint union of

edp)(x =tx)compact trajectories of g ) = 1.
g(y)(x) = di V(t(x))

t=O proof. The sample paths of P are as stated because
We note for future reference that & is a vector P is the image of the measuie P under the map a
space. 

and the sample paths of P are piecewise constant.

Let 2 denote the space of all right-continuous To see that (3) holds wth Lt = A + (1/e)g for all
paths w : [O,T] 4 X having only a finite number of p in X first note that P can be constructed so
discontinuities of the first kind in any compact that (3) holds for all e 9 in B(X),when Lt = At/,
time interval. For each O 5 t 5 T let x(t) : e Xtime interval. For each 0:9 , ;5 T let x~t)and then note that the integration by parts trickbe the evaluation map at time t: x(t,w) = w(t). The and then note that the integration y parts trick
Borel a-algebra of 0 is then given by ST, whiere rlt

is the a-algebra generated by the maps x(s), O s Thus the martingale problem for A + (l/e)g is
s t. well-posed. In particular if X = [x1,. .. xN) is

a finite set then X can be considered to be a zeroIf B 4 i(x,B) is a finite positive Borel measure
on X for each x in X such that x-*(x,B) is in B(X) -dimensional manifold. Thus suppose (lij) 1 5 i,
for each Borel set B C X, let Ap be given by (2), j - N is given and set
for any c in B(X). A is then a bounded linear
operator on B(X) whose norm is less than or equal to A (x.) = Z ( 4(x.) - )(X.)) I.. (4)
twice the sup norm of X where X(x) i- (x,X). Let 1 1 il
Co(X) denote the space of all smooth functions of where the sum is over j, for all 9 in B(X) = CO).
compact support on X. Let Lt : Co(X) 4 B(X) be a If in the above proposition we make the replace-

linear operator depending on t. We use the standard ments X -X, A 4- A, g 4 O then we conclude that the
martingale definition of a Markov process [5]: martingale problem for A is also well-posed. In

closing this section, we note that the only property
Definition. A Markov process on I governed by Lt of g that we have used is the existence ad unique

Defins a probability measure P on. A Mrkov proc-ness of an associated flow satisfying c0(x) c C
is a probability measure P on 2 satisfying o



3. Gradient-like Vector Fields equation (4) where

Recall that g is a complete smooth vector pi. = V(x.,B.), 1 5 i,j s N.
field on X with flow a. We assume that there are l a
a finite number of points xl, .. XN in X such that What follows is the main result of the paper.

for all x in X, at(x) converges to one of X, ... xN Theorem. Assume that the Fredholm alternative for
as tt-. The set X = {xl,.. .,xRN) represents the re g holds. Let t * x6(t) be Markov processes on X

-duced order state space. Let B. X be the ith governed by A + (1/E)g, all having a common initial
1 distribution on X. Then the Markov processes t 4

basin of attraction: B. is the Borel set of all x RE(t) coverge in distribution to the unique Markov
in X such that tct(x) converges to x. as tt-. For process on X governed by A and having the projected

x in B. set (x) = .. The map r : X X is then initial distribution, as ¢O0. This means that for
1 1 any bounded continuous functional $ : Q 4 R

in . and one choice of g(T) is given by the zero E (C) e E(§)
function. For cp in B(X) let 9 denote the restric- (
tion of y to X. as EO.

Definition. The Fredholm alternative holds for The proof of this theorem is analogous to that
in B) iff there is a tlr in a satisfying The proof of this theorem is analogous to that

-in B(X) iff there is a *in .& satisfying of a theorem due to Papanicolaou, Stroock and

g(*) = pn - 9. (5) Varadhan[ 4], and breaks naturally into two steps.
The first step consists of showing that the distri-
butions (P 3 of t e ie(t) are a relatively weakly

Consider the following assumption. E _
compact family of measures on Q?, while the

(A) There is an integrable function R(t), O \ t < second step is the identification of the limiting
such that distribution P via the Fredholm alternative and thesuch that well-posedness of the martingale problem for A.

l[(at(x),Bj) - B(r(x),Bj)1 5 R(t) The topology on 0 is the Skorokhod topology.

for 1 s j s N, x in X, and t 2 0, and | R(t)dt This turns 2 into a complete metric space and thus
is finite. 0 the Prohorov theory applies: A family of measures

{T 3 on n is relatively weakly compact iff {P 3 is

Proposition. Under assumption (A), the Fredholm uniformly tight: For each a > 0 there is a compact
alternative holds for all functions of the form set K c n such that P (K) > 1 - a for all e > 0.
A($o~), for any given $ in B(X). e

Since X may be considered as embedded in a real line

proof. Set _cp __ 90_ and the standard theory applies and so we conclude that
(PE] is relatively weakly compact, using a special

*(x) - Jop A(as(x)) - A;(nT(x)) ds. case of proposition (A.1) of [5].

Since Acp is a finite linear combination of the func Now suppose that kO0 and PEk 4 some P' on Q.
-tions x 4 ~i(x,B.), assumption (A) guarantees that Let $ be in B(X)and choose t in & such that
* is in B(X). a The rest of the proof follows
from the above formula for $. g(*) = A()or - A(Onr). (6)

If the conclusion of this last proposition is Since P is governed by A + (1/E)g and p + E k is
true, then we shall say simply that the Fredholmk k
alternative for g holds. in we have ( 

In what follows n denotes the right-continuous 0 = EE (((-+ck)(x(t)) - (P+ek*)(x(s))
path space of X. Since the trajectories of PE are 

a finite disjoint union of compact trajectories of - t(A+(l/Ek)g) (1P+t)(x(r))dr) ;T )
g, we see that : X 4 X induces a well-defined map
·4 Q given by w e ' where w' (t) = rn(W(t)). for all bounded - measurable : b - R. Thus

The swing equations arising in the study of by expanding and using (6) we see that
power systems can be thought of as a vector field g E (t)) - -t A((r))dr )
on X = Tn X Rn. For a study of equilibrium points Ek (x(t)) - s
of this vector field g, see since , A(), and are all bound

is 0(¢k ) as cO0, since i, A(t), and ~ are all bound
-ed. Thus letting kt-, we see that any limiting
probability measure of the set (Pi] is a Markov

Let A and g be as before, and define A by process governed by A, and since there is a unique
such Markov process, this shows that P 4 P, the

Asp = A( TTn)|x Markov process governed by A.
With a little extra work, the above result

The linear map A : B(X) 4 B(X) is then given by still holds for all bounded · that are continuous
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Since the distributions P of the Markov
E

processes t 4 xE(t) do not converge, we do not
expect the corresponding filters to converge.
However the projected filters, obtained by replac-
ing Cp by (p9oT, h by hoTT, do in fact converge as eO:

Theorem. The projected filters converge to the
finite-state WQnham filter corresponding to the
problem of estimating the finite state process
governed by A, in the presence of additive white
noise.

This follows immediatly from our main result.
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