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1. Introduction

The methods that are currently most popular for solving smooth linear-

ly constrained optimization problems of the form

minimize J(x) (1)

subject to Ax < b,

where J: Rn + R, A : mxn, bR m , are based on solution of some type of linear

or quadratic programming subproblems. For example methods stemming from

the original proposals of Goldstein [1], and Levitin and Poljak [2] take

the form

Xk+l = Xk + ak(xk-xk) (2)

where xk solves
k

minimize VJ(xk)'(x-xk) + 2 (x-xk)'Hk(x-xk) (3)

subject to Ax < b,

Hk is a positive definite matrix, and ak is a positive scalar stepsize

determined according to some rule. This method is capable of superlinear

convergence if Hk is either the Hessian matrix V2J or some suitable Quasi-

Newton approximation of V2J [2]-[4]. However for large-dimensional problems

the overhead for solving problem (3) is typically prohibitive with such a

choice of Hk thereby rendering the method impractical.

The difficulty with excessive overhead in solving the quadratic program-

ming problem (3) can be bypassed in at least two ways if the constraint set

has a simple form (for instance upper and lower bounds on the coordinates of
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x, Cartesian products of simplices, etc.), or has special structure (for

example it expresses conservation of flow equations for the nodes of a

directed graph). One possibility is to take Hk = o in problem (3) so that (3)

becomes a linear program. This leads to methods of the Frank-Wolfe type

[5] which has been extensively applied for solution of multicommodity net-

work flow problems [6],[8]. The rate of convergence of these methods is sublinear

[9], [10] and therefore too slow for applications where high solution accuracy

is demanded. The other possibility is to choose the matrix Hk in (3) to be positive

definite and diagonal. With such a choice it is often possible to solve

the quadratic subproblem (3) very efficiently by exploiting the simple

structure of the constraint set. Methods of this type have a long and

quite successful history in large-scale problems arising in network flow

applications [7], [11]-[17] as well as in other areas such as optimal control

[18], [19]. However their rate of convergence is typically linear and in

many applications unacceptably slow.

A somewhat different type of method stems from the original gradient

projection proposal of Rosen [20], and other related proposals (the reduced

gradient method and the convex simplex method [21] etc.). The typical

iteration in these methods proceeds along a linear manifold of active con-

straints which is gradually modified during the algorithm as previously

active constraints become inactive and new constraints become active (see

[22]-[25]). These methods are quite effective for problems of smalll

dimension and have also been applied in some network flow problems [26],

[27], but, in our view, are highly unsuitable for large problems with many

constraints. The main reason is that they typically allow' only one new

constraint to become active in any one iteration. So if for example one
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thousand constraints are active at the solution which are not active at the

starting point, these methods require at least one thousand iterations and

likely many more in order to converge.

In this paper we consider a projected Newton method first proposed in

Bertsekas [28] that offers substantial and often decisive advantages over

the methods described above for large problems with many simple constraints

as typified by a multicommodity flow structure. For the problem

minimize J(x)

(4)
subject to x > 0

it takes the simple form

Xk+l = [xk - okDkVJ(xk)]5)

where ak is a positive scalar stepsize, Dk is a positive definite symmetric

matrix which is diagonal with respect to some of the coordinates of x, and

[.] denotes projection (with respect to the standard norm) on the positive

orthant. It is shown in [28] that Dk can be chosen on the basis of second

derivatives of J so that the method typically converges superlinearly.

Iteration (5) constitutes the basic building block for extensions to

more general inequality constrained problems by means of a procedure described

in [28]. In this paper we focus on the case where the constraint set is a

Cartesian product of simplices, and consider in more detail a class of non-

linear multicommodity flow problems characterized by a constraint set of

this type. We describhe, n approximate version of a Newton-like method

based on approximate solution of the Newton system of equations via the
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conjugate gradient method. It turns out that for network flow problems

this conjugate gradient method can be implemented very efficiently - a

fact also observed earlier in a different context by Dembo [29]. A key

fact is that the product of the Hessian matrix of the objective function

with an arbitrary vector can be obtained by means of graph operations that

require relatively little memory storage and computational overhead. As a

result a significant advantage in speed of convergence is gained over earlier

methods at the expense of relatively small additional overhead per iteration.

Computational results substantiating this fact may be found in [37].

The notation employed throughout the paper is as follows. All vectors

are considered to be column vectors. A prime denotes transposition. The

standard norm in R is denoted by 1-1, i.e. for x = (x ,...,xn ) we write
n

IxI = [ Y (xi) 2 ] /2. The gradient and Hessian of a function f: Rn + R
i=l 2

are denoted by Vf and V f respectively. All vector inequalities are meant

to be componentwise (for example x > 0 means x > 0, i = 1,...,n).

2. A Projected Newton Method for Minimizing a Twice Differentiable Function
on a Simplex

Consider the problem

minimize J(x)
n i

subject to x > 0, ~ x = r (6)
i=l

where J: Rn + R is twice continuously differentiable and r is a given positive

scalar. We also assume for convenience that J is convex although general-

izations of all the results and algorithms of this paper are possible without

this assumption.

We describe the kth iteration of a Newtonf-like method for solving (6). At the

beginning of the iteration we have a feasible vector xk. The next (feasible)

vector Xk+l is obtained by means of the following procedure:



By rearranging indices if necessary assume that the last coordinate

n
xk satisfies

xk = max{xk | i = l,..n} (7)

Consider a reduced coordinate system in the vector yzRn - 1 given by

1 =(,n-l 1 2 n-i
y = (y ,... y () ,x , ...,x ) (8)

denote yk = (xk,., xk ), and consider the reduced objective function

1 n-l n-i
.hk(Y) = J(y ,...,y r- yi). (9)

i=1

Based on this transformation problem (6) is equivalent locally (around yk)

to the problem

minimize hk(y) (10)

y>O

n-l
in the sense that the constraint r - y > 0 is (by construction)

i=l
inactive within a neighborhood of Yk. The following iteration is based

on this fact [compare with (4),(5)]. For an (n-l)x(n-l) positive definite

symmetric matrix Dk to be further specified later denote

Yk() = [Yk - oDkVhk(yk) ] c > 0 (11)

where [A]* denotes projection on the positive orthant [i.e. for a vector

1yl ,yn-i +
y = (yl,..,yn ), the vector [y]+ has coordinates max{O,yi}, i = l,...,n-l].

Define the vector Yk+l by means of

Yk+l = Yk(ak) (12)
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where the stepsize ak is chosen by means of a rule to be specified further

later from the range

Ek o[0ak] (13)

with ck given by

n-L

ak = sup {ca yk(a) < r}. (14)
i=l

[Note that in view of (7), (8), (11), we have ack > 0 or a k =Joo. The next

vector xk+l generated by the algorithm has coordinates given by

i i
Xk+l = Yk+l , i = l,...,n (15a)

n-l
n i
Xk+l = r Yk+l (15b)

We first note that, in view of (11), (13), (14) the vector xk+l is

feasible. The following proposition identifies a class of matrices Dk for

which a descent iteration is obtained. Its proof is obtained easily by using

Proposition 1 of [28] and the preceding analysis.

Denote

+ i 3hk(Yk)
Ik (xk) = {i = , > 01 (16)

and consider for all a > 0 the vector Xk(a) with coordinates given by

xk() i = l,... ,n-l (17)

n-l

xk(a) = r- ). (18)
i=l
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Proposition 1: Assume that the positive definite symmetric matrix Dk is
~~+~~~ ~ k

diagonal with respect to the index set Ik(xk) in the sense that the elements

DkJ of Dk satisfy

DkJ = O

for all icIk(xk) and j = 1,...,n with i Z j.

a) If xk is a global minimum of problem (6) then

xk(4) = Xk, V > 0

b) If xk is not a global minimum of problem (6) then there exists a c(O,ak]

such that for all ac(O,j] the vector Xk(a) is feasible, and

JL[Xk(c)] < J(Xk), Vc (0,o] . (19)

The proposition above shows that the algorithm essentially terminates

at a global minimum and is capable of descent when not at a global minimum.

There are a number of issues relating to selection of the matrix Dk

and the stepsize ak and associated questions of convergence and rate of

convergence which are addressed in [28] for the case of the related problem

(4) and will only be summarized here. We first mention that the convergence

results available require that Dk is not only diagonal with respect to the set

Ik (x k) but rather with respect to the possibly larger set

+ i i khk (Yk)
I k = {i 0 < Yk < k' > } (20)

where

i i
= min{c, sk} (21)
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c is a fixed positive scalar, sk is given by

i i i i Dhk (Yk)
Sk IYk - [Yk - ak (22)

My

and Pk are scalar sequences such that

i i
Pk > Pi > O. k = 0,1,...

with p being some positive scalars which are fixed throughout the algorithm.

This is an antizigzagging device of the type commonly employed in feasible

direction methods (see e.g. [30]), and is designed to counteract the possible

discontinuity exhibited by the set Ik(xk) as xk approaches the boundary of

the positive orthant.

Regarding the choice of the stepsize tk' there are at least two prac-

tical methods that lead to algorithms which are demonstrably convergent.

In the first method ak is chosen according to

ak = min {a, ak c (23)

where a is a fixed positive constant and ak is given by (14). (If Dk is

chosen on the basis of second derivatives of the objective function as in

the algorithm of the next section the scalar a should equal unity). In the

second method an initial stepsize is chosen and is successively reduced by

a certain factor until a "sufficient" reduction (according to an Armijo-like

test) of the objective function is observed [28]. Under further mild assumptions

it is possible to show that all limit points of sequence generated by the algo-

rithm are global minima of problem (6). A proof of this fact is obtained by

slight modification of the proof of Proposition 2 of [28]. Furthermore
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+ +
after some index the sets Ik are equal to both Ik(X k) and the set of indices

of coordinates of Yk that are zero at the limit point. This last property

is instrumental in constructing superlinearly convergent algorithms as it shows

[in view of (11) and (20)] that the portion of the matrix D which must be
k

"diagonalized" plays no role near the end of the algorithm. As a result super-

linear convergence can be achieved by choosing the portion of the matrix Dk

that corresponds to the indices not in I k to be equal to the inverse Hessian

of hk with respect to these indices. The kth iteration of the resulting

algorithm can be restated as follows:

First the set Ik is calculated according to (20)-(22) on the basis of

the gradient Vhk . Then the vector y is partitioned as in

Y =Y | |( 2 4 )

y -
where y is the vector of coordinates y with iEIk and y is the vector of

coordinates yi with iWIk . Then a "search direction" dk = (dk,dk) is

obtained by solving the systems of equations

Hkd = -gk (25)

Hkd = -gk (26)

k _
where gk(or gk) is the vector with coordinates with icI k

(respectively itIk), Hk is a diagonal positive definite matrix, and Hk is

a symmetric positive definite matrix which is equal to the Hessian of hk

i +
with respect to the coordinates y , itI k . The vector Yk+l is then obtained

by
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Yk+l = Yk + k dk] (27)

where Xk is the stepsize obtained according to one of the rules mentioned

earlier.

We wish to call the reader's attention to the natural decomposition

of the iteration into three phases: The formation of the index set Ik,

the computation of the "search direction" dk, and the determination of the

stepsize ak. There is considerable freedom for variations in each phase

independently of what is done in other phases while still maintaining

desirable convergence and rate of convergence properties.

Approximate Implementation via the Conjugate Gradient Method

Finding the "search direction" dk requires the solution of the linear

system of equations (26). Solution of this system can be accomplished, of

course, by a finite method involving triangular factorization but when the

dimension of this system is large, as for example in multicommodity flow

problems, the associated computational overhead can make the overall algo-

rithm impractical. The alternative is to solve this system iteratively

by, for example, a successive overrelaxation method or a conjugate gradient

method. This approach is practiced widely by numerical analysts [31] and its

success typically hinges upon the ability of the iterative method to yield a

good approximation of the solution of system (26) within a few iterations.

In order to guarantee convergence of the overall optimization algorithm

it is necessary that the approximate solution, call it z, of the system

(26) satisfies

z'g k < 0 (28)



whenever gk 0 0, in order to make possible a reduction in the objective

function value [cf. Proposition lb)]. This is the minimal requirement that

we impose upon the iterative method used to solve (26).

In this paper we are primarily interested in approximate solution of

the system

Hk z = 'gk' (29)

or equivalently the unconstrained minimization problem

min gk + z'H z (30)
z

by means of the following scaled version of the conjugate gradient method:

A positive definite symmetric matrix Sk is chosen, and a sequence

{(z)is generated according to the iteration

Z° , Z0 = Zm + Ym Pm, m = 0,1,... (31)

where the conjugage direction sequence' pm is given recursively by

pO = -SkrOQ, Pm= Skr M+ fm PM-l' m = 1,2,..., (32)

the residual sequence {r I is defined by

rm Hk Zm + gk' m = 0,1,... (33)

and the scalars ym and Bk are given by

r' S r
= i S k rm, m = 0,1,... (34)

Pt Hk Pm
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r' Skrm

r' Sm = 1,2,... (35)
B m- k rm-

As is well known ([25], [32]) this method will find the solution dk

of system (29) in at most (n-i) steps (i.e., dk = Zn 1) regardless of the

choice of Sk. We are primarily interested however in approximate implementations

whereby only a few conjugate gradient iterations of the method are performed

and under these circumstances the choice of Sk can have a substantial effect

on the quality of the final approximate solution. A popular choice for many

problems (and the one we prefer for multicommodity flow problems) is to choose

Sk to be diagonal with elements along the diagonal equal to the second deriv-

atives of the hk with respect to the corresponding coordinates y , iI k

evaluated at Yk. There are however other attractive possibilities depending

on problem structure (see [33]).

It is easily verified that if gk $ 0, then we have

z' g < 0, m = 1,2,...

so, regardless of how many conjugate gradient iterations are performed, the

final approximate solution z of system (29) will satisfy the descent condition

(28).

We finally mention that the assumption that Hk be positive definite is

not strictly necessary for the preceding algorithm to generate a descent

direction. It is sufficient that gk f 0 and Hk be such that the quadratic

"optimization problem (30) have at least one globally optimal solution. It

turns out that this minor refinement is significant for the multicommodity

flow problems to be considered in the next section.
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Extension to the Case where the Constraint Set is a Cartesian Product of
Simplices

Consider the problem

minimize J[x(l),...,x(m)] (37)
n.

subject to x(j) > O, I x(j) = r, j = 1...m
i=l J

n.
where each x(j), j = 1,...,m is a vector in R J , the function

n +...+n
J: R + R is convex and twice continuously differentiable and r.,

J

j=l,...,m are given positive scalars.

The extension of the method described earlier in this section to handle

problem (37) is evident once it is realized that one can similarly pass to

a reduced coordinate system of dimensionn(nl+...+n -m) while in the process

eliminating the m equality constraints x
eliminating the m equality constraints x (j) = r(j), j = 1,...,m, [cf.

i=l
(8), (15)]. One then obtains a reduced problem involving nonnegativity con-

straints only [cf. (9), (10)] which is locally (around the current iterate)

equivalent to problem (37). The iteration described earlier, including the

conjugate gradient approximation process, is fully applicable to the reduced

problem.

3. Optimization of Multicommodity Flows

We consider a network consisting of N nodes 1,2,...,N and a set of

directed links denoted by L. We denote by (i,Z) the link from node i to

node Q, and assume that the network is connected in the sense that for any

two nodes m,n there is a directed path from m to n. We are given a set W

of ordered node pairs referred to as origin-destination (or OD) pairs. For
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each OD pair weW, we are given a set of directed paths Pw that begin at

the origin node and terminate at the destination node. For each woW we

are also given a positive scalar rw referred to as the input of OD pair w,

and this input must be optimally divided among the paths in Pw so as to

minimize a certain objective function.

For every path peP corresponding to an OD pair wsW, we denote by xPw

the flow travelling on p. These flows must satisfy

X XP = rW VW£W (38)C xP rw, vweW (38)
Pe£P w

xP > 0, V PePW, WoW. (39)

Equations (38), (39) define the constraint set of the optimization problem--

a Cartesian product of simplices.

To every set of path flows {xP I PPw, wsW} satisfying (38), (39) there

corresponds a flow fit for every link (i,k). It is defined by the relation

fitg = Y 6 (i,k)xP, V (i,Z) L (40)
w&W pep P

where 6 (i,Z) = 1 if the path p contains the link (i,Z) and 6 (il) = 0

otherwise. If we denote by x and f the vectors of path flows and link

flows respectively we can write relation (40) as

f = Ex (41)

where E is the arc-chain matrix of the network.

For each link (i,Z) we are given a convex twice continuously differ-

entiable scalar function Di (fi ) with strictly positive second derivativeit~ it,
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for all fi~ > 0. The objective function is given by

D(f) I= D.i (fii). (42)
(i,Q)zL

By using (41) we can write the problem in terms of the path flow variables

xp as

minimize J(x) = D(Ex) (43)

subject to Y xP = rw, V WEW
pW

xP > 0, V PEPw' WoW.

In communication network applications the function D may express, for

example, average delay per message [6], [11] or a flow control objective

[34], while in transportation networks it may arise via a user or system

optimization principle formulation [16], [17], [35]. The algorithm to be

presented admits an extension to the case where the function D does not

have the separable form (42), but we prefer to concentrate on the simpler

and practically important separable case in order to avoid further com-

plications in our notation.

Clearly problem (42) falls within the framework of the previous section

and the approximate version of the projected Newton method described there

can be applied for its solution. A key element for the success of this

algorithm lies in that the conjugate gradient iterations required for

approximate solution of the corresponding system of equations can be carried

out very efficiently. This in turn hinges on the fact that the product of
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the matrix Hk with various vectors, which is needed for the computation of

the residual rm in (33) and the stepsize ym in (34), can be computed by

graph type operations without explicitly computing or storing the matrix Hk.

We now describe the kth iteration of the algorithm whereby given a

feasible vector of path flows xk we find the next vector xk+l:

Phase 1: (Determination of the reduced coordinate system and the set I+).

For each woW let Pw be the path carrying maximal flow, i.e.,

Pwp
xk = max {xk I PPw)', Vw6W (44)

Define the reduced coordinate system in the vector y given by [cf. (8)]

yP = xp , y PPW with p Z Pw and woW, (45)

and denote by Yk the vector that corresponds to xk according to this trans-

formation. Consider the reduced objective function hk(y) = J(x) [cf. (9)]

where x has coordinates given by xP = yP, vpeP with p P Pw and w6W and

P w
=x = r- xp . (46)

poW

PePw

Denote Di and DMI the first and second derivatives of Dig evaluated

at Xk, and define the first derivative length of a path p by

1 = Dp ' VpP W, WEW, (47)

i.e., 1 is the sum of first derivatives Dig over all links on the path p.

It is easily verified that
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aJ (Xk )
1 = 1 , vPe w, w~W (48)

axp P

and that the gradient of the reduced objective function is given by

Dhk (Yk)
ahy = i - lpw v p PW, wEW (49)

By differentiating this expression with respect to yP we also find after a

straightforward calculation the diagonal elements of the Hessian V hk

2hk (Yk)

(yp)2 DI VpePw p w pw' wsW (50)
(aDPp2 (i, ) L

~P
where L is the set of links that are traversed by either the path p or the

path Pw but not both. In view of our assumption D (f > 0 for all fit > O

we see that

| h(Yk) >0, VPePw, P2P , woW (51)
k (ayp) 2

for all feasible vectors Yk'

We are now in a position to define the set Ik in terms of a positive

scalar E > 0 which remains fixed throughout the algorithm. We set [cf.

(20)-(22), (49)-(51)]

I+ = {p 0 < yP 1< P, > , pP W P pw W} (52)
k I k k' p w w

where

kP = min {E, s p } (53)

and
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kp ip - [yp - Ivi(l p )] j + VPC~qJ, P C Pw' wEW (54)

An equivalent definition is that a path p belongs to Ik if it has a larger

first derivative length than the corresponding reference path Pw, and it

carries flow that is less or equal to both £ and i(Zp-Qp ). As will be

seen later the algorithm "tries" to set the flow of these paths to zero

[cf. (57),(69)].

Phase 2: (Computation of the search direction)

As in the previous section we form a partition of the vector y [cf. (24)]

Y Y (55)

where y is the vector of path flows yP with pEI k and y is the vector of

path flows yP with pI k . The search direction dk, partitioned consistently

with (55)

dk

dk = [k(56)

is defined as follows [cf. (25), (26)]. For paths pEI k we set

d t mp k ),V I (57)kk '-k p Pw p k

i.e. the matrix Hk of (25) is set to the diagonal matrix with elements

2h k (yk)
h along the diagonal.

(ayP)2

For paths p4I k the search direction is defined by

dk = -gk (58)
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where gk is the gradient of hk with respect to y having coordinates

(lp-1 ), [cf. (49)] and Hk is the Hessian matrix of hk with respect to y.
P w

This equation will be solved (perhaps approximately) by means of the con-

jugate gradient method described in the previous section [cf. equations

(31)-(35)]. As scaling matrix Sk in (32) and (35) we will choose the

diagonal matrix with diagonal elements the scalars B Pk ptIk, P ¢ Pw' woW,

given by (50) and (51). From equations (31)-(35) it is evident that the

only difficult part in implementing the conjugate gradient iteration lies

in computing vectors of the form

v = HkAy (59)

where Ay is any vector of dimension equal to the number of paths p with

pJIik and p ¢ Pw' woW.
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A key fact is that in order to compute, for a given Ay, the vector

v = HkAy of (59) we need not form explicitly the matrix Hk and multiply

it with Ay. Indeed consider the following function

Gk(Af) = 2 (Afi D (60)
(i,k)eL

of the incremental flow vector Af and the corresponding function of the

reduced incremental path flow vector Ay

Mk(AY) = Gk (EAx) (61)

obtained via the transformation

Af = E Ax (62)

[cf. (41)] and the transformation

AyP AxP Pk POx PiV+, P wEW, (63)

Axp = O, pEI k (64)

Ax = - yP, VwW. (65)

PEPW

PEPw
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requires a large number of iterations of the conjugate gradient method.

Rather one should terminate the conjugate gradient iterations according to

some criterion. Some possible criteria are as follows:

a) Terminate after a fixed number of conjugate gradient iterations.

b) Terminate at an iteration m if the residual r satisfies
m

Jrmi < iyrol (68)

where k is some scalar factor less than unity which may depend on the

iteration index k.

c) Terminate either as in a) [or as in b)] or if some coordinate of the

vector (y+zm) has a negative coordinate, whichever comes first.

Taking 3k = 0 in (68) means solving the system HkAYk .-k exactly and yields

Newton's method. Thus if -+ 0 one expects that it is possible to construct

a method that realizes the superlinear convergence rate of Newton's method

by making use of a proper rule. for choosing the stepsize ak. (A result of

this type is shown for the unconstrained Newton's method in [36]).

Phase 3: (Determination of the stepsize ck)

As usual in Newton-like methods, we first try a unity stepsize and

subsequently reduce it if certain conditions are not satisfied. Thus we

form the vector

Yk+l = [Yk + dk](69)

where dk is the search direction obtained in the previous phase. This

vector may not lead to a feasible path flow vector since any one of the

constraints

APw r0
xk+l = rw p Yk+l > 0, V w-W (70)

PEPw
pfP__
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The Hessian of the function Gk is the same as the Hessian of the objective

k kfunction D evaluated at the flow vector fk corresponding to x , and con-

sequently the Hessian of the function Mk with respect to the vector y is

equal to the matrix Hk. For any vector Ay the vector v = HkAy is there-

fore equal to the gradient VMk(Ay), i.e.

v = HkAy = VM (Ay). (66)

On the other hand we have already shown how to compute the gradient of

functions such as Mk [cf. (47)-(49)]. The procedure consists of finding

the incremental flow vectors Af.i corresponding to Ay according to (62)-(65)

and forming the products D~'Afig for each link. Then the coordinates

of the vector v of (66) are given by [cf. (48), (49)].

VP= DI' fr DMI f
(i,l) p (i, p ) it

VPSPw PLIk' P , Pw' wsW. (67)

Thus the products Hkzm and HkPm appearing in the basic iteration of

the conjugate gradient method (31)-(35) can be calculated by the procedure

described above without the need to compute or store the matrix Hk . Since

all other operations in (31)-(35) require either the formation of inner

products of vectors or the multiplication of a vector with a diagonal

matrix it can be seen that the Newton-like method can be implemented via

the conjugate gradient method by graph operations and without explicit

computation or storage of any Hessian matrix.

In a practical implementation of the algorithm one should not try to

solve the system (58) exactly at each iteration since this typically
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may be violated (particularly when far from the solution). In this case

the stepsize should be adjusted so that these constraints are satisfied.

This can be done by considering the vector

Yk(a) [Yk + od ] P a > (71)

and finding the largest stepsize ak for which all the constraints

X y(a < rw' wcW (72)

PEPWPePw

are satisfied. The simplest way to determine ak is to compute for each

OD pair w the largest stepsize ak for which (72) is satisfied and obtain

ak by means of the equation

= min {k I wW}. (73)

One may then successively reduce the value of ak by multiplication by a

factor less than unity until a sufficient reduction of the objective

function is effected in the spirit of the Armijo rule (see [28]).

There are a number of convergence and rate of convergence results

that one can show for the algorithm described above and its variations.

These results .are similar in nature to corresponding results given

in [28] and in other sources [31], [36], and we will not give

a complete account. We only mention that it is possible to show that if

the stepsize ak of (73) is used, and if the algorithm is started sufficient-

ly close to a global minimum and a sufficiently accurate solution of the

Newton system (58) is obtained via the conjugate gradient method [i.e.

the scalar Bk in (68) is sufficiently small] then the method converges to

a global minimum and for all k the stepsize ak will be unity. If in ad-

dition Bk
+ 0 then the rate of convergence will be superlinear.
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We finally mention that in some cases the number of paths in Pw may

be very large and it may be unwieldly to keep track of all the path flows

xp , as for example when Pw is the set of all directed paths joining OD pair

w. In this case typically the vast majority of. path flows at the optimum

is zero and it is better to work with a small subset of paths of each OD

pair w that carry positive flow. This subset is augmented at each iteration

by a path of minimum first derivative length (see [13], [15], [16]).
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