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Abstract

We define feedforward control as a control policy in which the exoge-

nous disturbances are known for all time at the moment when the control is

applied. It is shown that disturbance decoupling by feedforward control is

possible iff it is possible by PID control or iff approximate disturbance de-

coupling by state feedback is possible.
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1. Introduction

Consider the ubiquitous linear time-invariant system defined,in con--

tinuous 'id discrete time respectively, by

ER: x(t) = Ax(t)+Bu(t)+Gd(t); z(t) = Hx(t) (1)R

Z: x(t+l)=Ax(t)+Bu(t)+Gd(t); z(t)=Hx(t) (I) Z

with x.A:= Rn , the state, uE?/:= Rm, the control,dc. = R, the (exogenous)

disturbance, and za7: = R , the controlled output. In the disturbance

decoupling problem we are asked for a control such that in the closed

loop system the disturbance has no influence on the controlled output

The basic theory of this problem and its many variations has been the

subject of numerous papers in the control journals (see WONHAM

[1, Ch. 4&5] and WILLEMS & COMMAULT [2] for pointers and references to this

literature). Recently this theory has been extended to treat the case when

disturbance decoupling is possible up to any desired degree of accuracy.

This extension uses the notion of almost invariant subspaces and is des-

cribed in full detail in WILLEMS [3,4,5].

In the present paper we will give,.conditions under which disturbance de-

coupling is possible when knowledge of the whole disturbance trajectory d

is available to the-controller. We think of this as (a form of complete)

feedforward control: there is a mechanism for measuring the disturbance

ahead of time and communicating it to the controller. One of the purposes

of this paper is to relate feedforward control to approximate disturbance

decoupling and to control policies using differentiators (PID-control) and,

predictors.
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We will use common notation for C, R, 2, R+:=[o,-), etc, Furthermore,

C denotes the infinitely differentiable functions - their (co)domain will

always be obvious from the context. We say that a map f with domain R or 7

has left (right) compact support if 3to such that f(t)=0 for t<t0 (t>to ).

c00 0
C+ denotes the C functions with left compact support, a denotes the

spectrum.

2. Problem Statement

There are a number of equivalent ways of formalizing the idea of feed-

forward control. Let us denote by R and ~Z all the trajectories which are

compatible with the system (1). Formally:

: = {(d,u,x,z): R+gxexA 'x (d,u, xy)C and (1) R is satisfied}

and EZ is similarly defined. We will say that R admits a disturbance in-

sensitive trajectory if FdBCO 3)u,x such that (d,u,x,O)e .R. An analogous

definition holds for Z. We will also consider some specific classes of

control laws:
Let

(i) Feedforward controZ: Vgbe an Rmxq -valued distribution with

support on some half line [to, - )and let * denote convolution. For deC+

define now

u(t) = (,. * d)(t) (2) R

We will call this a feedforwcrd control law with kernel b. We will say that

; is rational if its Laplace transform is rational (in which case suppprt .7
N

C M0,) and (t) =k_ Fk (k) (t) + F(t) with F a Bohl function and 6 the Dirac



delta).. Analogously in the discrete time case we will call

u(t) =j _ ,(t-k)d (k) (2)

a feedforward controZl law.

(ii) state feedback.-

u(t) = Fx(t) (3)

(iii) PID controZl:

N
u(t) =- Fkd(k)(t) + Fx(t) (4)R

or its discrete time analogue

u(t) Fkd(t+k) + Fx(t) (4)Z
k=O

(iv) PD controZ:

N
uu(t) = Fkd(k) (t) (5)

k=O

or the discrete time analogue, finite window predictive controlZ:

u(t) k-Fkd(t+ k) (5) Z
k=O

Consider the control law (4)R. This yields the closed loop system

x(t) = (A+BF)x(t) + BS Fkd(k)(t) + Gd(t) ; zrt) Hx(t)
k=O

co co cowhich yields, for all ds C+, a (unique) solution xEC, yC+. If y = O for

all such d then we will say that (4)R decoupZes the disturbance d from z.

Analogously for the other control laws.
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The control law (3) in (1) R yields the closed loop system

x(t) = (A+BF)x(t)+Gd(t) ; z(t)=Hx(t)

which has the closed loop impulse response F: 'R++He(A+BF)tG. Following

[41 we will say that (1)R may be almost (or approximately)disturbance de-

coupled using a state feedback control law if VE>O 3F such that fl jIF(t) I jdt<E,

the solvability of
Our purpose is to give conditions forVthe various disturbance decoupling

problems given above and to show their interrelation.

3. Almost Invariant Subspaces

Consider the system : x(t) = Ax(t) + Bu(t); z(t) Hx(t), Let'*
ker H

andRker H denote the classical notions of the supremal controlled invariant

('(A,B)-invariant') and controllability subspaces contained in kerH. In

[3,4] these notions have been generalized to almost invariance. If we

measure being close to ker H in the YO- sense, then we obtain'A* and'm sn h a, kerH

a, ker H as respectively the supremal YX -almost controlled invariant and

o- almost controllability subspace contained in kerH. If instead we measure

being close to kerH in the - sense then we arrive at/*b,kerH and*b,kerH

as the supremal Tl - almost controlled invariant and Al - almost controllability

subspace 'contained' in ker H.

The subspaces R* and i * are readily computed, Indeed,a ,ker H' b, ker H

consider the recursive algorithms (ACSA) and (ACSA)':

ik+l = kerHln (Ak r +im B) i; - (ACSA)
ker H ker H ker H

k+l
ker H im B + A(ker HO* ); I {O) (ACSA)'
ker H ker H ' ker: H
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then lim =r* and lim Pk =: 9 
Xer H ker H a, ker H ker H b, ker H

These algorithms show also that P* and ,ker have a natural inter-
a,kerH ker H

pretation in discrete time. Indeed, consider Z: x(t+l) = Ax(t) + Bu(t);

z(t)= Hx(t). Then we see immediately from these algorithms that (see Molinari

[6]).

a*ker H = {xo c|T3R<0, u,x such that x(T)=O, x(O)=x ,

x(t+l)=Ax(t) + Bu(t) ; Hx(t)=O for T<t<O}

and {,kerxH = {Xo 3T<O, u,x such that x(T)=O, x(O)=x ,

x (t+l)=Ax(t)+Bu(t); Hx(t)=O for T<t<O}

Finally, we mention the following relations among the various sub-

spaces introduced:

~b H= AA.9e* + imB ; , kerH and

b, ker H a ,ker H "a,kerH ker H a,

* b, kerH = er H + , ker H

4. The Main Results

The results of this paper are:

Theorem 1: Consider ZR. Then the fotlowing statements are equivaZent:

(i) im GC'K/*
b, kerH

(iij ZR admits a disturbance insensitive trajectory

(iii) ER may be disturbance decoupZed using feedfo.ward control

(iv) ER may be disturbance decouplZed using a PID control law

(v) ER may be aZlmost disturbance decoupled using a state feedback

control law,



The discrete time version gives us the following expected analogy:

Theorem 2: Consider Z Then the following statements are equivaZent:z.

(i), (ii), and (iii) of Theorem 1

Civ) Ez may be disturbance decoupled using a control law of the

type 4) Z

Bringing in stability, or, more generally, pole placement, yields the

following refinements We will say that pole placement holds if for any

symmetric subset of g with at least one point on the real axis' there
g

exists F in a given class such that o(A+BF) C Tg. We will say that efB)

has an arbitrary rate of decay if this holds for any Cg of the type
g

C =' {scI Res<M}.
g

Theorem 3: Consider the system ZR , Then the foZZowing conditions are

equivalent:

(i) im G kerH
b, kerH

(ii) ZR may be disturbance decoupled using a PD control law

(iii) (Assume (A,B) controlZable)Rmay be disturbance decoupZed using

a PID control law with pole placement on A+BF

(iv) (Assume (A,B) controZZable)ZR may be approximately disturbance

decoupled using a state feedbqclk control law and requiring an

arbitrary rate of decay on e(A+BF)t

An analogous theorem holds (without (iv)) for YZ and with in (ii)

a finite window predictive control law.

Finally, it is of interest to note the following intepretation of

iker H (we state only the continuous time case):ker H

~~-~111~~~1~^`"- J`_~r_-r ~li~ ~·i- .-.· _._1.1.1 _.·. ... ....... ------. .....



Theorem 4: Consider ZR. Then the foltowing conditions are equivalent:

(i) im GC kerH

(ii) ZR ay be disturbance decozpZled both by using a PD and a state

feedback control law

(iii) ] R may be d'sturbance decoupZed using a state feedback controe

law with pole placement on (A+BF)

S. Discussion

5.1 Theorem 1 shows an interesting connection between feedforward

control, PID control,.and high gain feedback as. it results in approximate

disturbance decoupling [4]. We also note that it follows from the theorem

that there exists any disturbance decoupling feedforward control law (ite.,

co oo
any (nonlinear time-varying) map V. dcC . U-uC such that the (unique)

solution xC+ to (1) R yields z=Hx = 0) iff there exists a PID control law

or, as is easily seen to be equivalent, a rational convolution operator

feedforward control law.

5.2 The maximal order of the differentiation, N, in the required

PID control law is given by the smallest N such that, in the notation of

(AC'SA)t, in GC 9skT u akerR'. This yields the known results in theke r H +1".er H

cases N - 0 and N<O , An analogous statement holds for Z, All this

indicates once more that differentiation should be considered as a pre-

dictive element even though it is hard to justify this formally,

5.3 In the continuous time case the unbounded nature of the

differentiators is an intrinsic feature of the problem and cannot be traded

for example for a smooth non-causal control law of the type
+0o

u(t) =fF(tv.T)d(T) dc,
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5.4 By suitably interpreting (ACSA)' it is easy to come up with algo-

rithms for computing F,F o, , FN s which yield a disturbance decoupling

PID control law.

5.5 The results obtained are symmetric in time and the same dis-

turbance decoupling conditions hold if we consider the systems ZR or FZ

with inputs with right compact support.

5.6 A number of straightforward variations of Theorems 1-4 referring

to stability regions, existence of PID control laws with N given, etc., can

be stated. It may be of interest to give the condition for the existence

of a finite window disturbance decoupling control law of the type

N$

u(t) = Fk d(t-k) with N-<O<N + or, in the continuous time case, a "classical"
k=N- N+ 'N · F + dF +1 F . . .

PID controller u(t) =E Fk d(k)(t) + E k F Sjjl. O d(C)dT dtl...dtkl
k=0 k=l 0

The condition for disturbance decoupling is im Gc b, ker + , ker
b, kerH d, kerH

where* ker is the supremal ' deadbeat' controlled invariant subspace in

d,~~~~~ ~ ~~~ ~d, kerrHker H, i.e. sup {V1 IF: (A+BF)YC -T and o((A+BF) 19) = {0}}. ' kerH is

just a bit larger thaner H '

6. An Outline of the Proofs

Theorems 1-4 follow without much difficulty from the results in

Appendix A of [5], In order to show the idea we will give a 'time

domain' proof of Theorem 2.

Proof of Theorem 2: We will indicate the reasonings in the logical

sequence (i) * (it), (i) · (iii), (i) o (iv), (iii) q~ (i), (it) ~ (i),

(iv) * (iii).

(i) * (ii): Assume im G "* =' + Let deC 
bssume im G kerH b, ker H kerH' -

be given. We need to find u,x satisfying (1)Z such that Hx=v=O. Assume



first that d is a pulse at 0: d(t) = 0 for t f 0. Let d: = Gd(0). Now,

do may be written as do = -dl + d2 with dl X;., kerH and d2 ker H '

Hence, by the characterization ofb* kerH given at the end of Section 3,

3u of compact support such that the corresponding compact support x satis-

fies Hx(t)=O for t<O and Ax(0)+Bu(O)=d1 , Using this control yields x(l) =

Ax(P) + Bu() + Gd(0) = d1 + d= d2 FkerH It is hence possible to choose

u such that also Hx(t) = 0 for t>0. By superposition this proves the result

for any d such that d(t)=O for t<O, By considering the reverse time trajec-

tories (see [5, Sect. 8]) this conclusion also follows for d's such that

d(t)=O for t>O. Since any d may be written as d=d + d with d+(t) = 0 for

t<O and d_ (t) = 0 for t>O, this yields trajectories (d+, u+, x +,0),

(d ,u ,x 0) CZ which, since Z is obviously linear, yields a
_ __ -__,_ -z -Z

(d,u,x,O)cZ, as required.

(ii) ~ (iii): is basically the first part of the proof of (i) = (ii)

(i) . (iv): use F such that (A+BF)Y/erHcYerH and the predictive
ker H ker H

law suggested by the first part of the proof of (i) * (ii).
N

(iii) . (i): Let u(t) -__ Fk d(t-k) + Fx(t) be a disturbance decoup-

ling control law. Takq d to be a pulse at 0. Then there exists a trajectory
where CZ Uenotes the elements of E with left compact support.
V -. --

{(d,u,x,O) e ZZ}VSince d is a pulse at 0, since x has left compact support,

and since x(t) C kerH for t<0O, we have xC0)C? Ke Similarly, since
a, kerR. S

x(t)t kerH for t>O, x(l) e rH /* Hence, Gd(O) = x(l) - Ax(O) -
ker H 

Bu(0) Cf'* + AZ + imB =/* which yields im Gcl;*a
kerBH a, kerH + keHb, kerH ,as

desired.

(ii) = (i): is more similarly to (iii) '(i) except that now we arrive

at x(0) ¢ ~/,f* + - * ker1 However since A* +. A + a,: ker H" +ker 1-1 , kerH ... kerH kerH a, kerH

= ker ' we arrive at the same conclusion,



(iv) 4 (i): is obvious, again by looking at a pulse for d,

7. Extensions

7.1 Disturbance decoupZed estimation, All what has been said up to

now may be dualized and applied to the disturbance decoupled estimation

problem.There, one considers x = Ax + Gd, y = Cx, z = Hx, with y the

observation and z the to-be-estimated output, and we are looking for

conditions for the existence of an observer defined by the convolution

z.= -5* v such that, with all variables in C+, the map d H+ e:= z-. is zero,

Theorems completely analogous to Theorems 1-4 may be stated for this case.

The relevant solvability condition becomes kerHDrY, imG where b, imG

denotes the infimal 9 - almost ('(A,C)') conditionally invariant subspace

containing inG [5]. This condition is satisfied iff there exists a PID

type of observer. Analogous results hold for the discrete time case.

7.2 Disturbance decoupZing with output observations: If we consider

again the system ZR but if we assume that instead of measuring d or x, we

can only measure y, given byl = Ax1 + Gd; Y = Cx1 , then we are able to

find a disturbance decoupling feedforward control from y to u iff

imGCY kerH and c92* CkerH . This is equivalent to the
b, kerH b, imG

solvability, over JR(s),of the equation H(Is- A) IB X(s) C(Is-A) IG =

-l
H(Is-A) 1 G in the unknown matrix X(s). If we now make the (generic)

assumption that there exists F(s) such that F(s) (I+CCIs-A) -B X(s)) = X(s)

then we may conclude that there also exists a PID feedback control law which

disturbance decouples for x = Ax + Bu + Gd, Z = Cx, z = icx. A similar result

holds for the discrete time case but considering predictive elements in a

feedback configuration poses · some conceptual difficulties, however.
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