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ABSTRACT

In this paper we shall present two new algorithms for solution of the

discrete-time algebraic Riccati equation. These- algorithms are related to

Potter's and to Laub's methods, but are based on solution of a generalized

rather than an ordinary eigenvalue problem. The key feature of the new al-

gorithms is that the system transition matrix need not be inverted. Thus

the numerical problems associated with an ill-conditioned transition matrix

do not arise and, moreover, the algorithm is directly applicable to prob-

lems with a singular transition matrix. Such problems arise commonly in

practice when a continuous-time system with time delays is sampled.
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1. INTRODUCTION

Most research activity in control theory during the last two decades

has been centered around what is usually termed modern control theory.

However, it is a fact that the overwhelming majority of practical control

systems have been, and continue to be, designed using classical control

theory. The reasons for this much discussed gap between theory and prac-

tice are too many and complex to discuss here, but we would venture to

suggest that one of the reasons for the gap is the inadequate attention

that has been paid to the development of numerical algorithms to imple-

ment modern control-theoretic design methods.

The objective of this paper is to present a new method for the

solution of the discrete-time algebraic Riccati equation. Solution of

this equation is basic to design of sampled-data control systems using

the solution of the linear-quadratic-Gaussian optimal control problem [ll].

Several algorithms have been suggested for direct solution of discrete-

time algebraic Riccati equations, for example [2], (in addition to the

possibility of iterating the Riccati difference equation to steady-state),

but these all require explicit inversion of the state transition matrix.

If this matrix is ill-conditioned, numerical difficulties arise. Perhaps

even more important is the fact that singular transition matrices cannot

be handled. Such transition matrices arise when a continuous system with

a time delay is sampled. Since time delays inevitably arise in process

control applications due to transportation lags (see, for example [3]),

the restriction to nonsingular transition matrices is quite restrictive.
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In fact, our original motivation for developing the method proposed in this

paper arose from just such an application by Bialkowski [4] in modeling a

paper machine.

To illustrate how singular transition matrices arise we give a simple

example, taken from Bialkowski's paper [4]. Consider a process whose unit

step response is characterized by a pure delay T, a first order time con-

stant T, and a steady state gain K, and suppose the process is viewed at

sample intervals D. (See Figure 1) The discrete equations for a time de-

lay of three unit delays are

-D/T o o o

1 0 0 0 0
x(k+l) = x(k) + u(k)

O 1 0 0 0

O 0 1 0 \

y(k) = O O O ) x(k)

where

x(k) = vector of current states

x(k+l) = vector of states one step ahead

uWk) = control input

y(k) = output

The state transition matrix of this system is obviously singular.

The method proposed in this paper does not require inversion of the

transition matrix. The key idea is to obtain the solution of the discrete-



-4-

y(k)

-,

T

Unit Step Response

__ LL[not delasy

Schematic of system equations

Fiqure 1.



time algebraic Riccati equation from a basis for the stable eigenspace of

a certain generalized eigenvalue problem. Two versions of the method are

presented, the first related to Potter's method and utilizing generalized

eigenvectors and the second related to Laub's method and utilizing general-

ized Schur vectors.

The structure of the paper is as follows. Section 2 contains the de-

velopment of the algorithm using generalized eigenvectors. Section 3 con-

tains the development of the algorithm using generalized Schur vectors.

Section 4 discusses some numerical considerations associated with the algor-

ithms, and Section 5 contains some simple examples. Section 6 is the sum-

mary and conclusions.

Notation

mXn
Throughout the paper A e F will denote an mxn matrix with coeffi-

cients in a field F. The field will usually be the real numbers IR or the

complex numbers C. The notations A and A will denote transpose and con-

jugate transpose, respectively, while A will denote (AT 1 = (A i . For

nXn
A £ F its spectrum (set of n eigenvalues) will be denoted a(A). When

2nX2n
a matrix A S F is partitioned into four nxn blocks as

11 12
A =

\21 22

we shall frequently refer to the individual blocks A.. without further dis-

cussion.



2. SOLUTION OF THE DISCRETE-TIME ALGEBRAIC RICCATI EQUATION BY A

GENERALIZED EIGENVECTOR APPROACH

2.1 Problem Formulation

In this section we shall be concerned with the discrete-time algebraic

Riccati equation

T T T -1iT
F XF-X-F XG G +G XG G1XF + H = (1)

1 11 1

nXn notm mxm T T
Here F, H, X C JR , G1 E n x G 2 E IR , and2 = 2 >OH= H2 > O.

Also, m < n. We shall assume that (F, G ) is a stabilizable pair , and

that (F, C) is a detectable pair , where C is a full-rank factorization of

T
H (i.e., C C = H and rank (C) = rank (H)). As discussed in Section 1, we

do not need any other assumptions on F. Finally, we define G: G =G GG2 G1

Under the above assumptions (1) is known to have a unique non-negative

definite solution; see [5]. Moreover, if (F, C) is completely reconstruc-

tible , (1) has a unique positive definite solution. There are, of course,

many other solutions to (1) but we are interested in computing the non-

negative definite one. (Or the positive definite one if it exists.)

1. The pair (F, G1 ) is stabilizable if wH G1
= 0 and w F = Xw for some

constant X implies lXJ < 1 or w=O. (See [5] for further characteriza-

tions )

2. The pair (F, C) is detectable if w C = 0 and wHFT = XwH for some con-

stant X implies IXI < 1 or w=O. (See ([5.)

3. The pair (F, C) is completely reconstructible if w C = 0 and w F = Xw

for some constant X implies w=0. (See [5].)
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The Riccati equation (1) arises in various problems, including the

discrete-time linear-quadratic optimal control problem. The algorithms

we present are motivated by the relationship between the Riccati equation

and the two-point boundary value problem associated with this optimal

control problem. If we let xk denote the state at time tk and yk the

corresponding adjoint vector, the Hamiltonian difference equations arising

from the discrete maximum principle applied to the linear-quadratic prob-

lem are of the form

I° G (k+l ( I Xk

Note that if F is invertible we can work with the symplectic matrix

Z= G) 1 FF + GF- H GFT 

using a basis for the stable eigenspace of Z to compute the desired solu-

tion to the Riccati equation. Two examples of such bases are the eigen-

vectors and the Schur vectors corresponding to the stable eigenvalues of

Z; see [2] and [6], respectively.

The key idea of this paper is to consider, instead of the standard

eigenvalue problem for Z, the generalized eigenvalue problem

Mz = XLz



with

L= o and M = )

We shall show that we can use a basis for the stable generalized eigen-

space of the problem to construct the solution of (1). We shall discuss

two ways of finding this basis. The first is by computing the generalized

eigenvectors corresponding to the stable generalized eigenvalues. The

second is by using the generalized Schur vectors of the problem.

2.2 The Generalized Eigenvalue Problem

Definition: Consider the generalized eigenvalue problem:

Mz = XLz (2)

The generalized eigenvalues of the problem are the roots of the generalized

characteristic equation det(M - XL) = 0. For each generalized eigenvalue

A, a nonzero vector satisfying (2) will be called a generalized eigenvec-

tor of the problem corresponding to A. If X is a generalized eigenvalue

with multiplicity r > 1, then the set of vectors {Zl,...jzQ} satisfying:

Mz 1= ALz1

(M - XL)zk
= LZk k = 2,3,...,z; Q < r

will be called a chain of generalized principal vectors, and the vector

Zk will be called a generalized principal vector of grade k.
k
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From now on we shall drop the adjective "generalized" except where

its absence would cause confusion.

Theorem 1: Let A, B, U, V Cn X with U and V nonsingular. Then the

eigenvalues of the problems Az = 9Bz and UAVz = XUBVz are the same.

Proof: See [71.

Theorem 2: (a) Let A, B ¢ . Then there exist unitary matrices

Q and Z such that QAZ and QBZ are both upper triangular.

nxn
(b) Let A, B S . Then there exist orthogonal matrices

Q and Z such that QAZ is quasi-upper triangular (real Schur form) and

QBZ is upper triangular.

Proof: See [8].

For the remainder of this paper, we shall consider only the generalized

eigenvalue problem defined in Section 2.1.

Theorem 3: None of the eigenvalues of the generalized eigenvalue prob-

lem Mz = XLz lies on the unit circle.

Proof: Suppose that IjX = 1 is an eigenvalue. Then Mz = XLz for some

z / 0, and this can be written as

This implies

Fz =z1 +AGz2 (3)Fz1 =z 1 *2
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and -Hz + z2 XF (4)
1z2 2(4)

Premultiplying (3) by X z2 and postmultiplying the conjugate transpose of
2

(4) by ZL we get

H 2 H2 2 (3aX z Fz = 1 z2z+ Z)Gz

H *H H
Z21 2 FZ1 + ZlHz (4a)

Adding (3a) and (4a) and noting that X[2 = 1, we get

H H
z2G 2 + ZlHzl = 0

-1T TNow recall that G G with G > 0 and H = C. Then
12 1 2

H -1 T H T ·
(ZG2)G2 (GlZ2) + (zC )Cz1 = 0 implies

T
Gz 2 = O (5)

and Cz =0 (6)

Combining (5) and (6) with (3) and (4) we get

Fz = Xz1 (7)

T 1
F z 1= ~ z(8)

H H 1 HUsing (5) and (8) we see that z2G 1 = O and z2F = Z2 By stabiliz-

ability this implies z2 = 0, since > 1. Also from (6) and (7) we have

HT HT H
z1C = O and Z1F = Az . By detectability this implies z = 0, since

I[I > 1. Therefore z = 0. But this is a contradiction, so none of the

eigenvalues lies on the unit circle.



Theorem 4: Consider the generalized eigenvalue problem Mz = ALz.

If X O is an eigenvalue, then X is also an eigenvalue with the same

multiplicity.

Proof: M and L have the following property

T T 0 F 0w 
LJL = MJM = where J = 

It is very easy to show also that det(M - AL) O0. To see this, note that

if the determinant were identically 0, it would, in particular, be 0 for

=I k 1 which would contradict Theorem 3.

Now consider the following two generalized eigenvalue problems:

Mz = ALz (A)

T T
LTx = xM (B)

Looking at the corresonding characteristic polynomials

det(M - AL) = 0

T T
det(L - 1MT ) ) det(L - pM) = 0

we see that if A is an eigenvalue of (A), then A is an eigenvalue of (B)

With the same multiplicity.

Now let A1 be an eigenvalue of (A) with multiplicity r. Then p = X

is an eigenvalue of (B) with multiplicity r and we shall show that p1 is

also an eigenvalue of (A) with multiplicity r.

For problem (B), consider any chain of principal vectors {x ,...x j},
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The following Theorem completes the description of the symplectic

nature of the eigenvalues of the problem Mz = ALz.

Theorem 5: Consider the generalized eigenvalue problem Mz = XLz. If

X = 0 is an eigenvalue with multiplicity r, then there are only 2n-r

finite eigenvalues for this problem. We may say that the r missing eigen-

values are "infinite" eigenvalues (or "reciprocals of 0").

Proof: Using Theorems 1 and 2a, we may assume that L and M are both up-

per triangular, with diagonal elements a. and .i respectively. Then

2n

det(M - XL) = (a - kBi)
i=l

If XA = 0 is an eigenvalue with multiplicity r, then without loss of

generality a1 .. = = 0. With an argument identical to the one used
r

in Theorem 4 we can then show that 1I = 0 is an eigenvalue, with multi-

plicity r,of the problem L x = PM x. But

2n
det(LT - MT) = det(L - AM) = TT (. - P

Thus S 0..- = 0. Note that a. = H. = 0 is not possible because
2n-r 2n 2 

det(M - XL) O0. Therefore,

r 2n-r-1 2n

det(M - XL) = FT (-Xi FT (a. - x.) TT a..
i=l i=r+l i=2n-r 1

If we adopt the convention that the reciprocal of zero is infinity, then

we may say that the missing eigenvalues are "infinite."

To summarize, we can now use Theorems 3, 4, and 5 to arrange the

eigenvalues of our problem in the following way:
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_ < r, corresponding to 1:

T T
L x1 1M 

(LT - i )= MT Xk 1 k = 2,3,...,

T T TThen Mo L xi a MM Pi 1 }

or (MJL - UJLL ) x = LJL XkT 1

If we set zk = JL- we get

Mz 1 = 1lLzl

(M - WlL)z k- LZk-l

The independence of the zk for all chains corresponding to p1 follows easily

from det(M - XL) Z 0. So pi is also an eigenvalue of (A) with multiplicity

r.

When F is nonsingular, all of the eigenvalues of the problem Mz = XLz

are nonzero. This can be proved very easily by contradiction. For if

X = 0 were an eigenvalue we would have Mz = 0, whence

-H I z2

implies z = 0 and z2 = 0.

When F is singular, however, there must be at least one eigenvalue

equal to zero, because equation (9) has a nontrivial solution.
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1 101·,~101 X Ir..., ----- m~~~tl?0,r+J. n rXl F' rl

r n-r n-r r

with 0 < < < 1, i = r+l,...,n

2.3 Main Theorem

For the problem Mz = XLz, let U be the 2nX n matrix of the generalized

eigenvectors and generalized principal vectors corresponding to the n

stable eigenvalues. The matrix U, a basis for the stable eigenspace, can

be partitioned into two nX n submatrices

U= (2)

Then MU = LUS (10)

where S is the nxn "Jordan Canonical Form," corresponding to all X. with

Ikil < 1. We can rewrite (10) as

M = L (lOa)

or

which implies I U 0 F relations:

which implies the following two relations:

FU 1= U1S + GU2S (11)

-HU + U = F uS (12)
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If U1 is invertible (as we shall prove in the next Theorem), then (11) can

be written as

-1 -1
F = USU1 + GUSU1 (13)

1 1 2 1

or

T -HHH H HHH H H (13H)
1 1 1 2

and (12) can be written as

-1 T -l
U2U1 =F USU1 + H (14)

Observe that relations (10) through (14) actually hold for any set of n

generalized eigenvectors and generalized principal vectors (V21) and a

corresponding matrix ES in "Jordan Canonical Form", and this observation will

be used in the proof of the Lemmas and Theorem that follow.

-1
Lemma 1: All solutions of the Riccati equation (1) are of the form X = PQ ,

where is a set of n generalized eigenvectors and generalized principal

vectors of the problem Mz X kLz.

Proof: Suppose that X is a solution of the Riccati equation

T T T -1 T
F XF -X - F XG(G 2 + G1XG) G1XF + H = (1)

~Let T -1 T
E = F - G(G 2 + G1XG1)- GXF (15)

Then TT T T T -1 T
F XE F XF - F XG (G + GXG1 GXF X-H (16)

1 2 11 
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-1
There exists a nonsingular Q such that Q EQ = S, where S is in Jordan

Canonical Form. Let P = XQ or X = PQ-1 From (16) we have F PQ EQ =

XQ - HQ whence

T^
F PS = P- HQ (17)

From (15) we have

A- T -1 T
QSQ 1 = F - G(G + GXG) G1XF (18)

12 11 1

This implies

T T T T -1 1 T
G1XQSQ = G1 G 1XG(G2 G1XG1 G1X

Notice also that

G (G2 + GiXG)- G1XF = G1XF - GXGi(G2 + GlXG1) G1XF

so that

G (G2 + GXGL) GXF = XQSQ

or

T -1 T -1T T
(G 2 + GXG1) GXF = G2 G1 XQSQ

whence

T -1 T -1
G1(G2 + G1XG1) G1XF = GXQSQ

-1 T
where G = G G- GT Now we use (18) again to obtain

12 1-

F - QSQ1 = GXQSQ

or
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FQ = QS + GPS (19)

From (17) and (19) we now have

(H I P ( ) (

Lemma 2: Consider any set of n generalized eigenvectors and generalized

principal vectors \V) , and a corresponding matrix S in Jordan Canonical

Form". Assume further that V 1 is an invertible matrix. Then

11 T
(a) X = V2V1 solves (1) assuming (G2 + G XGl) is invertible.

(b) X = X > O if and only if S is stable,

Proof of (a): Suppose (G. + G XG1 ) is invertible. Using the analogs.of

equations (13) and (14) we have

FTXF - X - F XG (G XF + H = F V (VSV + GVSV V

TF- F FTXG1(G2+ GT 1 -1 T TV - "-1 - 1 

=vF-X- F XGvG 2 +F2vG 1 ) G12 +v1 1 2 21
=F V V G(G GVG -TFGTV V1 -FVSV + G) 3 1

[T 1 T + -T -1 - T -1
=FVV1 GVSV- FV T +,G(G GVV G1 GV F2 1 2 1 2 1 2 2 1 121

TT -l 1 T -1 T - T -1 -1 T -1

F V vllG(G 2 + GVV 1 G1) V V G G GV' SV by (13)
211 2 121 1 121 12 l2 y

= KW-1Z - K(W + Y)-iz - K(W + Y)-lYW-1Z

= K[W - (W + Y) -1 ( + Y)- -]Z



- K(W + Y) [(W + Y)W I y

- 0

where K = FV2V1 G

W = G

T -1
Y = GlV2Vl G

T ^ -1
and Z = GlV2SV112 1

-1
So X = V2 V satisfies equation (1).

Proof of (b): From the analogs of equations (13 ) and (14) we have

-1 -HAH H -H-H H A -1
V2V = (V S V1 + V S V G)V2SV + H

-=^H H ^ -1 -H^H H 1
= V1 S V1V2SV 1 + V1 S V2GV2SV1 + H

This is equivalent to

V2V1 v ) v2V (V1SV ) = (V2sv1 ) G(V 2SV ) + H.

We have

X = V2Vll

·Let

^ -1
A = ViSV

and

Q = (V l)HG( ) + H 
Q= (VSV ) G(V2SV 1 



Note that X e Rn x n since we may always choose real vectors in 1) to span

the eigenspace corresponding to complex conjugate pairs of eigenvalues.

Note also that Q = Q > 0 and A has the same spectrum as S. Now there

exists a unique symmetric non-negative definite solution of the Lyapunov

equation

X - A XA = Q

if and only if S is stable. (see Anderson and Moore [5], p. 67). So

T -
X = X > 0 if and only if S is stable.

Theorem 6: With respect to the notation and assumptions above the fol-

lowing results hold:

(a) U1 is invertible and

X = U U is a solution of the Riccati equation (1)
21

with X = XT > 0 (X = XT > 0 if (F,C) completely re-

constructible)

(b) C(S) = "closed-loop" spectrum

T -1T
= (F - G1(G 2 + GLXG1) GXF)

= a(F - G(X -1 + G)- F) when X is invertible

= a(F - GF (X-H)) when F is invertible.

Proof of (a): Assume that U1 is invertible. Then X = XT = U U > 0
-1 2 1 -

by Lemma 2(b). Also X > 0 implies G2 + G XG > 0, and thus X = UUU1

solves (1) by Lemma 2(a). So if U1 is invertible we are done. Suppose

then that U 1 is not invertible. Now we know that the Riccati equation

1~~~~~~~~~~~~~~~~~~ ----
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has a unique non-negative definite solution (5], which by Lemma 1 must be

of the form X = V2Vl1 > 0, where ~ 1~is a set of eigenvectors of the

problem Mz = XLz, different from the desired set . But this implies
2

that the corresponding matrix S in "Jordan Canonical Form" is unstable,

which by Lemma 2(b) implies that X = V Vl1 is not non-negative definiite
21

and this is a contradiction.

If (F,C) is completely reconstructible, then we know that (1) has a unique

positive definite solution (5], and so the unique non-negative definite

solution X must also be positive definite.

Proof of (b): We must show that

T -1 T
a(S) = C(F -G(G 2 + G( G + XG GXF) = "closed loop" spectrum.

That is, we must show that

T -1 T
U1S = (F - G1(G 2 + G1 XG1) GXF)Ul .

Recalling (11), the above equality is equivalent to

T -I TFU GU2S =FU Gi(G + GXG 1 GlXFUi -1 2 1 2 1 1 1 1

Using (13) we see that

T T -1 -l
G1XF = G1X(U1SU1 + GU2SU 1

T -1 T -1 T -1
= G1U2SU 1 + G1XG1G2 G1U2SU 11 G2 1 1 1 2 12 1

= (G + GTxG -1T -1
G)G G1U 2SU1
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This implies that

T -iT -1T -1
(G2 + GlXG1) G1XF G G2 G 1U2SU1

or

G (G + GTXG) GXF G21G2Su

or

T - T
G1(G + GlXG1) G-XFUI = GU2S.

Thus

FU - GU2S FU - G(G +G TXG)- GXFtU1 2 1 1 2 1 1 

or

UISU1 = F - G (G2 + GXG1) GXF

T -iT
and so aC(S) = C(F - G (G + GTXG ) G XF) = "closed-loOp " spectrum.

he other equalities follow from well-known2 identities

The other equalities follow from well-known identities.
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3. SOLUTION OF THE DISCRETE-TIME ALGEBRAIC RICCATI EQUATION BY A SCHUR

VECTOR APPROACH

In this section we consider the real Schur vector approach for the

solution of (1). The advantage of this approach is that it is not neces-

sary to calculate the eigenvectors corresponding to the stable eiqenspace

of the problem Mz - ALz. The calculation of the eigenvectors has poten-

tially severe numerical difficulties, especially in the case of.multiple

eigenvalues; see, for example, [9], and [10]. By analogy with [6] we

thus instead determine a basis for the stable eigenspace by means of

generalized Schur vectors.

Theorem 7: Let A be a quasi-upper triangular matrix and B an upper

triangular matrix. To each block on the diagonal of A and the respective

entries on the diagonal of B, there corresponds a real generalized eigen-

value or a pair of complex generalized eigenvalues of the generalized

eigenvalue problem Az = XBz. Furthermore, there exist orthogonal matrices

Q and Z, such that QAZ is quasi-upper triangular, QBZ is upper triangular

and the blocks on their diagonals are arranged so that the blocks corres-

ponding to the stable generalized eigenvalues are all in the upper left

quarter of QAZ and QBZ.

Proof: To prove the above theorem we must prove that we can interchange

the order of appearance on the diagonals

(i) of two adjacent lxl entries corresponding to two distinct real

values

(ii) of a 2x2 block corresponding to a pair of complex eigenvalues

and an adjacent lxl entry corresponding to a real eigenvalue
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(iii) of two adjacent 2x2 blocks corresponding to two distinct

pairs of complex eigenvalues.

by means of orthogonal matrices Q and Z, while retaining the respective

quasi-upper triangular and upper triangular structures.

We will prove only case (i) here, which is the simplest. It becomes

clear that (ii) and (iii) are also possible, but quite complicated. Let

A ( ) and B =(

Note that d'- , since, without loss of generality, the two eigenvalues

are distinct. We want to find orthogonal Q and Z such that

QA Z = and QB Z =

a' b b' a
with -= and d = 

c' d d' c

It can be shown by direct computation that

B 1

s_ /1+B

Z= A 1

V=A6' i/

__ _ A

with A = yb - xd xc - ya
ad - bc ad - bc

are orthogonal matrices which effect the desired transformations.
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Consider now our generalized eigenvalue problem Mz = XLz. By Theorem

2(b) there exist orthogonal matrices Q1 and Z1 such that Q2MZ1 is quasi-

upper triangular and qLZ1 is upper triangular. The real generalized

eigenvalues are obtained by dividing the entries of the 1AL blocks on the

diagonal of Q1MZl by the corresponding entries of Q1 LZl. The complex

generalized eigenvalues are obtained by some more complicated calculations,

involving the 2x2 blocks on the diagonal of Q1MZ1 and corresponding entries

on the diagonal of Q1LZ1.

By Theorem 7 there exist orthogonal matrices Q2 and Z2 such that

Q2QlMZlZ2 is quasi-upper triangular and Q2QlLZ2 is upper triangular and,

moreover,the diagonal blocks corresponding to the stable generalized eigen-

values are in the upper left quarter of the matrices. Note that Q2Q1LZlZ2

has no zero entries on the upper half of its diagonal, for such entries

would correspond to infinite and so unstable eigenvalues.

Let Q =Q 2Q1 and Z = Z1Z 2. Then:

QMZ (All A12 and QLZ = 11

0 A22 / B22

As noted above, B11 has nonzero diagonal entries and is therefore inver-

tible. Note that A21 is O because of the symplectic nature of the prob-

lem.

-l
Let S = B1 A . Then:

11 11B

0 0 BlAll (17)
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Define IP: n

Then (17) is equivalent to

QMZV = QLZ'.{$

And since Q is orthogonal we have

MZT = LZTS

Let Z u= U =

Then we have

M = L 1 (18)

Note the similarity of (18) and (10a). Their only difference is that S

-1
is now real quasi-upper triangular, (S = B All = (upper triang.) x

(quasi-upper triang.) = quasi-upper triang.) whereas before it was complex

upper triangular (actually in "Jordan Canonical Form").

We now have Theorem 8 which is the analogue of Theorem 6.

Theorem 8: With respect to the notation and assumptions of this section,

the following results hold:

(a) U1 is invertible and

X = U2U11 is a solution of the Riccati equation (1)

with X = XT > 0 (X = X > 0 if (F,C) completely re-

constructible)



-26-

(b) CT(S) = "closed-loop" spectrum

= C(F - G1(G2 + GlXG) F)

= a(F - G(X + G)- F) when X is invertible

-T
= C(F - GF (X - H)) when F is invertible.

Proof: The proof is essentially the same as in Theorem 6. The only

difference lies in the fact that we are now dealing with generalized

Schur vectors and the matrix S is in "Real Schur Form". We omit the-

details.
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4. NUMERICAL CONSIDERATIONS

In this section we describe how the two approaches for the solution

of the discrete-time algebraic Riccati equation can be implemented. We

are also going to compare the two approaches and discuss their advantages

over other methods for solution of the same equation.

4.1 Algorithm Implementations

In both approaches there are two steps. The first is to find a

matrix U, containing the generalized eigenvectors or the generalized

Schur vectors, such that

MU = LUS

where S is a stable nxn matrix in Jordan form and real Schur form,

th
respectively. The second step is the solution of the n- order linear

matrix equation

W1 = U2 '

Equivalently, since X is symmetric, we can solve the equation

T T
UTX = U 21 2

to find X = U2 U = U 1 . Any good linear equation solver can be used1 2 21

for this purpose.

Now we discuss the first step in each of the two methods.

Generalized Eigenvector Approach

One obvious way to find the generalized eigenvectors is to first

find the generalized eigenvalues of the problem Mz = XLz and then to
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compute the eigenvectors and principal vectors corresponding to the

stable eigenvaluesusing the defining relationships

IMz ='XL 1

(M--kL)zk Lz k-l k = 1,..., n ,

where nh is the multiplicity of the eigenvalue X. This method of finding

the eigenvectors is only generally reliable for hand calculation, how-

ever. A numerical computation of the eigenvectors can be attempted using

the following sequence of subroutines: QZHES, QZIT, QZVAL, and QZVEC.

The above subroutines are available in [11].

The above computation works well,however,only when we do not have

multiple or near multiple eigenvalues. In the case of multiple eigen-

values there is no reliable methQd for the; machine computation of the

generalized principal vectors. Since this case arises frequently, it

is preferable to use the real Schur vector approach.

Real Schur Vector Approach

The implementation of the real Schur vector approach consists of

the computation of orthogonal matrices which transform. the matrix M

to real Schur form and L to upper triangular form, in such a way that

the diagonal blocks corresponding to the stable eigenvalues are in

the upper left quarters of the matrices.

The following sequence of subroutines:

QZHES, QZIT, and QZVAL

reduces M to real Schur form and L to upper triangular form, but the
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order in which the eigenvalues (i.e., the ratios which determine them)

appear is arbitrary. The matrix Z and the reduced matrices QMZ and QLZ,

as well as the quantities whose ratios give the generalized eigenvalues,

are included in the output of the above sequence of subroutines. Note

that the matrix Q is not available, but it is not needed.

Our task is now to effect the reordering of the eigenvalues. We

need subroutines to find orthogonal transformations that exchange adjacent

lxl with lxl, lxl with 2x2, and 2x2 with 2x2 blocks. The lxl blocks

correspond to real eigenvalues and the 2x2 blocks to complex conjugate

eigenvalues. Each of these subroutines takes, as input, the improperly

ordered matrices QMZ Sand:QLZ from the previous subroutines and also the ac-

cumulated transformations Z. It then effects the appropriate orthogonal

transformations Q'.and Z' that do the necessary exchange and produces,

as output, the new matrices Q'QMZZ', Q'QLZZ', and ZZ'.

Once we have these subroutines the reordering can be done in the

following way. Check if the last eigenvalue in the upper left quarter

is stable. If it is not move it to the last position in the lower

right quarter. Check the next eigenvalue in the upper left quarter

and if it is unstable move it to the next position in the lower right

quarter. Continue this process until n eigenvalues have been moved,

or n.stable eigenvalues have been found in the upper left quarter.

This process requires at most n exchanges.

When the reordering is finished, the desired U matrix with the

real Schur vectors is the matrix consisting of the first n columns of

Z.
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4.2 Comparisons

From the implementation of the two approaches it becomes apparent

that the generalized eigenvector approach is only of theoretical interest,

and is convenient only for hand calculation, when the order of the

matrices M and L is small.

The real Schur vector approach is numerically very attractive, be-

cause it uses only orthogonal transformations which are numerically

stable. Moreover, it is not affected by the existence of multiple eigen-

values, which causes difficulties in the generalized eigenvector approach.

The two approaches considered here for the solution of the discrete-

time algebraic Riccati equation are direct generalizations of the eigen-

vector and the Schur vector approach when the matrix F is restricted to

be nonsingular. Hence they have the same advantages over other methods

of solution Of.tbie discrete-time algebraic Riccati equation [6]. The

additional advantage of the methods presented here is that they work

when F is singular or nearly singular. Even in the case that F is

nonsingular the Schur vector approach presented here may be more attractive

numerically then other approaches because it avoids a matrix inversion

and a few matrix multiplications. The necessity to form F when F is

nonsingular but badly conditioned with respect to inversion may cause

severe difficulties, The above remarks are analogous to caveats as-

sociated with attempting to convert the generalized eigenvalue problem

-1
Ax = XBx into the eigenvalue problem B Ax = Xx even when B is nonsingular;

see [8].



5. EXAMPLES

In this section was give a few examples to illustrate the application

of both the eigenvector and the Schur vector approach. All computing was done

on an IBM 370/168 in double precision arithmetic.

Example 1: This is a very simple example to illustrate the generalized

eigenvector approach. We want to solve equation (1) when -

F= H= , G1 =l ,

Then G becomes

G G.G G G1 .

We solve the equation det(M-XL) = 0 to find the finite eigenvalues

XA = O, X = 2. The fourth eigenvalue is an infinite one, in
1 2 2 3

accordance with the results of section 2.2. The eigenvectors corresponding

to the two stable eigenvalues can be put in a matrix U.

U1 /1 4

U=
= 2

1 2

; -1

We can now find the solution

X=U21 (= 2) ( 4 :y1 2 2-1 2

21 
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It can easily be verified that this solution is positive definite and

satisfies equation (1). It can also be checked that the pair (F,G1) is

stabilizable (controllable, in fact) and the pair (F,C) is completely

reconstructible which explains the positive definiteness of the solution.

This problem can also be solved using the Schur vector approach,

which gives the same solution with an accuracy of 15 significant digits.

(For the details of the implementation see example 2.)

Example 2: This is a more complicated example, which corresponds to a

real world problem; see [4]. We want to solve equation (1) when

1 0 0 0 0 0

0 0 1 0 0 0 0 0
F= H=

o 0 0 1 0 0 0 0

0 O . 0 : 0 0 0 0 

0\0 0 0 J

G = , G2 =4 and G:= G1G2 G =1 G1210 0 0 0 0

1/ \0o 0 0 4

First we solve equation (1) by the eigenvector approach. Solving the

equation det(M-XL) O0 we find the eight eigenvalues of the problem:

21-5/ 1 21 + 5V717 
1 2 3 = O 4 4 =5 4 6 7 8

The matrix containing the four eigenvectors corresponding to the stable

eigenvalues is:
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2 -2 2 1

/-1 -1 1 (19-5/1i) /4

0 1 1 (103- 25 v1-)/2

U1'0 06 -1 (536- 130V1T)

u = - 2 -3 7/2 (13+ 5 7)/32

\U2 o0 -2 3 (-19 + 5/ )/116

o 0 2 (-103+ 25/-i7)-)/8

o 0 0 (-268 + 65/-)/22

Note that the eigenvectors satisfy

(M- !L )ul = 0

(M- 2L)u2 = Lu

(M- 3L)u3 = Lu2

(M- 4L)u4 = 0

We can now find X = U U 1 by solving the equation XU1 = U2, or equivalently,

T uT.
since X is symmetric, U1X = U2

The solution (rounded to 1Q significant figures) is:

.328913832 0.6578276642 0.3156553284 0.1313106567
X = 1.315655328 0,6313106567 0.2626213135

1,262621313 0.5252426270

symmetric 2.050485254

This solution gives a residual matrix R = (rij) (when substituted13

into the Riccati equation) whose elements vary between rll 2,60 x 10

-11
and r4 4 a 1.21 x 10 . Obviously the hand calculation of the eigenvectors

for a higher dimensional problem would be too complicated to attempt.

Now, we present the solution of (1) for this example by the Schur

vector approach. First we use the sequence of subroutines
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QZHES, QZIT, and QZVAL

to reduce M and L to upper triangular forms. (Note that all the eigen-

values are real and so the reduced M is upper triangular.) Also we get

as a by-product the closed loop eigenvalues. Then we do the reordering

of the eigenvalues. Finally we obtain the matrix U as the first n

columns of Z and solve the system U1X = U2 for X. This computed solution1 2

equals, up to 10 significant digits, the solution obtained by the

generalized eigenvector approach.

Example 3: This is an example which has a very simple closed-form solu-

tion for arbitrary dimension n. Numerical accuracy of our method car

thus easily be checked.

We want to solve (1) when

0 1 0 . . . . .

0 0 1 0

F H IF = * . , H= I ,

· 1

0 0 0 *q*990

G = 2 1 2 1

0 ' 0



-35-

Solving equation (1) by the eigenvector approach we find that Xi = = X = 0 
1 n

Xnl = '''2n -= X
'The matrix of the stable eigenvectors can be explicitly

determined as

1 0. · · · ·. O 

0 

0 0

U 0 0 ****....

0 2. .. 0

0

0 

Note that the eigenvectors satisfy:

Mu, =0

Mu = Lu

Mu Lu
n n-l

We now easily find that

1 0

21

VIO I
When n= 10 the Schur vector approach gives a numerical solution determined

accurately to at least 13 correct decimal places.
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6. CONCLUSIONS

We have presented two versions of a new method for the solution of

discrete-time algebraic Riccati equations. The main feature of this new

method is that it does not require inversion of the state transition

matrix of the corresponding LQG problem. Thus it is directly applicable

to problems with singular transition matrices and elminates the numerical

problems that other algorithms may have when the transition matrix is ill-

conditioned with respect to inversion.

The first version of the new method is a generalization of the clas-

sical eigenvector approach and is mainly of theoretical interest because

of the numerical hazards associated with the calculation of the generalized

eigenvectors, and especially the generalized principal vectors in the

case of multiple generalized eigenvalues. The second version is a

generalization of the Schur vector approach and is numerically very

attractive because it uses orthogonal transformations which are numerically

stable.

The implementation of the two approaches was discussed in some detail.

What remains to be done is the implementation of the orthogonal transformations

that do the reordering in the case of complex conjugate pairs of eigen-

values.
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