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1. INTRODUCTION.

In classical communication theory, the message to be transmitted is modulated
and the resulting signal propagates through a given channel to produce a received
waveform. The function of the receiver is to recover the signal from the received
waveform, perhaps in an optimum manner, optimum being defined by some performance
criterion. The input to the receiver may have some additive noises added to the
received waveform. It is assumed that the receiver can be constructed independ-
ently of the model of the received waveform and the additive noise. Moreover, it
is assumed that the optimum receiver can be physically realized.

In communication at optical frequencies neither of these two assumptions are
valid. No matter what measurement we make of the received field, the outcome is
random whose statistics depend on the measurement being made. This is a reflection
of the laws of quantum physics. Furthermore, there is no guarantee that the meas-
urement characterizing the receiver can be actually implemented.

In this paper, we present a theory of quantum estimation problems. Full de-
tails will be published elsewhere [1]. For related work, see [2] and [3] and [4].

It will be assumed that the reader is familiar with the notions of convex
analysis in infinite dimensional spaces as, for example, presented in [8].

In the classical formulation of detection theory (Bayesian hypothesis testing)
it is desired to decide which of n possible hypotheses H1,... ,H is true, based on

observation of a random variable whose probability distribution depends on the
several hypotheses. The decision entails certain costs that depend on which hypo-
thesis is selected and which hypothesis corresponds to the true state of the system.
A decision procedure or strategy prescribes which hypothesis is to be chosen for
each possible outcome of the observed data; in general, it may be necessary to use
a randomized strategy which specifies the probabilities with which each hypothesis
should be chosen as a function of the observed data. The detection problem is to
determine an optimal decision strategy.

In the quantum formulation of the detection problem, each hypothesis H. cor-

responds to a possible p. of the quantum system under consideration. Unlike the

classical situation, however, it is not possible to measure all relevant variables
associated with the state of the system and to specify meaningful probability dis-
tributions for the resulting values. For the quantum detection problem it is nec-
essary to specify not only the procedure for processing the experimental data, but
also what data to measure in the first place. Hence the quantum detection problem
involves determining the entire measurement process, or, in mathematical terms,
determining the probability operator measure corresponding to the measurement
process.

2. OBSERVABLES, STATES AND MEASUREMENT IN QUANTUM SYSTEMS.

Let H be a complex Hilbert space. The real linear space of compact self-
adjoint operators K (H) with the operator norm is a Banach space whose dual is iso-

metrically isomorphic to the real Banach space T (H) of self-adjoint trace-class

operators with the trace norm, i.e.,
K (H)* = TS(H) under the duality

<AMB> = tr(AB) < JAtrJBI A T r(H), B K (H)

Here, IBI=sup{jBfj: 4 £ H, 1j~ < 1} = sup{tr(AB) : A £ T (H), JAIt < 1}-- s ' tr ---- t -_ - - - _ . -l 5



and AIt r is the trace norm A IAd < + where A £ T (H) and {A.} are the eigenvalues
tr s

i
of A repeated according to multiplicity. The dual of S(H) with the trace norm is

isometrically isomorphic to the space of all linear bounded self-adjoint operators,
i.e., T (H)* = L (H) under the duality

<A,B> = tr(AB) A s T (H), B £ L (H)

Moreover the orderings are compatible in the following sense. If K (H)+, T (H)+,

and L£ (H)+ denote the closed convex cones of nonnegative definite operators in

K (H), T (H), and L (H) respectively, then

[Ks(H)+]* = (H)+ and [ts( H )+] * = £ (H)+

where the associated dual spaces are to be understood in the sense defined above.

In the classical formulation of Quantum Mechanics one is given a complex Hil-

bert space H and a measurement is identified with an element A s L (H). L (H) is

termed the algebra of observables on H. The a priori statistical information about
the quantum system is incorporated in the "state" p of the system, where p E T (H)

and is of unit trace. In Quantum Communication problems a more general concept of

a measurement (observable) is needed. As we have mentioned before this is con-
veniently described in terms of an operator-valued measure. For a discussion on

the need for going to generalized measurements seeDavies [5] and Holevo [2].

In quantum mechanical measurement theory, it is nearly always the case that
physical quantities have values in a locally compact Hausdorff space S, e.g. a

subset of Rn, and we shall make this assumption. Let H be a complex Hilbert space.

A (self-adjoint) operator-valued regular Borel measure on S is a map

m: B - L (H) such that <m(.)¢l|> is a regular Borel measure on S for every 4,p s H.

In particular, since for a vector-valued measure countable additivity is equivalent
to weak countable additivity m(-)~ is a (norm-) countably additive H-valued measure

for every P s H; hence whenever {E } is a countable collection of disjoint subsets

in B then
00

00

m( U En) = m(En),
n=1 n=l1

where the sum is convergent in the strong operator topology. We denote by

M(B,L (H)) the real linear space of all operator-valued regular Borel measures on

S. We define scalar semivariation of m £ M(B,L (H)) to be the norm

m(S) = sup I<m( )414> (s)

where i<m( ) j>l denotes the total variation measure of the real-valued Borel
measure E 4 <m(E)PJ|>. It can be shown that scalar semivariation is always finite.

A positive operator-valued regular Borel measure is a measure m £ AI(B,L (H))

which satisfies

m(E) > 0 VE £ B,



where by m(E) > 0 we mean m(E) belongs to the positive cone L (H)+ of all non--~~~~~~~~~~ +
negative-definite operators. A probability operator measure (POM) is a positive
operator-valued measure m s M(8,L (H)) which satisfies

m(S) I.

If mn is a POM then every <m(-)4l> is a probability measure on S and m(S) -= 1. In
particular, a resolution of the identity is an m M(B8,L (H)) which satisfies

s
r(S) = I and m(E)m(F) = 0 whenever E F = 0; it is then true that m(-) is pro-
jection-valued and satisfies

m(EnF) = m(E)m(F), E,F s B.

3. INTEGRATION WITH RESPECT TO OPERATOR-VALUED MEASURES.

In treating quantum estimation problems it is necessary to have a theory of
integration with respect to operator-valued measures. We outline this theory now.
First, we consider integration of real-valued functions. Basically we identify
the regular Borel operator-valued measures m £ M(B,L (H)) with the bounded linear

operators L: C (S) + L (H), to get a generalization of the Riesz Representation
Theorem 

Theorem 3.1
Theorem 3.1

Let S be a locally compact Huasdorff space with Borel sets B. Let H be a
Hilbert space. There is an isometric isomorphism m-e>L between the operator-
valued regular Borel measures m e M(B,L (H)) and the bounded linear maps L A(Co(S),
L (H)). The correspondence m<-L is given by
s

L(g) = fg(s)m(ds), g c Co(S)
S

where the integral is well-defined for g(-) e M(S) (bounded and totally measurable
maps g: S + R) and is convergent for the supremum norm on M(S). If m4->L, then

r(S) = ILI and <L(g)4lj> =fg(s) <m(-)clp> (ds) for every ~,i e H. Moreover L is
positive (maps C (S)+ into Ls(H)+) iff mn is a positive measure; L is positive and

L(1) = I iff m is a POM; and L is an algebra homomorphism with L(1) = I iff m is
a resolution of the identity, in which case L is actually an isometric algebra
homomorphism of C (S) onto a norm-closed subalgebra of L (H),a

Remark
Since every real-linear map from a real-linear subspace of a complex space

into another real-linear subspace of a complex space corresponds to a unique
"Hermitian" complex-linear map on the complex linear spaces, we could just as
easily identify the (self-adjoint) operator-valued regular measures M(B,L (H))

with the complex-linear maps L: C (S,C) - L(H) which satisfy
0

L(g) = L(g)*, g c C (S,C).
0

3.1 Integration of T (H)-valued functions.
s

We now consider L(H) as a subspace of the "operations" L(T(H),T(H)), that is,
bounded linear maps from T(H) into T(H). Every B £ L(H) defines a bounded linear
function LB: T(H) - T(H) by

LB (A) = AB, A E Tr(H)

B ........ .



with IBI IL B. In particular, A + trAB defines a continuous (complex-) linear

functional on A C T(H), and in fact every linear functional in t(t1)* is of this
form for some B £ L(H). We note that if A and B are selfadjoint then tr(AB) is
real linear (although it is not necessarily true that AB is selfadjoint unless
AB = BA). Thus, it is possible to identify the space T (H)* of real-linear con-

tinuous functionals on T (H) with L (H), again under the pairing <A,B> = trAB,
s s

A e T (H), B s L (H). For our purposes we shall be especially interested in this

latter duality between the spaces T (H) and L (H), which we shall use to formulate

a dual problem for the quantum estimation situation. However, we will also need to
consider L (H) as a subspace of L(T(H),T(H)) so that we may integrate T s(H)-valued

functions on S with respect to L (H)-valued operator measures to get an element of

r(H).

Suppose m e M(B,L (H)) is an operator-valued regular Borel measure, and

f: S - T (H) is a simple function with finite range of the form

n

f(s) = 1 (s)p
j=1 j

where P. £ T (H) and E. are disjoint sets in B, that is f s BSO T (H). Then we may

unambiguously (by finite additivity of m) define the integral

n

Jrf(s)m(ds) = E m(Ej)pj.
S j=1

The question, of course, is to what class of functions can we prop erly extend the
definition of the integral? Now if m has finite total variation |m| (s), then the
map f + ff(s)m(ds) is continuous for the supremum norm iflj = suplf(s) tr on

B 0 T (H), so that by continuity the integral map extends to a continuous linear

map from the closure M(S,T (H)) of 8 0 T (H) with the 1'1 norm into T(H). In

particular, the integral ff(s)m(ds) is well-defined (as the limit of the integrals

S

of uniformly convergent simple functions) for every bounded and continuous function
f: S - T (H). Unfortunately, it is not the case that an arbitrary POM m has finite

total variation. Since we wish to consider general quantum measurement processes as
represented by POM's (in particular, resolutions of the identity), we can only
assume that m has finite scalar semivariation m(S) < +-. Hence we must put stronger
restrictions on the class of functions which we integrate. The answer is summarized
in

Theorem 3.2
Let S be a locally compact Hausdorff space with Borel sets 3. Let H be a

Hilbert space. There is an isometric isomorphism L1 <-> m4>L2 between the bounded

linear maps L1: Co(S) 0 7T T(H) - T(H),(1) the operator-valued regular Borel

measures m E M(B,Lr(T(H) ,(H))), and the bounded linear maps L2: C (S) - L(r(H),

T (H)). The correspondence L1 e m k L2 is given by the relations

(1) For notation and facts regarding tensor products we follow Treves [7).



Ll(f) = ff(s)m(ds), f £ C (S) -(H)

L2 (g)p = Ll (g(.)p) = pfg(s)m(ds), g _ C (S), p z T(H)

and under this correspondence L1 = i(s) = L2 . Moreover the integral ff(s)m(ds)

11 S

is well-defined for every f M(S) 0 T (H) and the mapfi+ff(s)m(ds) is bounded and

linear from M(S) IT t(H) into T(H).

Corollary 3.3
If m £ M(B,L (H)) then the integral ff(s)m(ds) is well-defined for every

S S

f £ M(S) 0 T(H). 

In proving Theorem 3.2 we need the fact

Proposition 3.3

M(S) . TI(H) is a subspace of M(S,T(H)).

Remark
The above says that we may identify the tensor product space M(S) r T (H) with

sT s

a subspace of the totally measurable functions f: S - T (H) in a well-defined way.

The reason why this is important is that the functions f £ M(S) B T (H) are those
7I s

for which we may legitimately define an integral f f(s)m(ds) for arbitrary operator-

valued measures m 4 (8, s(H)), since f'tf f(s)m(ds) is a continuous linear map from
S ^

M(S) 0 T(H) into T(H). In particular, it is obvious that Co(S) 0 T(H) may be

identified with a subspace of continuous functions f: S --'Ts(H) in a well-defined

way, just as it is obvious how to define the integral f f(s)m(ds) for finite linear
S

combinations n
f(s) = E gj(s)pj £ C (S) x T (H). What is not obvious is that

j'=1

the completion of C (S) 0 T (H) in the tensor product norm Tr may be identified
o s

with a subspace of continuous functions f: S - T (H).

4. A FUBINI THEOREM FOR THE BAYES POSTERIOR EXPECTED COST.

In the quantum estimation problem, a decision strategy corresponds to a

probability operator measure m MA(B,,L (H)) with posterior expected cost

R =f tr[P(s)fC(t,s)m(dt)].(dt)
m S

where for each s, p(s) specifies a state of the quantum system, C(t,s) is a cost

function, and p is a prior probability measure on S. We would like to show that

the order of integration can be interchanged to yield

R = trf f(s)m(ds)
m S



where

f(s) r C(t,s)p(t)ii(dt)
S 

is a map f: S - T (H) that belongs to the space M(S) 0_ T(H) of functions inte-

grable against operator-valued measures.

Let (S,B,p) be a finite nonnegative measure space, X a Banach space. A fun-
tion f: S - X is measurable iff there is a sequence {f } of simple measurable

functions converging pointwise to f, i.e. f (s) + f(s) for every s C S. A useful

criterion for measurability is the following: f is measurable iff it is separably-

valued and for every subset V of X, f (V) 8B. In particular, every f s C (S,X)
0

is measurable, when S is a locally compact Hausdorff space with Borel sets B. A
function f: S + X is integrable iff it is measurable and Jlf(s)jl.*(ds) < +,

S
in which case the integral ff(s)p(ds) is well-defined as Bochner's integral; we

denote by L1(S,B,p;X) the space of all integrable functions f: S - X, a normed

space under the L1 norm Ifll =r If(s)jp(ds). The uniform norm I-|1 on functions

f: S - X is defined by IflK= suplf(s)j; M(S,X) denotes the Banach space of all
s£S

uniform limits of simple X-valued functions, with norm I *oJ, i.e. M(S,X) is the

closure of the simple X-valued functions with the uniform norm. We abbreviate
M(S,R) to M(S).

Proposition 4.1
Let S be a locally compact Hausdorff space with Borel sets B, p a probability

measure on S, and H a Hilbert space. Suppose p: S - T S(H) belongs to M(S,r S(H)),

and C: S x S + R is a real-valued map satisfying

t + C(t,-) e L1 (S,B,p;M(S)).

Then for every s E S, f(s) is well-defined as an element of T (H) by the Bochner

integral

f(s) =f C(t,s)p(t)p(dt);
S

moreover f C M(S) 0% T (H) and for every operator-valued measure m £ Mkt(B,L (H)),

we have

ff (s)m(ds) = Jp(t) [fC(t,s)m(ds)] (dt)
S S S

Moreover if t + C(t,-) in fact belongs to L1(S,B,p;C (S)) then f s C (S) 0 T (H).g
0 0 7 S

5. THE QUANTUM ESTIMATION PROBLEM AND ITS DUAL.

We are now prepared to formulate the quantum detection problem in a duality
framework and calculate the associated dual problem. Let S be a locally compact
Hausdorff space with Borel sets B. Let H be a Hilbert space associated with the
physical variables of the system under consideration. For each parameter value
s £ S let p(s) be a state or density operator for the quantum system, i.e. every
p(s) is a nonnegative-definite selfadjoint trace-class operator on H with trace 1;



we assume P E M(S,T (H)). We assume that there is a cost function C: S x S + R,

where C(s,t) specifies the relative cost of an estimate t when the true parameter
value is s. If the operator-valued measure m £ M(B,L (H)) corresponds to a given

S

measurement and decision strategy, then the posterior expected cost is

R = trfp(t) [fc(t,s)m(ds)h],
S S

where P is a prior probability measure on (S,8). By Proposition 4.1

this is well-defined whenever the map t - C(t,') belongs to L1(S,B,p;M(S)), in

which case we may interchange the order of integration to get

(5.1) R = trff(s)m(ds)

where f C M(S) 0) Ts(H) is defined by

f(s) = f P(t)C(t,s)f(ds).
S

The quantum estimation problem is to minimize (5.1) over all operator-valued
measures m £ M(B,L (H)) which are POMI's i.e. the constraints are that m(E) > 0

for every E e B and m(S) = I.

We formulate the estimation problem in a duality framework. We take pertur-
bations on the equality constraint m(S) = I. Define the convex function
F: I(B ,L (H)) - R by

F(m) = 6 (m) + trf f(s)m(ds), m E .f(B,L (H)),
>0 s-- S

where 60 denotes the indicator function for the positive operator-valued measures,

i.e. 6- (m) is 0 if m(B)C -L (H)+ and +- otherwise.. Define the convex function
>0 S

G: L (H) +R by

G(x) = 6{}(x), x c L (H)

i.e. G(x) is 0 if x = 0 and G(x) = +o0 if x 0 0. Then the quantum detection prob-
lem may be written

P = inf{F(m) + G(I-Lm): m e M(B,L (H))'
o s

where L: M(B,L (H)) - L (H) is the continuous linear operator

L(m) = m(S).

We consider a family of perturbed problems defined by

P(x) = inf{F(m) + G(x-Lm): m £ M I(B, S(H))}, x £ L (H).

Thus we are taking perturbations in the equality constraint, i.e. the problem P(x)
requires that every feasible m be nonnegative and satisfy m(S) = x; of course,
P = P(I). Since F and G are convex, P(') is convex Ls(H) + R.

-·-- ···- ·· I· T· ··- ·- ·- ··-r



In order to construct the dual problem corresponding to the family of per-
turbed problems P(x), we must calculate the conjugate functions of F and G. We
shall work in the norm topology of the constraint space L (H), so that the dual

problem is posed in L (H)*. Clearly G* - 0. The adjoint of the operator L is

given by

L*: L (H)* -~ M(B,L (H))*: y - (m - y'm(S)).
S S

To calculate F*(L*y), we have the following lemma.

Lemma 5.1
Suppose y c L (H)* and f s M(S) O T (H) satisfy

(5.2) y'm(S) < trff(s)m(ds)
S

for every positive operator-valued measure m C M(B,L (H)+). Then y < 0 and

y < f(s) for every s £ S, where y = y + y is the unique decomposition of y

into Yac C T (H) and ysg K (H) .

Proposition 5.2
The perturbation function P(-) is continuous at I, and hence UP(I) # 0. In

particular, P = D and the dual problem D has optimal solutions. Moreover every

solution y s L (H)* of the dual problem D has 0 singular part, i.e. Yg = 0 and

Y = Yac belongs to the canonical image of T (H) in T (H)**.g

In order to show that the problem P has solutions, we could define a family

of dual perturbed problems D(v) for v E C (S) 0( T (H) and show that D(') is con-

tinuous. Or we could take the alternative method of showing that the set of

feasible POM's m is weak* compact and the cost function is weak*-lsc when

M(B,L (H)) - L(C (S),L (H)) is identified as the normed dual of the space
SI' 0 '

C (S) 0 T (H) under the pairing
0 715S

<f,m> = trff(s)m(ds).

Note that both methods require that f belong to the predual C (S) ( T (H)); it

suffices to assume that t - C(t,-) belongs to L1(S,g,B;;C (S)).

Proposition 5.3
The set of POM's is compact for the weak*" _ w(l(B,L (H)), C (S) @ T (H))

topology. If t - C(t,') e Li(SB,Ip;Co(S)) then P has optimal solutions m. 

The following theorem summarizes the results we have obtained so far, as

well as providing a necessary and sufficient characterization of the optimal

solution.

MAIN THEOREM.

Let H be a Hilbert space, S a locally compact Hausdorff space with Borel sets

B. Let p £ M(S,T (H)), C: S x S - R a map satisfying t + C(t,')£L (S,B,;C o(S)),

and i a probability measure on (S,B). Then for every m E1M(B,L ( H)),

--- · ·--- ·-------~~~~ '-- S---- ·~--~-~1--~-



tr f p(t)[f C(t,s)m(ds)]p(dt) = trf f(s)m(ds)
S S S

where f £ Co(S) 0 ts(H) is defined by
o S

f(s) = fp(t)C(t,s)p(ds).
S

Define the optimization problems

P = inf{trj f(s)m(ds) : m c M(B,L (H)), m(S) = I,m(E) > 0 for every E s 8B

S

D = sup{try: y S T (H), y < f(s) for every s X S}.

Then P = D , and both P and D have optimal solutions. Moreover the following

statements are equivalent for ms M(B,L (H)), assuming m(S) = I and m(E) > 0 for

every E s 8:

1) m solves P

2) ff(s)m(ds) < f(t) for every t s S
S

3) f m(ds)f(s) < f(t) for every t s S.

S

Under any of the above conditions it follows that y = f f(s)m(ds) =f m(ds)f(s)
S S

is selfadjoint and is the unique solution of D , with

P = D = tr(y).
o o
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