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Abstract manufacturing systems have been made [Hutchinson,
1977] [Horev 1978]. They allow detailed investiga-

The problem of choosing an optimal mix of op- tion of the effects of parameter variations and

erating strategies in a flexible manufacturing sys- strategy assignment on system performance.
tem is solved by a network flow optimization ap- Solberg [1977] and Ward [19781 model the system as

proach. Mathematical methods which exploit the a closed network of queues. Steady state results
structure of the problem to generate manufacturing which are in good agreement with simulation re-
strategies are outlined. Numerical results show sults and observed performance of an actual sys- p e 

that the method produces results which agree with tem are obtained. The use of the closed networki

intuition for a two-workstation system. of queues model as an analytic method of strategy
assignment has been suggested by Secco-Suardo }

1. Introduction [1978].
In this report, a n'etwork flow approach is

A large proportion of manufacturing activity used. Rather than analyze the movement of in-
is at a level which does not justify dedicated au- the system, the aggregateddividual pieces through the system, the aggregated #l
tomation in the form of assembly lines. In order Network of queues

flow of pieces is analyzed. Network of queues
to increase productivity in this sector of industry, mmodels are used to account for congestion effects ~
flexible manufacturing systems are being designed~~~~~~~~and built. ~at the workstations. i I

In Section 2, the model is presented and the ia
A flexible manufacturing system consists of optimization problem is formulated. Systems where

workstations capable of performing a number of dif- there are non-deterministic arrivals and proces
there are non-deterministic arrivals and proces-

ferent tasks, interconnected by a transportation 
sing times give rise to non-linear optimization
problems. The production rate of the system :loading station, undergo a sequence of operations should be maximized but the build of queues

at the workstations before being finally unloaded Alter-
within the system becomes a constraint. Alter- 

at an unloading station. The processes at theatX an . unladngstaio. heroesenatively, a price can be put on the number of i
workstation are mostly automatic. At certain sta-

pieces in the system (the in-process inventory) i I Itions like the loading station for example, there
may be some manual operations [Hughes 1977].

S evoermal differenatkinds ofpiees aremanufac- [Kimemia and Gershwin 1978]. Deterministic sys- ii
Several different kinds of pieces are manufac-

ters or systems where the processing and inter- !!
tured simultaneously in the system. Each piece, 

arrival times have small variances, give rise to
has a given number of operations necessary for its

linear programs. Assymptotic results for closedmanufacture. There is a choice in the system as to queueing models [Baskett et al 1975 and work-rate i
queueing models [Baskett et al 1975] and work-rate

formed. Any entering workpiece therefore has the t
the linear programs are valid for maximizing the

choice of several different routes or manufacturing production rate in systems with general service
strategies available. A manufacturing strategy for ibutions

time distributions.
a piece assigns each operation to a workstation and Mathematical methods which exploit the struc
also specifies the sequence of workstation visits. of the problem in order to solve the optimi-

In order to gain maximum output and utilization zation robleps of section 2 are discussed in i
at minimum cost, the overall behavior of the system section 3. Decomposition metod [Dantzig and
should be studied. Furthermore mathematical modelsole 1963 are used to break he inear programs 
and algorithms are needed which will enable control- into a set of strategy-generating minimum proces

into a set of strategy-generating minimum proces-
lers to make decisions affecting the system with

sing time sub-problems each involving only one iT_
minimum human intervention.

piece type. A master problem then finds the op-
An important problem, which has a fundamental tima combinatin f tr the

timal combination of strategies for all the aeffect on the production rate and the utilization
of the system, is the assignment of strategies to The lagrange multiplier method of estenes
the workpieces. Given a flexible manufacturing and Powell [1968] converts the non-linear

[1969] and Powell [1968] converts the non-linearsystem with a specified production mix of pieces programming problem into a series of optimization
and given the location at which all the operations problem where a non-linear laranian function is
can be performed in the system, one wishes to pick minimized subject to lir an

minimized subject to linear flow and resource con- i-i
the optimal steady-state mix of manufacturing strat- i
egies for all the pieces being produced.

[Cantor and Gerla 1974] [ Defenderfer 1977] can
Extensiv simulation studies of flexible 
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then be applied to minimize the lagrangian func- k

tion. xij = R. i=l ...p k=l,.k. i (2.2)

Numerical results for a two workstation sys- j=1

ten are presented in section 4. The effect of where R. is the production rate of type i pieces.
changing system parameters on the optimal strat-l production rate is given byThe total production rate is given by
egy assignment, production rate and work-station P P M

utilization is investigated. R R (2.3)

i~i i=l j=l
2. Modelling and Optimization of Flexible

Manufacturing Systems The summation is carried out with k=l for conven-
ience. The production ratio requirement states

A flexible manufacturing system consists of that Dieces of type i comprise a fraction
M workstations connected by a transportation sys- a (O<c.<l) of the total production. This can be

tem. There may be P different types of pieces in 1 - 1-

the system simultaneously. Each piece has S expressed as a relationship between R in equation
systm (2.3) and R. in equation 2.2

strategies available for its manufacture. A strat- 1

egy is a sequence of operations at assigned i=l. p (2.4)
workstations which are required to complete a work- I 1

piece. Thus strategies are different sequences of where c satisfies

the same operations. 1

The total number of strategies S=jSi may be =1 (2.5)

large if there is a large number of options avail-

able in the system. It might not be worthwhile in An important performance measure is work-

such a case to identify in advance all possible station utilization, Uj, defined as the probability

strategies. k that the workstation is occuped. This can be ex-

For each piece of type i, the quantity t.. is pressed as a function of the flow rates x~. and

the time to perform operation k at workstation j. operation times operation times t. , [Kimemia and Gershwin 1978].
The superscript k=(l,...,K ) represents a parti- K

cular operation and does not imply that there P

are strict precedence constraints. For example U. xk tk (2.6)

the 5 different operations required on the piece j i=l k= ij

of Figure 2.1 are indicated. The only precedence

constraint in this case is that operation 2 should where K is the number of operations required to
be done before operation 3. i

The definiti of the operations is dependent The method of network-of-queues analysis can

on the capability of the workstations and the tool now be applied so as to express other system per-
distribution amongst them. Operation 2, because formance measures as functions of this xk
of close tolerance requirements may need a rough ij

cut and then finishing which might not be done at [Solberg 19771ESecco-Suardo 1978] Ward 1978].

the same workstation. In this example however, Optimization problems can then be formulated so

identifying it as one operation specifies that it as to pick the assignments xk. which maximize the

is done at a single visit to a workstation. The production rate or perhaps some other index ofproduction rate or perhaps some other index of
time tk. to perform the operation is the total performance.

time the piece stays at the workstation including The application of network-of-queues analysis

any time for changing tools. requires knowledge of the statistical properties

Assuming that the tk. matrices are available of the processing times at the workstations and

1] the arrival process into the network. This is an
for every piece, the flow rate of type i pieces to aspect that requires careful study on actual flex-
workstation j for operation k is defined as xj. ible manufacturing systems.

The system controller monitors these variables and There are instances where it is either neces-

can affect them by varying the loading rate and sary to identify and enumerate strategies in ad-

allocating the pieces to the strategies available. vance or the number of strategies is not large and

The total arrival rate A. at workstation j is they can be easily identified. The optimization
p k method in such cases is shown by way of an example

.k in section 4.
i-l -xX. (2.1) The transportation system can be modelled as

k=l - 13 a network of nodes and arcs. The nodes are merges

k or diverges of arcs or the actual workstations
The variables xij are related by conservation of themselves. It is assumed that the nodes are

flow equations and the production ratio require- labelled so that the first M are workstations.

ment. Conservation of flow requires that the flow This includes the loading and unloading stations

rate of type i pieces undergoing any operation k which are labelled 1 and M respectively. Opera-

be equal to the production rate of that type of tion 1 in this case becomes the loading operation

piece. This is expressed as and K. the unloading operation for a type i piece.
This ensures well defined flows for each type of
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piece from the loading to the unloading station. in-process inventory is given by (2.12). Cons-
Define ri as the flow rate of type i pieces on traint (2.13) expresses any arc-capacity cons-
arc n of the network. Then from the definitions traints that might exist in the transportation

system.

r. = X x. l<j<m (2.7) The optimization problem NLP 2.1 is general
ncA(j) k and can be adapted to specific situations

[Kimemia and Gershwin 1978]. A particular sim-
Where A(j) is the set of arcs leading to node j. plification occurs when the processing times and
The conservation of flow at a network node j is arrival processes into the system are determi-
expressed as nistic. If in addition the transportation system

has a large enough capacity so that it does not
4 X ri. = I tim j>m (2.8) present a constraint on the production rate, the

nEiA(j) mED(j) following linear program which maximizes the pro-
duction rate R results,

Where D(j) is the set of arcs carrying pieces LP 2.1
away from node j.

The in-process inventory I(r,x), which is the Maximize R (2.15)
average number of pieces in the network, can be

subject to (2.2), (2.4), (2.11)expressed as a function of the arc flow rate r..,
and the flow rates through the workstations. 1 and

13 -

I(r,x) = q(x) + X t.r.. (2.9) By applying asymptotic results for closed
j i j>m 3 iJ networks of queues [Cordon and Newell 19681[Secco-

Suardo 1978], results for general queueing net-
The average queue length q (x) at workstation works [Baskettet al 19751, the operational results

j is evaluated by applying queueing network theory.
theorems of Chang and Lavenberg [1972], it isThe average number of pieces on the transportation
found that LP 2.1 also maximizes the productionsystem depends on the time t. to traverse each arc

in~ .the~ network.z~ jrate for a general class of systems [Kimemia and
Gershwin 1978]. The program remains unchanged as

An optimization problem can now be formulated, '
which maximizes the total production rate subject•;~~~~~~~~~~ . . ~~The deterministic case can thus be viewed as ato a constraint imposed on the average level of

limiting case of a class of stochastic systems.in-process inventory, which is required to be less
than a certain given value Q. In operating ptimization Techniques for Flexible
flexible manufacturing system, the average level

Manufacturing systems
of in-process inventory is an important quantity. Manufacturing systems
In general the in-process inventory is a non- The general optimization problem can be
linear function of the production rate. Although stated as NLP 3.1
it is desirable to have the maximum possible pro- minimize f(x) (3.1)
duction rate, the average level of in-process in-
ventory should not as a consequence become too

subject to
high. In this formulation this is controlled by
setting a level Q and maximizing the production T. < 1 (3.2)
rate subject to the constraint that the average i=l
level of in-process inventory does not exceed Q.

c.x. = C.R (3.3)NLP 2.1 1i i
P 1

Maximize xil (2.10) A.x = 0 i=l,... ,p (3.4)
i=l 

subject to (2.2), (2.4), (2.7), (2.8)

x. > 0 (3.6)
and u < 1 j=l.....m (2.11)

Where the vector x contains all the flow variables
k

I(r,x) < Q (2.12) x.. and r.. in the problem. This vector is par-

titioned such that the flow variables concerning
i r0 < d. r.., j>m (2.13) only pieces of type i are contained in x.. The

r.. < d. ,j>m (2.13) 1

''7 i -3 -- i matrix A. has elements 1, 0 and -1 and defines
the flow conservation constraints for type i k

k pieces. The matrix T. contains the elements t1
> 0 (2.14) 1 ''

i' i -i The ratio requirement constraints are expressed
in (3.3) where c. is a row vector of 1 and 0 ele-The production rate is given by (2.10) and is the ments such that cx. is the production rate R.

total flow rate out of the loading station. The 1 _ 1
limited capacity of the workstations is expressed of type i pieces expressed in equation (2.2). The
by (2.11). The limit on the average level of functions f(x) and g(x) in (3.1) and (3.5) may or
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LP 3.2
may not be convex. They express the performance

index and the non-linear constraint on the system P j
respectively. minimize i qi

In order to solve this problem efficiently, il '
it is necessary to exploit it's structure. It P
should be noted that given an optimal solution x. subject to Ti q.x? < 1 (312)
to the problem, the routing problem and the or- i=l 3 

dering of operations is not resolved. A solution
method therefore should not only give the solu- qj -0 (313)

tion x., but it should also provide routing in-
formation by generating strategies. The colunns of the master problem are generated asformation by generating strategies.
If the set Q. is defined as required by solving the following set of linear

1 programs, one for each type of piece

i Ai.x. =, Cxii = x.i>0} LP 3.4

the optimization problem may be stated as minimize (v-T)x (3. 14)

NLP 3.2 Xi i

minimize f(x) (3.7) where X is a vector of dual variables associated
xigEi with the master problem. The column-generating

program LP 3.4 has the following interpretation.
subject to g(x)j 0 The vector (v.-7T.) in (3.17) assigns a cost to

The augmented Lagrangian method of Hestenes each arc in tAe transportation system and to per-
[1969] and Powell [1968], is used to convert the forming each operation at a permissible workstation.
non linearly constrained optimization problem The problem is one of finding a minimum cost path
into a sequence of linearly constrained problems. through the system which assigns each operation to

A number of methods which exploits the convex a permissible workstation. This is a constrained
structure of the set Q. to obtain feasible shortest path problem and can be solved by a label-
descent directions maylthen be em- ling type algorithm [Kershenbaum et al. 1976].
ployed [Assad 1975]. The Cantor-Gerla algorithm The solution x? is thus a strategy. At this stage,
[1974] solves the problem over a convex combina- the ordering of the operations is determined by
tion of the extreme points of the polygon the shortest path solution and can+ be stored.
Q={set of all feasible flows x}. Let xj be an The extreme point solution xn which results
extreme points of R. Any xcQ can be expressed is thus a weighted combination of the strategies
as a convex combination of xJ generated by the solution of LP 3.1. The non

=x -~j~j X(3.8) linear optimization then finds the optimal mix of

ij the extremal flow-vectors x
j

j=l....

with The linear program LP 2.1 has the same struc-
w. > 0 ture as LP 3.1 and can be solved using the same de-

-] -- composition principle. In this case however the

and X w. = 1 (3.9) cost function in the strategy generating sub-pro-
j blem can be written for each type of piece as

K
j M i kk

Thus given a set of extreme points xj, the non .t .. (315)
linear optimization is carried out over the va- j=l k=l i 1] 13
riables w.. This reduces the size of the problem
considerably. The problem has the same interpretation as LP 3.4,

To generate the extreme points, the flow gen- and is easily solved. For each operation k find

erating sub-problem is solved. Let x be the value k k
t. = minimum 7T.t. of x which minimizes the lagrangian function in is = m mum (3.16)

the convex hull of x
]

j=l,...,n. The flow gen- k k

erating linear program is then set x. = . and x.i = 0 for jis.
LP 3.1 is 3 .)

minimize p 4. Numerical Results for a Two Workstation

v x. (3.10) System

i=l Consider the system depicted in figure 4.1.

subject to (3.2), and x.c Q. i=l,...,p where The workstations and the loading station have ex-

v. is The gradient of the lagrangian function at ponentially distributed service times with a rate
xx^ u. at station i. The service time is independent

The structure of LP 3.1 allows the Dantzig Wolfe of the type of piece being processed. Arrivals

[Dantzig 19631 price directive decomposition prin- into the system are assumed to form a poisson

ciple to be applied. Any x.£ Q., can be expressed process. An arrival in this system is considered

as a convex combination of the extreme points to be the command to load a piece issued by the
X of This gives ise to the folowing master system controller. An assumption made is that

x. of i.. This gives rise to the following master there are always "raw" pieces and empty pallets
problem in there variabl always "raw"es qand empty pallets

problem in the variables q available at the loading station.

There are two types of pieces being manufac-
tured. The first needs one operation which can be
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done either at workstation 1 or workstation 2. The The parameter values used are shown in table
second type of piece requires two different ope- 4.1. In the first set of results, for fixed sys-
rations, one at workstation 1 and one at worksta- tem parameters, the value Q is varied from a value
tion 2. The two operations can be done in any of 2 upwards.
order. The four possible strategies two for each Type 2 pieces always follow strategy 3. That
kind of piece are summarized in figures 4.2 and is they go to workstation 1 first and then to
4.3. The circled number is the workstation, below workstation 2. This is because using strategy 4
it is the operation time. A strategy is shown as increases the in-process inventory without a cor-
a path between the loading station L and the un- responding increase in production. The proportion i
loading stationU . The variables y, P.=1,...,4 of type 1 pieces that go to workstation no.1 (ref-
represents the flow of strategy 2 pieces into the erred to as the optimal split) is shown in figure ;
network. 4.5 as a function of Q. When the inprocess in- ,-

The ratio requirement is that two type 2 ventory is low the optimal split is high since 1
pieces are produced for every type 1 piece. This is the fastest station. As the number of pieces
is expressed as in the network increases, more are diverted to

workstation 2. Secco-Suardo [1978] found a sim-
ilar result for a system modelled as a closed j.

The total production rate is, network. In his case the optimal split depends
on the number of pallets available. As can be ex-

R = Y1 
+

Y2 
+

Y3 
+

Y4 (4.2) pected, the production rate increases with Q fig-

The pieces travel at constant speed on the ure (4.6). A saturation effect is in evidence. I
transportation system. The average travel time on The maximum possible production rate when the res-
each arc is taken to be T (independent of the arc). triction on the average level of in-process inven-
The average number of pieces on the transportation tory is lifted (i.e. as Q+_) is 6.6 pieces per
system can be written down as hour. Both stations are then fully utilized.

The effect of increasing Q on the utilization
ly+ T 3y3+ 4y 4Y1 2 2 + + (4.3) at the workstations is shown in figure 4.7. Thus

as the average level of inprocess inventory is in- j-
IT is the average time a strategy 2 piece spends on creased, the optimal split changes in-a .way that {
thie network. The T are derived by noting from keeps the workstations balanced in the sence that
figure 4.1 how many arcs each piece traverses in keeps the workstation balanced in the sec that

going from the loading to the unloading station, their levels of utilization are approximately
equal despite the difference in their service rates.

.this is summarized in figure 4.4. This assumes
that no piece is ever rejected from a workstation. In the second set of results, the average in-process inventory is required to be 10. The speed
This assumption is consistent with the assumption of workstation no. 1 is varied from 2 to 10 2
that the workstations have infinite buffer capacity. pieces per hour. The optimal split for type 1pieces per hour. The optimal split for type 1

The system is modelled as an open network of pieces as a function of the speed of workstation
queues. The results of Jackson [1963 that eachfigure 4.8.
station behaves as an independent m/m/l queue in no.1 is shown in figure 4.8.in the speeds of the two 

If the difference in the speeds of the two
the steady state can be applied. The averagethe steady state can be applied. The average workstations is great. all of the type 1 pieces go
queue length q. at workstation j is given by to the faster station. This would indicate that
[Kleinrock 197i] in such a situation it is not worthwhile making

:Pk C y the slower station flexible. In the range where
q.REM (j) * (4 the speed of workstation no.1 is between about +

-q = _ =0,1,2 . 40% of the speed of station no.2, the optimal 4-
Uj E y2 split changes from zero at the lower speed to unity

f t.M(j) at the higher speed. The effect on the utilization
where M(j) is the set of strategies that use sta- is shown in figure 4.9. The change in the optimal
tion j. Combining (4.3) and (4.4) gives the av- split keeps the utilizations of the two workstations
erage level of inprocess inventory close to each other. For this system at least the

2 4 optimization produces a balanced load on the two
+ 4.5) workstations. The production rate increases with
the speed of workstation no.1, (figure 4.10). In
the speed range where the optimal split is changing,

The optimization problem which is equivalent to the increase is linear, outside that range, the
NLP 2.1 is

bottle neck effect of the slower station is evident.

NLP Maximize R (4.6) 5. Conclusion

subject to (4.1) and A network flow optimization approach to the 
problem of choosing the best mix of operating stra-

u. - I yt < 1 j=0,1,2 (4.7) tegies in a flexible manufacturing system has been
k£M(j) presented. An operating strategy is defined as a

sequence of operations required to manufacture a
I () < Q (4.8) workpiece. All possible routes through the system
Y do not have to be identified in advance. The pro-

yt > 0 (4.9) cedure of section 3 generates the paths for each
type of piece as part of the solution. The solu-

The value of Q is the desired average level tion gives the optimal proportion of each type of
of in-process inventory. piece to be manufactured under each of the avail-
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