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1. Introduction

In [1]-[3] we have shown that, for certain classes of nonlinear

stochastic systems in both continuous and discrete time, the optimal

conditional mean estimator of the system state given the past observations

can be computed with a recursive filter of fixed finite dimension. The

typical nonlinear system in these classes consists of a linear system with

linear measurements and white Gaussian noise processes, which feeds forward

into a nonlinear system described by a certain type of Volterra series

expansion or by a bilinear or state-linear system satisfying certain

algebraic conditions. It is our purpose in this paper to consider estimation

problems similar to those in [1]-[3], to present simpler proofs that the

estimators are indeed finite dimensional, to provide deeper insight into

these problems by relating them to the homogeneous chaos of Wiener and to

orthogonal polynomial expansions [41.-[8],[24], to explain the

similarities and differences between the continuous and discrete time cases,

and to prove some extensions of our previous results. The existence of

polynomials in the innovations in the discrete time recursive estimator, in

contrast to the continuous time estimator (as noted in [2]), is interpreted
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in terms of the homogeneous chaos. The existence of such polynomials in

the innovations in the optimal filter suggests that suboptimal filter

design in discrete time could be improved by incorporating such structure;

this is in contrast to most discrete time estimator designs, such as the

extended Kalman filter, in which the updated estimate is linear in the

innovations (exceptions are the quasi-moment estimators of [9] and [10])

and the higher measurement space filter of [23].

2. Problem Statement

As in [1]-[3], the classes of systems considered in this paper are

described as follows. It will be assumed that all random variables and

processes are defined on a probability space (0,B,P). In continuous time,

we consider systems of the form, for tc[O,T],

dx(t) = A(t)x(t)dt + B(t)dw(t) (1)

dy(t) = f(x(t),y(t),t)dt (2)

dz (t) = C(t)x(t)dt + R 2dv(t) (3)

where x(t) ]R , y(t)e R , z(t) IRP, w and v are standard vector Wiener

processes, R>0, x(O) is Gaussian, {x(O),y(O),w(t),v(s)} are independent

for all t and s, f is an analytic function of x and y, and [A(t),B(t),C(t)]

is completely controllable and observable.

The discrete time systems to be considered are of the form, for

te{O;T},

x(t+l) = A(t)x(t) + B(t)w(t) (4)

y(t+l) = f(x(t),y(t),t) (5)

z2 (t) = C(t)x(t) + R
2v(t) (6)

where TeZ , the set of positive integers, and {s;t} is the set of integers

{s,s+l,...,t}. The assumptions in (4)-(6) are the same as those in (1)-(3),
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except that w(t) and v(t) are zero-mean Gaussian white noise processes.

Motivation for the study of systems of the form (1)-(3) and (4)-(6) is

presented in [3].

The optimal estimate, with respect to a wide variety of criteria

(including minimum mean square error), of x(t) given the past observations

t t
z A{z (s), O < s < t} or z A{z (s), se{O;t}}, is the conditional mean

zi t
x(tlt) of x(t) given the a-field Ft generated by zi, also denoted

t 1

E[x(t)lzi]. It is assumed that all the relevant random variables are in

L2(Q,B,P), so the conditional expectation x(tlt) can also be interpreted

as the orthogonal projection of x(t) onto the subspace L2(Q,Fti,P)

[14, App. A.]; this interpretation will be used in the sequel. Predicted

and smoothed estimates will also be used extensively, so we introduce the

t t
equivalent notations x(st) A E[x(s)ziz] E [x(s)] Ag E[x(s) F ] Thus our

objective is the recursive computation of x(tlt) and y(tlt). The

computation of x(tlt) can be performed by the recursive n-dimensional

(linear) Kalman filter in continuous or discrete time. It is, in general,

not possible to compute y(tlt) with a recursive estimator of fixed finite

dimension. It has been proved in [1]-[3] that if the nonlinear system

(2) or (4) is characterized by a certain type of finite series expansion

or by certain bilinear or state-affine equations, then y(tlt) can be

computed .by such a recursive finite dimensional estimator. Some of the

major results can be summarized as follows.

Let the Volterra series expansions for the it h components of y(t) in

(2) and (4) be given by

o t t n (al. .

Yi(t) = oi(t) + I f .. I 1 wki (t,al ..- a k)
k=l 0 0 alO,...ak= l

l(a )...x k()dal ...dak (7)
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and
t-l n (al,..., )

Yi(t)= Woi(t-1) + Y ki
k=l CiLi ,...k=O al,,- Wk=l

a l( l) x k(lk), (8)

respectively. Here Wki k is called a kth order kernel, and a finite

Volterra series expansion of order q is one such that all k order kernels

are zero for k> q. In the continuous case (7), we consider, without loss

of generality [11], only triangular kernels which satisfy

i (tak)=O unless < a < .. < t. Such a kernel is
Wki 1 k

separable if it can be expressed as a finite sum

m ~.

wki (t ,l,..,ak) = yjO (t)yj (o ).Cy Yjk (k (9)
j=l 1

Similar definitions can be made in discrete time [2], but they are more

complicated (this difficulty is related to the fact that the solution of a

discrete time system may not be defined backward in time [12],[21]).

Brockett [11] and Gilbert [13] have shown that the kernels in (7) are

separable if f is analytic. Using variational expansions similar to those

of Gilbert [13], it is straightforward to show that the kernels of the

Volterra series (8) are also separable in the sense of [2],[12]; this is

basically due to the fact that the kernels arise from the variational

equations as products of pulse responses of linear systems. Brockett [11]

has also shown that a continuous time finite Volterra series has a bilinear

realization if and only if it has separable kernels. The separability and

realizability results are crucial in the proofs of the following two

theorems.



Theorem 1 [1]: Consider the system (1)-(3), and assume that (2) has

a finite Volterra series expansion. Then y(tlt) can be computed with a

finite dimensional recursive estimator--i.e., by a finite set of nonlinear

stochastic differential equations driven by the innovations

t
vl(t) A Zl(t) - f C(s)x(sls)ds. (10)

0

Theorem 2 [2]: Consider the system (4)-(6), and assume that (5) has

a finite Volterra series expansion. Then y(tlt) can be computed with a

finite set of nonlinear difference equations driven by the innovations

v2(t) = z2(t) - C(t)A(t-l)x(t-llt-l1). (11)

The basic technique employed in [1]-[3] to prove these theorems is

the augmentation of the state of the original system with additional states

which arise as smoothed statistics of the original state. For the classes

of systems considered here, it is shown that only a finite number of

additional states (smoothed statistics) are required. We will see here,

from a different point of view, how the additional filter states arise.

In addition, we will prove results similar to Theorems 1 and 2 for some

systems in which equations (2) and (4) for y(t) contain an additive noise

term.

In this paper both the continuous and discrete time problems will be

considered in a unified framework. It is useful first to contrast these

problems with the estimation and prediction problems considered by Huang

and Cambanis [8]. There the problem is that of estimating a nonlinear

functional y of a Gaussian process {x(t), t¢S}, given observations of

{x(t), tsS}, where S is a subset of S. In our problem the objective is
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to recursively estimate a nonlinear functional y(t) of x(-), given

observations of linear functionals of x(-) plus noise. Although the

elegant formulas of Huang and Cambanis cannot be applied here, the

approach of utilizing the homogeneous chaos, or, equivalently, the

Cameron-Martin orthogonal series decomposition of a Gaussian process [4]-

[8], will prove to be quite useful in unifying and simplifying our results.

By employing the "innovations approach" [15],[16], the conditional

expectations y(tlt) of Theorems 1 and 2 can equivalently be viewed as

projections on Hilbert spaces generated by the innovations instead of the

observations. For the discrete time problem (4)-(6) it can easily be

shown recursively that F 2 = FV2,so that y(tlt) is the projection of y(t)
t t

onto L2(Q,Ft2,P); in fact v2(-) is just obtained from the Gram-Schmidt

orthogonalization of the sequence z2 (.). It has been shown [15],[16] for

Z V.continuous time Gaussian processes (as in (1),(3)) that Ft = Ft1 ; hence,

y(tit) is the projection of y(t) onto L2(Q,Ftl,P). The innovations process

vl(t) is a Wiener process with the same covariance as R2 v(t) [141-[16];

the innovations process v2(t) is a zero-mean Gaussian white noise sequence

with E[v2 (t)v2 (t)'] = C(t)P(tlt-l)C'(t) + R, where P(tlt-l) is the Kalman

filter one-step error covariance matrix [17]. In both cases, the linear

and nonlinear innovations are equal. Hence the estimation problem (1)-(3)

or (4)-(6) can be reformulated as that of estimating y(t), a nonlinear

t
L2-functional of the Gaussian process x ; the estimate y(tjt) is the

t
nonlinear L2-functional of the innovations process (either vl or v2) which

minimizes the mean square error. The expansion of such L2-functionals of

Gaussian processes is the subject of [4]-[8], and the application of these

results to our recursive estimation problem is presented in the next

section, where a new proof of Theorem 1 is presented and the corresponding
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proof of Theorem 2 is outlined.

3. L2-Functionals of Gaussian Processes and

Finite Dimensional Estimation

Kallianpur [7] has generalized the earlier results of Cameron and

Martin [5] and Ito [6] on the orthogonal decomposition of L2-functionals

of a Gaussian process. We will not require all of the isomorphisms

presented in [7]; only the following decomposition in terms of Hermite

polynomials will be utilized here [8]. Let x(t), tES, be any zero-mean

second order Gaussian process defined on (Q,B,P); for our purposes S will

be either an interval [O,T] or the discrete time set {O;T}. Define the

two Hilbert spaces associated with x: the nonlinear space L2(x) AL 2(Q,FX,P),

where FX is the a-algebra generated by x(t), teS; and the linear space H(x),

the closed subspace of L2(x) spanned by x(t), teS.

Lemma 1 [7],[8]: If {f ,yer} (r linearly ordered) is a complete

orthonormal set (CONS) in H(x), then the family

(Py ! pYk !) H~Hpl ' H pkk Yk

p> O, k> 1, P ++ ...+Pk= P' Y1 < . <Yk'

is a CONS in L2(x), where H is the n normalized Hermite polynomial.
2 n

That is, any L2-functional e of x(-) has the orthogonal series expansion

8= Pa H ( )...H ( ). (12)
p_ pp+...+pk=p Y1'' k P. Y1 Pk k

YP Yk
¥1 < ... < Yk

Remark: If x has nonzero mean, the representation of Lemma 1 can be

written with respect to a centered CONS, and the coefficients in (12) will

depend on the mean of x.
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Corollary 1 [6]: If x(t), te[O,T] is a standard Wiener process, then

any eeL 2(x) has the orthogonal expansion

T t t

p> 0 0 0 P

A Ip(f) (13)
p p

where the integrals in (13) are iterated stochastic integrals; also,

I (f ) and I (f ) are orthogonal for all pi q.

Now we consider the estimation problems of Theorems 1 and 2 in this

framework. Assume throughout this section, for simplicity of notation,

that x,y,zl, and z2 are all scalars; the following results also hold in the

vector case. The state y(t) (as given by (2) or (4)) is a nonlinear

functional of x t; assume that y(t) has a finite Volterra series expansion

(of the form (7) or (8)) of order q. It is then clear that y(t) has a

finite orthogonal series expansion (12) of order q -- i.e., with a 'k.. =0

for p >q. In the continuous case, the {~i} are centered versions of

t
functionals of the form f 4i(s)x(s)ds, while in the discrete time the {~i}

are just centered linear combinations of the x(s), se{l;t}. The estimate

y(tlt) is a nonlinear L2-functional of the Gaussian innovations process;

thus it also has an orthogonal expansion of the form (12). In continuous

time vl(t) is a Wiener process, so y(tit) has the expansion (13) with

x(t) = R 2v(t). In discrete time, v2(t) is an orthogonal sequence, so

n(t) [C(t) 2p(tlt-1) +R]- ½v2(t ) is a CONS in H(v ), and the expansion (12)

is valid with (i = n(i).

Thus Theorems 1 and 2 can be proved by showing that: (a) the

orthogonal series expansion of y(tlt) has only a fixed finite number of
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terms for all t; and (b) such a finite orthogonal series can be realized

as the output of a finite dimensional recursive system (i.e., a system

in state-space form). The states of this finite dimensional system are

the additional filter states referred to in Section 2. The following

theorem proves (a) for a more general formulation; the proof of (b) must

be done separately for continuous and discrete time, and involves the

calculation and separability of the Volterra kernels.

Theorem 3: Let x(t), z(t), teS be zero-mean jointly Gaussian second

order processes, and assume that yeL 2(x) has an orthogonal series

expansion of order q. Let the orthogonal expansion of y A E[yjFz ] be

given by

y = ~ r bl+ '1 H (1)... H (n ) (14)
r>O rl+...+rr r1 .1 .. j

1< .. <Bj

where {q',6cA1 } is a CONS in H(z). Then

r =r0, r >q;
61 * Sj

that is, y also has an orthogonal expansion of order q.

Proof: Consider H(x,z), the linear space spanned by {x(t),z(t);teS}.

Since {n 6,6eA1} is an orthonormal set in H(x,z), it can be completed by

adding elements {n6 ,6¢A 2} in H(x,z) to form the CONS {q6,6eA1UA2} in

H(x,z). The orthogonal expansion for y can then be rewritten in terms of

this CONS in H(x,z); the new expansion is clearly also of order q:

Y P ... PkY = I I Y ... Y H P (nY (n ) (15)
p=O p + .. .+pk =P Y... Yk Pl Pk Yk

Y1 <' .. <Yk

where {yi} E A 1UA2. Now y is the orthogonal projection of y onto L2(z);
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that is, by Lemma 1 y is just the projection of y onto the space spanned

by the products Hp (nyl)..Hpk(nyk) with Yl' Y A. The orthogonality

of such products in L2(x,z) (see Lemma 1) then yields

qq Pl...pk

y= (n )... H (n ) (16)

p=O p+ .. .+pk =P Y1..' k P1 Y1 Pk Yk

Y1 < ... <Yk

where {yi £ A1,' thus proving the theorem.

Theorem 3 also holds for nonzero-mean and vector-valued processes,

with obvious modifications in the proof. This theorem then applies to

y(tlt) of Theorems 1 and 2. It remains only to prove that the finite

orthogonal series expansion for y(tlt) is realizable with a nonlinear

recursive system of fixed finite dimension. Consider first the continuous

time problem (1)-(3).

Proof of Theorem 1: Assume that y(t) has a finite Volterra series

expansion of order q. Then Theorem 3 implies that y(tlt) has the

orthogonal expansion

q t s s
Ytlte ) = O of *f ... fp(ts1 ....,s )dv(sl)...dv(s ) (17)

p=00 0 0 

where v(t) A R - dvl(t). The projection theorem and the orthogonality of

the iterated stochastic integrals [6] imply that, for s1<... <s < t,

1 P
f(t Sl,.S) = s) aa E[y(t)v(sl)...v(s )] (18)
p p! asl... as p

(the proof of (18) is analogous to that of Davis [14, p. 95] for the best
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linear estimate).l A proof identical to that of Brockett [11] for the

deterministic case shows that, if the kernels (18) are separable (see (9)),

then y(tIt) in (17) can be generated as the output of a finite dimensional

bilinear system driven by the innovations v(t). Hence, Theorem 1 is

proved if the kernels in (18) are separable.

Lemma 2: The triangular kernels f (t,sl,...,s ) given by (18) are

separable for sl <.. <s < t under the hypotheses of Theorem 1.

Proof: Let y(t) be given by one kt h order term in the finite Volterra

series (7); the proof generalizes in the obvious way. Since the kernels

of (7) are separable due to the analyticity assumption in (2), we

can assume that

t Tk T

y(t) = f k Y1(T)...Ykr(T1)X( ..... (TTk)d ...... dTk (19)
00 0

Thus, by the Fubini theorem (see [1],[3])

f (t sl...s ) = ! .f *k If Yl(T1)...Yk(Tk)

p 's1 p p... . .

Dp

E[x(T1 ). . X(Tk)v(sl).- .v(sp)]dT ... dT (20)

Since x(Tr),...,X(T k),v(Sl),...,V(s ) are jointly Gaussian, the

expectation in (20) can be expanded via Lemma B.1 of [1],

resulting in a sum of products of terms of the form: E[x(T )], E[v(s )],
i i

'In general, whenever the linear innovations v(t) in a nonlinear estimation

problem form a Wiener process, then an (infinite) orthogonal expansion of

the form (17) will hold for the estimate of each L2-state y(t), and the

kernels are calculated via (18). The sum of the first two terms (p=0,1)

in (17) is the best linear estimate, the sum of the terms for p=0,1,2

yields the best quadratic estimate, etc. These are not necessarily

realizable with finite dimensional recursive filters.
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COV[X(Ti),x(Tj)] , COV[X(Ti),V(Sj)], and cov[v(si),v(sj)]. Notice that

E[v(si)]=0, so all products involving such terms are zero. If

cov[v(s ),v(sj)] arises, it results in a term of the form

32
asiasj cov[v(si),v(sj)], which can beshown to be zero for si sj.

Also, COV[X(Ti),X(Tj)] is the covariance function of the state of the

linear system (1); hence, for Ti > Tj,

Ti
cov[x(T i),x(Tj)] = exp[ j A(a)da] cov[x(Tj),x(Tj)] (21)

Tj

Finally, consider

R cov[x(Ti ),v(sj )] = COv[X(Ti ),z(s.) - i C(a)x(ala)da]
0

S.
= cov[x(Ti), f i C(a)(x(c)-x(aa))da +v(s.)]

0

S.

= cov[x(T,), | J C(a)(x(a)-x(ola))do] (22)
0

since X(Ti) and v(s.) are independent. This gives rise in (20) to

a coV[X(T.),V(S.)] = R 2 cov[x(T),C(s.)(x(s.)-x(sjls ))]

= C(sj)R- cov[x(Ti),x(sj)-x(sjlsj)], (23)

which is the covariance function of a finite (two-) dimensional linear

system with states x(t) and x(t)-x(tjt), and is thus also separable.

Lemma B.1 of [1] and the separability of the relevant covariance

functions imply that there exist functions {ali,'Bi} such that (20) can

be written as
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t ITk ~~~ IT 2

f (ts ...,s ) =1 f t k f yl(Tl)..yk(k)p ' ' p p! 0.0 0.

( t ...Q 1 aoek( kel(s1)..., (s )dTl .. dT

m _

p, Lat(t)Bl(Sl) ... (s ), (24)

and f is separable as claimed; this also completes the proof of Theorem 1.
p

An example in which the kernels and the recursive estimator are

computed explicitly is presented in the next section. The discrete time

result which is analogous to Lemma 2 can be used to prove Theorem 2, but

for the sake of brevity we will only present an example of the procedure

(Section 5).

4. A Continuous Time Example

Before discussing the example, we present an extension of Theorem 1

to a class of systems in which y(t) contains process noise; the analogous

extension of Theorem 2 is proved in the same manner.

Theorem 4: Consider the system (1)-(3), and assume that (2) has a

finite Volterra series expansion. Assume that there is an additional

state Yl(t) satisfying

dyl (t) = (F(t)yl(t) + G(t)y(t))dt + H(t)dw(t) (25)

where w is a Wiener process and {x(0),y(0),yl(0),w(tl),v(t 2),w(t3)) are

independent for all tl,t2,t3 . Then yl(tlt) can also be computed with a

finite dimensional recursive estimator.

Proof: The solution of (25) is

13
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t t
Yl(t) = P(t,0)y1(0) + |f (t,s)G(s)y(s)ds+ f m(t,s)H(s)dw(s)

0 0

t

A Yl(t) + f 4(t,s)H(s)dw(s) (26)
0

where 4 is the state transition matrix for F. Since w(') and z(-) are

independent, yl(tlt) A E[yl(t)lFt] = E[yl(t)lFt], and Yl(t) is just

described by a finite Volterra series expansion in x. The theorem then

follows from Theorem 1.

Example 1: Consider the scalar system

dx(t) = -ax(t)dt + dwl(t) (27)

dy(t) = (-yy(t) + x (t))dt + dw2(t) (28)

dz(t) = x(t)dt + dv(t) (29)

with the same assumptions as in Theorem 4. The solution of (28) is

y(t) = eYt y(O) + f e x (a)da + e(t) dw2(a) (30)
0 0

By Theorems 3 and 4, it follow that

t t s
y(tlt) = f0(t) + I fl(t,s)dv(s) + f J f2 (tsls2 )dv(s(l)dv(s2 )

0 0 0

(31)

where v(t) = z(t)- fO x(sls)ds. Using (18) to compute the kernels as in

Lemma 2, we have (since y(O) and w are independent of v)

f0(t) = Ly(t)] =et E[y(0)] + f e- Y( t- °) E[x2(a)]do (32)
0
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fl(ts) = s E[y(t)v(s)] = s eY(t) Ex 2(a)v(s)]d
0

t s

= 2 | e-Y(t- ) m(a) a E[x(a) f (x(T)-x(TrT))dT]da

0 0

t
= 2 e- y ( t- ) m(a) E[x(o)(x(s)-x(sjs))]da (33)

0

where m(a) = E[x(a)] = e E[x(O)]. It can be shown, using Lemma 2.2 of

[1], that

e-a(a-) F(s), ' > 

E[x(a)(x(s)-x(sjs))] = (34)

K(s,o) P(s), C < s

s
where K(s,a) = exp[a(s-a) -f P -(T)dT] and P(t) is the Kalman filter

error covariance for x(t). Thus

fl(t,s) = 2 [ e y(t-a) m(a)K(s,o)dao+ f e-Y(t- ) m(a) e- e( °- s) do P(s)
O s

(35)

Similarly,

f2(t'sl's) = [jS e Y(t-) K(sl,a)K(s2,o)da
0

S2 -y(t-a) -a(a-s1 )
+ f e e K(s 2,o)da

S1

t -y(t-a) e-a(- 1)2( 2
+ f e e 1 e do] P(s)P(s 2)

s2 (36)

(recall that 0 < s l < s 2 < t).

These kernels are obviously separable, so y(tlt) can be realized as

the output of a finite dimensional bilinear system driven by the

15



innovations. However, it may not be efficient to realize each term in

(31) individually. In fact, one efficient recursive realization of y(tjt)

is readily derived via the procedure of [1, Example 2.1]; a recursive 3-state

filter which computes both x(tjt) and y(tjt) is constructed as follows.

First, augment the state x(t) of (27) with the additional state F(t)

given by

C(t) = (a-y-P-l (t))(t) + x(t); i(0) = 0 (37)

Then the Kalman-Bucy 2-state filter for the linear system (27), (37) with

observations (29) recursively computes x(tjt) and j(tjt). Finally, y(tlt)

is computed by

dy(tjt) = (-y y(tt)+ [x(tjt)] +P(t))dt+ 2P(t)C(tjt)dv(t)

j(oJl) = O (38)

To check that this filter has the series expansion (31),(32),(35),(36)

is straightforward.

it should also be noted that if x(t) has zero mean, then the best

linear estimate of y(t) given zt (the first two terms in (31)) is equal to

the a priori mean of y(t). This is due to the fact that, in this case, y

and z are uncorrelated. However, since y and z are not independent, the

best quadratic estimator (which is equal to the conditional mean in this

example) can in fact offer significant improvement in estimator

performance (see [18] for some case studies and further analysis along

these lines).

5. A Discrete Time Example

Example 2: Consider the scalar discrete time system

x(t+l) = ax(t) + wl(t) (39)

y(t+l) = yy(t) + x2 (t) + w2 ) (40)
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z(t) = x(t) + v(t) (41)

with the same assumptions as in Theorem 2; also, w2 is a discrete time

white noise process independent of x(O), y(O), wl, and v. The solution

of (40) is

y(t) =t (O) + I y x (i) + X Y w2(i) (42)

i=O i=0

By Theorem 3, it follows from (16) that

t

y(tlt) = c (t) + E cl(t,j)H((()) ))
j=0

t

+ cl (t,j,k)H1 ( (j))H1 ( ((k))
j ,k=0
' <k

+ Z c2 (t,j)H2((j)) (43)

I ... k k P Pk 1 k
(44)

These kernels can, as in Example 1, be explicitly evaluated. They

are indeed separable, and a 3-state filter can be constructed as follows

using the methods of [1],[2]. First, augment the state x(t) of (39) with

aP(t+lt) t) P(t+ t) x(t); (0) = (45)

Then x(tjt) and Z(tlt) can be calculated by a 2-state Kalman filter.

Finally,
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y(t+ljt+l) = ay(tJt) + x(tjt)2 + 6(t)

+ 2M(t,t+l)[x(tJt) +yz(tJt)]v(t+l)

+ [ Yti M(i,t+l)2 v(t+l)2

(46)

y(o1o) = 

t-i+l
M(i,t+l)= a ~ P(ili)...P(t+lJt+l)

P(i+lji)...P(t+lt) (47.)

and d(t) are deterministic functions, and v(t) = z(t)-ax(t-lJt-l) is

the unnormalized innovations process.

Notice that the recursive optimal estimator (46) contains a final

term which is quadratic in the innovations. In general, if y(t) contains

a Volterra series of order q in x(t), then the recursive estimator for

y(tjt) will contain polynomials of degree q in v(t). This result was

proved in [2], but it also follows naturally from the orthogonal series

decomposition (16) of y(tjt) -- if y(t) has a Volterra series of order q,

(16) will contain terms such as H (n(t)), or polynomials of order q in

n(t). This phenomenon does not occur in continuous time estimation

problems with observations corrupted by "Gaussian white noise", in which

the optimal recursive estimator is always linear in the innovations.

In [2], this contrast is explained by means of the different

martingale representation theorems in continuous and discrete time [19],

[20]. However, a simple explanation is provided by the representation

(16). In continuous time, the elements n of the CONS in L2 (z 
t ) are of

the form t0 ~y(s)dvl(s), and the series (16) can be expressed in terms of

iterated stochastic integrals as in (17). Given separability, the series

can then be realized with a finite dimensional bilinear system -- that is,

18



the stochastic differential equations in the realization are linear in

dvl(t). In the discrete time case, the elements n¥ of the CONS in L (z t )

are given by the normalized discrete time innovations n(t); the series (16)

then gives rise to a finite Volterra series in the innovations v2(t) which

contains polynomials in v2(t). Given the appropriate realizability

conditions, this series can be realized by a finite dimensional state-

affine system [2],[21] -- that is, the recursive equations in the

realization contain polynomials in v2(t). Hence state-affine equations

containing polynomials in v2(t) arise in a very natural way as realizations

of the finite series expansion of y(tlt).
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