
July, 1978 ESL-P-833

LINEAR MULTIVARIABLE CONTROL. NUMERICAL CONSIDERATIONS.

by

Alan J. Laub

This research was partially supported by the Department of Energy,
Division of Electric Energy Systems under grant ERDA-E(49-18)-2087.

LINEAR MULTIVARIABLE CONTROL. NUMERICAL CONSIDERATIONS.*

Alan J. Laub

Electronic Systems Laboratory
Room 35-331

Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

Outline

0. Introduction

1. Numerical Stability and Conditioning
2. Singular Value Decomposition and Numerical Rank
3. Calculation of the Basic Geometric Objects
4. Transmission Zeros

5. Computation of Supremal (A,B)-Invariant and Controllability Subspaces
6. Mathematical Software

7. Concluding Remarks

8. References

Prepared for presentation at the American Mathematical Society Short
Course on Control Theory, Providence, R.I., August 6-7, 1978.

0. Introduction

In this lecture we shall address some numerical issues arising in

the study of models described by the linear system

x(t) = Ax(t) + Bu(t)

z(t) = Dx(t)

Here x is an n-vector of states, u is an m-vector of controls or inputs,

and z is an r-vector of variables (outputs) to be regulated (to zero).

This is one of the simplest models of a family of considerably more elabor-

ate models. The interested reader is referred to [1] for an extended

treatment and to [2] for a recent survey of geometric methods in linear

multivariable control.

The emphasis here will be on numerical considerations pertinent to

some of the theory discussed by Professor Wonham in an earlier lecture.

Many important control and systems problems have been solved, frequently

very elegantly, by this theory. But while these solutions are, for the

most part, well-understood theoretically, very little is understood about

their implementation on a digital computer. Indeed, the same can be said

about almost all control/systems theory today.

Most of the difficulties in computation on a digital computer derive

from the inherently finite word length used to represent real or complex

numbers. While this may be the source of great frustration to the average

user of computing facilities, it does provide an essentially limitless

supply of challenging problems for the numerical analyst. Some very con-

venient mathematical properties that we sometimes take for granted in hand

computation are no longer valid on a computer. For example, the associ-

ative law for addition of real numbers is no longer generally true. The

interested reader is strongly urged to consult [3] for a brief introduction

to the vagaries of floating point computation and [30] for the definitive

treatment.

-2-

A particular number of which we shall make frequent use in the sequel is

machine epsilon. This is defined to be the smallest positive number e which,

when added to 1 on our computing machine, gives a number greater than 1. In

other words, any machine-representable number 6 less than £ gets "rounded off"

when added to 1 to give exactly 1 again as the rounded sum. The number 6

varies, of course, depending on the kind of computer being used and the pre-

cision with which the computations are being done (single precision, double

precision, etc.). But the fact that there exists such a positive number c is

entirely a consequence of finite word length.

While the problems to be discussed here have measure zero with respect

to all reasonably interesting control and systems problems, they are repre-

sentative in the sense of being both amenable to solution by some current

methods of numerical analysis and of suggesting exciting new avenues of

research. The development,in control and systems theory, of stable, effici-

ent, and reliable algorithms and their embodiment in robust mathematical

software is only now in its infancy. The situation is analogous to that

which existed with respect to the algebraic eigenvalue problem in the 1950's.

The Jordan canonical form was theoretically well-understood. But no one really

knew much about actually computing eigenvalues and eigenvectors on a digital

1
computer. It is really only rather recently that some of the computational

issues have been resolved or even understood. Some of the pivotal theoretical

work was done by J. H. Wilkinson (see [4] for the state of the art in 1964)

and quality mathematical software has only arrived on the scene in the 1970's

(see [5],[6]). It has now even been demonstrated by Golub and Wilkinson [7]

that the Jordan canonical form for general matrices cannot reliably be com-

puted in the presence of roundoff error. While this comes as a bit of a sur-

prise to some people, solace can be found in the fact that seldom in real

computations is the Jordan canonical form itself really needed but rather

1A notable exception was the eigenvalue problem for real symmetric matrices

where a great deal was known even in 1952 about Sturm sequence properties in

the method of bisection. See [31] for details.

-3-

other more easily computed information may often be substituted. It is

likely that the more stably computed Schur (upper triangular) canonical

form (see, e.g., [7]) will replace the Jordan canonical form as a working

tool in control and systems theory. The Jordan canonical form is even now

only an appendix (albeit a crucially important one) in a recent book by

Strang [8], one of the best sophomore-level books presently available on

the topic of linear algebra. While it is a slow process, we are now just

beginning to see some of the material (well-known to numerical analysts)

presented in this lecture filter down to the undergraduate curriculum in

mathematics and engineering. This process is certain to have a significant

impact on the future directions and development of control and systems

theory and applications.

Finally, let us close this introductory diatribe with a friendly, faceti-

ous, folk theorem: If an algorithm can be used "easily" by hand, it's

probably a poor method when implemented on a digital computer. For example,

when confronted with the matrix(2 1 most people would find the charac-

\1 4
teristic polynomial and solve the resulting quadratic equation. But when

implemented on a digital computer this turns out to be a very poor method

for a variety of reasons (such as roundoff and overflow/underflow). Of

course the preferred method now would generally be the QR algorithm (see

[4],[5] for the messy details) but few of us would attempt that by hand --

even for 2 x2 problems. It suffices to say that modern computer- and

software-oriented numerical analysis has made great strides in the past

ten or fifteen years and one would be well-advised to avail oneself, if

possible, of this research before attempting any serious numerical computing.

Before proceeding any further we shall standardize here some notation

to be used in this paper.

-4-

IFnxm the set of all nxm matrices with coefficients in the

field IF (IF will generally be IR or C)

IFnxm the set of all nxm matrices of rank r with coefficients

in the field IF

T nxm
A the transpose of A £ R

H nxm
A the conjugate transpose of A C C

A the Moore-Penrose pseudoinverse of A

[JAIl the spectral norm of A (i.e., the matrix norm subordinate

to the Euclidean vector norm: |ilAI = max IAx 2)

1 1 x 2=1

diag(al ',an) the diagonal matrix a. 0)

-5-

1. Numerical Stability and Conditioning

In this section we give a brief discussion of two concepts of funda-

mental importance in numerical analysis: numerical stability and con-

ditioning. While this material is standard in introductory textbooks such

as [3], [9], or [10] and was covered in the AMS Short Course on Numerical

Analysis in Atlanta in January 1978 we present it here both for complete-

ness and because the two concepts are frequently confused in the control/

systems literature.

Suppose we have some mathematically defined problem represented by f

which acts on data d I = some set of data to produce a solution f(d) £es=

some set of solutions. These notions are kept deliberately vague for ex-

pository purposes. Given d £°@we desire to compute f(d). Frequently, only

an approximation d* to d is known and the best we, could hope for is to cal-

culate f(d*). If f(d*) is "near" f(d) the problem is said to be well-

conditioned. If f(d*) may potentially differ greatly from f(d) even when

d* is near d, the problem is said to be ill-conditioned. Again the concept

"near" cannot be made precise without further information about a particular

problem.

Let f* denote the algorithm implemented to solve f. Given d, f*(d)

represents the approximate computed solution. The algorithm f* is said to

be numerically stable if for all d £ , there exists d* £ L-near d such- that f(d*)

(= the exact solution of a nearby problem) is near f*(d).

Of course, one can't expect a stable algorithm to solve an ill-

conditioned problem any more accurately than the data warrant but an un-

stable algorithm can produce poor solutions even to well-conditioned prob-

lems. There are thus two separate factors to consider in determining the

accuracy of a computed solution f*(d). First, if the algorithm is stable

f*(d) is near f(d*) and second, if the problem is well-conditioned f(d*)

-6-

is near f(d). Thus f*(d) is near f(d). Further details and examples may

be found in [9].

Roundoff errors can cause unstable algorithms to give disastrous

results. However, it would be virtually impossible to account for every

roundoff error made at every arithmetic operation of a complex calculation.

This would constitute a forward error analysis. To account for these errors,

however, J. H. Wilkinson developed, to a fine degree, the notion of backward

error analysis. Namely, for many problems, it is possible to show that what

is actually computed is the exact solution of a nearby problem. One then

attempts to show that the nearby problem is near enough which, if the

problem is well-conditioned, can be translated into a quantitative state-

ment regarding the accuracy of the solution.

For example, in the QR algorithm for finding the eigenvalues of a

matrix A it can be proved that the computed eigenvalues are the exact eigen-

values of the matrix A + E where IhEll < c. -IAl .£ (c=a modest constant invol-

ving the order of the matrix, I|-II = an appropriate matrix norm, £ = machine

epsilon). This is the statement of stability for the QR algorithm.

-7-

2. Singular Value Decomposition and Numerical Rank

One of the basic and most important tools of modern numerical analysis,

particularly numerical linear algebra, is the singular value decomposition.

We shall define it here and make a few comments about its properties and

computation. In section 3 we shall see how the SVD can be used to reliably

compute a number of the basic geometric objects of linear algebra. This is

but one of many fields of application and it is likely that within five or

ten years SVD will be one of the most important and fundamental working

tools for the control/systems community, particularly in the area of linear

systems.

We now state the SVD theorem. Square brackets will denote the complex

case.

THEOREM 1: Let A £ Rn xm [n x m . Then there exist orthogonal [unitary]
r r

matrices U JnxR [n x n] and V IR [C m x m] such that

A = UZV T [UZVH]

where Z =S 0) and S = diag(al,... ,a) with

a > ... > a > O.
1 - -r

The proof of Theorem 1 is straightforward and can be found in, for ex-

ample t9],f32]. The numbers al.' ' together with a r+l= 0,... = 0

are called the singular values of A and they are the positive square roots

of the eigenvalues of A TA [A HA]. The columns of U are called the left

singular vectors of A (the orthonormal eigenvectors of AAT [AAH]) while

the columns of V are called the right singular vectors of A (the orthonor-

mal eigenvectors of A A [A HA]). The matrix A [A] has n singular values,

the positive square roots of the eigenvalues of AAT [AAH] . The r (= rank (A))

nonzero singular values of A and AT [AH] are, of course, the same. The

choice of A TA [AHA] rather than AA T[AA AH]] in the definition of singular

-8-

values is arbitrary. Only the potentially nonzero singular values will be

of any real interest.

It is not generally a good idea to compute the singular values of A

by first finding the eigenvalues of ATA (remember the F3 Theorem), tempting

as that is. Consider the following example with p a real number with

Jil < Hi (so that fl(l+i) = 1 where fl(-) denotes floating point com-

putation). Let A =(). Then fl(ATA) = () so we compute
= u1

81 = ' =0 leading to the (erroneous) conclusion that the rank of A

is 1. Of course, if we could compute in infinite precision we would find

'' 22
ATA = 2) with 1 = /21 2 = 'J1 and thus rank (A) = 2.

The point is that by working with ATA we have unnecessarily introduced

p into the computations.

Fortunately, Golub and Reinsch [11] have developed an extremely

efficient and stable algorithm for computing the SVD which does not suffer

from the above defect. The computed U and V are orthogonal to approximate-

ly the working precision and the computed singular values can be shown to

II Ell
be the exact G.'s for A +E where A is a modest multiple of C. A fairly

sophisticated implementation of this algorithm can be found in [6]. A

word of warning! There are other SVD subroutines around and many have

severe problems even if coded directly from [11]. One is probably best

off using [6] or the version implemented in the forthcoming LINPACK from

Argonne National Laboratories [12].

It is clear from the definition that the number of nonzero singular

values of A determines its rank. While the question is not nearly as

clear-cut in the context of computation on a digital computer, it is now

generally acknowledged that the singular value decomposition is the only

-9-

generally reliable method of determining rank numerically (see [7] for a

more elaborate discussion).

Again, only rather recently has the problem of numerical determination

of rank been well-understood. One of the best treatments of the subject,

including a careful definition of numerical rank, is a paper by Golub, Klema,

and Stewart [13]. The essential idea is as follows. We are going to look

at the "smallest nonzero singular value" of a matrix A. Since that computed

value is exact for a matrix near A it makes sense to consider the rank of

all matrices in some 6-ball (w.r.t. the spectral norm |. 11, say) around A.

The choice of 6 may also be based on measurement errors incurred in estimat-

ing the coefficients of A or the coefficients may be uncertain because of

roundoff errors incurred in a previous computation to get them. See [13]

for further details.

In any case it can easily be shown that all matrices B lying strictly

inside the a -ball around A have rank > r. The matrix B = U V where
r

0S
with S = dia .) is a matrix with rank r-l and

~0 0 r-l

we B-A r. = Cr- Thus if we choose as some "zero threshold" a number 6 < a ,

we will consider A to have numerical rank r. There can sometimes be real

difficulties in determining a "gap" between the computed last nonzero singular

value and what should effectively be considered "zero". Further details are

found in [13].

The key quantity in rank determination is obviously a . Moreover, this

number gives a dependable measure of how far (in the Ij * I sense) a matrix

is from matrices of lesser rank. But ar alone is clearly sensitive to scale

Cr
so that a better measure is . But |Ail = 1 so the important

quantity is - which turns out to be the reciprocal of the number
a1

-10-

K(A) = If All -A il11 , the so-called "condition number of A w.-r.t. p$sdo-

inversion". In the case when A is invertible, K(A) = IlAIIl11 A[1 ' is the

usual spectral condition number w.r.t. inversion. The use of K(A) as a

condition number in the general case is actually somewhat more complicated.

For a discussion of this and related matters the reader is urged to consult

a nice survey paper by Stewart [14].

In solving the linear system Ax = b, the condition number

K(A) = I1 Atl'.i A-111 gives a measure of how much errors in A and/or b may be

magnified in the computed solution. Moreover, if A i , Cn(A) gives a
n n(A) gives a

measure of the "nearness" of A to singularity. A standard introduction to

the solution of linear systems is the classical book of Forsythe and Moler

[15] to which we further refer the interested reader.

That other methods of rank determination are potentially unreliable

is demonstrated by the following example which is a slight modification of

a classical example due to Kahan. Consider the matrix A R x n whose diagonal

elements are all -1, whose upper triangle elements are all +1, and whose

lower triangle elements are all 0. This matrix is clearly of rank n, i.e.,

is invertible. It has a good "solid" upper triangular shape. All of its

eigenvalues (all = -1) are well away from zero. Its determinant is (-1) --

definitely not close to zero. But this matrix is, in fact, very near singular

and gets more nearly so as n increases. Notice, for example, that

1-1... +1 1 - 1/ 2n1 0

' r , .1/2 - 1 /2 1 0

+1
1 ~ 1/ 2 n - l 1/2 n- 1 0

-11-

Moreover, adding - to every element in the first column of A gives an
2 n-l

exactly singular matrix. Arriving at such a matrix by, say Gaussian elimi-

nation, would give no hint as to the near-singularity. However, it is easy

to check that o (A) behaves as n. A corollary for control theory: eigen-
n 2

values don't necessarily give a reliable measure of "stability margin".

Rank determination, in the presence of roundoff error, is a highly non-

trivial problem. And, of course, all the same difficulties arise in any

problem equivalent to or involving rank determination such as determining

the independence of vectors, finding a basis for Ker A, etc. We turn now

to some of these problems which naturally arise in the geometric theory of

linear multivariable control.

-12-

3. Calculation of the Basic Geometric Objects

In this section we outline the application of singular value techniques

to the computation of various subspaces and maps that arise in the geometric

theory. No proofs will be given nor will the list of objects considered be

exhaustive. Rather we shall attempt to impart only the flavor of singular

value analysis to the subject, leaving technical matters and the details of

software implementation for consideration elsewhere. Notation used will

be consistent with Wonham [1].

3.1 The four fundamental subspaces

Consider a linear map A: X- Y between two finite-dimensional real

vector spaces X and Y with d(X) = m, d(Y) = n. Identifying A with an nxm

real matrix A suppose A has an SVD given by

A = U Z VT = (UllU (S 0) (vT)
(0 0 V2

where S = diag(a ,...) with a > .. > r > 0 and U and V are partitioned

compatibly (U1 is n x (n-r), etc.). Then the Ui and Vi provide orthonormal

bases for the four fundamental subspaces [8] in the following self-explanatory

diagram:

A

A

X y

-13-

As discussed in Section 2 we have the computational problem of intelligently

deciding what is ca and hence the rank of A. But that decision directly

affects each of the above subspaces and hence their calculation. Since SVD

is the only generally reliable way of calculating rank it follows that it

is the only generally reliable way of calculating bases for these subspaces.

3.2 Projections

The four fundamental orthogonal projections are given by:

U UT _ +
11 ImA

UU = P T = I-AA

T +

2 2 KerA

For the case of oblique projections, suppose im R = R and Im S = S where

R and S are two subspaces of X such. that RS = X- Notice that R and S need

not have linearly independent columns. Then with the obvious choice of

notation we have for the projection on R along S

PRS = (U 1RO0)(U1R Us)-iRS lR lR lS

with similar expressions for PSR' PR, v' etc. Notice that in the special

case of S = R we do indeed have

PRR = (U O)(U 'U)-R,R lR' lR' 2R

= (UR,O) UT1R

T
U2R

= U UT = RR P =
R 1R imR R'

-14-

3.3 The factoring of a linear map

Suppose A: X + V, R C Ker A C X (here C denotes "is a subspace of").

Let P: X + - be the canonical projection. Then there exists a unique

xlinear map Q: R + Y such that the following diagram commutes

pP

X -- + X

Q

To compute P and Q, suppose Im R = R and let R have SVD

R = (U1,U2 S 0 V9(:

1 0 0 VT
2

Then P is given by P = U2 while the induced Q is given by Q = AU2. Note

that Ker P = Rc Ker A is equivalent to ARR+ = 0 whence

A = A(I-RR) = AU2U = QP. In the case when R = Ker A we have AU = 0 and221

A = QP = (AU 2)UT factors A into the product of injective and surjective maps.

3.4 The induced map in the factor space

Suppose A: X - X , and R C X is A-invariant, i.e., AR C R. Then A

induces a unique endomorphism A of the factor space X which makes the

following diagram commute

A
~X)1 X P the canonical

projection

P P

A

X - - - - ,- - X
R R

-15-

Again suppose R is any matrix with TmR = R and let R have SVD

1R = 2) (S 0) V (VT . Then P is given by U2 while A is given by

A = U2AU Note that AR R is equivalent to

RR AR = AR

T T T T T Twhich implies U AU1 =O and UA (I-UU) = 0. Thus AP = U2AU2U = UA PA.

Also note that under the orthogonal change of basis U, A becomes

T T
U (AU U0AU AIR U1AU2

~OU AU= |=U

° U2AU2 0 A

3.5 Subspaces

Suppose R c Xand A: X + X . Let R be any matrix with Im R = R and

let the SVD of R be as above. Then d(R) = the number of nonzero singular

values of R and the columns of U1 give an orthonormal basis for R while

the columns of U2 give an orthonormal basis for R (). A basis

for AR can be obtained from the U1 of the SVD of AR. To get a basis for

A R we need the SVD of A. Then

A-R = Im A+R + Ker A

Im [V + UTR, V2]

= Im [VlS U1 R, V2]

3.6 The calculus of subspaces

Given two subspaces R and T of X it must frequently be determined if

R c T · Suppose Im R = R and Im T = T Then R C T if and only if

+
TT R = R so using U1 from the SVD of T one can check if ULU TR R.1 11

-16-

Alternatively (but more expensively) one can check if the number of nonzero

singular values of T equals the number of nonzero singular values of the

matrix [R,T]. To check if R = T both R c T and T c R can be verified.

Upon computing the SVD of [R,T] , the columns of U1 are an ortho-

normal basis for R + T while the columns of U2 are an orthonormal basis

for R n T . The columns of V1 and V2 do not appear to span anything

particularly interesting. The extension of this procedure to arbitrary

finite sums of subspaces is obvious.

The "dual calculation" of R n T is not quite so easy. One can use

R n T = (R + T) and do two SVD's to get bases for R ,T then proceed

as above with one further SVD. This procedure extends obviously to

arbitrary finite intersections of subspaces but is clearly expensive. An

alternate procedure (but only for the case of two subspaces) is to do an

SVD of [R,T]. Then from the partitioning

0 = [R,T]V = [R,T] V2

V2T

choose RV2R or TV2T (according as d(R) or d(T) is smaller) as the appropriate

basis.

4. Transmission Zeros

We now turn to the numerical determination of the transmission zeros

of the system

x(t) = Ax(t) + Bu(t)

z(t) = Dx(t).

For ease of exposition we shall consider here only the "square" case, i.e.,

the case where u and z are both m-vectors. A complete discussion of this

and related problems (including the "nonsquare" case) can be found in [16].

We shall simply highlight the results of that paper.

As we have already seen in Professor Wonham's lecture, the regulator

problem with internal stability is well-posed if and only if no internal

system transmission zeros coincide with any exosystem poles. Transmission

zeros also play a role in other areas of regulation, decoupling, and

servomechanism design. They are essentially the multivariable analogue

of the numerator zeros of the classical single-input, single-output transfer

function. Very roughly speaking these zeros are certain complex frequencies

at which "transmission" through the system may be blocked.

The problem can be solved very straightforwardly by an application

of the famous QZ algorithm [17]. This algorithm has the advantages of

being efficient, numerically stable, and, most important, widely available

in a reliable implementation [6]. To varying degrees, this is in definite

contrast to various other proposed algorithms. A number of examples il-

lustrating the potential difficulties with other approaches are given in

[16].

The set Tof transmission zeros of the system described above is the

set of complex numbers X (including multiplicities) such that det(L-XM) = 0

where

A B () , I 0:
M n

D 0 0 0

The definition becomes somewhat more complicated in the nonsquare case (in

which generically there are no transmission zeros anyway) and we refer the

reader to [16] and [181 for details. For the square case considered here,

we thus want to solve the generalized eigenvalue problem: Find all finite

X for which there exist nontrivial solutions for the equation

Lz = 2Mz.

The generalized eigenvectors z corresponding to AcT will play a role in

computing bases for supremal (A,B)-invariant and controllability subspaces

(see Section 5).

The theoretical aspects of this and the analogous "rectangular" problem

have been studied extensively. But the first definitive numerical treat-

ment which squarely addressed the problem of singular M was published by

Moler and Stewart in 1973 [17]. Their algorithm is based on the follow-

ing theorem [191 which helps explain its desirable numerical properties.

THEOREM 2: There exist unitary matrices Q and Z such that QLZ and QMZ

are both upper triangular. J

Error and stability analysis of the QZ algorithm as well as a notion of

condition number for the generalized eigenvalue problem are developed in

[17], [191, and [20].

-19-

Since unitary transformations are used the computed generalized eigen-

values are the exact generalized eigenvalues of the "slightly perturbed"

problem (L+G)z = X(M+H)z where G and H are perturbation matrices whose

norms can usually be bounded by a modest multiple of the machine precision

(e). Moreover, all well-conditioned generalized eigenvalues are computed

accurately independently of the singularity of M.

The QZ algorithm does not actually compute the X. but rather determines

a. and ., the diagonal elements of QLZ and QMZ, respectively. All the
1 1

important information in the problem is contained in the ai and the i and

it is our responsibility as users to judiciously compute the X. from them.

For example, if the elements of L are determined experimentally and are

~~~~~~~-3known exactly only to within, say 10 , then, since we are using unitary
transformations, we may wish to call any X. corresponding to a fi < 10

1 1
-3a.

and a. > 10 an infinite generalized eigenvalue while X. = I correspond-

-3 i
ing to a. and ~. > 10 would constitute a finite generalized eigenvalue.

Details are discussed below.

The QZ algorithm is an obvious generalization of the QR algorithm

and, just as in the QR algorithm, the QZ algorithm can be implemented in

real arithmetic by orthogonal transformations with 2x2 blocks on the

diagonal and first subdiagonal of QLZ in the case of complex pairs of gen-

eralized eigenvalues. Details are found in [6].

Clearly the application of the QZ algorithm is straightforward. There

is also one unexpected bonus for this particular application of QZ and that

is that balancing may be applied (e.g. subroutine BALANC in EISPACK) to the

first n rows and columns of L because of the special form of M. This is

cheap to implement and can occasionally enhance the accuracy of the computed

solution and should therefore generally be used. The problem of balancing



-20-

for the general generalized eigenvalue problem is still an open area of

research. We would emphasize the fact that no preprocessing (rank tests,

matrix multiplication, inversions, etc.) of the system matrices is required.

The transmission zeros are readily determined once one decides what to

numerically use as "zero" for the a.'s and .'s. Typically one would call
1 1

zero anything less than some 6 related to the precision to which the system

data are known (or, from purely numerical considerations, one could con-

servatively use a 6 on the order of the square root of s). The point is--and

this is standard for orthogonal similarity algorithms--that "a quantity may

be set to zero if a perturbation of the same size can be tolerated in the

original matrix" [17]. There are then three cases to consider:

CASE (1): = . > 6.

a.
X = -- is a transmission zero.
i .

1

CASE (2): S <6, Ia i > 6.1

This corresponds to a generalized eigenvalue at infinity.

There will be m+s(s>0) of these: m of them arise because

the rank deficiency of M is m (and they usually appear

with "hard zeros" for si), while the other s correspond

to transmission zeros at infinity.

CASE (3): < <6, Ia i <6.

This is the degenerate case where det(L-XM) - 0 and all

complex X are in T. Note that in the near-degenerate case

(Iai| and Bi simultaneously small, i.e., near 6, but,



-21-

for example, i. somewhat greater than 6 the computed

= X.- is "ill-conditioned, however reasonable it may

appear" [17]. Of course, a decision has still been made

concerning 6 but, again, the point is that since the a.'s

and .i's are derived via orthogonal similarities, an intel-

ligent decision--related to the original data--can be made.

The test for degeneracy in Case (3) is thus also a very reliable and stable

way of determining left or right invertibility of a system.

The major advantage of the QZ approach is reliability. The QZ algorithm

computes transmission zeros about as accurately as their numerical conditioning

will allow. The most significant benefits derive from the determination of the

a. and S. (by unitary similarities), the ratios of which determine the
1 1

finite transmission zeros, if any. There are no controllability or obser-

vability assumptions; there are no initial rank assumptions which need to

be checked; degeneracy (or, just as important, near-degeneracy) is detected

"automatically" (i.e., without a separate test) in a stable way. In short,

no preliminary analysis of the system matrices is needed at all. The algo-

rithm proceeds directly on the raw system data. All the difficult (if

done properly) programming and analysis has been done by the specialists.

We might also mention that while a superficial examination of the

problem might indicate that the QZ approach would be slightly more CPU-time

consuming, in some cases, than other theoretical approaches, in practice

it is usually faster because of its reliability and direct applicability.

An approximate ballpark figure for CPU time is 20(n+m) microseconds on an

IBM 370/165 system (an average "medium" speed system) using the FORTRAN H

Extended (Optimize = 2) compiler with double precision arithmetic.

We next turn to an examination of the eigenvectors produced by the QZ

approach and see how they give important system-theoretic information.



-22-

5. Computation of Supremal (A,B) - Invariant and Controllability Subspaces

In this section we investigate the computation of two fundamental sub-

spaces critical to the synthesis of feedback controls via the geometric

theory for the system considered in Section 4. Specifically, these sub-

spaces are V* = the supremal (A,B) - invariant subspace contained in Ker D

and R* = the supremal (A,B) - controllability subspace contained in Ker D.

This section is based on [21] which should be consulted for details.

The essence of our approach to this problem is a blend of numerical

analysis and control theory with an eye toward design and applications. For

design purposes, knowledge solely of V*, R* is just not sufficient; certain

subspaces of V*, R* may be unsuitable for true design applications. Exam-

ples of the consequences of design based on these unreliable parts of V*,

R* are given in [21].

The final word on the "best" way to go about computing bases for V*,

R* is still open for investigation. What we shall outline here, instead,

are prototypical algorithms which reflect attention to the kinds of numeri-

cal considerations discussed in Sections 0, 1, and 2. The power of this

approach lies in the information generated to enable identification of the

reliable components of V*, R*.

For the system

x(t) = Ax(t) + Bu(t)

z(t) = Dx(t)

we will assume that x is an n-vector, u is an m-vector, and z is an r-

vector. We will furthermore assume, without loss of generality, that

rank (D) = r. Throughout the discussion, we shall make a number of conveni-

ent assumptions for the purpose of not clouding the basic issues with fussy

technicalities. This approach does sidestep some of the nontrivial numeri-

cal considerations but should be sufficient to allow the reader adequate

insight into the types of problems to be encountered.



-23-

Let P(X) = L - M where L and M are defined in the previous section

and may now be nonsquare. We shall assume throughout the rest of this

section that m> r and P(X) is full rank, i.e., P(X) has a nonidentically-

vanishing (n+r) x (n+r) minor. The set of transmission zeros is defined to

be all complex numbers X which reduce the rank of P(X). We shall make the

simplifying assumption that there are no multiple transmission zeros. The

case m< r is not "well-posed" (see [1]) and will not be discussed further.

Recall from Professor Wonham's lecture that the space V* is the largest

subspace in Ker D (and thus "unobservable" at z) which can be made (A + BF)-

invariant for some feedback map F (u(t) = Fx(t) is the feedback controller).

The space R* C V* is the largest such subspace with the spectral assigna-

bility property: namely, the spectrum of (A +BF) IR* can be freely assigned

by suitable choice of FE F(V*) = {F: (A +BF)V* C V*}. In other words, over

the class F(V*), the spectrum of (A +BF)IV* can be partitioned into an

assignable set AA and a fixed set AF. The set AA will be involved in deriv-

ing a basis for R* while A will be involved in a basis for V*. The corn-
R*

bined bases will provide a basis for V*. Further characterizations and

properties of these subspaces are found in [1] and 121]. Their numerical

determination will be based on the following two theorems [21].

THEOREM 3: Let d = d(R*) (Note: d < (n-r) = d(Ker D)) and let
r r

A = {X''..'k }XC C be such that

(i) A = A and A nlR $ ;

(ii) k > dr;
- r

(iii) no element of A is a transmission zero or has as its real

part a transmission zero.

For all iCk (={l,...,k}) let( be a matrix whose columns form a basis

Wi

for Ker P( i), i.e.,
1



-24-

A- iI B) (V) o
D O W

Then R* = SpanR {Vi, ik}3 .

THEOREM 4: Let z ,... z be the transmission zeros (distinct). For

iS q, let ( span Ker P(zi), i.e.,

wi

(A-z B) U vi

Then V* = R* + Span {vi, is q} .

We now outline prototype algorithms for V*, R* based on these two

theorems. The algorithms are referred to as prototype for two reasons.

First,we assume that the dimension of Vu is n-r and that V* = R* whenever

m > r. It is clear that this is a valid assumption if A,B,D arise from

measured data (for then we are almost surely in the generic situation).

The algorithms may be modified easily to remove this assumption. Second,

the reader will find that there are straight-forward modifications which

reduce the number of necessary operations.

The important point is that the algorithms provide information which

is essential for practical engineering design.

To compute basis vectors for R* (m>r):

Step 1: Determine the transmission zeros of the system (see [16]). Generical-

ly, of course, there won't be any. We assume this here and refer

to [21] otherwise.

Step 2: Select {AXl , nx r} to satisfy the conditions of Theorem 3. The

elements of the set should represent acceptable closed loop eigen-

values for (A+BF)IR*.



-25-

Step 3: For i c(n-r), compute Vi, W. as in Theorem 3 by SVD.
1

Step 4: Compute the SVD of VR* = [V1,...,Vnr]. The left singular vectors

corresponding to the singular values of VR* which are greater than

some threshold (possibly related to the data uncertainty) then

form a basis for the "reliable" part of R*. The left singular

vectors corresponding to the "small" singular values correspond

to the "unreliable" part of R*.

To compute basis vectors for V*(m=r):

Step 1: Determ\ine the transmission zeros z. and associated generalized

eigenvectors ( W ) satisfying

A-z. I B V i

D 0 i w

by the QZ algorithm [16].

Step 2: Compute the SVD of VV* = [vl,...,v n-]. The left singular vectors

corresponding to the singular values of Vv* which are greater than

some threshold f6rm a basis for the "reliable" part of V*. Trans-

mission zeros of too large magnitude or those which have nonnegative

real part are frequently excluded from consideration, also, so that

only a subset of finite, stable transmission zeros are used to

determine a working subspace V"
fs'

Finally, a word on the "generic" situations (see [1]). In case m>r

we have:

Rs = Ker D (g) ("(g)" denotes "generically")

V* = Rs (g)

T = (g)



-26-

In case m=r we have:

R* = o (g)

V" = Ker D (g)

T = {Zl,...,z I (g)

Ker D may be seen to be generically (A,B) -invariant if m>r since

d(Ker D) = n-r, d(Im B) = m implies Ker D + Im B = X (g) so that, trivially,

A Ker D C Ker D + Im B (g)

(recall V is (A,B)-invariant if AV C V + Im B). There are obviously difficult

numerical issues to be addressed in the nongeneric (but nonetheless important)

cases since arbitrary small perturbations cause the problem to slide into

(albeit just barely) the generic situation. However, in many situations

there are certain "hard zeros" in the problem so that arbitrary dense

perturbations may not be relevant. This remains an open area for investigation.



-27-

6. Mathematical Software1

The last, but probably the most important topic of all, is the implementation

of control theory and numerical algorithms in mathematical software. The

software should be reliable, portable, and unaffected by the machine or system

environment in which it is used. In saying that the software is reliable we

mean that computation will continue as long as meaningful results can be

obtained. If meaningful computation cannot continue sufficient information

will be given to the user to enable him to diagnose the trouble with his

problem.

At the present time mathematical software serves as a major vehicle

of communication among numerical analysts, algorithmists (frequently the

numerical analyst and the algorithmist must be one and the same), users,

and potential users of the software. In the not too distant past software

was looked upon primarily as development work rather than research. However,

recent rigorous work on mathematical software has served to stimulate

research in numerical analysis. Examples are the condition estimate of a

linear system of equations [22], the convergence analysis for iteratively

reweighted least squares which is a part of robust estimation [23], nonlinear

least squares [24], and unconstrained optimization [25].

The prototypical work on reliable, portable mathematical software for

the standard eigenproblem was started in 1968. EISPACK [5], [6] Editions I

and II were an outgrowth of that work. Since that time many pre-processors

lit is a pleasure to acknowledge the collaboration of my colleague
Virginia C. Klema in the preparation of most of this section.



-28-

that are, themselves, portable software have been designed and implemented

to assist in instituting and verifying portability. An excellent reference

on portability of mathematical software is [26]. Among such machine aids

that are in use are the PFORT verifier [27] from Bell Labs. and the FORTRAN

Converter from International Mathematical and Statistical Libraries, Inc. [28].

Reliable software that has been constructed using these machine aids includes

ROSEPACK [29] and NL2SOL [24]. ROSEPACK is mathematical software that

includes an interactive driver to do iteratively reweighted least squares.

NL2SOL is a system of subroutines to do nonlinear least squares computations.

Inevitably numerical algorithms are strengthened when their mathe-

matical software is made portable. Furthermore such software has been shown

to be markedly faster by factors ranging from 10 to 50 than earlier and

less reliable code.

The documentation for portable mathematical software, and the above-

mentioned machine aids that assist in the design of the software are suf-

ficient for users who have not been associated with the software to use,

extend, or modify it. The portable software must be modular in design,

well-structured, and the comments within the program or subroutine must be

sufficient to inform the user about input parameters, output parameters,

temporary storage requirements, error exits, and the algorithm that the

program implements.

Experience has shown that applications subsystems themselves that

include input-output and on-line documentation in the form of "help"

commands can be constructed as portable software that operates efficiently

in an interactive environment [29]. In short, a research environment can

be constructed--in fact, has been constructed,that serves the research

worker and the applications user.



-29-

It is clear that many aspects of control and estimation theory are

ready for the research and designthat is necessary to produce reliable,

portable mathematical software that performs in bounded arithmetic, that

is, the finite precision arithmetic of computing machines.



-30-

7. Concluding Remarks

We have outlined above a number of numerical problems associated with

one branch of control theory. There are countless more such control and

estimation problems and a great deal of numerical groundwork remains to

be completed before significant progress can be made on the numerical

aspects of such problems. Indeed, some synthesis and design problems may

not yet even be well-posed in the context of finite precision computation.

However, the ultimate goal is to solve real problems and reliable tools

(mathematical software) and experience must be available to effect real

solutions or strategies. This is not generally the case at the present

time, partly because there is frequently no way of determining, in

complex problems, whether current techniques and software are reliable.

Serious interdisciplinary research combining control and estimation theory,

numerical analysis, and mathematical software can make a valuable contribution

to improving the present state of affairs.



-31-

8. References

[1] Wonham, W. M., Linear Multivariable Control: A Geometric Approach,

Springer-Verlag, New York, 1974.

[2] Wonham, W. M., Geometric Methods in the Structural Synthesis of Linear
Multivariable Controls, Proc. 1977 Joint Automatic Control Conf., San
Francisco, CA, June 1977, pp. 594-600.

[3] Dahlquist, G. and A. Bjorck, Numerical Methods, Prentice-Hall,
Englewood Cliffs, NJ, 1974.

[4] Wilkinson, J. H., The Algebraic Eigenvalue Problem, Oxford University
Press, London, 1965.

[5] Smith, B. T., et al., Matrix Eigensystem Routines--EISPACK Guide,
Second Edition, Lect. Notes in Comp. Sci., Vol. 6, Springer-Verlag,
New York, 1976.

[6] Garbow, B. S., et al., Matrix Eigensystem Routines--EISPACK Guide
Extension, Lect. Notes in Comp. Sci., Vol. 51, Springer-Verlag, New
York, 1977.

[7] Golub, G. H. and J. H. Wilkinson, Ill-Conditioned Eigensystems and
the Computation of the Jordan Canonical Form, SIAM Review, 18(1976),

578-619.

[8] Strang, G., Linear Algebra and Its Applications, Academic Press,
New York, 1976.

[9] Stewart, G. W., Introduction to Matrix Computations, Academic Press,
New York, 1973.

[10] Forsythe, G. E., M. A. Malcolm, and C. B. Moler, Computer Methods
for Mathematical Coimputations, Prentice-Hall, Englewood Cliffs, NJ,

1977.

[11] Golub, G. H., and C. Reinsch, Singular Value Decomposition and Least
Squares Solutions, Numer. Math., 14(1970), 403-420.

[12] Dongarra, J. J., et al., LINPACK Working Note #9, Preliminary LINPACK
User's Guide, Argonne National Lab., Appl. Math. Div., TM-313, Aug.
1977.

[13] Golub, G. H., V. C. Klema, and G. W. Stewart, Rank Degeneracy and
Least Squares Problems, Tech. Rep't. STAN-CS-76-559, Computer Sci-
ence Dept., Stanford University, Aug. 1976.

[14] Stewart, G. W., On the Perturbation of Pseudo-Inverses, Projections,
and Linear Least Squares Problems, SIAM Rev., 19(1977), 634-662.

[15] Forsythe, G. E., and C. B. Moler, Computer Solution of Linear
Algebraic Systems, Prentice-Hall, Englewood Cliffs, NJ, 1967.



-32-

[16] Laub, A. J. and B. C. Moore, Calculation of Transmission Zeros

Using QZ Techniques, Automatica, (to appear, Nov. 1978).

[17] Moler, C. B., and G. W. Stewart, An Algorithm for Generalized

Matrix Eigenvalue Problems, SIAM J. Numer. Anal., 10(1973),

241-256.

[18] Francis, B. A., and W. M. Wonham, The Role of Transmission Zeros

in Linear Multivariable Regulators, Int. J. Control, 22(1975),

657-681.

[19] Stewart, G. W., On the Sensitivity of the Eigenvalue Problem

Ax = XBx, SIAM J. Numer. Anal., 9(1972), 669-686.

[20] Stewart, G. W., Gershgorin Theory for the Generalized Eigenvalue

Problem Ax = XBx, Math. Comp., 29(1975), 600-606.

[21] Moore, B. C., and A. J. Laub, Computation of Supremal (A,B) -

Invariant and Controllability Subspaces, IEEE Trans. Aut. Contr.

(to appear).

[22] Cline, A. K., C. B. Moler, G. W. Stewart, and J. H. Wilkinson, An

Estimate for the Condition Number of a Matrix, LINPACK Working

Note #7, Argonne Na. Lab., TM-310, July 1977.

[23] Dennis, John E., Jr., Private communication, (1978).

[24] Dennis, John E., Jr., D. M. Gay, and R. E. Welsch, An Adaptive

Nonlinear Least Squares Algorithm, NBER Working Paper 196, (1977),

submitted to ACM Transactions on Mathematical Software.

[25] Dennis, John E., Jr., Nonlinear Least Squares and Equations, in

The State of the Art of Numerical Analysis, edited by D. Jacobs,

Academic Press, London, 1977.

[26] Goos, G. and J. Hartmanis, Portability of Numerical Software, Oak

Brook, Ill., Lecture Notes in Computer Science, Vol. 57, Springer-

Verlag, New York, 1977.

[27] Ryder, B. G., The PFORT Verifier: User's Guide, CS Tech. Report 12,

Bell Labs., 1975.

[28] Aird, T. J., The FORTRAN Converter User's Guide, IMSL, 1975.

[29] Coleman, David, Paul Holland, Neil Kaden, Virginia Klema, and

Stephen C. Peters, A System of Subroutines for Iteratively

Reweighted Least Squares Computations, NBER Working Paper 189,

1977, submitted to Transactions on Mathematical Software.

[30] Wilkinson, J.H., Rounding Errors in Algebraic Processes, Prentice-

Hall, Englewood Cliffs, N,J., 1963.

[31] Givens, W., Numerical Computation of the Characteristic Values of

a Real Symmetric Matrix, Oak Ridge National Lab., ORNL-1574, March,
1954.

[32] Golub, G.H., and W. Kahan, Calculating the Singular Values and Pseudo-

Inverse of a Matrix, SIAM J. Numer. Anal., 2 (1965), 205-224.


