
February, 1984 LIDS-FR- 1356

SHORT TERM PRODUCTION SCHEDULING

OF AN AUTOMATED MANUFACTURING FACILITY

by

Stanley B. Gershwin,

Ramakrishna Akella, and

Yong Choong

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology

77 Massachusetts Avenue
Cambridge, Massachusetts 02139

GERSHWIN, AKELLA, CHOONG, Short Term Scheduling 2

ABSTRACT

We describe extensions to the on-line hierarchical scheduling
scheme for flexible manufacturing systems of Kimemia and Ger-
shwin. Major improvements to all levels of the algorithm are re-
ported, including algorithm simplification, substantial reduc-
tions of off-line and on-line computation time, and improvement
of performance by elimination of chattering. Simulation results
based on a detailed model of an IBM printed circuit card assembly
facility are presented.

ACKNOWLEDGMENTS

We are grateful for research support which has been provided by
the Manufacturing Research Center of the Thomas J. Watson Re-
search Center of the International Business Machines Corporation;
and by the U. S. Army Human Engineering Laboratory under Contract
DAAKll-82-K-0018. We are also grateful for the guidance of Mr.
Mike Kutcher and Dr. Chacko Abraham and for the early participa-
tion of Ms. Ethel Sherry-Gordon.

GERSHWIN, AKELLA, CHOONG, Short Term Scheduling 3

1. INTRODUCTION

This paper describes extensions to the work reported by Ki-
memia (1982) and Kimemia and Gershwin (1983) on the on-line sche-
duling of flexible manufacturing systems. Major improvements to
all levels of the hierarchical algorithm are reported and simula-
tion results are presented. The results indicate that the ap-
proach is practical, well-behaved, and robust.

A flexible manufacturing system (FMS) is one in which a fa-
mily of related parts can be made simultaneously. It consists of
a set of computer-controlled machines and transportation ele-
ments. The changeover time between different operations at a ma-
chine is small compared with operation times.

Processing a mix of parts makes it possible to utilize the
machines more fully than otherwise. This is because different
parts spend different amounts of time at the machines. Each part
type may use some machines heavily and others very little or not
at all. If complementary part types are selected for simul-
taneous production, the machines that are lightly used by some
parts can be loaded with others that do require them.

In principle, therefore, line balancing can keep several
machines busy at the same time. However, scheduling such a
system is difficult because there are several machines, several
part types, and many parts. In addition, like all manufacturing
systems, a FMS is subject to random disturbances in the form of
machine failures and repairs, material unavailability, "hot"
items or batches, and other phenomena. These effects further
complicate an already difficult optimization problem.

Figure 1 represents the hierarchical nature of manufacturing
system scheduling. At the longest time scale, decisions concer-
ning total annual production and acquisition or reallocation of
capital equipment are made on the basis of estimated demand.

Each month, production plans are made after demand updates
are available. It is necessary, at that level, to choose part
families. That is, parts that can share a set of production
machines may not be able to share them simultaneously because of
limitations, such as on tooling capacity. Once parts are grouped
into families, the volume of production of each family is deter-
mined. That is, the sizes of batches are calculated. In addi-
tion, the times at which families are changed are found. At
these moments, setup time costs are incurred.

On a weekly basis, short-term demands are scheduled. These
are high-priority demands of random amounts that occur at random
times and that must be satisfied quickly. They should be treated
in a way that does not unnecessarily disrupt the production of
the material that was previously planned. The batch sizes and
setup times already determined may have to be adjusted. At a
still lower level is the dispatch of individual parts into the
system. The objective here is to produce the amounts specified

GERSHWIN, AKELLA, CHOONG, Short Term Scheduling 4

PRODUCTION HIERARCHY

LONG RANGE
ONE YEAR (CAPACITY)

PLANNING

SCHEDULING OF
ONE MONTH BATCHES AND

SET-UP TIMES

SCHEDULING OF
ONE WEEK EXPEDITED

BATCHES

SHORT RANGE
PRODUCTION

LESS THAN ONE WEEK PLANNING AND
PART DISPATCHING

MACHINES AND
TRANSPORTATION

Figure 1. Long Term Production Hierarchy.

GERSHWIN, AKELLA, CHOONG, Short Term Scheduling 5

earlier at close to the required times. This level must be ro-
bust in the presence of such random events as machine failures
and repairs, worker absences, and material shortages which can
perturb the production process.

Kimemia and Gershwin describe a hierarchical approach to the
low-level scheduling of an FMS (Figure 2). They restrict their
attention to repairs and failures as sources of randomness.
Their method is based on the approximate representation of the
movement of discrete material as a continuous flow. A dynamic
programming problem is formulated whose solution is the optimal
mix of part production rates as a function of machine states
(failed or operational) and cumulative production. The approxi-
mate numerical solution of this problem is proposed for the top
level of this hierarchical algorithm (GENERATE DECISION TABLES).
This calculation is expected to be performed off-line. A simpli-
fication is described in Section 3.

At the middle level is the implementation of the solution of
the dynamic programming problem (CALCULATE SHORT TERM PRODUCTION
RATES and CALCULATE ROUTE SPLITS). That is, it is the mix of
production rates determined by the current machine states and
deviation of cumulative production from cumulative demand. Kime-
mia and Gershwin showed that the evaluation of these quantities
involves the solution of a linear programming problem at each
time instant. Although the problem is not large and the simplex
algorithm is efficient, the amount of on-line computation they
required was larger than necessary. More importantly, this pro-
cedure led to "chattering," (a rapid switching between one pro-
duction rate mix and another) which reduced the performance of
the algorithm. Section 4 of this paper describes a method that
treats both difficulties of the middle level.

The lowest level of the hierarchical algorithm has the task
of converting the continuous instantaneous production rates cal-
culated at the middle level to time instants at which parts are
loaded into the system (SCHEDULE TIMES AT WHICH TO DISPATCH
PARTS). At this level, the discrete nature of the production
process can no longer be avoided. Kimemia proposed a dispatch
strategy which was effective for systems that were not heavily
loaded, although it appeared to lead to excessive inventory accu-
mulation in the system. An alternative is pesented in Section 5,
which is also computationally more efficient.

Simulation results are summarized in Section 6. They are
described in full detail in Akella, Choong, and Gershwin (1984).
The simulation is described in Akella, Bevans, and Choong (1984).

GERSHWIN, AKELLA, CHOONG, Short Term Scheduling 6

REQUIREMENTS MACHINE PARAMETERSSYSTEM
CONFIGURATION (OPERATION TIMES,

MTBF, MTTR)

GENERATE
, DECISION a - TOP
PARAMETERS LEVEL-

OFF-LINE

MACHINE
PARAMETER

CALCULATE UPDATES
SHORT TERM MACHINE STATUS
PRODUCTION

STATUS OF
RATES REQUIREMENTS MIDDLE

LEVEL
ON-LINE

SCHEDULE TIMES PART
AT WHICH TO -
DISPATCH PARTS LOCATIONS LOWER

LEVEL
ON-LINE

MACHINES AND

TRANSPORT SYSTEM TATUS
SYSTEM

Figure 2. Short Term Production Hierarchy.

GERSHWIN, AKELLA, CHOONG, Short Term Scheduling 7

2.REVIEW OF HIERARCHICAL SCHEDULING

The purpose of the FMS scheduling algorithm is to solve the
following problem: when should parts (whose operation times at
machines are on the order of seconds or minutes) be dispatched
into an FMS whose machines are unreliable (with mean times be-
tween failures and mean times to repair on the order of hours) to
satisfy production requirements that are specified for a week?
Kimemia and Gershwin's approach decomposed the problem into two
parts: a continuous dynamic programming problem to determine the
instantaneous production rates and a combinatorial algorithm to
determine the dispatch times so that the actual production rates
agree with those that were calculated.

The continuous part was further divided into the top and
middle levels. The top level calculated a value or cost-to-go
function and was executed off-line. The middle level used the
cost-to-go function to determine instantaneous flow rates and
part mixes.

Continuous Formulation

Assume that the production requirements are stated in the
form of a demand rate vector d(t). Let the instanteous produc-
tion rate vector be denoted u(t). Define x(t) to be production
surplus. It is the cumulative difference between production and
demand and satisfies

dx
u(t) - d(t). (1)

dt

If x(t) is positive, more material has been produced than is
currently required. This surplus or safety stock is helpful to
insure that material is always available over the planning hori-
zon. However, it has a cost. Expensive floor space and material
handling systems must be devoted to storage. In addition, wor-
king capital has been expended in the acquisition and processing
of stored materials. This capital is not recovered until the
processing is complete and the inventory is sold.

If x(t) is negative, there is a backlog, which is also
costly. Backlog represents either starved machines downstream or
unsatisfied customers. In the former case, valuable capital is
underutilized; in the latter, sales and good will may be lost.

The production rate vector u is limited by the capabilities
of the machines. Let part type j require time Tij on machine i

for all of its operations. (Note that the order in which parts
go to machines is not relevant for this calculation. Nor is the
number of times a part visits a machine. For simplicity, we

GERSHWIN, AKELLA, CHOONG, Short Term Scheduling 8

assume here that there is only one path for each part.) Then
while machine i is operational, the flow rates of all part types
must satisfy

7T ij U j 4 1.

If machine i is not operational, then no parts that go to it
should be allowed into the system. That is, if Tij > 0 and
machine i is down, then uj = O. This is equivalent to requiring

T i j uj i O.

These inequalities can be combined as

T Tij UjCt) a6 acijt) (2a)

where the right-hand side is 1 if machine i is operational and 0
if it is down. More generally, if there is a set of identical

*type i machines, cxi(t) is the number of these that are opera-
tional at time t. Note also that

Uj Q O. (2b)

Inequalities (2a) and (2b) can also be written as

u(t) X Q(ot(t)). (2)

It is convenient to assume that failure and repair times are
exponentially distributed. This makes the mathematical analysis
tractable. In a production environment, more information about
failure and repair times may be available than is represented by
this distribution. Appropriate modifications can be made at the
upper and lower levels of the hierarchy.

Top Level

As noted above, costs are incurred when x is far from zero.
Kimemia and Gershwin describe the following optimization problemi

minimize E f g(x(t)) dt

subject to (1), (2), (3)
and initial conditions x(O) and cx(O).

The optimal value of the cost of this problem is called

GERSHWIN, AKELLA, CHOONG, Short Term Scheduling 9

J(x(O), x(O)). The calculation performed at the top level is the
approximate numerical evaluation of this function. Its deriva-
tive is used in the middle level to determine u(x,cx), as de-
scribed below.

The function J(x,cx) satisfies a high order nonlinear set
of coupled partial differential equations. Problem (3) is compu-
tationally difficult to solve since there is no analytic solution
and no exact decomposition. An approximate technique solution is
suggested by Kimemia and Gershwin. The simulation experience re-
ported below suggests that the simpler approximation of Section 3
suffices for practical purposes.

Figure 2 displays the structure of the hierarchical algo-
rithm. The numerical solution to problem (3) is implemented off-
line at the top level.

Middle Level

Kimemia and Gershwin show that the solution to dynamic pro-
gramming problem (3), the optimal production rate vector u(t),
satisfies the following linear programming problem. The argument
t is suppressed in x(t), cx(t), and uCt).

minimize aJ(x, ox)
u (4)

ax

subject to (2).

It is important to note that this is a feedback law. The
problem is only specified when x and ao are determined. The
numerical solution of (4) is implemented on-line at the middle
level of the hierarchical algorithm.

Because of the qualitative properties of J() (differenti-
ability, convexity) and DI) (a linear polyhedron), problem (4)
has certain properties. For every ax, x-space is divided into a
set of regions (open, connected sets) and the boundaries between
them. Each region is associated with a corner of Q(cx). When x
is in the interior of region Ri, the value of u that satisfies
(4) is the corresponding corner Pi,

Kimemia and Gershwin implemented (4) in a simulation by
solving it every time step (one minute). This worked well while
x was in the interior of a region R i. However, when x crossed

certain boundaries between regions, this approach worked poorly.
After x(t) crossed such a boundary (called attractive below), the
value of u corresponding to the new region Rj was such that the

derivative (1) pointed toward R i . When x(t) crossed the bounda-

GERSHWIN, AKELLA, CHOONG, Short Term Scheduling 10

ry back into R i , the derivative pointed again to Rj. Thus,

u(t) Jumped between adjacent corners Pi and Pj of Q(<C)),

This behavior is called "chattering" and is generally unde-
sirable. In this context, where u(t) represents the rate of flow
of discrete items, allowing u(t) to chatter means that the flow
rate would change more frequently than parts are loaded into the
system. The flow rates are such that at least one of the ma-
chines is fully utilized or totally unutilized at all times
(since u(t) is at an extreme point of Q(x(t)33). When u jumps
frequently from one corner of Q(cx) to another, the algorithm is
trying to switch rapidly from keeping one set of machines fully
loaded or unloaded to keeping another fully loaded or unloaded.

It cannot do this successfully, neither set of machines is
fully loaded or unloaded. As a result, if the demands on the
system are near its capacity, it will fail to meet these demands.
This behavior was observed by Kimemia (1982). A method is de-
scribed in Section 4 that circumvents the chattering problem. A
value of u is calculated when x reaches a boundary which prevents
this behavior.

An additional benefit is the reduction of on-line computa-
tion. Instead of solving a linear program at each time step, we
now solve a LP only when a machine state change takes place. A
small amount of additional calculation is also required.

Lower Level

Kimemia used a simple scheme for loading a mix of material
into the system at a prescribed mix of rates. This method was,
however, vulnerable to the accumulation of material. A new me-
thod is described in Section 5 which does not have this diffi-
culty. Unexpectedly, it is even simpler than the earlier method,
and uses less on-line computer resources.

GERSHWIN, AKELLA, CHOONG, Short Term Scheduling 11

3.SIMPLIFICATION OF TOP-LEVEL COMPUTATION

To circumvent the great computational requirements of the
top-level dynamic programming problem, a crude approximation has
been formulated. Preliminary numerical evidence (Section 6 and
Akella, Choong, and Gershwin, 1983) seems to indicate that this
approximation is highly satisfactory, at least for a set of im-
portant cases. In the following, we assume that d(t) is con-
stant.

Kimemia (1982) and Kimemia and Gershwin (1983) suggest a
decomposition by which the n'th order Bellman partial differen-
tial equation of the dynamic programming problem is replaced by n
first order Bellman ordinary differential equations (where n is
the number of part types, ie, the dimensionality of x, u, and d).

Kimemia further suggests approximating the solution to each
one-dimensional dynamic programming problem with a quadratic cost
function. Not only does this reduce data requirements, but it
also simplifies the middle-level computation. As a result, the
cost function is then written

J(x,a) = x TA(Ca) x + b(oc)T x + c(a) (5)

where A(ax) is a diagonal matrix, b(a) is a vector, and c(cx) is
a scalar whose value is not important. In this section, a simple
method for choosing A(a) and b(cx) is suggested.

As shown by Kimemia and Gershwin, the function J(x(t),ax) is
a decreasing function of t when sx remains constant. The hedging
point, given by

H(a) = -A(cx) 1 bcx) (6a)

is the minimum value of J(x,ax) for ac fixed. It is the value
that x reaches if a stays constant for a long time and if d is
feasible, ie if d · 2(oa). Since A is diagonal, this can be
written

Hil(a) = -bi(x)/AI I (a) (6b)

In the example described in Section 6, there are no backup
machines. Therefore, d is feasible when and only when all ma-
chines are operational.

In order to calculate the hedging point, consider Figure 3
which demonstrates a typical trajectory of xi(t). Assume x i has

reached HI(a), the hedging point corresponding to the machine

state before the failure. Then u i is chosen to be d i and x i

GERSHWIN, AKELLA, CHOONG, Short Term Scheduling 12

X

to tI, to+Tr tt to+Tr+ tf

Hi dTr

Figure 3. Simplified trajectory of xi.

GERSHWIN, AKELLA, CHOONG, Short Term Scheduling 13

remains constant.

A failure occurs at time t o that forces u i to be 0. This

causes x i to decrease at rate -di. In fact, if the failure lasts

for a length of time T r, then the minimum value of x i is

H i - d i T r . (7)

Just after the repair (at time t o + Tr), u i is assigned the

value U i . Assuming that this value is greater than demand d i , x i

increases at rate U 1 -d i until it reaches the hedging point H i (at

time t 3). At that time, u i resumes its old value of d i and x i

stays constant until the next failure, at time t o + Tr + Tf.

To simplify the analysis, we make several assumptions,

1. ul is constant between the repair (to + T r) and when

Xi reaches H i (t 3). This is false, as indicated by the

middle level discussion of Section 4.

2. T r and Tf can be replaced by their expected values,

the MTTR and MTBF. For notational convenience, we
continue to use those symbols. A more precise analysis
would treat the distributions of repair and failure
times and would explicitly treat the effects of early
failure and repair. That is, it would deal with the
events that Tr is so small that x i does not become

negative, or that Tf is so small that the hedging point

is not reached.

3. The cost function g() in (3) penalizes positive
areas in Figure 3 with weight a and negative areas with
weight b, where a and b are positive scalars.

The positive area between t O and t o + T r + Tf is the area

between t o and t 1 plus the area between t 2 and to + T r + Tf, where

GERSHWIN, AKELLA, CHOONG, Short Term Scheduling 14

t = t o + H i / di ,

t 2 = t o + Tr - (H i - d i T r) / (U i d i

and

t3 t 0 + Tr + di Tr/ (U i di)

The positive area is

I H (t t + H t - t)i 1) Hi t 3 2

+ Hi (to + Tr + Tf -t3)

- -Hi i H-+ H i Tf -r-- - -
d i (U i - d1) U i - d

The first term is clearly positive, and the second term is
positive when the demand is feasible because

Tf U i > (Tf + T r) d i .

The right side of this inequality is the amount of material of
type i that is required during an average failure and repair
cycle. The left side is the average amount produced during such
a cycle. This is because production can only take place during
the working portion, whose average length is Tf.

The absolute value of the negative area is

-1/2 (H i - d i T r) (t 2 - t 1)

(H i - dT r)2 U i

di (U i - di)

which is always positive.

The cost function, according to assumption 3, is then

GERSHWIN, AKELLA, CHOONG, Short Term Scheduling 15

a ~ d1) + H1 Tr dTIi
a z _Hi 2 ________ c Hi jTf - _

½ di (Ui _ di) i f - d

i i r + -------------b (H i - diT r U i

2 d i (U i - di)

This quantity is the cost incurred per average repair and
failure cycle of a machine. To find Hi, we must minimize it.

This is not difficult because the cost is quadratic in H.

The minimizing H i is

Tr di (b U i - a d i) - Tf a d i (U i - d i)

(a + b) Ui

This quantity can be shown to be positive.

To further simplify the analysis for the system of Section
6, we assumed that a, b, Tr and Tf and U i were such that

Hi = d i Tr / 2 (8)

where Tr was the average mean time to repair among all the ma-

chines that part i visits.

For machine states in which the demand is not feasible, this
approach does not apply. In Section 6, we choose the hedging
point for such states larger than (8).

Aiioc) must be positive in order for J to be convex. Its

value reflects the relative priority of part type i. Parts that
have great value, or that would cause great difficulty if back-
logged, or that pass through relatively unreliable machines
should have larger values of Aii. In Section 6, we describe
experiments with

Ai = number of machines part type i visits

and other values.

This calculation does not consider the fact that the failure
may occur before the state reaches the hedging point or that the
repair may occur before the state becomes negative. It assumes a
specific form of g. These considerations and others should be
the subject of future research, but it is important to observe

GERSHWIN, AKELLA, CHOONG, Short Term Scheduling 16

that this method produced very satisfactory results, as described
in Section 6.

It is also important to observe that the results seem to be
insensitive to the values of Aii and b i . This is important

because it provides evidence that it is not necessary to obtain
an exact solution to the dynamic programming problem (3). Conse-
quently, the off-line part of the algorithm does not appear to
require a large computer.

GERSHWIN, AKELLA, CHOONG, Short Term Scheduling 17

4.IMPROVEMENTS TO MIDDLE LEVEL

4.1 Characteristics of Solution

Cone-Shaped Regions

Kimemia shows that the optimal J(x, c) is convex in x for
each a. He also shows that J decreases when u satisfies (4) and
d is feasible. The minimal value of J is achieved when x is at
the hedging point. When J is given by (S), its minimum is
reached at (6).

Claim: When J is quadratic, the regions of x-space (in which the

solution u of (4) is constant at a corner of 0(a)) are cones.
That is, if u is the production rate corresponding to x, then u
is also the production rate corresponding to x', where

x' - H = s (x - H) (9)

where s is a positive scalar.

Proof,(a is not written.) The transpose of the coefficient of u

in (4), corresponding to x, is A x + b. Corresponding to x', the
transpose of the coefficient of u in (4) is A x' + b, which can
be written

A(H + s Cx - H)) + b

or

s(Ax + b) + (1-s)(AH + b).

Since H satisfies (6), the second term vanishes. The factor s
does not change the optimum, and the claim is proven. Note
that this is true regardless whether d is feasible.

Planar Boundaries

Linear program (4) can now be written

minimize c(x)T u

subject to D u = e (10)

u b 0

where u has been expanded with slack variables so that inequality
constraint (2a) can be written as an equality, and

GERSHWIN, AKELLA, CHOONG, Short Term Scheduling 18

c(x) = A x + b.

(Note that arguments a and t are suppressed.) The standard
solution of (10) (Luenberger, 1977) breaks u into basic (UB) and

non-basic (UN) parts, with c(x) and D broken up correspondingly.

The basic part of D is a square, invertible matrix. By using the
equality in (10), uB can be eliminated, and the problem becomes

minimize cR(x)T uN (11)

subject to uN ; 0

where the constraint on u B has been suppressed, and where

CR x) (x)T -N)T cisx)T DB N

is called the reduced cost. If all components of cR are posi-

tive, then there is a solution to (11)t uN = O. This and the

corresponding uB form an optimal solution to (10).

Otherwise, (11) does not have a bounded optimal solution and
(11) is not equivalent to (10). The simplex method is the widely
used technique for changing the basic and non-basic parts of
(10).

It is important to note that since c is a function of x, the
baslc/non-basic breakup of this problem depends on x. That is,
the set of components of u (and therefore of c(x) and the set of
columns of D) that are treated as basic varies as a function of
x.

As stated above, regions correspond to the corners of the
constraint set. At every x in region R i , corner Pi is the opti-

mal value of u for (10). In each region, then, there must be a
basic/non-basic break-up of (10) which is constant. Consequent-
ly, cR(x) must be positive everywhere in its own region and it

must have some negative components elsewhere. The boundaries of
the regions are determined by some components of cR(x) being
equal to zero.

The boundaries of the regions are therefore portions of
hyperplanes. This is because c(x) is linear in x. Consequently

cN(x)T and cB(x)T and therefore cR(x) are also linear in x.

GERSHWIN, AKELLA, CHOONG, Short Term Scheduling 19

Qualitative Behavior of Trajectories

Since u is constant throughout a region, dx/dt is also con-
stant. The buffer state x travels along a straight line in the
interior of each region. As indicated in Figure 4, such lines
may intersect with one or more boundaries of the region. When x
reaches a boundary, u and therefore dx/dt changes.

Some boundaries are such that when they are reached, the
trajectory continues, after changing direction, into the adjacent
region. Others, that we call attractive boundaries, are dif-
ferent. The trajectories on both sides of such boundaries point
toward them. Consequently, the trajectories tend to move along
the boundaries.

We can now qualitatively describe the trajectory. After a
machine state change, x(t) is almost always in the interior of a
region. It moves in the characteristic direction of that region
(which corresponds to a corner of the Q(c(at)) polyhedron) until
it reaches a boundary. If the boundary is not attractive, x(t)
moves in the interior of the next region until it reaches the
next boundary. The production rate vector u jumps to an adjacent
corner. This behavior continues until x(t) encounters an attrac-
tive boundary. At this time, the trajectory begins to move along
the boundary and u(t) jumps to a point on the edge of 2(ca]
between the corners corresponding to the regions on either side
of the boundary.

The trajectory continues until it hits the next attractive
boundary. After that, x(t) moves along the intersection of three
regions. The production rate vector is on the surface determined
by the three corners corresponding to these regions.

This behavior continues: x(t) moves to lower dimensional
boundaries and u(t) jumps to higher dimensional faces. It stops
when either the machine state changes (that is, a repair or
failure takes place) or u(t) becomes constant. If the demand is
feasible (that is, if d Q(aoc)) then the constant value for u
is d. When that happens, x also becomes constant and its value
is the hedging point. If the demand is not feasible, x does not
become constant. Instead, some or all of its components decrease
without limit.

Consequently, for a constant machine state, the future beha-
vior of x(t) would be determined from its current value. We call
this the "conditional future trajectory" or the "projected trajecto-
ry".

4.2 Calculation of the Conditional Future Trajectory

Assume that the conditional future trajectory is to be cal-
culated at time to. This may be due to a machine state change

GERSHWIN, AKELLA, CHOONG, Short Term Scheduling 20

,,- Hedging point

- , rInitial X

Trajectory

Figure 4. Regions of x-space induced by production policy.

GERSHWIN, AKELLA, CHOONG, Short Term Scheduling 21

which takes place at that time. It may also be part of a conser-
vative strategy which requires recalculation periodically to as-
certain that the system is not drifting from where it is expected
to be.

As soon as the machine state change occurs, linear program
(10) is solved. Thus the basicZnon-basic split is determined and
the cR(x) function is known.

The production rate vector at t=t 0 is denoted u O. The

production rate remains constant at this value until t=t 1 , which
is to be determined. In [to, t 1], x is given by

x(t) = x(t O) + (u O - d) (t - t o)

where x(t 1) is on a boundary. Then t 1 is the smallest value of t

for which some component of cR(x(t)) is zero. It is easy to cal-

culate this quantity since cR is linear in x and x is linear in

t. Once t ! is found, x(t 1) is known. Define h(x(t)) to be the

component of cR(x(t)) that reaches zero at t=t 1 . Because h is a

linear scalar function of x, we can write

h(x(t)) = fT (x(t) - x(t)).

For t > t 1 , there are two possibilities. The trajectory may

enter the neighboring region and travel in the interior until it
reaches the next boundary. Alternatively, it may move along the
boundary it has just reached. To determine whether or not the
boundary is attractive, we must consider the behavior of h(x(t))
in its neighborhood.

We know that h(x) is negative in the region across the
boundary since this is how the regions are defined. We must
determine whether h is increasing or decreasing on trajectories
inside that region. If h is decreasing, x moves away from the
boundary (where h is zero) into the interior. If h is increa-
sing, trajectories move toward the boundary which must therefore
be attractive.

One value of x which is just across the boundary is

x" = x(t o) + (u O - d) (t 1 + - t 0)

- x(t 1) + (u O - d) E.

GERSHWIN, AKELLA, CHOONG, Short Term Scheduling 22

This is the value x would have if u were allowed to be u 0 until
t 1 + .

Let u" be the solution to (10) in the adjacent region. That
is, (10) is solved with x given by x". (This can be performed

efficiently.) Let xv be the value of x at tl+c if u" were used
after t1. That is,

x = x(t 1) + (u" - d) (.

Then

h(x") = fT (u" - d) e.

Therefore h is increasing and the boundary is attractive if
and only if

f T (u" - d) > 0.

If the boundary is not attractive, define ul = u". Then

the process is repeated to find t 2, x(t 2), t 3 , x(t 3), and so

forth until an attractive boundary is encountered. (It should be
remembered that this is an on-line computation that is taking
place at time t o. The future trajectory is being planned.)

If the boundary is attractive, a value of u must be deter-
mined which will keep the trajectory on it. Otherwise chattering
will occur. For the trajectory to stay on the boundary,

h(x(t)) = 0

or, since h(x(tl)) = 0,

d_ hCx(t)) = f Tu - d) = 0. (12)

dt

Although u is an optimal solution to (10), it is no longer
determined by this linear program. In fact u O , u", and any

convex combination of them are optimal. This is because one or
more of the reduced costs is zero while x is on a boundary.
Consequently, the new scalar condition (12) is required to deter-
mine the solution. The linear program is modified as follows,

GERSHWIN, AKELLA, CHOONG, Short Term Scheduling 23

minimize c(x)T u

subject to D u = e (13)

u T 0

f u = f d

By adding equation (12) to (13), we are requiring that the
solution keeps x(t) on the boundary. We are also replacing the
reduced cost which has become zero with a new equation, so that
the new problem has a unique solution.

The solution to (13) is the value of u that keeps the tra-
jectory on the boundary. As before, this value is maintained
until a new boundary is encountered.

New boundaries may still be attractive or unattractive. The
same tests are performedi x is allowed to move slightly into the
next region to determine the value of u. The time derivative of
the component of the reduced cost that first reaches zero (h) is
examined. If it is negative, the boundary is unattractive and
the trajectory enters the new region. If it is positive, a new
constraint is added to linear program (13).

Constraints, when added to (13), are not deleted. As the
number of constraints increases, the surfaces that u is found on
in Q(ac)) increase in dimension. That is, u is first on a cor-
ner. When the fist attractive boundary is encountered, u is on
the edge formed by the convex combination of the corners corres-
ponding to the regions adjacent to the boundary. When the next
attractive boundary is reached, u is a convex combination of
three corners, and so forth.

At the same time, x is found in regions of decreasing dimen-
sion. After a machine state change, x(t 0) is in the interior of
a region of full dimensionality. The first attractive boundary
x(t) reaches is a hyperplane separating regions of full dimensio-
nality, so its dimensionality is one less than full. The next
boundary is the intersection of two such boundaries and thus has
dimensionality one smaller.

Since this is a finite dimensional system, this process must
terminate. There are two cases. If the demand is feasible, le
if d is a feasible solution of (10), then d is a feasible solu-
tion of (13). This is because d satisfies (12) for all f. As
new constaints of the form (12) are added to (13), d remains fea-
sible. Finally, if enough linearly independent constraints are
added, there is only a single feasible solution to (13) and that
is u=d.

Since the dynamics of x are given by (1), x remains constant
when u=d. The value of this constant is the hedging point, dis-
cussed above, which is the minimum of J(x, a) for the current
value of <x.

GERSHWIN. AKELLA. CHOONG. Short Term Scheduling 24

If the demand is not feasible, u cannot be equal to d and
thus x cannot become constant. Instead, the process described
above terminates with u satisfying linear program (13) including
one or more constraints of the form (12). The vector x(t) is
eventually of the form

x(t) = x(t) + (u - d) t.

Since d is not feasible, some or all of the components of
u - d are negative. The corresponding components of x decrease
without limit.

4.3 COMPUTATIONAL CONSIDERATIONS

The conditional future trajectory is calculated whenever the
machine state changes, either due to a failure or a repair. It
may also be calculated under other conditions: periodically, to
ensure that the actual trajectory is close to the projected
trajectory; or after unanticipated events such as parts not being
loaded into the system in the prescribed manner.

To begin the computation, a linear programming problem (10)
must be solved. The number of variables (production rates and
slack variables) is the number of part types plus the number of
distinct machines. The computational effort is not large when
the number of variables is on the order of 20; it increases as a
polynomial function and is substantial when there are 100 vari-
ables.

As each boundary is reached, one (if unattractive) or two
(if attractive) additional programs are solved. The numerical
effort is very small, however, since each starting basic feasible
solution is the solution of the previous problem. We expect that
no more than a few pivots of the simplex method will be required
to find each new solution.

GERSHWIN, AKELLA, CHOONG, Short Term Scheduling 25

S. LOWER LEVEL

Previous Part Loading Scheme

Kimemia (1982) suggested a simple part loading scheme for
the lower level: for each part type, establish a set of time
windows. The length of each window is the inverse of the produc-
tion rate Cu). The loading rule is: load one and only one part
of each type during each one of its windows.

This rule is uncomplicated, easy to program, and consistent
with the hierarchical approach. As implemented by Kimemia, howe-
ver, it suffered from an accumulation of in-process inventory
when machines failed and were repaired.

This is because the windows are reinitialized whenever a
machine state changes. Consider a part that goes to two succes-
sive machines with no alternative routes. When the second ma-
chine fails, one part of that type is likely to be in the system.
No additional parts are allowed in. When the repair occurs, a
new part is loaded immediately. There are now two parts of that
type in the system. There is no mechanism to reduce that number
except a failure of the first machine.

If there is another failure/repair cycle of the second
machine before the first, the number of parts goes up by one
more. If there are several part types that visit both machines
in the same sequence, the number of parts in the system goes up
by that number for each failure/repair cycle of the second ma-
chine that occurs while the first machine is operational.

This problem could have been treated by refraining, under
some circumstances, from loading parts. For example, after a
repair, the window might not be started until the old part is
completed at the machine that was repaired. However, this adds
undesirable complication to the logic.

New Part Loading Scheme

In the current research, an alternative has been used in-
stead which is simple, easy to program, consistent with the
hierarchical approach, and effective. It is based on the condi-
tional future trajectory (x(s), sat) rather than the current
value of the production rate (uCt)).

Define the actual surplus of part type i at time t to be

xAi(t) = [number of parts of type i loaded during [O,t t]]

d i t-

Note that xAi (t) is an irregular sawtooth function of time.
It jumps by 1 each time a part is loaded. At other times, it

GERSHWIN, AKELLA, CHOONG, Short Term Scheduling 26

decreases at rate d i .

The loading strategy insures that xA(t) is near x(t). The
strategy is: at each time step t, load a part of type i if

xAi(t) < xi(t). (14)

Do not load a part of type i otherwise.

A rule is required to resolve conflicts; it probably does
not matter what that rule is since conflicts will not arise very
often. One reasonable rule is, of all the parts that are candi-
dates for loading, load the one with the smallest i. Other such
rules are: load the part with the greatest short-term or long
term production rates.

Characteristics of New Strategy

Strategy (14) is easy to implement. It does not suffer from
the problem described above. Just after the failure of the se-
cond machine, the projected trajectory is recalculated. Because
the production rate ofparts of type i is zero,

XI(s) = xi(t o) - d i (S-to).

If, at time t o , Ki(to) parts of type i were produced, it is fair
to assume

XAi(to) - Ki(t 0) - dito i x0(tO

since otherwise a part would have been loaded exactly as the
machine failed. This implies that

xAi(s) > xi(s)

until the repair since if no additional parts are loaded, the
actual surplus is given by

xAi (s) = Ki(t O) - d i s.

Therefore no additional parts are loaded and, more important,

xA i(s) - xis)

is constant during that period. Consequently, when the repair
takes place, there is no reason to load any part immediately; the
clock that regulates the loading process is suspended during the
machine downtime in a very simple way.

GERSHWIN, AKELLA, CHOONG, Short Term Scheduling 27

Behavior of the New Strategy

Figures S and 6 demonstrate the behaviors of projected and
actual trajectories. They are extracted from the simulation des-
cribed in Section 6 and in Akella, Choong, and Gershwin (1984) in
greater detail. Figure S shows a portion of a projected trajec-
tory and of an actual trajectory that was determined by this me-
thod. The projected and actual surpluses of part type 1 are
shown as functions of time.

The actual trajectory remains as close as possible to the
projected trajectory. Recall that there are five other such
trajectories that are being treated at the same time. No diffi-
culty is experienced at the time (about 9740) when the loading
rate changes.

In Figure 6, the projected and actual surpluses of types 1
and 3 are shown evolving together. All machines were operational
for a period that ended at t=9499 (seconds into the shift) when
Machine 4 failed. The hedging point had been reached with both
H1 and H 3 equal to 15. (There were a total of six part types.)

Since neither part types 1 or 3 required Machine 4, their produc-
tion was not curtailed by the failure. In fact, the algorithm
took the failure as an opportunity to increase its surplus of
those types. Both H1 and H 3 were increased to 19. This point

was reached at t=10511 and the system remained there until
t=13733 at which time the repair took place. The old hedging
point was reached again at t=18036.

Only part of the actual trajectory is shown to keep the
figure uncluttered. Note how it moves around the projected
trajectory until it reaches the new hedging point, where it
hovers.

Conclusion

A new version of the lower level of the algorithm has been
described. This version is simple, easy to use, and effective,
and it does not suffer from problems of an earlier version.

GERSHWIN, AKELLA, CHOONG, Short Term Scheduling 28

20
PROJECTED TRAJECTORY

---- ACTUAL TRAJECTORY
19

18

Xi(t) !
17

16

15

O 95 96 97 98 99 100 101
TIME IN 100 SECONDS

Figure 5. Actual and Projected Trajectories--xl vs t.

GERSHWIN, AKELLA, CHOONG,. Short Term Scheduling 29

20

PROJECTED TRAJECTORY.
---- ACTUAL TRAJECTORY

MACHINE 4
REPAIRED HEDGING
t=13733 POINT

Xt)t / % REACHEI
.3/ i"\t= 10511

18

17 \

RETURN ,^
1t18036

15
ALL MACHINES MACHINE 4 FAILS

UP t = 9499

0
0 14 15 16· 17 18 19 20

X (t)

Figure 6. Actual and Projected Trajectories--xl vs x 3 .

GERSHWIN, AKELLA, CHOONG, Short Term Scheduling 30

6. SIMULATION RESULTS

A detailed simulation of an IBM flexible manufacturing sys-
tem was written to test the hierarchical scheduling policy and to
compare it with other reasonable ploicies. The simulation is
described in Akella, Bevans, and Choong (1984). A full descrip-
tion of the results appears in Akella, Choong, and Gershwin
(1984). A summary of the results is presented here.

System

Figure 7 is a schematic diagram of a simple version of an
IBM "Miniline" which inserts electronic components into printed
circuit cards. The triangles represent machines; all the ma-
chines are different and they each insert one class of compo-
nents. The ovals are storage buffers. The circles and rec-
tangles are transportation elements. The circles rotate while
parts move only in the directions indicated on the rectangles.

Six part types are being made simultaneously. They require
operations on one two, or three machines. The machines are able
to do different operations on successive parts without time lost
for set-up. Failures and repairs on machines take place at
random times and the machines all have the same reliability
behavior. Each MTBF is 10 hours and each MTTR is 1 hour, so that
the efficiencies are all 91%. Demands are chosen so that the
machines are utilized 98%., 91%, 96%, and 97% of the expected
available time.

Common Sense Policies

A variety of alternative policies was formulated to compare
with the hierarchical policy. These policies shared the same
structure but were increasingly sophisticated.

1.Common sense. If more than N parts are in the system, do not
load a part. If N or fewer parts are in the system, load the
part that is furthest behind or least ahead of demand. Do not
allow any part type to get more than K parts ahead of demand.

2.Less sophisticated improvement. This is the same as the pre-
vious, except that there are six thresholds, one for each part
type. If there are Ni or fewer type i parts in the system, and
type i is less than K parts ahead of demand, load a type i part.

3.More sophisticated improvement. This is the same as the pre-
vious, except that threshold i is set to zero whenever any ma-
chine is down that part i must visit.

These policies have parameters that must be chosen. Lit-
tle's law (Little, 1961) gives some guidance, but simulation
experience indicates that behavior can depend critically on their
values.

GERSHWIN, AKELLA, CHOONG, Short Term Scheduling 31

Simulation Results

Figure 8 displays the results of four runs of the hierarchi-
cal policy and four runs of the common sense policy. All runs
were performed with the same seed for the random number genera-
tor. That is, each had the same sequence of repairs and fail-
ures.

The horizontal axis displays the average number of parts in
the system. The vertical axis shows the percentage of the total
requirements that was actually produced.

The four hierarchical runs had different values of A and b.
The common sense runs had different values of the threshold N.
Figure 8 indicates that the hierarchical strategy produced super-
ior results. The in-process inventory was lower and the produc-
tion percentage was greater, in fact, over 98X. In addition,
although the values of the A and b parameters differed consider-
ably, the four hierarchical points are clustered quite close
together. This indicates that the policy is not sensitive to
these parameters.

Figure 9 demonstrates how the policies satisfy balance re-
quirements. The horizontal axis is the same as the vertical axis
of Figure 8. To define balance, let

number of type i parts produced during the run

number of type i parts required during the run

Then balance is defined as

min Z i

max Z i

It is important that balance be near 100% to ensure that only
what is required is produced. In particular, if the cards will
eventually be assembled into the same pieces of equipment, any
deviation from 100% can result in incomplete production. Figure
9 again indicates the superiority of the hierarchical policy.

Akella, Choong, and Gershwin (1984) present a fuller compa-
rison of these and other policies. Different seeds were used in
the random number generator, and the same conclusions hold. The
more sophisticated policies performed better than the common
sense policy, but not as well as the hierarchical policy.

yf Ir) 31a.

W0 °L Il - _O

0

,I .o0

U - 0 Z O

_ 2)> 0

I @y) ---- 0 0 >- w

. .. L...._.I -

f
_I

(o~~~~~~~~I (0
L

0 0 CdI -I \J

00

CKJ Ucr_

I-

9 I- 0 I

0 I 1 z5 1 (n 11 131 u 'ZI U V) a,~I-cnrrC~f \I 1 0 _, ,~~IL It
Q. 11~~~~~

o~
%D
0

GERSHWIN, AKELLA, CHOONG, Short Term Scheduling 32

* HIERARCHICAL
x POLICY x

100

0

0 xo
Z 9 _

0 8O-

a. X

80

0 10 12 14 16 18 20 22 24'
IN- PROCESS INVENTORY

Figure 8. Simulation Results--Total Production Percentage vs.
In-Process Inventory.

GERSHWIN, AKELLA, CHOONG, Short Term Scheduling 33

z z 10 0
o O * HIERARCHICAL
00 x POLICY x

0 0D 0

n a0

z 90
rLJ ? ' X

~' : _ x

z~x ~

Lw 80
z
-J

at x

700
00

80 90 100

TOTAL PERCENT PRODUCED

Figure 9. Simulation Results--Balance vs. Total Production Percentage

GERSHWIN, AKELLA, CHOONG, Short Term Scheduling 34

7. SUMMARY AND CONCLUSIONS

Summary

The hierarchical scheduling policy devised by Kimemita and
Gershwin for flexible manufacturing systems has been further
developed and tested. This policy is designed to respond to
random disruptions of the production process. In its current
formulation, it treats unpredictable changes in the operational
states of the machines: repairs and failures. All levels of the
policy have been improved:

1. An alternative to the computationally intense off-line calcu-
lation of the cost-to-go function has been suggested. It is sim-
ple enough as to be essentially instantaneous even on a micropro-
cessor. Preliminary simulation tests indicate that it is accu-
rate enough for the top level of the scheduling hierarchy.

2. The middle level has been made more computationally efficient
and more accurate. It is no longer necessary to solve a linear
programming problem at each time step. Instead, a handful of
closely related linear programming problems are solved whenever
there is a change of machine state. Systems with a small number
of part types can thus be managed with a small computer. In
addition, because of the way the new method plans a trajectory in
advance, chattering is avoided. It is thus possible to more
accurately calculate desired part flows and to achieve those
flows.

3. A new part loading policy has been developed for the lower
level. It is based on the trajectory planning method of the
middle level. It is simple. It is accurate in that it keeps the
actual trajectory close to the projected trajectory. That is,
the middle level devises a plan for production until the next
machine state change. The lower level loads parts in close
agreement with that plan.

Conclusions

While further simulation tests and more research and deve-
lopment is needed, certain conclusions can be drawn.

i. The method works better than the alternatives considered in
Section 6. It gets nearly 10OX of the theoretically possible
production out of a system and maintains good balance among the
parts required.

2. The reason that the method works well computationally is the
hierarchical structure. The large, difficult problem is decom-
posed into a set of small, easy problems.

3. The hierarchical structure is also the reason for the schedu-
ling accuracy of the method. The, most important consideration is
the capacity constraint (2). This guarantees that material is
not loaded into the system at a rate greater than it can handle.

GERSHWIN, AKELLA, CHOONG, Short Term Scheduling 35

Consequently, large queues do not develop in the buffers or in
the transport system. This avoids excessive in-process invento-
ry. It also reduces congestion which can diminish the effective
productive capacity of the system.

Further Research and Development

Research in several areas is suggested by this work:

1. Additional simulation tests are required. A greater variety
of cases should be tested to confirm the conclusions stated here.

2. The method proposed for the approximate calculation of the
cost-to-go function should be formalized and generalized so that
it can be applied to a wider class of systems. The apparent
insensitivity of the production process to this function should
be better understood.

3. Other kinds of disruptive phenomena should be studied and
incorporated in this method. The most important is random de-
mand, the arrival of orders that are not specified in the long
range requirements d(t).

4. We have assumed that production requirements have been speci-
fied at a higher level of the hierarchy. (See Figure 1.) The
calculation of these requirements should be done in a way that
takes changeover times between part families into account since
it is important to limit time lost due to set-ups. The schedu-
ling of set-ups and of batch sizes is an important research area.

S. The coordination of adjacent cells in a multi-stage factory
requires study. For example, how should the scheduling of a cell
be affected by the failure of a machine in a neighboring cell?

While further research will enhance this work, its current
form can be useful for manufacturers. Development is required in
the following areas.

1. Events which are potentially disruptive, but which can be
planned in advance must be treated. They include maintenance,
training sessions, and so forth. Hedging points should be adjus-
ted in advance of the anticipated events.

2. Software must be written for the implementation of this me-
thod. This software must be of commercial quality and it must
treat many issues not covered here or in the earlier research
papers, including the gathering of data.

GERSHWIN, AKELLA, CHOONG, Short Term Scheduling 36

REFERENCES

R. Akella, J. P. Bevans, and Y. Choong (1984), "Simulation of a
Flexible Electronic Assembly System," Massachusetts Institute of
Technology Laboratory for Information and Decision Systems Report
to appear.

R. Akella, Y. Choong, and S. B. Gershwin (1984), "Performance of
Hierarchical Production Scheduling Policy, "Massachusetts Insti-
tute of Technology Laboratory for Information and Decision Sys-
tems Report LIDS-FR-1357.

J. G. Kimemia (1982), "Hierarchical Control of Production in
Flexible Manufacturing Systems, Massachusetts Institute of Tech-
nology Laboratory for Information and Decision Systems Report
LIDS-TH-1215.

J. G. Kimemia and S. B. Gershwin (1983), "An Algorithm for the
Computer Control of Production in Flexible Manufacturing Systems,
IEE Transactions, Volume 15, No. 4, December, 1983, pp. 353-362.

D. Luenberger (1977) Introduction to Linear and Nonlinear Pro-
gramming, Addison-Wesley.

J. D. C. Little (1961) "A Proof for the Queuing Formula,
L - X W," Operations Research, Volume 9, Number 3, pp. 383-387.

GERSHWIN, AKELLA, CHOONG, Short Term Scheduling 37

Captions

Figure 1. Long Term Production Hierarchy.

Figure 2. Short Term Production Hierarchy.

Figure 3. Simplified trajectory of x i .

Figure 4. Regions of x-space induced by production policy.

Figure S. Actual and Projected Trajectories--xl vs t.

Figure 6. Actual and Projected Trajectories--xl vs x 3 .

Figure 7. Schematic Layout of IBM Miniline.

Figure 8. Simulation Results--Total Production Percentage vs. In-
Process Inventory.

Figure 9. Simulation Results--Balance vs. Total Production Percentage

