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ABSTRACT

We examine the problem of scheduling 2-machine flowshops in order

to minimize makespan, using a limited amount of intermediate storage

buffers. Although there are efficient algorithms for the extreme cases
of zero and infinite buffer capacities, we show that all the intermediate

(finite capacity) cases are NP-complete. We analyze an efficient approxi-
mation algorithm for solving the finite buffer problem. Furthermore, we

show that the "no-wait" (i.e., zero buffer) flowshop scheduling problem
with 4 machines is NP-complete. This partly settles a well-known open

question, although the 3-machine case is left open here. All the above

problems are formulated as or approximated by Asymmetric Traveling Salesman

Problems (A-TSP). A methodology is developed to treat (A-TSP)'s.
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1. INTRODUCTION AND PROBLEM DESCRIPTION

1.1 Motivation

"What do I do first?" This irritating question has tormented us

all. It has plagued the student in his thesis, vexed the engineer in

his design, and worried the technician in his workshop. It is bound to

puzzle any machine that aspires to be versatile and efficient. The auto-

matic factory will have to live with it and above all answer it. What

is most annoying is that it is never alone, but has a demanding sequel

"What do I do next?"

In very general terms, that is the fundamental question the theory

of scheduling set out to answer a quarter of a century ago. Because of

its applicability to diverse physical systems as jobshops or com-

puters, this theory spans many powerful disciplines such as Operations

Research and Computer Science. Therefore it is not by chance that the

ideas used in the present work were provided by the theory of Algorithms

and Complexity.

Scheduling follows such functions as goal setting, decision making

and design in the industrial environment. Its prime concern is with

operating a set of resources in a time- or more generally cost-wise

efficient manner. The present work was motivated by a number of ob-

vious but significant facts about the operation of highly automated

shops with multipurpose machines for batch manufacturing (e.g., a job-

shop with computer controlled NC machines and an automated materials

handling system). Let us briefly look at these facts:

-6-
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(a) A large percentage of the decisions made by the supervisor or

the computer control in such systems are scheduling decisions. Their

objective is high machine utilization or equivalently schedules with

as little idle time and overhead set-up times as possible. Therefore

any analytic means to decide "what to do next?" with a guarantee of

good performance will be welcome.

(b) Well behaved mathematical models (e.g., queueing models or

network flow models) tend to appear at aggregate levels. Yet scheduling

decisions are combinatorial in nature. A combinatorial approach can

be useful both in the insight it provides and the determination of power-

ful non-obvious decision rules for giving priorities to different jobs.

By making simplifying assumptions (e.g., replacing a complicated trans-

fer line with a fixed size buffer) we can sometimes get a tractable

combinatorial model.

(c) The trend in the hardware design is towards few powerful

machines (typically 2 to 6) set in straight line or loop configurations

with storage space and a transfer system. What is significant is the

small number of machines, usually small buffer sizes (1 or 2 jobs in

metal cutting applications) and the simple interconnection. The con-

figuration studied consists of the machines in series (flowshop) under

the restriction of finite buffers between machines (Figure 1). This

does not give us the full job shop freedom of the transfer line as in

(Figure 2). Yet let us look at an abstraction of the system in Figure

2. Consider a series of machines with buffers in between (which model

the actual storage and the storage on the transfer line). The jobs

flow through the machines and can also go from one buffer to the next
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(Figure 3). Decidedly Figure 3, because of communication between buffers,

is more complicated than Figure 1, which is a necessary first approxi-

mation.

(d) Scheduling models might sometimes look too simple, also the

jobs are not always available when we determine the schedule. All this

can be compensated by the fact that computers are much faster than other

machines and we can experiment with simulation and heuristics (that the

theory provides) long enough and often enough to make good decisions.

Let us now proceed with a detailed description of our scheduling

problem, its setting in the context of the general scheduling model,

the central ideas used from the theory of Algorithms and a brief look

at the results obtained.

1.2 Problem Description

1.2.1 Discussion

We examine the problem of "scheduling flowshops with a limited

amount of intermediate storage buffers".

Flowshop scheduling is a problem that is considered somehow inter-

mediate between single- and multi-processor scheduling. In the version

concerning us here, we are given n jobs that have to be executed on a

number of machines. Each job has to stay on the first machine for a

prespecified amount of time, and then on the second for another fixed

amount of time, and so on. For the cases that the (j+l)st machine is

busy executing another job when a job is done with the j-th machine,

the system is equipped with first-in, first-out (FIFO) buffers, that

cannot be bypassed by a job, and that can hold up to b. jobs at a time
J
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(see Figure 1). We seek to minimize the makespan of the job system, in

other words, the time between the starting of the first job in the first

machine and the end of the last job in the last machine.

Two are the significant cases studied here:

(i) 2-machine flowshops with finite intermediate storage
of size b > 1.

(ii) m-machine flowshops with no storage at all, where
m is a fixed number larger than two; (also known as
"no-wait" or "hot-ingot" problem.)

Apart from their practical significance, for which we argued in

section 1.1, these problems are important because they are the simplest

in the hierarchy of flowshop problems (see Figure 10), whose complexity

the goal of this work was to study. Particularly problem (ii) can be

formulated as an Asymmetric Traveling Salesman Problem (ATSP - given

a directed graph and a weight function on the edges, find a path visiting

all vertices exactly once at minimum cost). Let us now formulate our

problems in a more rigorous manner.

1.2.2 The Finite Buffer Problem

We start by introducing (i). Each job is represented by two

positive* integers, denoting its execution time requirements on the

first and second machine respectively. Now, a feasible schedule with.

*For the purpose of clarity in the proofs that follow, we also allow 0
execution times. If a job has 0 execution time for the second machine
it is not considered to leave the system after its completion in the
first machine. One may disallow 0 execution times, if they seem un-
natural by multiplying all execution times by a suitably large interger --
say n -- and then replacing 0 execution times by 1.
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b buffers is an allocation of starting times to all jobs on both machines,

such that the following conditions are satisfied:

a) No machine ever executes two jobs at the same time.

Naturally, if a job begins on a machine, it continues

until it finishes.

b) No job starts on any machine before the previous one
ends; no job starts at the second machine unless it
is. done with the first.

c) No job finishes at the first machine, unless there is
buffer space available --- in other words there are
less than b other jobs that await execution on the second
machine. One may allow the use of the first machine as
temporary storage, if no other buffer is available; this
does not modify the analysis that follows. In Figure 4
it is demonstrated that this is different from having
an extra buffer.

d) All jobs execute on both machines in the same order;
this restriction comes from the FIFO, non-bypassing
nature of the buffer.

More formallly,

DEFINITION. A job J is a pair (a,f) of positive integers. A

feasible schedule with b buffers for a (multi)-set J = {J ,...,J }
-1 n

of jobs (called a job system) is a mapping S:{l,...,n} x {1,2} + N;

S(i,j) is the starting time of the i-th job on the j-th machine. (The

finishing time is defined as F(i,l) = S(i,l) + i., F(i,2) = S(i,2) + i. )

S is subject to the following restrictions

a) i f j + S(i,k) $ S(j,k).

b) Let 71' 72 be permutations defined by i < j + S(Tk(i),k) <

S(Ok(j),k). Then T1 = 72 = v (this is the FIFO rule).

c) i f n + F(7T(i),k) < S(T(i+l),k).
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d) F( (i),l) < S(T(i),2).

e) i > b + 2 + F(r(i-b-1),2) < F ((i),l)*.

The makespan of S is p(S) = F(r(n),2). It should be obvious how the

definition above generalizes to m machines.

A feasible schedule is usually represented in terms of a double

Ghannt chart as in Figure 4. Here 5 jobs are scheduled on two machines

for different values of b, r is the identity permutation. In 4a and

4c a job leaves the first machine when it finishes, whereas in 4b and

4d it might wait. The buffers are used for temporary storage of jobs

(e.g., job (3) in 4c spends time T in the buffer). A schedule without

superfluous idle time is fully determined by the pairs (ai, i), r and

b; hence finding an optimum schedule amounts to selecting an optimum

permutation.

Some information had been available concerning the complexity of

such problems. In the two-machine case, for example, if we assume that

there is no bound on the capacity of the buffer (b = -) we can find the

optimum schedule of n jobs in O(n log n) steps using the algorithm of

[20]. Notice that, for m > 2, the m-machine, unlimited buffer problem

is known to be NP-complete** [13]. Also for two machines, when no

buffer space is available (b = 0, the "no-wait" case) the problem can be

* If we assume that the first machine acts as temporary storage the

only modification is that e) becomes

i > b + 2 + F(OT(i-b-2), 2) < S(QI(i), 1)

**

See Section 1.4,characterizing the problem as NP-complete means that
it is essentially computationally intractable.
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considered as a single-state machine problem in the fashion of [10],

As noted by [11], the case of the 2-machine flowshop problem in which

b is given positive, finite integer was not as well understood. In fact,

in [9 1 this practical problem is examined, and solutions based on dyna-

mic programming are proposed and tested.

Although there are efficient algorithms for the extreme cases of

zero and infinite buffer capacities, all the intermediate cases (.finite

capacity cases) are NP-complete. We analyze an efficient heuristic for

solving the finite capacity problem.

1.2.3 The "No-Wait" Problem

Let us, now take a look at problem (ii) of 1.2.1. We present re-

sults that extend our understanding of the complexity of flowshop

scheduling under buffer constraints in another direction: we show that

the m-machine zero-buffer problem is NP-complete for m > 4. As mentioned

earlier, the m = 2 case can be solved efficiently by using ideas due

to Gilmore and Gomory [10] and such "no-wait" problems in general can

be viewed as specially structured Traveling Salesman problems [32],

[33], [39]. Furthermore, it was known that the problem is hard when

m is allowed to vary as a parameter [24]. For fixed m and particularly

m = 3 the complexity of the problem was an open question [24], [18].

Although our proof for m > 4 is already very complicated, it appears

that settling the m = 3 case requires a departure from our methodology.

We will demonstrate the connection between Asymmetric Traveling

Saleman Problem (ATSP) and the scheduling problem by presenting the

formulation of the "no wait" problem as a directed graph problem [33],

[39]. We will comment on how the triangle inequality enters naturally
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in this representation.

Each job is an m-tuple of numbers. We have the same restrictions

of flowshop scheduling as in 1.2.2, only now b = 0 and m > 2. Let tij

be the time to process job Jj on Machine Mi. Each job will correspond

to a node in the graph. (We also have a start node with t 0 l<i<m).

The weights on the arcs (i,j) depend on the idle time on machine k,

l-<k<m, that can result if job Ji precedes Jj in the schedule. Let us

call this idle time Ik(i,j). We have [33]:

_ k-l

Il(i,j) = max 't - ; t ,j 0 2 < k < m i

k-l k
Ik (i,j) = Il (i,j) + tT j - tT i 2 < k < m 0 < i,j <n

1=1 T=2

There are k equivalent formulations as ATSP's with the distances ex-

pressing the idle times directly. Note that we have n+l nodes, where

the n nodes correspond to the n jobs and the n+lst one to the starting

node with all processing times 0.

< k <m

ATSPk : Cij= Ik(i'j) 0 < i,j < n

If for simplicity the optimal permutation of jobs is the identity we

have:

n

(Optimal Schedule) = EtkT + (Optimal tour of ATSPk)

T=l

Total Processing on Machine k
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The formulation commonly used is with

/k k-l

d.. = max t - t.
13 lJ<k<m Tt=l i T=l

Example: In order to illustrate the above let us formulate the ATSP1

for 2 machines and jobs (tli, t2i) = (ai, Si)

C.. = max (5. - '., O)

d.. =max (c. + 3. -c., Co.)
13 1 

P.. = max (aj., .i)

For the ATSP1 for 3 machines and jobs (ai. Si' Yi) we have:

13 1 1 3 3 1Cij = max (ai + Yi (j + j) i - j 0)

13 1 1 3 31 i 3 1di max ( i +i -i (ej + Bj), ci
+

i -.j' i)

P.. = max (S. + Y. - 5., a., 5.)
13 1 1 3 3 1

Note that in the first example all distances Pij are increased by an

increase in the job lengths. In the second example an increase in

the B's will increase some distances and might decrease others.

For the set of tasks 3 figure 6 has the ATSP2 formulation and

figure 7 the Ghannt charts for schedules using 1 or 0 buffers.

Certain remarks are significant. First if we assume a formu-

lation using idle times as distances and consider only the arcs with

0 weight, the existence of a Hamilton circuit (a circuit visiting all

nodes exactly once) in the resulting graph indicates that there is a

schedule saturating machine k. Second we actually have mn degrees



-18-

Buffer of
size b

Jobs Machine Machine Product

1 / D 1 2

(a) Two-machine flowshop with buffer size b

Time spent on Time spent on
Job. Machine 1 (t l i ) Machine 2 (t 2 i)

1 ~ O 2 21 ~0 2

2 2 12

3- 5 1

4 8 s 0

(b) A set of tasks '7

(0,0)

(2,12) 0 (5,1)(0,2) (8,0)-

(c) The TSP, which corresponds to'Yand b - 0. Optimal tour is in
heavy lines. The distances of the TSP are C..

C.. is the idle time on Machine 2, if job j follows job i
II

C q = max To. t I til C. =0

oJ iiCFigure 6=

Figure 6



-19-

cD 0 entersb~uffer

M2

t 2 5 7 10 14 15Li. 1 leaves buffer

(a) The optimal schedule for 2" if b = 1. The permutation of

jobs is ()- ( - )

M2 0 DL(D

1 2 9 14 15 22

(b) The schedule for the permutation of jobs 0 - 0 - 0 - 0
and b = O. [(a) is a compression of (b)]

0

,, 

M2 Q ILE 3 _ _ _ |

2 5 6 7 11 19

(c) The optimal schedule for Y' if b = O. The permutation of

iobs s O - 0 - -0

Figure 7



-20-

of freedom to construct a matrix of (n+l)n distances which satisfy the

triangle inequality. If m is a parameter we can take m=O(n2 ) and expect

to come up with a problem as difficult as the general TSP. This in-

tuition is correct [24]. If m is fixed the problem of determining its

complexity is more difficult.

1.2.4 The Significance of Constraints

Let us briefly comment on three issues related to the constraints

in our problem definitions.

1) If we assume that a machine can serve as temporary storage

this does not affect our analysis (e.g. increase b), and produces only

minor modifications in the schedule (see figure 4).

2) By accepting jobs of 0 length we do not assume that they can

bypass the machines or leave the system. This is in contrast with

[36], which treats the complexity of "no-wait" job-shops and open-

shops. Also [36] introduces a "flow shop with 0 tasks". Such a dif-

ference in definition (jobs able to bypass machines) makes it simple

to derive NP-completeness results from partition problems, but the

problem is no longer the "no-wait" fixed size flowshop problem [24].

3) In a flowshop of m machines and n jobs the combinatorial opti-

mization problem addresses the question of determining a permutation

of jobs to be performed on each machine (that is m permutations

I l<i<m, such as those in the definition of 1.2.2). Therefore the
1 --

space of permutations that we must search is roughly 0((n!)m ). We

would like to be able to search a smaller space. For all buffers o
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there are two classical results in scheduling theory [7 ], which demon-

strate that we can restrict our attention to equal permutations on the

first two machines and the two last ones (for a makespan criterion),

without loss of optimality. Since the problem is difficult anyway it

is customary to look only for some good schedule with the same permuta-

tion of jobs for all machines (optimal in the space of permutation

schedules). This is obviously the correct approach when all buffers

are 0, yet it does not hold for b finite > 0. Even when b=l, m=2 we

might have a job bypassing another job that remains in the buffer and

allowing 71 t r2 our schedule might fare slightly better than under

the FIFO assumption. This is demonstrated in Figure 8 and more closely

examined in chapter 3. We conjecture that removing the FIFO assumption

results, at best, in negligible gains for the b = 1 case.

Job # Ci i

1 0 100
2 80 40
3 10 1
4 50 9
5 5 0
6 5 0

a 2 = 80 a 4 =50 a3=10 a=5 a5

,- 1 00 - 2..:40 P4 9

Figure 8

b=l 1TT=2

For every f=7]=72 we would be forced to introduce idle time.
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1.3 The General Scheduling Model & Extensions

In this section we will sketch the simple combinatorial model, which

defines most deterministic scheduling problems. This is done in order

to provide a complete view of the setting in which the present work fits.

Also this section provides us with a common language for problems ad-

dressed in chapters 2 and 5 or referred to elsewhere in this thesis.

Suppose that n jobs Jj(j=l,...,n) have to be processed on m machines

M. (i=l,...,m). The most basic assumptions are that each machine can

process at most one job at a time and that each job can be processed

on at most one machine at a time. The scheduling problem has three

dimensions, which are more thoroughly examined in [18].

1) Resources: We have m machines, wherem might be fixed or a

problem parameter. We might have a single machine, identical, uniform

(they perform the same tasks at different speeds) or unrelated parallel

machines. Common network configurations are the flow-shop (defined in

1.2), the open-shop (each J. consists of a set of tasks one for each of
J

the m machines, but the order of execution is immaterial) and the job-

shop (each J. consists of a chain of tasks on a subset of the machines).

In general we also have a set of resources, which can be shared and

which are scarce

R = {R1 ...,Rs} where Ri < Bi 1 < i < s

The buffer resources examined in this work can both be shared and form

part of the network topology of the system. Generally there seems to be

a jump in complexity when going from two- to three-machine systems.
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2) The Job Characteristics

The jobs can be characterized by

a) Precedence constraints expressed as an irreflexive

partial order on the tasks. This partial order <

is represented by a directed acyclic graph, which

in special cases can have the form of a tree or a

set of chains (as in the flowshop case).

b) Processing times t.. > 0 of J. on M..

c) Resource requirements Ri (J.) < Bi of a job Jj

for resource i (B. = maximum available resource).

d) Release dates r., on which Jj becomes available and

due dates d., by which J. should ideally be completed.

If Fi(S) denotes the finishing time of a job in a
1

schedule S, then F. (S)-d. is its lateness and
1 1

max{0O, F.(S)-d.} its tardiness.

3) Optimization Criteria

Our goal is to determine a sequence of tasks S such that certain

performance measures are optimized. These optimal schedules might be-

long to general classes: preemptive, nonpreemptive (each task is an

entity and cannot be subdivided and executed separately), list scheduling

(a priority list is constructed and tasks are taken from it if the

proper processor is free and the precedence constraints satisfied),

permutation scheduling (in flow shops as discussed in 1.2.4) etc. The

common performance measures are maximum finishing time max (Fi(S)) or
l<i<n

makespan, mean weighted finishing time, maximum or mean weighted lateness

and tardiness.
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In the last few years we have witnessed a spectacular progress

towards understanding deterministic multiprocessor scheduling problems

of various types. For an overview of results in scheduling we recommend

[5 ]; [11], [18] and [7 1 also stress certain aspects of the area.

1.4 Notions from Complexity Theory and the Efficiency of Algorithms

In order to investigate the computational complexity of a problem,

the meanings of "problem" and of "computation" must be formally defined.

We will attempt to illustrate these definitions.

A problem might be considered as a question that has a "yes" or

"no" answer. Normally the question has several parameters, i.e., free

variables. A selection of values for the parameters is termed an in-

stance of the problem. The size of the instance is the length of the

string used to represent the values of the parameters. When we speak

about complexity O(n3), n is the size of the instance.

The time needed by an algorithm expressed as a function of the

size of the instance of the problem is called the time complexity of

the algorithm. The limiting behavior of the complexity as size increases

is called the asymptotic time complexity. Analogous definitions can

be made for space complexity and asymptotic space complexity.

The theory of computation has created and analyzed simple computer

models (automata) in order to determine the limits of computer capabili-

ties and make precise the notion of an algorithm. This is where the

study of time and space requirements on computation models (e.g., Turing

machines, pushdown automata, etc.) has been fruitful. A distinct line

has been drawn between easy and hard problems. Easy problems are determined
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as those solvable efficiently or those that have polynomial time com-

plexity. These easy problems belong to the class P. The other inter-

esting class for our purposes is NP (for nondeterministic, polynomial

time). It encompasses P and all problems, which can be solved by a

nondeterministic Turing machine in polynomial time.

All problems in NP are solvable in principle, but for those whose

status with respect to P is still uncertain only exponential time

algorithms are known. So in order for a problem to qualify for the

class NP there need not be an efficient means of answering the yes-or-no

decision questions. What polynomial time on a nondetermistic Turing

machine in fact says is that the problem is solvable by an algorithm

with the ability to backtrack, which would take polynomial time if a

wise demon made the correct choice at every point in our program and

the final answer were yes. In other words what is required is that

whenever the answer is yes, there be a short and convincing argument

proving it.

The structure of NP has been closely examined but we need only con-

sider one of its subsets, the subset of hard problems. Although some

theoretical questions have still to be resolved, we can safely state

the hard problems will be the NP-complete ones.

Definition: Define problem (S) to be NP-complete if every problem

in NP polynomially reduces to (S). An important corollary is that

if a polynomial-time algorithm can be found for problem (S), then

polynomial algorithms will be determined for all problems in NP.

The key theorem for NP-complete problems was given by Cook 18 ],

Many important NP-complete problems were investigated by Karp [21] and
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an up to date bibliography is contained in [15].

The key problem is the satisfiability problem for Boolean expressions,

which, given a Boolean expression, is as follows:

"Does there exist an assignment of truth values 0 and 1

(false & true) to its propositional variables that makes

the expression true?"

Cook proved that:

Satisfiability problem E NP-time

if (s) £ NP-time then (s) reduces polynomially to the

satisfiability problem therefore

satisfiability problem is NP-complete

Therefore in order to prove NP-completeness for other problems all

we need are polynomial transformations from known NP-complete problems --

e.g., the satisfiability problem, the clique problem (is there a complete

subgraph in a graph), etc. -- to the problems we wish to prove NP-complete.

Since these problems are in NP, Cook's result stated above actually

closes the circle and proves complete equivalence between NP-complete

problems, justifying the fact that they are the hardest in NP.

Ullman [37] initially investigated NP-completeness of scheduling

problems and some results exist on the subject to date, i.e., [12], [13],

[15], which are well classified by Lenstra [24]. Let us dwell now on

the practical significance of these results. Fig. 9 is the standard

representation of NP (co-NP are the complementary decision problems of

NP).
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Some general remarks may be made concerning NP-completeness:

a) Proving NP-completeness is, in a way, a negative result,

because then only general-purpose methods like dynamic

r pgramming, integer programming or branch and bound

techniques could give an exact solution. Yet this

study provides the motivation and the proper problems

for refining such techniques (based on such general

methodologies good approximate solutions are always

welcome).

b) Proofs of NP-completeness are significant for problems

on the borderline borderline between hard and easy problems. These

proofs are generally difficult (there is no standard

way to come up with tthm) and the problems that still

remain open are candidates for a breakthrough in re-

search, or might belong to a separate complexity class.

The problem reductions unify the field of combinatorial

optimization.

The obvious question is "what can we do about NP-complete problems?"

There are various possible approaches:

1) Application of general purpose methods and heuristics based

on our problem's properties, where experience actually gives us the
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certificate of "good" behavior of our algorithm (such an approach will

be described in Chapter 4).

2) Deterministic approximation algorithms, which run in polynomial

time and for which we can derive analytic upper bounds, exhibit worst

case examples and determine special solvable cases for our problem

(Chapter 3 is devoted to this methodology).

3) Average case analysis of an algorithm, which is equivalent

to a randomization of our inputs. We either use analytic means or

simulation (Chapter 3).

4) By extending the ideas of randomization we can examine

probabilistic algorithms [22].

In the following paragraph we will discuss how the problems described

in 1.2 were examined and treated using the ideas above.

1.5 A Summary and Guide to the Thesis

The problems addressed in this thesis are those formulated in 1.2.

We will use the following abreviations for them.

- For the 2 machine flowshop problem with finite inter-

mediate storage size b > 1 we use (2,b)-FS.

- For the m-machine, (m fixed), "no-wait" flowshop problem

we use (m,O)-FS (e.g., m=4 (4,0)-FS).

Chapter 2 contains a study of the complexity of these problems.

Chapter 3 an approximation algorithm for the (2,b)-FS and Chapter 4

a scheme for a heuristic approach to the (m,O)-FS problem. Chapter

5 contains our conclusions and a general discussion, whereas an Appendix
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contains the LISP listing for a program used in the (2,b)-FS approxi-

mation.

The research was conducted in close collaboration with Prof. C.H.

Papadimitriou of Harvard, whose great help and interest are enormously

appreciated. Most of the basic results have appeared in [31]. Let

us briefly describe this research.

a) A certain number of open problems in the borderline

between easy and hard problems have been proven NP-

complete. The (2,b)-FS problem has been proven NP-

complete by two different reductions for b > 3 and

b > 2 using a partition problem. Using a more re-

stricted partition problem Prof. C.H. Papadimitriou

has proven NP-completeness for the b > 1 case. Other

problems examined are three machine flowshops with

buffer sizes of 0 and o or - and 0 respectively. The

(m,0)-FS problem has been proven NP-complete for m > 4.

The proof technique is based on [16]; which actually

creates gadgets which translate Boolean algebra into

statements about Hamilton paths. This part represents

a joint effort with Prof. C.H. Papadimitriou. Personal

contributions are the idea of use of Hamilton paths in

the defined special graphs and the realization of the

components of these graphs in terms of 4 machine job

systems. This (m,0)-FS problem was pointed out by

Lenstra [24]. As far as the no-wait problems are

concerned we leave only one open question: the 3-machine

case (i.e., (3,0)-FS)). We conjecture that this problem

is NP-complete, although we cannot see how to prove this

without a drastic departure from the methodology used here.
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These are the contents of Chapter 2, Figure 10 contains the

hierarchy of these flowshop problems in a schematic manner.

b. For the (2,b)-FS problem we have an obvious heuristic.

STEP 1 Solve the TSP problem resulting from a

constraint of 0 sized buffers

STEP 2 Compress the resulting schedule to take

advantage of finite buffer size.

STEP 1 is the Gilmore Gomory algorithm [10], which is re-

viewed and implmented in 0(nlogn) time (which is optimal)

as opposed to 0(n ). Let 1b (J) denote the minimal schedule

length for a job system in a (2,b)-Flowshop. Prof. C.H.

',(J) 2b+l
Papadimitriou has proven that bJ < . This gives

lj(J) - b+l

on upper bound on the accuracy of the approximation of
b+l

We will outline the argument for b=l. Worst case examples

indicate that the bound is tight even after STEP2. The only

other exact bounds for flowshops are 1 3] and [171.

Since it was proven that for every job set we can find another

job set with a saturated optimal schedule and worse perform-

ance for the above heuristic than the initial job set, we

tested the average case performance of the heuristic with

respect to such saturated optimal schedules. The performance

was very encouraging (average error around 5% and deviation

around 10% for large number of jobs).
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Finally, we examine the effect of having FIFO buffers that

cannot be bypassed by jobs (let b(J) be the optimal makespan with

b general buffers), We provide arguments to substantiate the con-

~J (J)
1 5

jecture that < . These are the contents of Chapter
P (J) - 4

3.

c) All the above flowshop problems actually are or can be

approximated by special cases of the Asymmetric Traveling

Saleman problem. Although branch and bound techniques

have been studied for this problem [24], heuristics

equivalent to the most successful Lin Kemighan algorithm

[25] have not been developed. The fact that the tri-

angle inequality enters naturally in these applications

(see section 1.2.3) makes it plausible (Theorem 4.2.1) that

heuristics based on neighborhood search will perform

well. What is non obvious is how to extend the Lin-

Kernighan methodology from undirected to directed graphs.

What we attempt to do is study primary changes [38] and

the neighborhood structure resulting from them in the

asymmetric case (e.g., all primary changes in the ATSP

are odd). Based on this we propose a scheme for the

extension of the Lin Kernigham algorithm to the asym-

metric case. These are the contents of Chapter 4.

Hoping that we have appropriately motivated and de-

cribed the contents of this research, we will now

proceed to the actual theorems and proofs.
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2. COMPLEXITY OF FLOWSHOP SCHEDULING WITH

LIMITED TEMPORARY STORAGE

2.1 The Two Machine Finite Buffer Problem - (2,b)-FS

We will prove that the two machine fixed, non-zero, finite buffer

flowshop problem (b>l) is NP-complete. We use the shorthand notation

(2,b)-FS. This is somewhat surprising given that the limiting cases

of b=O and b-- (or b>n) have easy (polynomial) solutions [10], [20].

The corresponding decision problem is:

I· Given n jobs and an integer L, is there a feasible schedule S for

the (2,b)-FS such that p(S) < L? (b is a fixed non-zero integer).

We can use different reductions for different fixed sizes of b.

The problems, which are efficiently reduced to the (2,b)-FS and known

to be NP-complete are described in [15]. The technique the reductions

use is similar to [13]. The basic idea behind the proofs is: given an

arbitrary instance of a partition problem for integers we translate it

into a job system for a flowshop which, iff the partition problem has

a solution, will have a saturated (no-idle time) schedule. This job

system is such as to create slots of known length in the Ghannt chart,

which have to be filled in exactly if we wish to meet the schedule

length L requirement.

We will use two partition problems designated 3M and 3MI (for three

way matching of integers, where 3MI is a special (restricted versionY

of 3M).

-33-
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Three-way matching of integers (3M)
3n

Given a set A of 3n integers A = {al, ..., a 3n} with I ai = nc
i=l

does there exist a partition of A into three element sets A. l<i<n,

such that for each i E a. = c?
a.CA. 
] 1

c c
Without loss of generality a < and the problem is NP-4 i 2

complete [13].

Special Three-way matching of integers (3MI)

Given a set A of n integers A = {al,...,a } and a set B of 2n

integers B = {bl,...,b2 I is there a partition of B into n pairs

Pi = {Pil'P i2} such that for all i, ai + Pil + Pi2 = c where

c = 1/n(Ea. + Eb.) (an integer)?
1 J

This problem is known to be NP-complete [15].

In the 3MI problem we wish, as in 3M, to partition a set (AUB)

into three element sets, but these three element sets contrain one

element from A and two from B.

The (2,b)-FS problems are obviously in NP. A nondeterministic

algorithm could guess the optimal permutation w, construct the cor-

responding schedule S, and check that p(S) < L. Let us now proceed

with the reductions.

Theorem 2.1.1. The (2,3)-FS problem is NP-complete.

Proof: Suppose that we are given an instance {al,..., a3n I of the

3M problem. We construct the following instance of the (2,3)-FS

problem. Consider a set J of 4n+2 jobs, with execution times

(i., i.) as follows:
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a) We have n jobs K1,..., K with K. = (2c, c).
ln 1

Also, we have the jobs Ko = (O,c) and K = (c,O).

b) For each i, l<i<3n we have a job Ei = (0, a.).

L is taken to be (2n+l)c.

"4" Suppose a partition exists which has the desired form. That is

each set Ai consists of three elements ag(i,l)' ag(i,2)' a (i 3) such

that for all i, l<i<n j ag(ij) = c. Then the following schedule
j=1

shown in Figure lla and by its starting times below has length (2n+l)c.

S(KO, 1) = 0 S(K0,2) = 0

S(Ki, i) = 2c(i-1) S(Ki, 2) = 2ci

S(Kn+l, 1) = 2cn S(K +1, 2) = 2cn + c

S(Eg(il)' 1) = 2c(i-1) S(Eg(i1)' 2) = 2c(i-1)

S(E 1) = 2c(i-1) S(E (i,2)' 2) = 2c(i-1) + ag(il)

S(E 1) = 2c(i-1) S(E g 2) 2c(i-l)+a 1) + ag(i,2)

2 c

K1 K K K12 n n+l

K0 I 1 Kn- K

c c \
E Egg(i,l) Eg(i,2) g(i,3)

Figure l]a

c Eg(i,])' Eg(i,2) ' g(i,3

K Ki
i _-1

Ii-l Figure lib



-36-

"-" Conversely suppose a schedule of length (2n+l)c exists. It is

evident that there is no idle time on either machine. The schedule on

machine 1 has the form K0, , K K2 ,..., K , K because all K.'s l<i<n

are equivalent. The 3n jobs E. have to be distributed among the n in-

stants 2c(i-1), l<i<n for the first machine. We cannot insert 4 or

more jobs at time 2c(i-1) on machine 1, because since K. has to start

on it no matter which one of the 4 jobs or Ki_ 1 we executed on machine

2 we would violate the buffer constraint, (Figure llb is not permitted).

Therefore, since we have 3n jobs we have to place exactly 3 of them

at each 2c(i-1). Betwee 2c(i-1) and 2ci machine 2 must execute exactly

these 3 jobs and Ki 1. The schedule must be saturated thus the three

Ej's allocated to 2c(i-1) must correspond to three ai's that sum up

to c.

Theorem 2.1.2 The (2,2)-FS problem is NP-complete.

Proof: Suppose we are given an instance {a,..., a3n I of the 3M problem.

We construct the following instance of the (2,2)-FS problem.

Consider a set J of 4n+2 jobs with execution times (ait, i) as

follows:

3c
a) We have n jobs K1,..., K with K. = (c, Also, we

1 n '3c ~7~13c6
have jobs K0 = (0, )and K n+=(, 0).

b) For each l<i<3n we have a job E= ( a).i 16 I"i
3c

L is taken to be nc + (n+l)
16

"' ' Again if a partition exists we have a schedule as in Figure

12.
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Conversely if there is a schedule it must be saturated. On machine

1 between Ki and K. we cannot have more than three jobs, because thei-l 1

c cbuffer would overflow. We now use the property 4 < ai < . We cannot

have more than 3 Ej jobs consecutive, because the processing times on

3c c
machine 2 are -- or at least greater than - . The rest of the argument

16

is as in theorem 2.1.1.

Theorem 2.1.3* The (2.1)-FS problem is NP-complete.

Proof: Suppose that we are given an instance {al,...,a }, {b .b }
l''n'''''b2n

of the 3MI problem. It is immediately obvious that we can assume that

c/4 < a., b. < c/2, and that the ai, b.'s are multiples of 4n; since
J 1 J

we can always add to the a. and b.'s a sufficiently large integer, and

then multiply all integers by 4n. Obviously, this transformation will

not affect in any way the existence of a solution for the instance of

the 3MI problem. Consequently, given any such instance of the 3MI problem,

we shall construct an instance I of the (2,1)-FS problem such that I

has a schedule with makespan bounded by L iff the instance of 3MI

problem were solvable. The instance of the (2,1)-FS problem will have

a set J of 4n+l jobs, with execution times (ai' 3i) as follows:

This reduction is due to Prof. Ch.H. PapadimitriouThis reduction-is due to Prof. Ch.H. Papadimitriou
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a) We have n-l jobs K1,..., Kn_ 1 with K. = (c/2,2). Also
1

we have the jobs Ko = (0,2), and K = (c/2,0).

b) For each 1<i<2n we have a job Bi = (l,bi) and for each

l<i<n we have a job A. = (c/2,a.).
-- 1 1

L is taken to be n(c+2); this complete the construction

of the instance I of the (2,1)-FS.

We shall show that I has a schedule S with 1(S) < L iff the original

instance of the 3MI problem had a solution. First notice that L equals

the sum of all ai's and also of all .i's; hence p(S) < L iff p(S) = L

and there is no idle time for either machine in S. It follows that K0

must be scheduled first and K last.
n

We shall need the following lemma:

Lemma If for some j < n, S(K., 2) = k, then there are integers il,

i < 2n such that S(B. , 1) = k, S(B. , 1) = k+l.
2- I 12

Proof of Lemma. The lemma says that in any schedule S with no

idle times the first two executions on the first machine of jobs {Bi.}

are always as shown in Figure 13a. Obviously, the case shown in Figure

13b -- the execution of B. on the first machine starts and end in the

middle of another job -- is impossible, because the buffer constraint

is violated in the heavily drawn region. So, assume that we have the

situation in 13c. However, since all times are multiples of 4n except

for the a's of the Bi's and the 3's of the Kj's, and since no idle time

is allowed in either machine, we conclude that this is impossible.

Similarly, the configuration of Figure 13d is also shown impossible.

Furthermore, identical arguments hold for subsequent executions of Bi

jobs; the lemma follows.
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Bi, Bi, Bi

(a) (b)

Bi I I

(c) (d)

Figure 13

By the lemma, any schedule S of J having no idle times must have

a special structure. It has to start with Ko and then two jobs Bi

Bi are chosen. The next job must have an a greater than bi but not

'2 '1

greater than bi + bi ; furthermore it cannot be a Kj job since these

1 2

jobs must, according to the lemma, exactly precede two Bi jobs 
and

then the buffer constraint would be violated. So we must next execute

an A job and then a Kk job, because of the inequalities c/4 
< ai.,

bi < c/2. Furthermore, we must finish with the Kk job in the first

machine exactly when we finish the Aj job on the second, so that we can

schedule two more B jobs (see Figure 14). It follows that any feasible

schedule of I will correspond to a decomposition ofthe 
set B into n

p { ii i~pairs {P, ob such that a + C.
great1 2ha 1z 2 utemr i antb 
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I I C/2 C/2 1 1 C/2 C/2

2 b, Pi bi Pi j bi P i 2 bi I b' 

Figure 14



-41-

Conversely, if such a partition of B is achievable then we can

construct a feasible -- and without idle times -- schedule S by the

pattern shown in Figure 14. Hence we have shown that the 3MI problem

reduces to (2,1)-FS, and hence the (2,1)-FS problem is NP-complete.

Let us now notice that the above arguments, for b>l, generalize to

show that the (b+2)M problem reduces to the (2. b+l)-FS and that the

(b+2)MI problem reduces to the (2,b)-FS. (e.g., In the (b+2)MI problem

we are given a set A of n integers and a set B of (b+l)n integers; the

question is whether B can be partitioned into (b+l) tuples P =

b+l

(P ,..., P. ) such that a. + E p. = c. This problem is easily
i1 1b+l =1 j1

seen to be NP-complete.) Therefore the important conclusion is that

Corollary The (2,b)-FS problem is NP-complete for any fixed b, O<b<-.

Let us close this section by commenting on the use of another optimization

criterion. If instead of the makespan we wish to examine flowshops under

a flowtime criterion we have that the (2,b)-FS is NP--complete for b= y

and open for b=O [24]. We conjecture that the (2,1)-FS under a flow

time criterion is NP-complete.

2.2 The Fixed Machine "No-Wait" Problem - (m,O)-FS

In certain applications we must schedule flowshops without using

any intermediate storage; this is known as the no-wait problem. (For

a discussion of this class of problems, see Section 1.2.3).

Theorem 2.2.1* The (4,0)-FS problem is NP-complete

The discussion of this proof follows [31] . This part represents a

joint effort with Prof. C.H. Papadimitriou. Personal contributions are

the idea to use Hamilton paths in the defined special graphs and the
realization of the components of these graphs in terms of 4 machine job

systems.
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For the purposes of this proof, we introduce next certain special

kinds of directed graphs. Let J be an m-machine job system, and let K

be a subset of {1,2,...,m}. The digraph associated with J with respect

to K,D(J;K) is a directed graph (J,A(J;K)), such that (Ji,J.) E A(J;K)

iff job J. can follow job Ji in a schedule S which introduces no idle
I 1

time in the processors in K (e.g., kCK F(i,k) = S(j,k)).

The definition of the set of arcs A(J,K) given above could be made

more formal by listing an explicit set of inequalities and equalities

that must hold among the processing times of the two jobs. To illustrate

this point, we notice that if m=4 and K = {2,3} (Figure 15) the arc

(J,1J2) is included in A(J,K) iff we have

(1) a2 < 81 Y2 > 61 and 82 = Y¥

Machine

II
2 

, .. =....E .

Figure 15

We define D(m;K) to be the class of digraphs D such that there

exists a job system J with D = D(J;K). We also define the following

class of computational problems, for fixed m > 1 and K C.{1,2,...m}
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(m,K)-HAMILTON CIRCUIT PROBLEM

Given an m-machine job system J, does D(J;K) have a Hamilton circuit?

We shall prove Theorem 2.2.1 by the following result.

Theorem 2.2.2 The (4;{2,3})-Hamilton circuit problem is NP-complete.

We shall prove Theorem 2.2.2 by employing a general technique for

proving Hamilton path problems to be NP-complete first used by Garey,

Johnson and Tarjan [16]. (See also [26], [27].) The intuition behind

this technique is that the satisfiability problem is reduced to the

different Hamilton path problems by creating subgraphs for clauses on

one side of the graph and for variables on the other and relating these

sebgraphs through "exclusive-or gates" and "or gates" (see Figure 16)

We shall introduce the reader to this methodology by the following

problem and lemma.

RESTRICTED HAMILTON CIRCUIT PROBLEM

Given a digraph D = (V,A) (with multiple arcs) a set of pairs P

of arcs in A and a set of triples T of arcs in A is there a Hamilton

circuit C of D such that

a. C traverses exactly one arc from each pair P.

b. C traverses at least one arc from each triple T.
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LEMMA 1. The restricted Hamilton circuit problem is NP-complete.

Proof. We shall reduce 3-satisfiability to it. Given a formula F in-

voling n variables xl,...,x and having m clauses C1,...,C with 3

literals each, we shall construct a digraph D (with possibly multiple

arcs), a set of pairs P (two arcs in a pair are denoted as in Figure

17a) and a set of triples T (Figure 17b), such that D has a feasible --

with respect to P and T -- Hamilton circuit iff the formula is satis-

fiable.

The construction is a rather straight-forward "compilation." For

each variable x.j we have five nodes aj, bj, cj, d. and ej, two copies

of each of the arcs (a.,bj) and (dj,ej) and one copy of each of the arcs

(bj,cj ) and (c.,d.) (see Figure 16): The "left" copies of (aj,bj) and

(dj,ej) form a pair P. We also connect these sub-digraphs in series

via the new nodes f.. For each clause C. we have the four nodes
3~~~ 1

u., v., w. and z. and two copies of each of the arcs (u.,v.) (v.,w.)
1 1 1 1 1 . 1 1

and (w.,zi). Again the "left" copies of these three arcs form a

triple in T. These components are again linked in series via some

other nodes called Yi (see Figure 16). Also we have the arcs (Ym+lfl)

and (f lYl). To take into account the structure of the formula, we

connect in a pair P the right copy of (ui,vi ) with the left copy of

(a.,b.) if the first literal of C. is x., and to the left copy of

(d.,ej) if it is x.; we repeat this with all clauses and literals.

An illustration is shown in Figure 16.

It is not hard to show that D has a feasible Hamilton circuit if

and only if F is satisfiable. Any Hamilton circuit C of D must -have
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a special structure: it must traverse the arc (y +1 fl ), and then the

arcs of the components corresponding to variables. Because of the

pairs P, if C traverses the left copy of (ai,bi), it has to traverse the

right copy of (di,e.i); we take this to mean that xi is true otherwise

if the right copy of (ai,bi) and the left of (d.,ei) are traversed,

Xi is false. Then C traverses the arc (fm+lY l) and the components

corresponding to the clauses, one by one. However, the left copies

of arcs corresponding to literals are traversed only in the case that

the corresponding literal is true; thus, the restrictions due to the

triples T are satisfied only if all the clauses are satisfied by the

truth assignment mentioned above. (In Figure 16, x1 = false, x2 - false,

X3 = true.)

Conversely using any truth assignment that satisfies F, we can

construct, as above, a feasible Hamilton circuit for D. This proves

the lemma. o

What this lemma (in fact, its proof) essentially says is that for

a Hamilton circuit problem to be NP-complete for some class of digraphs,

it suffices to show that one can construct special purpose digraphs in

this class, which can be used to enforce implicitly the constraints

imposed by P (an exclusive-or constraint) and T (an or constraint).

For example, in order to show that the unrestricted Hamilton circuit

problem is NP-complete, we just have to persuade ourselves that the

digraphs shown in Figure 17a and b can be used in the proof of Lemma 1

instead of the P and T connectives, respectively [27]. Garey, Johnson

and Tarjan applied this technique to planar, cubic, triconnected graphs

[16], and another application appears in [26].
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In Figure 17a the Hamilton circuit either passes through u and u'

or through v and v'. In Figure 17b no Hamilton circuit can contain all

the arcs (u,v), (v,w) and (w,z).

Our proof of Theorem 2.2.2 follows the same lines. There are how-

ever, several complications due to the restricted nature of the digraphs

that concern us here. First, we have to start with a special case of

the satisfiability problem.

LEMMA 2. The 3-satisfiability problem remains NP-complete even if each

variable is restricted to appear in the formula once or twice unnegated

and once negated.

Proof. Given any formula we first modify it so that each variable appears

at most three times. Let x be a variable appearing k > 3 times in the

formula. We replace the first occurrence of x by (the new variable)

xl, the second with x2, etc. We then add the clauses (xl v x2)

v x 3)...(xk v x -- which are, of course xi= x2= x 3 ... xk in

conjuctive normal form. We then omit any clause that contains a literal,

which appears in the formula either uniformly negated or uniformly un-

negated. Finally if x is a variable appearing twice negated, we sub-

stitute y for x in the formula, where y is a new variable. The re-

sulting formula is the equivalent of the orignal under the restrictions

of Lemma 2. o

Secondly, realizing special-purpose digraphs in terms of job systems

presents us with certain problems. Although our special-purpose digraphs

will be similar to those in Figure 17, certain modifications cannot be

avoided. A digraph in D(4;{2,3}) must be realizable in terms of some
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job system, so that the inequalities and equations in (1) are satisfied.

Care must be taken so that no extra arcs -- dangerous to the validity

of our argument -- are implied in our construction. We shall address

this question first.

Consider a digraph D = (V,A), and a node bE:V such that

a) b has indegree and outdegree one.

b) (u,b), (b,v) A, where u has outdegree one and v has

indegree one.

Then b is called a bond. Removal of all bonds from D divides

D into several (weakly connected) components. For example bl, b2, b3,

b4 are bonds in Figure 17a, the y nodes, the f nodes and the c nodes are

bonds in Figure 16.

LEMMA 3. If all components of D = (V,A) are in D(4;{2,3}), then

D £ D(4;{2,3}).

Proof. Assuming that each component F. i(i=l,...,k) of D can be realized

by a job system 3., we shall show that D itself can be realized by a job

system 3. For each 3. we modify the execution times as follows: we

multiply all execution times by IVi · k and then add (i-l) VI to each;

this obviously preserves the structure of each Fi, but has the effect

that there are no cross-component arcs, because all components have

now different residues of execution times modulo k · IVi and hence the

«i = Yj equality cannot hold between nodes from different components.

Next we have to show how all bonds can be realized. Let b. be a

bond of D such that (u,b.), (b.,v) C A. Suppose that the jobs realizing
J J

u and v have execution times (5 ,~u,¥u,6 ) and (av'vYv,6v), respec-

tively. Since u has outdegree one and v has indegree one we can arrange
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it so that 3 and y are unique. Thus b. can be realized by the job

(0,y ,b ,0). Repeating this for all bonds we end up with a realization

of D in terms of 4-machine jobs with saturated second and third machine.

The Lemma follows. o

We shall now proceed with the construction of the job system J,

corresponding to a digraph D, starting from any Boolean formula F, as

required for the proof of Theorem 2.2.2. As mentioned earlier, the

construction is essentially that pictured in Figure 16 and our P- and

T-digraphs are similar -- although not identical -- to the ones shown

in Figures 17a and 17b. Lemma 3 enables us to perform the construction

for each component separately. The components of D do not exactly

correspond to the P- and T-digraphs: They correspond to portions of

the digraph in Figure 16 such as the ones shown within the boxes 1, 2

and 3. They are, indeed, components of D, since the c, f, y nodes are

bounds as are the b1, b2, b3, b4 nodes of the P-digraph in Figure 17a.

In Figure 18a we show the component corresponding to each clause

of F, as well as its realization by a job system J shown in Figure

18b. We omit here the straight-forward but tedious verification that,

indeed, the component shown is D(J;{2,3}), This verification can be done

using the inequalities in 18c. We give the necessary inequalities

between the processing times of tasks corresponding to nodes [1,2,3,...,10}.

Each of the quadruples of nodes (2,3,4,5), (12,13,14,15) and (22,23,24,25)

is the one side of a P-digraph, and they are to be connected, via appro-

priate bonds, to the quadruples associated with the literals of the

clause.
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In Figure 19a we show the component that corresponds to an unnegated

variable occurring twice in F. Again the quadruples (2,3,4,5), (6,7,8,9),

(10,11,12,13) are parts of P-digraphs. The first two are to be con-

nected via bonds to the components of the clauses in which this variable

occurs. The third quadruple is to be connected by bonds with the com-

ponent of the negation of the same variable. Notice, that this component

is in D(4;{2,3}) as demonstrated in Figure 19b, via the appropriate

inequalities.

The lower part of 19a shows the component that corresponds to nega-

tions of variables and is realizable in a similar manner as in 19b.

The remaining argument is to the effect that copies of these three

components, when properly connected via bonds as shown in Figure 16,

function within their specifications. Although certain arcs that we

had to add in order to make D realizable by 4-machine jobs (such as

the lines (9,6) and (13,4) in Figure 19a) may render it slightly less

obvious, the argument of Lemma 1 is valid. First, it is well to observe

that lines such as (9,6) in Figure 19a and (5,2) in Figure 18a can never

participate in a Hamilton circuit and are therefore irrelevant.

Secondly lines such as (1,6) in Figure 18a do not affect the existence

of Hamilton circuits, because a path from 1 to 6 already exists and

passes through two other nodes. Thirdly more attention has to be paid

to arcs like (13,8) and (13,4) of Figure 19a. Suppose we start with the

graph not containing any arcs of the form (13,8) or (13,4). If it has

a Hamilton circuit so does the graph with all these edges added on. If

it does not have a Hamilton circuit by introducing say (13,8) in a Hamilton
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path we are forced to include (15,16) and (1,14)of Figure 19a and exclude

(5,6), (1,8), (13,14). This makes it even more difficult than previously

to traverse nodes 9,10,11 in the copies of Figure 18a. It is then

straight-forward to check that the remaining digraph behaves as desired.

In other words, for each Hamilton circuit C and each variable x, either

the arc (1,14) (Figure 19a), corresponding to x, or the arc (15,16)

(Figure 19a), corresponding to x, is traversed. The former means that

x is false, the latter that is is true, then only clauses having at lest

one literal true shall have the corresponding nodes 9, 10, 11 (Figure

18a) traversed. Thus a Hamilton circuit exists in D if and only if F

is satisfiable and the sketch of our proof is completed. O

Certain remarks are in order. If we wished to prove the same

theorem for (5,0)-FS we would have no extra arcs in the realizations

of figures 18 and 19. From the three relations between processing

times used to define arcs a2 = Y1 isolates the different parts of

the graph and a2 < 1 Y2 > 61 create the proper "gadgets" (of Figure

17).

Also some of the fractional values appearing in the table of figure

18b (e.g. = 4.1) make it impossible for different bonds to interact

with each other if we use the realization of Lemma 3 for bonds.

Now we can prove Theorem 2.2.1:

Proof of Theorem 2.2.1 We shall reduce the (4;{2,31)-Hamilton circuit

problem to it. Let J be a job system constituting an instance of this

problem. It is evident from the proof of Theorem 2.2.2 that we can
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assume that D(J;{2,3}) has at least one bond, Jb' having execution times

unlike any other execution times of jobs in J. Let (J1,Jb),

(J b'J2) D(J;{2,3}), where J 1 = 1 ) and J 22 ' 2'2y2 2)

We create the job system 3' = J - {Jb} U S, where

S = {(0a,2, '2Y2)' (0,0,a2',2 ) ' (0,0,0,a 2), (1'Y1A, 10)

(Y1,61,,0), (61,0,0,0)} 

It should be obvious that D(J,K) has a Hamilton circuit if and only if

J' has a no-wait schedule with makespan Ejj£j, j or less. o

Since the m-machine no-wait problem can be reduced to the (m+l)-

machine no wait problem we conclude

COROLLARY. The m-machine no-wait problem is NP-complete for

m > 4. 

A summary of the proof in 2.2 is presented for clarity:

P1 M=4 /F/ O-BUFFERS

P2 M=4 /F/ 9-BUFFERS/ ARE 2ND & 3RD MACIHi. SATURATED?

P3 FINDING HAMILTON 'CIRCUITS INT4 SPECIAL GRAPHS.

P4 3-CNF SATISFIABILITY PROBLEM IN RESTRICTED FORM

P5 GENERAL 3-CNF SATISFIABILITY (NP-COMPLETE)

P5 cx P4 >< P3 < P2 'x P1

Sketch of proof of NP-completeness of P1
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2.3 Three Machine Flowshops

Our analysis up to this moment has left one important open question,

as far as no-wait problems are concerned: the 3-machine case. Admittedly

this problem - and the generous prize that comes with its solution [24] -

was the original goal of our efforts. We conjecture that this problem

is NP-complete, although we cannot see how to prove this without a drastic

departure from the methodology used here. As pointed out in the previous

paragraph for 2 jobs in the 4 machine case to determine an arc one

equality and two inequalities are needed. The equality acts as a signa-

ture isolating "gadgets".

1 2

JOB 1 (a,, B1' Yl' 61) -
2- 1

JOB 2 (02' ~2' Y2' 2) 2>

.2=Y1
SIGNATURE

One may wish to show that the Hamilton circuit problem is NP-

complete for D(3;K) for some K f 4. Now, if IKI = 2 the corresponding

problem is polynomial. The IKI = 3 case and, in general, the Hamilton

problems: for D(m;{1,2,...m}) are equivalent to searching for Euler

paths in graphs in which the jobs are represented by arcs and the nodes

are the "profiles" of jobs in the Ghannt chart [34]. Consequently, this

class of problems can be solved in linear time. This leaves us with

the IKI = 1 case.

Determining whether D(m;K) has a Hamilton circuit where IKI=1 is

open. This is because for each pair of jobs to determine an arc in

the graph we have m-l inequalities. These inequalities propagate in
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the graph through transitivity and make it difficult to isolate its

components. For m=3 if J1 = (a1'f1'¥1) J2 = (a2' 2'Y2) in order to have

the arc (1,2) in D(J;{2}) we must have a2 < E1 and y1
<

2 . The lower

limits in order to obtain a meaningful equality are 1KI > 2 and m > 4.

Let us now look at the solvable cases:

Theorem 2.3.1 [341 Determining whether graphs in D(m;{1,2,3,...,m})

have Hamilton circuits can be done in O(n) time.

Proof In order to place one job after the other they must fit exactly.

Therefore, if each job is viewed as a transition from one "profile" to

another as exhibited in Figure 20 we can use the following approach.

1) Construct digraph D = (V,E), where each v6V corresponds

to a profile and each esE to a job which takes us from

one profile to another.

2) Find an Euler circuit in D (circuit passing through all

edges exactly once). This can be done in 0(EI) = O(n)

_ 1 2

profile i

profile j

: i
1.. _i ....2 .--r- - profile k

61 ! 52
__-___ 1__.. ___ 1 _

(a) Figure 20

---r- ---------a-
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3

(b) Figure 20

An Example of D = (v,E)

Using similar ideas we have:

Theorem 2.3.2 Determining whether graphs in V(m;K), where IKI = m-l,

have Hamilton circuits is solvable in 0(nlogn).

Proof: We will illustrate the argument that reduces the D(3;{2,3})

problem to the (2,0)-FS problem. It will be obvious that a similar

coding technique can be used to reduce an arbitrary V(m,K), IKI = m-1

problem to the (2,0)-FS problem. As will be shown in the next chapter

the (2,0)-FS problem is solvable in O(nlogn) time.

Given a job system J., where Ji = (Cai ,iYi), we wish to determine

whether there exists a schedule which is saturated on the 2nd and 3rd

machines. Consider the job system J', where J'i corresponds to Ji,

and = (M i' Yi + i) he MYwhere = . +i w i. We will prove
hrM i i

that 3' has a schedule on 2 machines of length M(M+l) iff J can saturate

the 2nd and 3rd machines.
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""This direction is obvious since M~j + ej < Myi + i if Yi = j
J i i J- 1

and a. < . (These are the conditions that J. follows J. in a schedule3 -- 1 ] 1

that saturates the 2nd and 3rd machines). Thus by J! following J' we

achieve the M(M+l) length.

"" Since 3' has a schedule of length M(M+i) = ME Yi + E Si there exists
i i

a permutation r such that M~j + j. < MY i + 3i if J! follows JV. We will
J-- 1 1 1

prove that yi = ij and aj. < .. If Yi 7 1j then either yi > .j or
3 -1 1 1

1j > Yi. In the first case let I be the idle time on the first machine

between J' and J. I = M(y- j) + S i- > M + - > M

(total idle time on the first machine) = M(M+l) - MM - .i . This

is not possible. In the second case we also reach a contradiction be-

cause M(Uj -i ) >M > 3 -j.. Thus i = and a. < S., which demonstrates

that J has a schedule saturating the 2nd and 3rd machines. O

Let us now look at a particular case we have ignored. "Three

machine flowshops with one 0 buffer and one o buffer". The technique

2.1 can be applied to show that minimizing makespan is NP-complete for

flowshop systems, such as 3-machine flowshops with 0 buffer between

machines 1 and 2, and 0 buffer between machines 2 and 3.

Theorem 2.3.3. The 3,( b2=0 -FS problem is NP-complete

Proof: Given a 3MI- instance we assume 1 < c/4 < a., b. < c/2 << m and
1 :

we construct a set of jobs J with execution times (ai',i.Yi) as follows:

a) We have n-l jobs K ,...,K with K. = (m,l,c+l+m). Also
2 1 n 1

we have Ko = (0,0,1), K1 (O,l,c+m+l), Kn+ = (m,l,0),

K = (1,0,0).
n+2

·- ··- --·r --- ·-- ---
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b) For each 1 < i < 2n we have ajob Bi = (l,bi,0)

and for each 1 < i < n a job A. = (O,ai+m,0). L

is taken to be n(c+m+l) + 1.

It should be noted that p(S) < L iff there is no idle time on the

second and third machines, yet there can be idle time on the first.

K1
1 1 m 1

1 bi b. ai +m 1

K0 K1

1 c+m+ 1

Figure 21

The Ki jobs create slots of length c+m on the second machine's

Ghannt chart. If the partition problem has a solution these slots

are filled in the schedule as is obvious from Figure 21. If conversely

we have a schedule the second machine must be saturated. As in

Figure 21 only a task with length ai+m can be present. The restrictions

1 < c/4 < b. < c/2 << m make it necessary to use two B. tasks before

each A.. 0

If we are concerned with no idle time schedules on the first two

machines it is not obvious whether the question can be answered

efficiently. Maybe we can code the two first machine times into one
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and use Johnson's algorithm [20] for (2,o)-FS. Perhaps the problem

is intractable. (The coding of Theorem 2.3.2 does not work in a

straightforward fashion).

So we have determined certain fundamental differences between a

machine and a buffer, which show up even if we compare the (2,1)-FS

and the (3,0)-FS problem (to go from one to the other we replace a

buffer by a machine).

1) A machine cannot replace a buffer by allowing jobs to

wait on it after they terminate (Figure 4).

2) A buffer needs the FIFO nonbypassing restriction to

behave like a machine with respect to permutation

schedules.

3) On (2,1)-FS saturated schedule questions are NP-complete,

whereas for (3,0)-FS saturated schedule questions are

easy or open.

Let us briefly comment on possible uses of the flow time criterion

in the "no-wait" problems examined. The (2,0)-FS problem under a flow

time criterion is open 124]. We conjecture that although it will be

algebraically tedious our methodology in 2.2 can prove NP-completeness

for the (3,0)-FS with the flow time criterion.

The interesting open problem of this section is "Determining the

existence of Hamilton circuits in P(3;{2}) graphs". (See Figure 22).

Machine *

2 1 can precede J2

3 Y1 gY2

Figure 22 - J1 can precede J2

- ·--- - -· r --·---I - U--·-- 7----



3. AN APPROXIMATION ALGORITHM FOR TWO MACHINE

FINITE BUFFER FLOWSHOPS

3.1 The (2,0)-FS Problem and the Gilmore-Gomory Algorithm

As was previously indicated the (2,0)-FS problem is solvable by use

of a fairly complicated algorithm [10]. In this section we will re-

examine this procedure. We will attempt to explain its operation, prove

that the (2,0)-FS problem is Q(nlogn) lower bounded and that the timing

of the algorithm is 0(nlogn) and not 0(n
2 ) as was implemented in the

literature.

Theorem 3.1.1. The (2,0)-FS problem is Q(nlogn).

Proof. We will prove this by reducing sorting to the (2,0)-FS problem

Since we do not know how to do sorting in less than 0(nlogn) this is

a convincing lower bound. Given a list of n numbers (xl,...,x ) to

sort consider the following instance of the (2,0)-FS problem.

Is there a schedule for the set of jobs J. = (x.,x.) 1< i<n,

J = (0,x . ), J = (x ,0) where x and x are the minimum
0 man n+l max min max

and maximum elements respectively from our list and the required schedule

n

length is L = E x. + x . If the list is sorted we use (7 = identity
i 1 max

i=l

permutation) for our schedule. If we have a schedule it must be satu-

rated on the first machine. Therefore if J. follows J. we have have
I 1

. = x. < x. < a.. Thus we have sorted the list.
i 1- J - 3

Let us describe the Gilmore-Gomory Algorithm as applied to the

(2,0)-FS scheduling problem. Given a list of n pairs (i.,i.), of which

-62-
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one pair is the starting job (0,0) we go through the following steps.

Algorithm G-G

STEP 1 Sort the .'s in order of size and renumber the jobs
1

so that with the new numbering (i < (i+l' 1 < i < n-l.

STEP 2 Sort the a. 's in order of size.
1

STEP 3 Determine the permutation J(P) for all 1 < p < n.

The permutation J is defined by J(P) = q. q being

th
such that a is the p-- smallest of the a..

q 1

SaP J ii+l - -STEP 4 Compute the numbers c3 (a ii+l), 1 < i < n-1 where

c (ac ) = max, min (i+l iaJ (i+l)) - maxi (i))

STEP 5 Form an undirected graph with n nodes and undirected

arcs connecting the ith and J(i)th nodes 1 < i < n.

STEP 6 If the current graph has only one component go to

STEP 8. Otherwise select the smallest value

cJ (Cii+l) such that i is inone component and i+l

in another. Break ties arbitrarily.

STEP 7 Adjoin the undirected arc {i, i+l} selected to

the graph, creating fewer components, go to

STEP 6.

STEP 8 Divide the edges added in STEP 7 in two groups.

Those for which ac(i) > (i go in group 1, those

for which (i > aj(i) go in group 2.

STEP 9 Sort the edges in group 1 so that i1 is the largest

index, i2 the second largest etc. (i1 is the index

of {ill il+l}).

STEP 10 Sort the edges in group 2 so that jl is the smallest

index, j2 the second smallest etc. (jl is the index

of {jil' Jl+ }).
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STEP 11 The minimal tour is obtained by following the ith job

by J*(i)

3*(i) = 7T .TiiriT..l+l2 i2.+ 1 . i 1
1 i + i7 i +1 1, +1 j l i j+f j j +l'' J
1, 1 2, 2 Z9P,Z+l l1 1 ]2, m,m

where f is defined as np (P) = q
pq pq

F pq(q) = P

p(i) =i, i, ip,q
Pq

and the order of applying the permutations is from right

to left in the sequence given.

The Intuition behind the algorithm is the following :

In steps 1-3 the optimal permutation J is found, which solves the

assignment problem. Instead of finding an optimal Hamilton tour, what

is determined is the optimal set of cycles that covers the graph on which

we wish to find the ATSP solution. (This is also called Gilmore-Gamory

bipartite matching).

The purpose of the rest of the algorithm is to carry out a series

of interchanges, which convert the permutation 3 into a tour J*. The

interchanges to be executed will be chosen by finding a minimal spanning

tree and must be carried out in a special order if the resulting tour

J* is to be of minimal cost.

The cJ(aii+l) represent the costs of interchanges .ii+l for the

permutation J. The proof in [10] guarantees first that interchanges

of this form can construct a spanning tree (steps 6-7) for the graph

of step 5 (where each cycle covering the graph corresponds to a node)

therefore these interchanges can produce a Hamilton tour. Second if
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Interchanges are made in a proper order (steps 8-10) then the resulting

tour is the optimal tour and each interchange actually contributes

c(a ii+l) to the cost of the tour.

The Timing of the Algorithm is as follows:

- The sorting steps 1-3 are 0(nlogn)

- Computing n costs in step 4 is 0(n)

- Steps 5-7 can actually be implemented using a UNION-FIND

[ ] approach. Let us sort the cj(aii+l). We construct

the graph of step 5 and the different components form

the different sets. We now scan the possible inter-

changes in the sorted list and FIND, which sets the i

and i+l of the scanned cJ(oii+l) belong to. If they

belong to different sets we do a UNION. Obviously, what

is costly here is only the 0(nlogn) sorting.

- Steps 8-10 consist of sorting 0(nlogn)

- Finally determining the optimal tour from step 11 can

be done by interchanging 0(n) pointers on an array

containing 1 to n.

Therefore Algorithm GG is 0(nlogn).

The Implementation of Algorithm CG:

A simple LISP program has been wirtten for the GG Algorithm and

is contained in the Appendix. Let us briefly comment on the different

functions. The input is a list of pairs ((ae1t) (oa22)...)

LESSPA-PlA-PlB-Pl- P2-P3 compute steps 1-3

P4 computes step 4

Sl computes step 5

S23T1 computes step 6-8

T23 computes steps 9-10

T4 computes step 11
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GIGO actually combines the above and the optimal list is the output

of:

(GIGO 'L)

Also an array DISTANCE contains the TSP distances (the numbering

of elements in the array corresponds to the Gilmore-Gomory sequence).

3.2 An Approximation Algorithm

Consider the following algorithm for obtaining (possibly suboptimal)

solutions of the (2,1)-FS problem, for a set of n jobs J.

Algorithm A.

1. Solve the O-buffer problem for J using the Gilmore-Gomory

algorithm to obtain a permutation Xr of J.

2. Schedule J with 1 buffer using 1.

Let F(i,j) be the finishing time of the ith job on the jth machine.

If for simplicity of notation our schedule is based on (X = identity

permutation) we have the following equations*

F(0,1) = 0 1 < i < n

. i < b+2
F(i,l) =

max(F(i-b-l, 2), F(i-l, 1) + O.) i > b+2

F(i,2) = max(F(i-l, 2), F(i,1)) + 3i

The makespan is F(n,2).

These are used slightly modified in [9] where the first machine can
act as temporary storage.



-67-

The approach of [9 ] for the solution of these equations is based

on dynamic programming. The two basic difficulties are large storage

requirements for large numbers of jobs (after 15 jobs one is forced

to use heuristics) and in the case of large job sets reduced accuracy

for small b. Our approach has no storage or time problems and can

handle very large batches easily. The average accuracy for any number

of jobs is less than 5% for b=l. Also the approach indicates how

larger groups of machines can be handled. Flowshops as in Figure 1

with intermediate storage can be treated as 0 buffer flowshops formulated

as ATSP's and solved (Chapter 4 proposes some heuristics) then the

permutation determined can be used for the small finite buffer case.

Similar ideas can be applied to job shops as in Figure 3 since bounds

based on ATSP's are used for the branch and bound approach of [24].

Analysis of Algorithm A

Let pb (J) be the shortest possible makespan of a job system J

using b buffers , as will be demonstrated in the next paragraph:

_0
( J) 2b+l

sup (J) b+
J

In other words, the use of b buffers can save up to b/2b+l of the time

needed to execute any job system.

If PA(J) is the makespan produced by Algorithm A it follows that

A (J) 2b+t 2b+l
t -( J) < b+l . However it does not follow directly that the b+l ratio

is achievable. Figures 23-24 show how these bounds can be achieved for

b=l. The same heuristic could be used for the (2,b)-FS problem and a
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similar worst case example Figure 25, yet the usefulness of the approach

decreases as b grows because by basing our schedule on a random permutation

we cannot have more than 100% worst case error.

The worst-case job system for algorithm A with b=l is shown in Figure

23. In Figure 23a we show the optimum 1-buffer schedule with p1(J) =

2 + £ + 6. It can be checked that the application of A yields the

schedule in Figure 23b, with pA(J) = 3 + 6 - W. When £ < 6 + 0 we

have an asymptotic ratio of 3/2.

The equivalent ATSP2 is shown in Figure 24.

What we can notice about Figure 24 is that some second to optimal

tours could possibly give us by "squeezing" out the idle time the opti-

mal 1 buffer schedule (e.g., the schedule J1-J3-J4-J2 has length 3+6

yet for 1 buffer it is very close to optimal). Maybe by checking the

permutation algorithm A produces and looking at finite fixed length

sequences of jobs (say 4 jobs) and manipulating these jobs locally we

5 3
might be able to guarantee a instead of a 2 performance.

In Figure 25 we give the worst case example for the (2,b)-FS case.

Figure 25a has the ATSP2 formulation where nodes J2 to Jl+b have identi-

cal characteristics. Figure 25b contains the optimal schedule. We

must have

+1 >> 6 > bl >> 26 and 4be >

The optimal 0 buffer schedule is (J1- J2- J .. Jb+3) and cannot

be compressed. The idle time is

b+l - £6 + (b-l) 1 -2 + 6 -2 b - 2£)

------ --------------··------- I-il-----
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1 >>4E>8>_
I 1-E | 1+2E
8 2

(o)

-£ "| 8/////////////~ ,+2
8 '//////////~i_ 2

(b)
Figure 23

(0,O)=J)0

(1+2C,0) = J4

J2= (1-, E) 

(6,2) = J3

Figure 24
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(O,O)=J0

J =(+2bc 0)

J = (0,6) J3+b=, 

2bc-6 \ 1°

lb+0 b+l

b2 / a )-6-£

\~ _||*'ib+l

Figure 253 =J
l+b 2 (a)

1 1

(b) b

Figure 25
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Lemma: For any job set J we can find a job set J' with the following

properties.

1) P1(J) = P1(n')'

2) The optimal schedule of J' is saturated.

3) Algorithm A performs worse on J' than on J.

Proof: Given J and its optimal schedule S all we have to do is fill

in the idle times as in Figures 26(a) and (b). Since for two machines.

an equivalent formulation is with distances Pij = max(aj, .i ) (see

example 1.2.3) it is obvious that algorithm A performs worse than before.

What we should note is that we cannot always saturate the machines as

easily.

For example, in the 3 machine case with bl=l, b2=0 the above argu-

ment does not hold. We cannot saturate the system in Figure 26(c) with-

out making some of the lengths of jobs smaller. As a result for a rigor-

ous analysis we might have to look at more than just the saturated

schedules.

Since we have to look only at saturated schedules for the 2 machine

case it is:l) easier to analyze upper bounds (see section 3.3). 2) It

is possible to generate saturated schedules randomly and simulate. Then the

performance of algorithm A is tested on the harder cases and we know

the optimal a priori. We tested our algorithm on a number of problem

instances, For each number of jobs from 4 to 23 we generated 10 job

systems among those which have a saturated 1 buffer schedule. The

resulting statistics of the relative error are shown in Table 1. The

Appendix contains a listing of programs used for this simulation.
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i J., _ , J isl,

it J2 J34 J 6

(a)

Jt I J J 5 4 J5 6 J7

Jo 1 J2 J3 J4 Js JS
(b)

J2 J 3

J J2

Jo J1

(c)

Figure 26
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TABLE 1

# of jobs Mean error Standard deviation worst case error

% % %

4 1.5 5.1 15

5 2.4 8.1 24

6 6.3 9.7 20

7 3.7 5.7 15

8 1.8 2.9 6

9 2.7 4.1 10

10 3.1 4.0 6

11 1.5 3.1 8

12 4.5 5.6 12

13 3.1 4.2 7

14 3.1 4.0 8

15 3.2 3.7 7
16 2.8 3.3 6

17 3.0 4.6 9

18 2.1 3.0 5

19 3.1 4.5 10

20 1.5 2.2 5

21 2.7 3.4 6

22 1.8 2.0 4

23 3.4 7.8 7

3.3 Bounds for Flowshop Scheduling

Very few bounds exist for approximation algorithms for flowshops [ 3],

[171, [311.

Let L be the optimal length schedule for a job system J on a
opt

flowshop of m machines. Let the permutations determining a schedule be

chosen randomly and let LR be the length of this random schedule.

L
Lemma: < m

L -
opt

Proof: Let T.. . stand for the time in a schedule where exactly

machines il,i 2,... ,iK are occupied. (T represents the LR and T* the
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L t times). Obviously for each i
opt

T. + X T..T. + .+T T
I i jij 1J ijk 12.. m

k/i
k/i

=T* + T*. +...+ T*
1 i 12.. m

Therefore by adding these relations togehter we have:

=L C ij ( Tj + 2 T. T +...+(m-l
L -L 1J j jK ijk 12i...mj

Lopt T* + + + + '+

opt

Even though a lot of heuristics are used in branch and bound methods

the only worst case bound for classical flowshops is in [17]. Gonzales

and Sahni give an 0(mn logn) algorithm H based on Johnson's algorithm

(they consider pairs of consecutive machines) with 1 < - In [3]
L -
opt

the case of having two stages, but with multiple processors at each

stage is examined (ml processors at stage 1 and m2 at stage 2). The

jobs are ordered according to the following rule:

Ji preceeds J. iff minmi
( f 1 o 2 m2m

(for m1=m2 =1 this is Johnson's rule)
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H 1
For this heuristic < 2 a , whereas for a randomly con-

Lopt max(ml m2

structed schedule we would have had

L
R 1< 3-

Lopt max(m1 ,m2)

The above Lemma holds also for flowshops with buffers, what is

significant is the relationship on 2 machines between plb(J) optimal

schedule using 6 buffers and 1I(J) optimal schedule using 0 buffers [31].

P0 (3 ) 2b+l
Theorem 3.3.1* sup - bl

J %TJY b+l

Let us sketch the proof for b=l. For b>l the proof has a similar

flavor but is more complicated [;19.. Given the optimal schedule S we

may assume that is is saturated without loss of generality (see Lemma

of previous pargraph). First, notice that 3/2 is asymptotically achieved

from below, just by considering the system {(1,c), (1,E), (s,2)}, with

E - 0.

We now consider the schedule S' that uses no buffer, and has the

same permutation of jobs as S. In other words, S' is derived from S

by "sliding" certain tasks so as to "given up the use of buffer" (Figure

27a). Call a set of consecutive jobs with no idle time in processor 2

between them a run--jobs 1 through k+l in Figure 27a form a run. To

prove the 3/2 bound, it suffices to prove that each run can be appropri-

ately modified so that the total amount of idle time in processor

By Prof. C.H. Papadimitriou
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1 attributable to the run R (initially s in Figure 27a) is at most

1/2 M(R) where M(R) is the total length of the run. If s < 2 6(R), we

are already done. Otherwise, we have

k 1

s = ( i -ia ) > - 3(R)
I li i+l 2

i=l

and hence

k+l

+i k+l < 1 (R) (1)
i=2

Because of the b=l constraint, it is easy to see that

k+2 k

i -> (2)
i=2 j=1

We conclude that (3) ak+2 > (
k+2 - 2

We change S' by putting Jk+l to the end. The corresponding schedule

is shown in Figure 27b. The total idle time in machine 1 that is attri-

butable to the run is now

k-1

s' = X ( j-aj+ 1) + Sk - min( k'ak+2 ) + Sk+l < 5(R)-min(k'k+2 ) .
j=l

Two cases:

1. k > ak+2 Then s' < - (R) by (3).
k- k+2' -2

2. Sk < ak+2. In this case we observe that,

k-l k+l 1

-S i k+l <a<i < (R) by (1).
i=l i=2 k+l -2
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Hence in both cases this construction 
succeeds in producing a 0-

buffer schedule in which each 
run R is accountable for machine-1 

idle

time bounded by 1/2 $(R). Hence the total machine-1 idle 
time is

bounded by

n 1
1 j = _ P (J)

thus completing the proof of the 
bound for b=l.

Q/ 2 IS//E 31 at/t/ ki a k+ |

|I | 2 |lk C8k+|// k+ 

(a)

(b)

Figure 27

In order to prove the bound for 
b>l buffers again the idea is

to start from a saturated schedule, 
"slide" the jobs in order to find 

the

schedule with the same permutation 
and 0 buffers and determine the 

runs.

Again if the idle time exceeds 
the desired amount we modify the 

runs by
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matching their jobs together with other runs or by deleting jobs en-

tirely from runs. By a complicated accounting scheme it is possible

2b+l
to prove the b+l bound. The details of the proof are contained in [31].

b+l

3.4 The Significance of Permutation Scheduling

In section 1.2.4 we have already pointed out the significance of

having FIFO buffers that cannot by bypassed by jobs. We should note

2b+l
that the bound of section 3.3 is an upper bound on the ratio of

b+l

the heuristic to the optimal permutation schedule. Let Pb(J) be the

optimal permutation schedule length using b buffers and b(J) be the

optimal schedule length using b buffers (without the restriction of

permutation scheduling) we would like to examine . Work has
(J)

been done for the b=l case. We conjecture that < and will

give evidence in support of this conjecture.

P1 (J 16
Actually it was impossible to find any example for which - > 16

We should note that picking a job set J it is difficult to determine
We should note that picking a job set 3 it is difficult to determine

11(J) and it seems quite as difficult to figure out if P1l(J) 7 P1l(3).

Figure 28 contains the worst example found. (In any optimal saturated

schedule (0,8) is bound to come first and the two (4,3)'s to follow

in order not to break the buffer constraint. Then (3,1) has to follow

for a similar reason. If we had the same permutation of jobs on the

second machine we would run into trouble with jobs (2,0) and (2,0).

By giving away one unit of idle time we get a permutation schedule of

16 units).

For b>l we might have more complicated cases such as Figure 29 and

it is not obvious that a result for b=l can be extended to b>l.
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Job # o.i i

1 0 8

2 4 3
4 4 3 2 2

3 4 3

4 3 1 8 3 1 2

5 2 0

6 2 0

Optimal Nonpermutation Schedule 1 (J) ,i1 (J)

Figure 28

52 23 34

i i. 239

1 0 5
2 1 3

3 1 3

4 .5 1

Figure 29 8 44
6 15.5 0

7 15 0
3 15 0
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1 (J)
Remark: Let us note that for a bound on ( we need only

examine cases where p (J) is saturated. Otherwise, we fill it in prop-

erly and obviously the new p1(w') will be worse than the old one.

In Figure 30 we have the different patterns that can possibly occur

for b=l and saturated schedules. In Figure 30a J2 preceeds J3 on machine

1, but we have the reverse order on machine 2. Yet job J2 can remain in

the buffer and be bypassed by many jobs as shown in Figure 30b. We call

the shaded region in Figure 30a a "switch". The length of the switch is

a2+i+~3+ +2. Switches might correspond to entirely different parts of

the schedule or might be close together as exhibited in Figures 30C and

30d, in this case we say that"switches interact.'

Lemma: If the optimal schedule contains only switches which do not

"1 (J) 5
interact then <-

"1(J) -

Proof: We can assume that the optimal schedule is saturated, also that

p1(J) p 1(J)' that is every modification of the optimal schedule that

leads to a permutation schedule introduces idle time.

All the switches do not interact; suppose that they have the

form in Figure 30a. Using the notation on this figure we can modify the

schedule locally at each switch to produce a permutation schedule in

three ways:

(a) Schedule the sequence of jobs -J1-J2-J3-, that is, invert

82 and 83 on machine 2.

(b) Schedule the sequence of jobs -J1-J3-J2-, that is, invert

a2 and a3 on machine 1



(c) Schedule the sequences of jobs -J1-J2-. .J3, that is

put (a3,~3) at the end of the schedule.

Since the modifications have to introduce idle time

2 > 1 - 3

(*)

2 4 -

The idle times introduced in the three cases are:

(a) 82-a 4 <_ 2- 3

(b) a2-s1 < a2-3

(c) max(a3,3)

So actually we wish to determine K s.t. (*) hold and

I = min(a 2-a3, 2-B3 max(ac3, 3)) < K(a2+ 3+ 2+ 3)

By exhaustively examining all cases we have K=- . This can be proven

also in a simple manner:

Let a2-3 = 1 2- 3=x max(a3 3) < a +3 = x 82-3=2 ma

a2+a3+22+83 = Xl+X2+2x 3

I < min(xlx 2 x3) < -(x +x +2x
- 2 3 --- 4 1 2 3

1 + 1
Also note that I < min(xl,x2,x 3) < (x x2 ) 2 -( +3+ 3). Thus the

idle time introduced by the switch is at most - of its length. This

almost proves the lemma since the switches do not interact. Figure 31

shows that the bound is attainable.



(a)

** l Ur, °C1 //5 06

· . I 1 ~/2/?/,~//I///, T ..
(b)

... ! i 1 2 l3 lo4 "'

.. I 61 AT f3 4j Se

(c)

*al [ 61 11 2 13 104 1 j 6 a"7 

.1 L3 12 B4 t B6 15 7 if
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4ZO

1 t a-=2 - =1 ''

3ZO

Figure 31

The only other case that must be examined is switches of the form

of Figure 30b. Change (a) introduces idle time which at worst is

2+63+' - a4- a5-~6 = 2-"6, therefore the analysis is similar as before.

The interesting question that arises is what happens if switches

interact, then our accounting scheme of the lemma does not work. Suppose

that we pictorially represent switches as in Figure 32. (The x1, x2

and yi's denote noninteracting lengths and the z. 's interacting lenths).

Switch 1 Switch 2 Switch k

Switch 1 Switch 2 Switc
, I ,,/ , , / / / .k,

X z - Y Y Y 1 4 x1 zk Y1 Y2 Yk-l k-l x2

Figure 32
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First we can argue that if p1 (J) # p1(J) the pattern in Figure 30c

is impossible. This is because in order for every inversion to introduce

idle time 2>a4 and a 4>2' Therefore the only pattern of switches we

have not examined is that in Figure 30d (or Figure 32).

Let K be the maximum number of interacting switches we can argue

that: K (J)
K <

I1 (J)

2 4/3

3 11/8

4 14.3/10

K 3/2

Let I be the idle time introduced by the switches, using the lemma

and the notation of figure 32 we have

(a) For K=2

1 1 1 1 1 1
I <min( 1 4(x2+z l) , 2 Xl + 4(x2+zl)-x ( )2x + (x + Z))

< 3(x 1 + Z1 + X2)

A B
(b) For K=3

1 1 1 1 1
I < min( (Xl+Z1 ) + 4(zl+Yl+Z2) + 2 x2, 2 21 +4 1 1 2 + 2+2

- 18 1 1 1 2 2

This is because if A< B z +x 2<x+z2

1 1 1 3
A = -(X +z ) + -(z +y +z2 + <-x (X+z+Y +z +x4 11 4 1 12 V22--8 11 12 2
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A symmetric argument holds for A>B

(c) For K=4, let I. be the idle time introduced by switch i.
1

I1 < (xl+z)
1-4 1 1

12 < 4(Zl+Yl+Z2 )I <l(z+y +z)

<1 

I < (z2+z)

I1 + 12 < l(x +z +yl+z2)

3-3 1 1 23

13 + 4 < l(z2+y2+z3+X 2)

I+1 + <12(x+Z +1 +Zl+Yl+Z1 2 3 - 8 1 1 1 2 2 3

12+1 + < 3(zl+Y+Z+Y2+Z3+X 2 )2 3 4 - 8 1 1 2 2 3 2

21 < xl

2I4 < x2

1 1 3 1 2 3
51 = 5(I1+I+I3+I ) < x( + - + - + 1) + Z(- + - + -) +

1 2 + 3 1 + 3 + 3
1 4 3 4 12 3 4

1 2 3 3 2 3
+ Y2 (2 3 4+ ) 3 ( + + ) +

1 1 3
(+ x2( + - + 1)

+ Z Y Y2 + 3 + )

< 2.15(x + 1 + Y1 + z1 + Y+2 + x3 + )
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(d) For K arbitrary it is trivial to show the 3/2 bound.

Although in this approach we do not look at what actually happens

in each switch deriving bounds is quite tedious. Also this approach

cannot give us the 5/4 bound.

By looking at interacting switches macroscopically (that is ignoring

the a's and $'s) we are actually loosing a lot, because when the switches

interact the idle time inserted by two inversions might be less than the

sum of the idle times inserted if the switches did not interact. Also

we can combine pairs (ai.,.) when we put them at the end of the schedule.

From the pattern in Figure 30d we can get permutation schedules

by using the heuristics of the lemma. We have to pick the minimum of

the following functions and see how it compares to the length of the

switches.

What we wish to prove is that

If I = min(c2-aj + a5- 6 for a2 > 31 > 33

2 3 5 4a~'~3 + max(a6'86) 82 >4 -> 83
a2-a3+ a5-84 as 4 > 6

max(a3,3) + 5-86 85 > a7 > 6

max(x3,83) + max(Q6+, 6) - max(min(a3,f6), min(ca6,f3))

max(a3, 3) + a 5-4

max( 2-a4 , 5- 4) (here the interaction of switches results
in savings)

2- 4 + max(a 6' 6)

$2-4 + 5 6)
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I < - d where d = a +c 2 +c + 3 + =
-4 2 3 4 5 6 5 6

= 2 + a3 + 3 + B2 + 84 + 85 + 6

Even a case by case analysis, which would be extremely tedious would

give only a partial result. Yet, because of the larger number of

permutation schedules we minimize over, the 5/4 bound seems to hold.

1 (J) 5
Conjecture ( - 4

In fact since this analysis is only taking local modifications into

16
account the actual bound must be much closer to 

155 



4. THE ASYMMETRIC TRAVELING SALESMAN PROBLEM

4.1 Neighborhood Search Technique and Primary Changes

The Traveling Salesman Problem (TSP) (dating at least since 1930) is

formulated as follows. "Given a complete directed graph G = (V,E) and

a weight c.. for each arc (i,j) in E find a Hamilton circuit (tour) of

G of minimum total weight". A comprehensive survey up to 1968 is in

[ 2]. In general the TSP is asymmetric and we denote this as A-TSP.

Particular cases result from symmetry, triangle inequality, distance

norms between nodes (i.e., Euclidean) and the Gilmore Gomory distance

function.

There are various integer programming formulations of the problem.

It is related both to the linear assignment problem and the minimum

spanning tree (arborescence for directed graphs), which are easy to

solve and provide lower bounds for the optimal tour. The general

solution procedures can be divided into Tour Building (such as appli-

cation of dynamic programming or certain heuristics such as insertion

methods [35]), Subtour Elimination (the assignment problem is solved

and subtours are eliminated from its solution), Use of Spanning Tree

Bounds (such as the work of Held and Karp [19], and Tour-to-Tour

improvement (neighborhood search techniques of which the Lin Kernighan

[25] algorithm is the most successful).

The TSP is NP-complete so is the triangle inequality TSP since

it is proven that the Euclidean TSP [30] is NP-complete. [38] and [28]

contain results on the complexity of local search and on NP-completeness

alg. opt. < E. [29] justifies
of having E-approximate solutions, i.e., [29 justifies

opt.

--88-
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these results by the construction of difficult TSP examples. Yet the

problem of c-approximate algorithms for triangle inequality TSP's

is open. In fact [4 1 and 135] give such algorithms for E=l, - in the

symmetric case.

The underlying theme of the preceeding chapters was that certain

flowshop scheduling problems are hard, but can be approximated because

their structure is close to a special Asymmetric Traveling Salesman

Problem. Unfortunately, even if the distances of the TSP have a lot

of structure (as in the (4,0)-FS case) the problem is still untractable.

Three are the significant features of these TSP's.

a) They are highly asymmetric

b) They satisfy the triangle inequality (Section 1.2)

T

c) T < m (TR: cost of random tour) for the (m,O)-FS problem
opt

(section 3.3)

The triangle inequality alone (without symmetry) does not seem to

guarantee that the £-approximate algorithms for the symmetric case

work as well for the asymmetric case. For the general A-TSP most

approaches are of the branch and bound type with intelligent lower

bounds [24]. There is a lack of heuristics similar to [25]. In order

to see how these successful heuristics can be applied to the A-TSP we

will study the notions of neighborhood structure and primary changes

for the asymmetric case.

Let us use the framework of [28], denoting the set of nonnegative

integers by Z+ and En] = {1,2,...n}.
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Definition: A combinatorial optimization problem with numerical

input (COPNI) is a pair (n,F), where n £ Z+ is the dimension of the

problem and F, a subset of 2 [n], is the set of feasible solutions.

We will require that there exists at least one feasible solution and

that no feasible solution is properly contained in another.

An instance of the COPN1 (n,F) is a function (numerical input)

c: [n] + Z . In order to solve an instance of the COPN1 (n,F) we are

required to find a feasible solution f gF such that c(f) = I c(j) is

j f
minimum.

The A-TSP is an example of a COPN1 where for T nodes we have

n = T(T-1) and F the set of all possible tours represented as sets of

T links.

In this general setting we informally wish to assign to each

feasible solution its neighborhood N(f) (a set of other feasible

solutions).

Definition: A neighborhood structure for the COPN1 (n,F) is

a function N: F + 2F

The purpose of the above machinery is to make exact the notion of

neighborhood of a feasible solution in various combinatorial problems

and to explain how local search algorithms for the COPN1 (n,F) and the

neighborhood structure N work.

These algorithms determine local optima starting by a random

solution and improving it by neighborhood search. The heart of these

heuristics is the function IMPROVE (f,c), which when invoked, returns

some s E N(f) such that c(s) < c(f), if such an s exists, and returns
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'no' otherwise.

f:=f
0

while IMPROVE (f,c) Z "no" do

f: = IMPROVE (f,c)

return f

The output is a local optimum with respect to N for the instance

c of (n,F). The neighborhood structure affects the complexity of

IMPROVE, the number of executions of the while loop, and the quality

of the local optima. N is exact if all local optima are also global

optima.

The minimal exact neighborhood based on [38] has a nice characteri-

zation, which unfortunately is not algorithmic oriented and does not

lend itself to anything but exhaustive search in the general A-TSP

case.

Theorem 4.1: In a COPN1 (n,F) there exists a unique minimal ex-

act neighborhood structure given by

N(f) = {s £F: for some instance c, s is uniquely optimal

with f second to optimal}

It should be noted that the complexity characterization of [28]

for neighborhood structures of TSP's makes it highly improbable to

achieve s-approximate solutions (for all £>0) via neighborhood search,

but it does not include the triangle inequality restriction.

The successful Lin Kernighan algorithm is based on an intelligent

(although unfortunately exponential) search of a subset of the minimal

exact neighborhood. The changes it makes in order to IMPROVE a solution
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are primary-changes and as [38] shows the set of primary changes is a

subset of the N(f). We will study the consequences of the asymmetric

assumption on the primary changes and latter on base our heuristic

on these consequences.

PRIMARY CHANGES

Definition 1: If f and f' are two A-TSP solutions such that f'

can be produced from f by exchanging X links in f with X links not in

f, we say that f and f' are X-changes of one another.

Given a feasible A-TSP solution f, let A = {ala2, ...a }I be a

set of links belonging to f and B = {blb 2,...b } a set of links not

belonging to f. We dnote by G(A,B) the graph whose vertex set cor-

responds to the set of links A. Let ai = (a,r) and aj = (y,6). A di-

rected edge b connects i and j in G(A,B) iff b is in B and of the

form (a,6). f' = f-A+B denotes an interchange of links A with links

B.

Lemma 4.1.2: If f' = f-A+B is an A-change of f then G(A,B) consists

of X edges forming one or more disjoint cycles.

(The difference from [38] is that we no longer restrict ourselves

to special nonadjacent sets of links A).

Proof: Assume f' is an A-change of f and boB is the link between

nodes a and 6. In order that these nodes end up with exactly two

directed incident links a link going out of a and into 6 must be

removed. Thus we have each end of b adjacent to a link of A and

the ingoing-outgoing direction constraints imply that each of the X
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b's appears in G. Now assume that ai links a and 8, since in a feasi-

ble solution every city must have exactly one ingoing and one outgoing

link B must contain exactly one link outgoing edge (, 6 1) and one

ingoing edge (Y2' 1). Thus each vertex of G has degree 2 and G

consists of disjoint cycles (Using the ingoing outgoing conventions

we are able to include cases where an a. and a. are adjacent).

Definition 2: If f' is an X -change of f such that G(A,B) con-

sists of a single cycle then f' is a primary change of f.

The theorem 2 of [38] is invariant to the A-TSP and shows that

primary changes are a subset of the N(f) and therefore good candidates

for a search.

Theorem 4.1.3: If f, f' feasible ATSP solutions and f' a primary

X-change of f then f' E N(f).

Let us now count the number of possible X-changes.

Theorem 4.1.4: Let f be a feasible A-TSP solution on n nodes

then it has (X) I (-1) ((X-i-l)! + (-1) possible X-changes.
i=O0

Proof: There are (X) possible choices for deleting A-edges and in the

directed case it does, not matter if they are adjacent (in the directed

case it does matter because: for a directed tour we should always

enter at A and exit at B, as in figure 33, therefore the part of the

tour AB may be regarded as a point . In the undirected case if A$B

we have two choices but if A=B we have only one).
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WOMJ" edge to

be deleted

B B

A

(a) (b)

Figure 33

(a) unique choice of directed case
(b) extra choice for undirected case AfB

The counting problem in the directed case is the following: How

many cycles of the integers modulo X are there such that ai is- never

followed by (ai+l) mod X. (These cycles correspond to the f' that

result from fixing X edges in f and replacing them in an X-change

fashion . The a. i's of the problem above correspond to the circled

numbers in the Figures 34a and b).

31 3 A=3 ~~~3' 3

4

2'

~~~D~~1 ,

a) b)

Figure 34
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Let Pi be the property that i + i+l mod X appears in a permutation.

Whenever we choose k properties this divides {1,2,...A} into A-k blocks

and the elements of a block consist of (a, a+l,...a+Z) for some a and

Z. e.g., A=6 and Pi, P2, P4 + k=3 (123) (45) (6) three blocks.

It is clear that the number of cycles satisfying the k properties

is the number of cycles on the blocks (X-k-l)! This holds except when

A=k in which case there is one block and one cycle. By inclusion ex-

clusion the counting gives us

A(X) () (X-i-l)! + ( 1 ) X A(X)
i=0 1=i-~~~0 ~2 0

3 1

4 1

5 8

6 36

7 229

8 1625

9 1320.8

10 120288

11 1214673

So in the directed case the full solution is A(X) A-changes.

Note: In the undirected case the factor (X) changes, because of the

possibility of deleting adjacent edges. If [n] = {1,2,..,n} and

a(n,,X,) is the number of A-subsets containing x pairs of adjacent

mod X numbers we have

X o(n,X) = (n)
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X-x
and the possible X-changes are I a(n,x,X) 2 A(X). For non-

adjacent changes a(n,O,X) = n-2 ( X) (23].

The above X-changes contain primary and non-primary changes. As

in the undirected case the primary changes must form a set of at least

exponential size. For this we do not give a proof but we indicate

that the technique of [38] for the construction of primary X-changes

is no longer valid.

In the undirected case "For every distinct cycle on the X-set of

edges that we delete {a1 , a2,...aX} there is a primary X-change". In

the directed case there might be none. For X=4 there is only one change

and it is not primary yet we can have many cycles in 4 points.

In the undirected case there can be more than one primary changes

to a cycle on the X-set of edges (Figure 35).

2 2 

Figure 35~ ~ ~3'
a5 a3 a

5 a4 4 4

al4

5'

Figure 35
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In the directed case there are (X-l)! cycles on {al,...aX}. Part

of them correspond to primary changes. Let us now observe an important

property of that part.

Lemma 4.1.4: All primary X-changes in the directed case are odd-changes.

Proof:

5'

44

i+l

.2
(a)

Figure 36

Suppose we have a primary even change. Then we would have, using

the obvious notation for the nodes of figure 36a and b, three cyclic

permutation of the X points (1,2,3,...X)

Tf : i + i+l (initial tour)

rf : i + j (new tour)

TG : i+l + j (cycle in graph G(A,B))
G



-98-

Therefore Tf, = fG7f. Each one consists of an odd number of trans-

positions X-1 because it is a cycle. Yet by the above product for

rf, we have (odd + odd) = (even) number of transpositions. This is

a contraction.

In closing this section we can note that by exhaustively examining

all 5-changes (there are 8 of them) we have that all 5-changes are

primary. (This is expected because there is no 2-change).

4.2 The Significance of the Triangle Inequality

As was pointed out in section 4.1 the complexity of E-approximate

algorithms for the A-TSP with the triangle inequality is an open question.

In order to justify the complexity of the approximation problem without

the triangle inequality [29] contains certain hard examples. These

examples serve to trap general purpose neighborhood searches in local

suboptimal solutions. The principle "vice" of these examples seems to

be the fact that the first and second to optimal solutions (of which

there are many) can differ by arbitrarily large amounts. It is not

possible to create such cases for the symmetric triangle inequality

TSP (29]. In fact we will prove that it is not symmetry but the

triangle inequality that is responsible for it.

Theorem 4.2.1: Given an instance of the triangle inequality A-TSP

on n nodes. Let Tpt be the cost of the optimal tour and Tpt be

the cost of the second optimal tour then:

T -T
sopt opt < 4

T -n
opt
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Proof: Consider the optimal tour Top t in Figure 36 (a,b,c, path p,d),

and the suboptimal tour T1 (e,b,f,g, path p)

f

,/ a

d 

/ 'e g c

Path P

Figure 36

e < a+d e-d < a

f < a+b 5 f-a < b

g < a+b+c g-c < a+b

T - T = e+f+g - (a+d+c) < 2(a+b)
1 opt

T - T - T
sopt opt T1 opt < 2(a+b)

T - T - T
opt opt opt

Let a,b be the two consecutive edges with least sum. If n=2k then

T > K(a+b), if n=2K+l then (2K+1) (a+b) < 2 T therefore T > 2(a+b).
opt opt opt-2
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T -T
sopt opt 2 4As a consequence pt< = - .

T - n n
opt 

Y O

Another consequence of the triangle inequality is that for the

nearest neighbor heuristic,

1. Start with an arbitrary node.

2. Find the node not yet on the path, which is closest to

the node last added and add to the path the edge con-

necting these two nodes.

3. When all nodes have been added to the path, add an edge

connecting the starting node and the last node added.

We have the bound

T
near neighbor < 1 rlog(n)] + 1

optimal2

1 1
(instead of -rlog(n)1 + - for the symmetric case [35]). The proof2 2

of this fact is identical to the proof of [35] with only minor modi-

fications.

We should note that without symmetry the proofs for the £-

approximate bounds do not hold. In the nearest insertion case the

proof is actually based on an upper bound on the cost by two trees

and in the Christofides algorithm case the bound on the use of a

min-spanning tree and a matching. Let CH be the cost of the cheapest

Hamilton path and CT the cost of the min spanning tree. In the symmetric

C
case - < 2. (Consider the tree twice and create an Euler path that

CT -

is transformed to a Hamilton path via shortcuts). In the asymmetric

CH
case sup C = + (*) .

T
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C 0

M

M

M

C
- +00
C

Figure 37

Let us propose an extension of the algorithm in [4] for the

asymmetric case that combines min spanning arborescence and bipartite

matching:

Step 1 Find min spanning 1-arborescence (arborescence

containing one circle through the root).

Step 2 S: = {set of leaves}

T: = {i-l copies of nodes whose outdegree is i>O in the ttee}

Step 3 Find the optimum weighted bipartite matching in

(S,T,SxT). (The weights are the same as in the ori-

ginal graph).

Step 4 Now the network contains an Euler tour of at most

2n-2 edges. Make shortcuts using the triangle

inequality to make the Euler tour into a Hamilton

tour.

Because of (*) above there seems no way to derive analytic upper bounds

so it is best to turn our attention to effective heuristics.
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4.3 A Proposed Heuristic

In this section we will describe the Lin Kernighan [25] algorithm

and the proposed extension to the asymmetric case. Actually the Lin

Kernighan algorithm starts from a random tour and makes A-changes

(primary ones basically), such that the sequence of exchanges gives a

positive gain and X is not a fixed number but grows as long as there

seems to be potential for larger changes. Four are the strong points

of the algorithm:

a) The gain criterion (that says when the X-change should

go on to become an X+l-change),

b) The feasibility restriction (that makes it possible after

every new exchange to close the tour)

c) The stopping criterion (that stops the X-changes judging

that the algorithm has reached the point of diminishing

returns).

d) A limited backtracking facility (backtracking at small

levels 2-or 3-changes, based on extensive experimentation).

Lin Kernighan Algorithm [25]

Step 1 Generate a random starting tour T.

Step 2 Set G*=0 [G* is the best improvement made so far].

Choose any edge xl, with endpoints tl and t2.

Let i=l [i is the level number. Define gi = Ixi[-[Yi['

| I denotes length]
Step 3 From the endpoint t2 of xl, choose edge Yl to t3

such that G1=gl>0. [This is the first application

of the gain criterion]. If no such Y1 exists go to

Step 6(d) which involves backtracking.
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Step 4 Let i=i+l. Choose x. [which currently joins

t2i-1 and t2i] and Yi as follows:

a) xi is chosen so that, if t2i is joined to

tl, the resulting configuration is a tour.

[Thus for a given Yi-1' xi is uniquely deter-

mined. This is the application of the feasibility

criterion; it guarantees that we can always

"close up" to a tour if we wish, simply by

joing t2i and tl, for any i>2. The choice of

Yi-1' Step 4(e), ensures that there is always

such an x. and so does any choice of yl]

b) Yi is some available link at the endpoint t2i

shared with xi, subject to (c), (d) and (e).

If no y. exists, go to Step 5 [clearly to make

a large cost reduction at the ith step lYil

should be small, and so in general the choice

is based on nearest neighbors. But lookahead

can also be implemented and decisions based on

jxi+lI - lYil.

c) xi cannot be a link previously joined (i.e., a

yj, j<i) and similarly Yi cannot be a link pre-

viously broken.

d) G = Gl + gi> 0 [Gain criterion]
1 i-i 1

e) In order to ensure feasibility at i+l Yi must be

chosen to permit the breaking of an xi+l'

f) Before Yi is constructed, we check if closing up

by joining t2iand tl will give a gain value better

than the best seen previously. [Since we have

satisfied the feasibility criterion for i>2 we

know this results in a tour]. Let y* be a link
1

connecting t2 i and t and let g[ = Iyl - 1xiJ.
1i 1 1 1
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If G. +g* > G* set G* G. G +g and let
i_1 I i-1 i

K=i [G* is always the best improvement in T

recorded so far, and is thus our standard for

comparison. G* > 0 and monotone nondecreasing.

The index K defines the sets to be exchanged to

achieve G*.]

Step 5 Terminate the construction of xi and yi in steps 2

through 4 when either no further links xi and Yi

satisfy 4(c) - (e), or when G. < G*. [This is the

stopping criterion]. If G* > 0 take the tour T'

with c(T') = c(T) - G* and repeat the whole process

from step 2, using T' as the initial tour.

Step 6 If G* = 0, a limited backtracing facility is invoked,

as follows:

(a) Repeat steps 4 and 5, choosing y2 's in order of

increasing length, as long as they satisfy the

gain criterion gl+ g2 > 0 [If an improvement

is found at any time, of course, this causes a

return to Step 2].

(b) If all choices of Y2 in Step 4(b) are exhausted

without profit, return to Step 4(a) and try to

alternate choice for x2. [This is the only case

we violate feasibility and look for a non-primary

case, it is rather an ad hoc feature].

(c) If this also fails to give improvement, a backup

is performed to Step 3, where the yl's are examined

in order of increasing length.

(d) If the yl's are also exhausted we try the other

x with endpoint tl in Step 2.

(e) If this fails we select a new xl and repeat a Step 2.

[Note that backtracking is performed only if no gain

can be found, and only at levels 1 and 2.1
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Step 7 The procedure terminates when all links xl have been

examined without profit [Special "checkout tricks"

are used to reduce checkout time of a local optimum].

For the extension of the Lin Kernighan to the Asymmetric case

we will follow Lemma 4.1.4. We will not examine even changes, but only

odd changes. Thus once more we attempt to search a subset of the

minimal exact neighborhood.

We proceed by tentatively adding two new edges every time with

a gain criterion

i i-2 + i- + gi > 0, i even

and a stopping criterion

G. < G*, i even
1 -

What is very easy to maintain is feasibility because we successively

create and break subtours in our tour.

Proposed Heuristic for A-TSP

Step 1 Generate a random tour T.

Step 2 Set G* = 0 [G* is the best improvement made so far].

Choose any edge x1 = (tl, t').

Let i=l [i level number, gi = Ixi I - lYi1l]

Step 3 From the endpoint tl of xl, choose edge Yl to t'.

X2 = (t2 , t') will then be an edge of the original

tour we will have to replace.

Let i=2, from the endpoint t2, choose an edge Y2 to

t; such that if x3 = (t3, t') will be the edge to

be deleted then (t3, t1) makes the change feasible.

[Here we actually created a subtour in the tour and

broke it]. Also we must have G2 = g1 + g2 > 0 [Gain
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criterion]. If no two such yl Y2 exist go to

step 6(a), which involves backtracking.

Step 4(a) Let i = i+l. Since we know y i- we know which x

has to be deleted from the original tour: x. = (t , t').
1 1 1

We have pick ed yi so that we can break x+ (step 4(e)).

We pick Yi so that we can break xi+1 (step 4(e)).

Let i = i+l. Again we know which x. has to be deleted

and we pick yi so that we can break xi+l (step 4(e)).

But also so that this Yi goes to t'+l such that (ti+ tl)

makes the change feasible. [Here again we break the sub-

tour created previously].

(b) The sequences of xyxy that we picked must be subject

to (c), (d), (e). If they do not exist go to Step 5.

[To make the largest cost reduction we might look at

the smallest sum of the y's or we might use something

equivalent to the lookahead].

(c) The x's cannot be links previously joined and similarly

the y's cannot be links previously broken.

(d) G. = G. 2 + + gi > 0 [Gain criterion]1 1-2 i-1

(e) The y!s must be chosen to permit the breaking of the

necessary xi+1 s.

(f) Before we construct this change we check if closing the

tour before the addition of the last two edges will

give a gain value better than the best seen previously.

Let Jy*I be the link closing the tour g* = lY*| - xi 1.

If Gi-2 + g* > G* set G* = Gi_2 + g*, K=i-l.

(The same hold as in 4f of the Lin Kernighan.

Step 5 Terminate the construction of xi and y.i in steps 2

through 4 when either no further links x.i and Yi

satisfy 4(c)-(e), or when G. < G*. [This is the

stopping criterion]. If G* > 0 take the tour T'

with c(T') = c(T) - G* and repeat the whole process
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from step 2, using T' as the initial tour.

Step 6 If G*= 0, a limited backtracking facility is invoked

as follows:

[This is different than the Lin Kernighan since what

the Link Kernighan achieves by backtracking is following

a 3-change approach].

(a) We go back to Step 3 and pick two other yl, Y2

as long as they satisfy the gain criterion and

the feasibility. [If we hit upon an improvement

we go to step 2].

(b) We might insert here the possibility to check

4-changes, which are non-primary.

(c) If the above fail we try another xl.

Step 7 The procedure terminates when all edges xl have been

examined without profit.

This heuristic is an extension of the Lin Kernighan algorithm

and we conjecture that it will be a fairly accurate neighborhood

search technique. We should note that the simple fashion that we use

to maintain feasibility (creating one subtour and breaking it) does

not allow us to reach all primary changes in one iteration (because

there are primary changes, where we must create more than one subtour

and break them). Trying to extend the algorithm to acquire this

capability of choosing many edges while still infeasible would certainly

introduce much overhead.

This heuristic could be well suited to the (m,0)-FS problems of

the previous chapter.



5. CONCLUSIONS AND OPEN PROBLEMS

Motivated by the fundamental problems of the interaction between

buffers size and schedule length in a highly automated flexible manufacturing

environment, we have attempted to study the complexity of flowshop problems

under buffer constraints.

We saw that the complexity of scheduling two-machine flowshops varies

considerably with the size of the available intermediate storage. Two

classical results imply that when either no intermediate storage or un-

limited intermediate storage is available there are efficient algorithms

to perform this task. When we have a buffer of any fixed finite size

however, we showed that the problem becomes NP-complete.

We have developed a heuristic, which has a 50% worst case behavior

for the (2,1)-FS problem, but appears to perform much better (4-5% error)

on typical problem instances. We notice that our simulation results

suggest that our algorithm performs better than the heuristic reported

in [ 9] for small b.

We have resolved the status of the (m,0)-FS for m> 4. Our results

of Sections 2.2, 2.3 leave only one open question, as far as no-wait

problems are concerned: the 3-machine case. We conjecture that this prob-

lem is NP-complete, although we cannot see how to prove this without a

drastic departure from the methodology used here. One may wish to show

that the Hamilton circuit problem is NP-complete for D(3;K) for some

K such that iKi = 1.

The formalism in [14], suggests that the 1-buffer 2 machine flowshop

problem is, like the TSP and 3MI , strongly NP-complete; that is, unless

-108-
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P = NP there can be no uniform way of producing c-approximate solutions

by algorithms polynomial in n and 1/c. The same implications hold for

the problems in Section 2.2, since, as the reader can check, the size of

the execution times used in the construction remains bounded by a poly-

nomial in n, the number of jobs.

Since the results in Section 2.2 indicate that fixed size no-wait

flowshop problems are NP-complete and because these problems are actually

Asymmetric Traveling Salesman (ATSP) problems, which have distances

obeying the triangle-inequality, they provide a strong motivation for

good heuristics for the ATSP. The most successful known heuristic [25]

works for the symmetric case. Notice also that no general approximation

algorithm of any fixed ratio is known for the triangle inequality TSP

in contrast with the symmetric [4 ]. We develop a methodology for

asymmetric TSP's paralleling that of [25], so as to cope with the intri-

cate pecularities of the asymmetric case.

Section 3.4 is devoted to the special subject of Permutation Scheduling.

We conjecture that removing the FIFO assumption results in small gains,

at least for the b=l case. For the (2,1)-FS problem we have left open

5
the question of the - bound.

Finally, we would like in closing this chapter to point out once

again the significance of flowshop problems as those addressing the

simplest network of machines. Although we fear that many questions

about them have remained unanswered we hope to have clarified some of

the issues.



APPENDIX

This Appendix contains a listing of an implementation of the

Gilmore-Gomory Algorithm in LISP (pp.111-115). The programs used in

the simulation for the (2,b)-FS problem are also listed (pp.116-118 ).
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(COMMENT THIS IS THE GILMORE GOMORY ALGORITHM)

(COMMENT THE ALGORITHM IS WRITTEN IN STAGES [ P1- T4] A FUNCTION
CORRESPONDS TO EACH STAGE- ITS INPUT IS THE ORIGINAL
NONEMPTY LIST OF JOBS [[A B] .3 ITS OUTPUT IS THAT OF THE
ALGORITHM AFTER THE EQUIVALENT STAGE- EACH STAGE IS
CONSTRUCTED THROUGH AUXILIARY FUNCTIONS IE P1A P1B WHICH
MIGHT BE USED SUBSEQUENTLY INSTEAD OF IE P1)

(COMMENT P1-ARRANGE THE B 'S IN ORDER OF SIZE AND RENUMBER THE JOBS
SO THAT WITH THE NEW NUMBERING B[I] LESS THAN B[1+1] 1=0
N-2 THE OUTPUT HAS FORM [11 A B] ])

(DEFUN LESSPA (X Y) (LESSP (CADR X) (CADR Y)))

(DEFUN P1A (L) (SORT (APPEND L NIL) 'LESSPA))

(DEFUN P1B (L)
(PROG (LS)

(DO I
0.
(1+ I )
(NULL L)
(SETO LS

(APPEND LS (LIST (LIST I (CAAR L) (CADAR L)))))
(SETO L (COR-L)))

(RETURN LS)))

(DEFUN P1 (L) (P1B (P1A L)))

(COMMENT P2- ARRANGE THE A 'S IN ORDER OF SIZE)

(DEFUN P2 (L) (SORT (APPEND (P1 L) NIL) 'LESSPA))

(COMMENT P3-FIND F[P] FOR ALL P-THE PERMUTATION F IS DEFINED BY
F [P]=Q 0 BEING SUCH THAT AQ IS THE PTH SMALLEST OF THE A
'S-THE OUTPUT IS A LIST [[BI AFI] 1-Fl IS AN ARRAY
CONTAINING THE INITIAL PERMUTATION-F2 CONTAINS THE OUTPUT)

(DEFUN P3 (L)
(PROG (L1 L2 L3)'

(SETO NL (LENGTH L))
(ARRAY Fl T NL)
(ARRAY F2 T NL)
(SETO L1 (P1A L))
(SETQ L2 (P1B L1))
(SET- L3 (SORT (APPEND L.2 NIL) 'LESSPA))
-(00 I

0.
(1+ I )
(= I NL)
(STORE (F1 I) (LIST (CAAR L3)))
(STORE (F2 1) (LIST (CADAR LI) (CADAR L3)))
(SETO L1 (COR L1))
(SETO L3 (CDR L3)))

(RETURN (LISTARRAY 'F2))))
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(COMMENT P4-COMPUTE THE NUMBERS C(AII+11 FOR I=0 N-2
C[AII+11=MAX[IMIN[BI+l AFI+l]-MAX[BI AFI]] 01 F3 IS AN
ARRAY WHERE THE C 'S ARE STORED A LABEL INDICATING WHETHER
RII+l BELONGS TO GROUP1 OR 2. F3[I=t[I C K])

(DEFUN P4 (L)
(PROG (A B C D Al Cl K)

(P3 L)
(ARRAY F3 T (SUB1 NL))
(00 I

8.
(1+ 1)
(= I (SUBI NL))
(SETO J (1+ 1))
(SETQ A (CAR (F2 1)))
(SETQ B (CADR (F2 I)))
(SETO C (CAR (F2 J)))
(SETO 0 (CADR (F2 J)))
(SETO Al (MAX A B))
(SETO C1 (MIN C D))
(COND ((EQUAL Al B) (SETO K 1.))

((EQUAL Al A) (SETO K 2.)))
(STORE (F3 I)

(LIST I (MAX (DIFFERENCE C1 Al) 0.0) K)))
(RETURN (LISTARRAY 'F3))))

(COMMENT S1-FORM AN UNDIRECTED GRAPH WITH N NODES AND UNDIRECTED
ARCS CONNECTING THE ITH AND FTH NODES 1=0 N-1 -RL CONTAINS
THE SORTED [I C K]-Fl CONTAINS PAIRS [FI [LABEL OF
SUBTOUR]]-K1 IS THE NUMBER OF SUBTOURS IN EXCESS)

(DEFUN S1 (L)
(PROG (K1)

(SETO RL (P4 L))
(SETO RL (SORT (APPEND RL NIL) 'LESSPA))
(SETO K1 0.)
(DO I

0.
(1+ I)
(= I NL)
(COND ((NUMBERP (CADR (F1 I))))

(T (DO ([(J I (CAR (F1 J))))
((= (CAR (F1 J)) I)
(STORE (F1 J) (LIST (CAR (Fl J)) K1))
(SETQ Kl (ADD1 K1)))

(STORE (Fl J)
(LIST (CAR (F1 J)) Kl))))))

(RETURN (SUB1 K1))))

(SETQ LIT ' (34.0 31.0)
(45.0 19.0)
(4.0 3.8)
(18.0 48.0)
(22.0 26.0)
(16.0 15.0)
(7.0 1.0)))
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(COMMENT THIS LIT IS A USEFUL EXAMPLE S2-IF THE CURRENT GRAPH HAS
ONLY ONE COMPONENT GO TO STEP TI-OTHERWISE SELECT THE
SMALLEST VALUE C [AII+1i] SUCH THAT I IS IN ONE COMPONENT
AND I+1 IN ANOTHER-IN CASE OF A TIE FOR SMALLEST CHOOSE
ANY- S3-ADJOIN THE UNDIRECTED ARC RII+1 TO THE GRAPH USING
THE I VALUE SELECTED IN S2-RETURN TO S2-TI-DIVIDE THE ARCS
ADDED IN 53 INTO TWO GROUPS-GROUPI HAS BI GREATER THAN AFI
THE REST ARE IN GROUP2-T23-SORT THE ADDED BRANCHES I I1
GREATER 12 ETC IN GROUP11 [J1 LESS J2 IN GROUP2])

(DEFUN T23 (R1 R2)
(APPEND (SORT (APPEND R2 NIL) 'GREATERP)

(SORT (APPEND R1 NIL) 'LESSP)))

(DEFUN S23T1 (L)
(PROG (R1 R2 X1 X2 X3 Y1 COUNTER1)

(SETO COUNTER1 (S1 L))
(DO ((I COUNTER1 (SUB1 I)))

((= I 0.) (SETQ R12 (T23 R1 R2)))
LABEL1
(SETO X1 (CAAR RL))
(SETQ X2 (CADR (F1 X1)))
(SETO X3 (CADR (F1 (1+ X1)]))
(SETO Y1 (CADDAR RL))
(COND ((= X2 X3) (SETQ RL (CDR RL)) (GO LABEL1'))

(T (SETO RL (CDR RL))
(COND ((= Y1 1;)

(SETQ R1 (APPEND R1 (LIST X1))))
((= Y1 2.)
(SETO R2 (APPEND R2 (LIST X1)))))

(DO J
0.
(1+ J)
(= J NL)
(COND ((= (CADR (F1 J)) X3)

(STORE (F1 J)
(LIST (CAR (F1 J)) X2)))

(T))))))))

(COMMENT T4-THE OPTIMAL TOUR IS OBTAINED BY ELIMINATION OF SUBTOURS
IN F1 USING THE BRANCHES STORED IN R12)
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(DEFUN T4 (L)
(PROG (Z1 S1 S2 A B)

(S23T1 L)
(ARRAY F3 FIXNUM NL)
(DO I 0. (1+ I) (= I NL) (STORE (F3 I) I))
(DO I

0.
(1+ I)
(NULL R12)
(SETQ Z1 (CAR R12))
(SETQ R12 (CDR R12))
(DO J

0.
(1+ J)
(= ZI NL)
(COND ((EQUAL (F3 J) ZI) (SETQ S1 J) (SETQ A 1.))

((EQUAL (F3 J) (1+ ZI))
(SETQ S2 J)
(SETQ B 1.))
(T))

(COND ((AND (EQUAL A 1.) (EQUAL B 1.))
(SETQ Zl (F3 Si))
(STORE (F3 S1) (F3 S2))
(STORE (F3 S2) Z1)
(SETO Z1 NL)
(SETO A 0.)
(SETO B 0.))

(T))))
(00 I

0.
(1+ 1)
(= I NL)
(SETO S2 (F3 I))
(STORE (F3 I) (CAR (F1 S2).)))

(FILLARRAY 'F2 (P1A L)).
(SETQ S1 0.)
(00 I

0.
(1+ 1 )
(= I NL)
(STORE (F1 I) (F2 S1))
(SETQ S1 (F3 S1)))

(RETURN (LISTARRAY 'Fl))))

(COMMENT THIS PART GIVEN A LIST L OUTPUTS ALIST IN THE GILMORE
GOMORY ORDER- ALSO THE ARRAY DISTANCE CONTAINS THE TSP
DISTANCES- THESE CORRESPOND TO THE GI-GO SEQUENCE)
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(DEFUN GIGO (L)
(PROG (OUTPUT)

(SETO OUTPUT (T4 L))
(ARRAY DISTANCE FLONU.M NL NL)
(DO
I
0.
(1+ 1 )
(= I NL)
(DO
J
0.
(1+ J)
(= J NL)
(COND ((= I J) (STORE (DISTANCE I J) 8.0))

(T (STORE (DISTANCE I J)
(MAX 0.8

(DIFFERENCE (CAR (FW J))
(CADR (Fl I))))))))

(RETURN OUTPUT)))
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(DEFUN SCH (L Z TN SN)
(PROG (LO LI N K)

(SETQ N (LENGTH L-))
(SETO K (PLUS 2. 'Z))
(ARRAY TN FLONUM (ADD1 N))
(ARRAY SN FLONUIM (ADD1 N))
(DO I

0.
(AOD1 I)
(= I (ADD1 N))
(COND ((= I 0.)

(STORE (SN I) 0.0)
(STORE (TN I) 0.0))

((LESSP (SUB1 I) K)
(STORE (SN I) (PLUS (SN (SUB1 I)) (CAAR L)))
(STORE (TN I)

(PLUS (CADAR L)
(MAX (SN I) (TN (SUB1 I)))))

(SETO L (CDR L)))
(T (STORE (SN I)

(PLUS (CAAR L)
(MAX (SN (SUB1 I))

(TN (- I K)))))
(STORE (TN I)

(PLUS (CADAR L)
(MAX (SN I) (TN (SUB1 I)))))

(SETO L (CDR L)))))
(SETQ LO (LISTARRAY SN))
(SETO L1 (LISTARRAY TN))
(RETURN (LIST LO L1))))

(DEFUN SCHEDULE (L Z) (SCH L Z 'TN 'SN))

(DEFUN JOHNP (X Y)
(LESSP (MIN (CAR X) (CADR Y)) (MIN (CAR Y) (CADR X))))

(DEFUN FLOWT (L)
(COND ((NULL L) 0.0) (T (PLUS (CAR L) (FLOWT (CDR L))))))

(DEFLIN MAKESPAN (L. Z) (CAR (LAST (CADR (SCHEDULE L Z)))))

(DEFUN FLOWTIME (L Z) (FLOUT (CADR (SCHEDULE L Z))))

(COMMENT GIVEN A LIST OF JOBS L AND BUFFER CAPACITY Z SCHEDULE
STORES IN TN AND SN THE STARTING TIMES IN THE 2ND AND 1RST
MACHINES-MAKESPAN AND FLOWTIME CALCULATE THEMSELVES)



(COMMENT -NRANDOM PRODUCES A RANDOM INTEGER BETWEEN B AND C)

(DEFUN NRANDOM (B C)
(PROG (X)

(SETQ X (PLUS C 1. (MINUS B)))
(SETO X (RANDOM X))
(SETQ X (PLUS X B))
(RETURN X)))

(COMMENT -REXP1 [A] MAKES A A FLOATING POINT NUMBER AND DIVIDES BY
180008.0)

(DEFUN REXPI (A) (//$ (FLOAT A) 10000.0))

(COMMENT -REXP CONSTRUCTS A SATURATED SCHEDULE ON TWO MACHINE
FLOiSHOPS WITH ONE BUFFER WE HAVE [A+2] TASKS OF WHICH ONE
IS [0 01)

(DEFUN REXP (A)
(PROG (Li L2 L3 B C D)

(SETQ OPTIMAL 0.)
(00 I

0.
(1+ I)
(= I A)
(SETQ L1 (APPEND L1 (LIST (RANDOM 10000.))))
(SETQ OPTIMAL (PLUS OPTIMAL (CAR (LAST L1)))))

(SETO Ll (APPEND L1 (LIST 0.)))
(SETQ OPTIMAL (REXP1 OPTIMAL))
(SETO L2 L1)
(SETO B 0.)
(SETQ L3 (LIST B))
(SETO C (CAR L2))
(SETOQ 0.)
(DO I

0.
(1+ 1 )
(= I A)
(SET D (PLUS D (CAR (LAST L3))))
(SETQ L3

(APPEND L3
(LIST (DIFFERENCE (NRANDOM B C) D))))

(SETQ B (PLUS B (CAR L2)))
(SETO L2 (CDR L2!)
(SETQ C (PLUS C (CAR L2))))

(SETO LI (MAPCAR 'REXPI LI))
(SETQ L3 (MAPCAR 'REXP1 L3))
(SETQ L2 '((0. 08.80)))
(DO I

0.
(1+ I)
(= I (1+ A))
(SETO L2 (APPEND L2 (LIST (LIST (CAR L3) (CAR L1)))))
(SETQ Li (CDR LI))
(SETO L3 (CDR L3)))

(RETURN L2)))
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(COMMENT A2 MULST BE GREATER THAN 1-WE EXAMINE CASES FROM 4. TO
[Al+31 JOBS IN EACH CASE WE HAVE A2 RANDOM EXAMPLES)

(DEFUN SIMULATION (Al A2)
(PROG (L X1 X2 X3 X4)

(ARRAY WC T Al)
(ARRAY 1CER FLONUM Al)
(ARRAY MEAN FLONUM Al)
(ARRAY SDEV FLONUM Al)
(DO JJ

0.
(1+ JJ)
(= JJ Al)
(STORE (WCER JJ) 0.0)
(SETO X3 0.)
(SETQ X4 0.)
(DO II

0.
(1+ II)
(= II A2)
(SETO L (REXP (PLUS 2. JJ)))
(SETO X1 (MAKESPAN (GIGO L) 1.))
(SETOQ X2 (QUOTIENT (DIFFERENCE Xl OPTIMAL)

OPTIMAL))
(SETQ X3 (PLUS X3 X2))
(SETQ X4 (PLUS X4 (TIMES X2 X2)))
(COND ((GREATERP X2 (WCER JJ))

(STORE (WCER JJ) X2)
(STORE (WC JJ) L))

(T)))
(STORE (MEAN JJ) (QUOTIENT X3 A2))
(STORE (SDEV JJ)

(SORT (QUOTIENT (DIFFERENCE X4
(TIMES X2

(MEAN JJ)))
(1- A2)))))

(RETURN (LISTARRAY 'WCER))))

(DEFUN SIMUL (N)
(QUOTIENT (DIFFERENCE (MAKESPAN (GIGO (REXP N)) 1.) OPTIMAL)

OPTIMAL))

(COMMENT A ONE SHOT EXPERIMENT WITH N+2 JOBS)
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