
April, 1980 ESL-FR-834-2

COMPLEX MATERIALS HANDLING AND ASSEMBLY SYSTEMS

Final Report

June 1, 1976 to July 31, 1978

Volume II

Multicommodity Network Flow Optimization in Flexible

Manufacturing Systems

by

Joseph Githu Kimemia and Stanley B. Gershwin

This report is based on the thesis of Joseph Githu Kimemia,

submitted in partial fulfillment of the requirements of Master of

Science at the Massachusetts Institute of Technology in January, 1979.
Thesis supervisors were Dr. S. B. Gershwin, Lecturer, and Professor
M. Athans, Department of Electrical Engineering and Computer Science.

The research was carried out in the Laboratory for Information and

Decision Systems with partial support extended by National Science
Foundation Grants NSF/RANN APR76-12036 and DAR78-17826.

Laboratory for Information and Decision Systems

(formerly Electronic Systems Laboratory)

Massachusetts Institute of Technology

Cambridge, MA 02139



ABSTRACT

The problem of choosing an optimal mix of operating strategies

in a flexible manufacturing system is solved by a network flow

optimization approach. Mathematical methods which exploit the

structure of the problem to generate manufacturing strategies are

outlined. Numerical results show that the method produces results

which agree with intuition and simulation for two- and four-

workstation systems.
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1. INTRODUCTION

1.1 The Strategy Assignment Problem in Flexible Manufacturing Systems

A large proportion of manufacturing activity is at a level which does

not justify dedicated automation in the form of single-product machines or

lines. In order to increase productivity in this sector of industry, flex-

ible manufacturing systems are being designed and built.

A flexible manufacturing system such as the one depicted in Fig. 1.1,

consists of workstations capable of performing a number of different tasks,

interconnected by a transportation system. Workpieces are loaded onto

pallets at a loading station, undergo a specified sequence of operations at

the workstations, and then go to an-unloading station. The processes at

the workstations are mostly automatic. At certain stations, like the load-

ing station for example, some manual operations may be performed (Hughes,

1977).

Several different kinds of pieces are manufactured simultaneously in

the system. Each piece has a given number of operations necessary for its

completion, as shown for example, in the piece of Fig. 1.2. There is a

choice in the system as to which workstation should perform each operation.

Any entering workpiece therefore has the choice of several different routes

or manufacturing strategies available. A strategy for each piece assigns

each operation to a workstation with the capability of performing that

operation. The strategy also specifies the sequence of workstation visits.

In order to gain maximum output and utilization at minimum cost, the

overall behavior of the system should be studied. Furthermore, mathematical

models and algorithms are needed which will enable controllers to make

decisions affecting the system with minimum human intervention.

An important problem, which has a fundamental effect on the production

rate and utilization of the system, is the assignment of strategies to the

workpieces. Given a flexible manufacturing system with a specified production

mix of pieces and given the locations at which all the operations can be

performed in the system, one wishes to pick the optimal steady-state mix of

strategies for all of the pieces being produced.

-1-
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Extensive simulation studies of flexible manufacturing systems have

been made (Hutchinson, 1977) (Horev et al., 1978) (Lenz and Talavage, 1977).

They allow detailed investigation of the effects of parameter variation and

strategy assignment on system performance.

Solberg (1977) and Ward (1980) model the system as a closed network of

queues. Steady state results which are in good agreement with simulation

results and observed performance of an actual system are obtained. The use

of the closed network of queues model as an analytic method of strategy

assignment has been suggested by Secco-Suardo (1978).

The machine or job shop problem has had considerable attention in the

past and is in the class of combinatorial problems. They can be formulated

and solved as 0-1 integer programming problems (Stern et al., 1977) (Fisher,

1970). In the case of a flow shop where the jobs must undergo a sequence

of operations, the solution is difficult even for a three-machine system

(Kanellakis, 1978). A particular difficulty with this approach is that it

makes an optimal schedule for a given number of jobs. What is required is

a method of calculating optimal strategy assignments for a system that is

operating continuously.

1.2 The Network Flow Optimization Approach

In this research, a network flow optimization approach is taken. Rather

than analyze the movement of individual pieces through the system, the ag-

gregated flow of pieces is analyzed. Network of queues models are used to

account for congestion effects at the workstations.

Flow optimization techniques have been successfully applied to trans-

portation and computer communication problems. In transportation systems,

a frequently occuring problem is that of predicting traffic flows on a net-

work of roads given travel demand between origin-destination pairs in the

network. The solution is given by Wardrop's Principle; traffic distributes

itself on the available routes in such a way that no single user can shorten

his or her travel time or cost by using another route. For this reason it

is often referred to as "user optimized flow" (Dafermos and Sparrow, 1969).

A related problem but with a different solution is the system optimization



problem (Dafermos and Sparrow, 1969). In this case, given the travel demand

between the various origin-destination pairs, one wishes to route the traffic

in such a way that some system cost criterion is minimized.

Problems occur in computer systems where the computers are connected

by data links as in the ARPA-network. Messages are routed from origins to

destinations via intermediate computers. Each message experiences a random

delay which is on the average a non-linear function of the flow rate (usually

measured in bits per second) on a link. The objective is to route the mes-

sages in such a way that the total overall delay is minimized. This problem

has been formulated and successfully solved as a non-linear network flow

optimization problem (Frank and Chou, 1971).

Multi-commodity, minimum-cost, network flow optimization problems with

resource constraints at network nodes have been examined by Wollmer (1972),

Malek-Zavarei and Frisch (1971). Resource constrained problems occur, for

example, in transportation problems with a limited number of vehicles or

communication problems where there are capacity constraints at network nodes.

Decomposition methods have been applied to solve such problems. The work-

stations in flexible manufacturing systems can be viewed as scarce resources

to be shared amongst all the types of pieces in the system. Similar methods

can then be used to decompose the problem into easily solved sub-problems.

1.3 An Outline of the Report

The model is presented and the optimization problems formulated in

Chapter 2. Systems having nondeterministic arrivals and processing times

give rise to non-linear optimization problems. The production rate of the

system should be maximized but the build up of queues within the system

should be avoided. A price can be put on the average number of pieces

within the system (the in-process inventory). Alternatively the inventory

can be constrained to be below a certain given value. Deterministic systems,

or systems in which the processing and interarrival times have a small

variance, give rise to linear programs. Asymptotic results for closed queue-

ing network models (Gordon and Newell, 1967) (Secco-Suardo, 1978) and work

rate theorems (Chang and Lavenberg, 1972) indicate that the linear programs



are valid for finding the asymptotic maximum production rate in systems

with general service time distributions.

Mathematical methods which exploit the structure of the problem in

order to solve the optimization problems of Chapter 2 are discussed in

Chapter 3. Decomposition methods (Dantzig, 1963) are used to break linear

programs into a set of strategy-generating minimum processing cost sub-

problems each involving only one type of workpiece. Only a subset of all

the possible manufacturing strategies are considered and they do not have

to be enumerated in advance. A master problem finds the optimal combination

of strategies for all the pieces.

An extremal flow algorithm (Cantor and Gerla, 1974) (Defenderfer, 1977)

minimizes non-linear objective functions subject to linear constraints by

expressing the network flow rates as a convex combination of extremal flows.

The extremal flows are generated by solving a linear program at each step.

This method was originally developed for solving routing problems in packet

switched computer networks (Cantor and Gerla, 1974) and has proven to be an

effective method of obtaining the optimal routing in a network (Defenderfer,

1977). The Lagrange multiplier method of Hestenes (1969) and Powell (1968)

converts a non-linearly constrained optimization problem into a series of

problems where a non-linear Lagrangian function is minimized subject to the

linear flow and resource conservation constraints. The extremal flow algo-

rithm can then be used to minimize the Lagrangian function.

As an example of the application of the network flow approach to the

strategy assignment problem, numerical results for a two- and four-work-

station system are presented. The effect of changing some of the system

parameters on the optimal strategy assignment, production rate and work-

station utilization is investigated for the two-workstation system. The

strategy assignments for the four-workstation system are implemented on a

discrete simulation and the effects observed.

There are a number of outstanding problems for which analytic solution

techniques would be extremely useful. Chapter 5 identifies problems for

which network flow optimization appears to be promising as a component of a

solution technique.
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2. THE MODELLING OF FLEXIBLE MANUFACTURING SYSTEMS

2.1 Introduction

Accurate modelling of flexible manufacturing systems is important if

an understanding of overall system behavior is to be gained. Of even greater

importance is the building of models which will enable computers to make

decisions either on- or off-line when running the system under automatic

control.

On a system-wide level, the static optimization problem is concerned

with the steady state behavior of the system. The average values of utili-

zation of the workstations, queue lengths at workstations, flow rates on

the transportation links and the in-process inventory are of interest and

define the state of the system.

Preliminary investigation is being carried out on small two- to four-

workstation simulated systems. Practical systems will be much larger. The

Sundstrand system at the Caterpiller plant at Peoria, Illinois, for ex-

ample has nine workstations, sixteen dual loading/unloading stations and

produces two sizes of gear box casings, each consisting of two parts (Stecke,

1977). The size of the system gives rise to models with large numbers of

variables. Care must be taken in keeping the dimension of the model to a

minimum. In Section 2.2 flexible manufacturing systems are modelled as

networks of queues. Exact solution methods which have been applied to models

of actual systems are surveyed. These methods are restricted to system

models which satisfy certain assumptions regarding service time distributions

and arrival processes. Approximate methods are introduced for application

to more general models. Optimization problems based on networks of queues

are formulated in Section 2.3.1.

Section 2.3.2 formulates linear programming problems for systems whose

service times are either deterministic or have small variances. In this

case the non-linearities which account for the build up of queues are absent.

The flow rates in the system are then the only variables of concern. Section

2.4 develops an approximation to the production rate of a balanced system

with a finite number of pallets. Some aspects of the optimal solution of

the programming problem are discussed in Section 2.5.
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2.2 The Stochastic Model

A network of queues consists of M nodes at which there are one or more

servers. In a flexible manufacturing system these would correspond to the

workstations and the loading and unloading stations. The service time at

station i is taken to be a random variable with a known probability density

function and mean l/ i .* In a manufacturing system there are different types

of workpieces each with its own service time distribution at each workstation.

In most practical cases, the ratio of the numbers of different types of pieces

being produced is specified.

It is assumed that once a workpiece leaves workstation i, it proceeds

to workstation j with probability Pij. Workpieces originating from outside

the system arrive at workstation i at a rate ai. The arrival process is

stochastic with known statistical properties. The arrival rate X. at work-

station j thus satisfies

M
-iX a.+ ' pij i (2.1)

i=l

The probability that a workpiece leaves the system after the completion of

service at workstation i is simply 1 - P.
j=l 1

A network of queues is described as open if there are arrivals and

departures to and from outside the network (Baskett et al., 1975). If, in

equation (2.1), a.0- and pi = 1 for all i, the system is closed. In

this case there are N jobs circulating inside the network with none leaving

and no fresh arrivals. The arrival rates X. then satisfy

M
j = I Pij.Xi (2.2)

il1

The matrix p=(pij) represents transitions in an underlying ergodic

Markov chain (Baskett et al., 1975). With non-zero values of ai, (2.1) can

be solved to give unique values of Xk. Equation (2.2) however, consists of

self- consistent equations which can only be solved to within a multiplicative

constant.
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2.2.1 Exact Solution of Network of Queues Models

The open network was originally studied by Jackson (1963). The assump-

tions made were that the service time distribution at all nodes is exponential

and that the arrival process from outside the network is Poisson. It is also

assumed that there is only one class of customers. Under these assumptions

and also given that there is unlimited queueing space at all the nodes, the

system can be modelled as an infinite (but countable) state Markov process.

Each state is defined by the vector k=(kl,k2, ..kM ) where ki is the number

of customers either receiving or awaiting service at node i. Jackson's

result is that the steady state limiting probability of being in any state

k can be written in product form as

P(k) = Pl(kl)p2 (k2 )...PM(kM) (2.3)

Pi(ki) is the marginal probability of having ki customers at node i. The

amazing thing is that Pi(ki) is identical to the steady state probability

distribution of a single M/M/n queue. The implication of this result is

that under the Poisson arrival, exponential service time assumptions, the

variables ki are mutually independent in the steady state and thus each

queue may be analyzed in isolation. Gordon and Newell (1967) derived the

steady state probability distribution for a closed network with N identical

customers, and an exponential service time distribution at each of the M

nodes. A finite state Markov model results. The number of states is equal

to ( N+M- 1 which is the number of ways that the N customers can be placed

at the M nodes. A product form solution is again found with

1 M

P(k) = G(M,N) i f. (ki) (2.4)
i=l 1

M

and I k = N (2.5)
_.--
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in which G(M,N) is a normalizing constant. The functions fi(ki) satisfy

the flow balance equations of the Markov chain model of the system. In this

case there is strong interaction among the system nodes through the rela-

tionship (2.5).

An important effect is the asymptotic behavior of a closed network of

queues as the number of customers N inside the system grows without bound.

Let x.i be an arbitrary solution to equation (2.2). If there are ri servers

at station i, each with service rate pit the relative utilization ui of each

workstation is defined as

x.

u. = (2.6)

There exists one or more stations with u = max u.. These stations are

termed bottleneck stations (Gordon and Newell, 1967) for the closed network.

It is shown that at any state for which k ,the number of customers at the

bottleneck station,is finite,

li P(klk2,...kM) 0 (2.7

The marginal distribution PB(kl... k-l' ,k+ l' ...k) taken at all stations

excluding the bottleneck stations is finite and well defined and takes the

product form

M

PB (kl' k2...kM) = i(ki) (2.8)
i=l

ipB

where B is the set of bottleneck stations. Thus as the number of customers

inside the network becomes large, the bottleneck stations act as generators

of Poisson arrivals. The rest of the network behaves like an open network

(Secco-Suardo, 1978).

The analyses of Jackson, Gordon and Newell apply only to networks with

exponential servers. Jackson also assumes external Poisson arrival processes.



Baskett et al., (1975) provide perhaps the most complete analysis of the

equilibrium probability distribution for networks of queues. Any service

time distribution with a rational Laplace transform is permitted subject

to certain assumptions on the queueing discipline. Mixed classes of cus-

tomers,for some of whom the network may be closed and others open,can exist.

A product form solution is shown to exist for the balance equations of the

Markov system. The state space is particularly large since at each work-

station the class of customer at each position in each queue must be

accounted for.

Let Yi be a vector with components n.ir the number of class r customers

at station i. The marginal probability distribution P(yl,y 2,...yM 
) has a

product form given by

M

P(YlY 2 ..YM ) = C d(S) II gi(Yi) (2.9)
i=l

where C is a normalizing constant and d(S) is a function of the state S of

the system and is dependent on the nature of the external arrival process.

In a network that is closed for all classes of customers, d(S)=l, The

functions gi(Yi) depend only on the mean arrival and service rates at work-

station i. For a single customer class they are identical to the fi(k i) of

equation (2.4).

In an open network with Poisson arrivals, the marginal probability

distribution of the total number of customers at any node is independent of

the number at the other nodes. It is identical to the M/M/1 probability

distribution if there is a single server with general service time distri-

bution and a queue discipline that-starts service on a customer immediately

upon arrival, and to the M/G/c distribution when there are an infinite number

of servers. A very surprising result.

The existence of the product form of solution is related to the nature

of the flow processes inside the network. A sufficient condition for the

product form to exist is that a network should satisfy local balance equa-

tions (Chandy et al., 1977), (Chandy, 1972) with respect to a state in the
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Markov chain modelling the network and a particular node i. Local balance

equations equate the state transition rate into a Markov model state due to

an arrival of a customer at node i to the transition rate out of the state

due to the departure of a customer from node i.

A closely related property is the "M 3 M" property (Chandy, 1972).

A queue is said to have the "M > M" property if the departure process at

a queue with a Poisson arrival process is also Poisson. This holds for

queues with exponential servers.

Non-exponential servers satisfy local balance equations if they have a

service discipline which begins service on a new customer immediately upon

arrival. Thus the allowed service disciplines are last-come, first-served

with pre-emption, and processor sharing. An infinite server station also

satisfies this condition.

Network of queues models have been used to model time sharing computer

systems (Kleinrock, 1976) and it is this field which has given rise to the

interest in networks of queues. Flexible manufacturing systems have been

successfully modelled as networks of queues (Solberg, 1977). Taking into

account the number of assumptions which do not necessarily hold in actual

systems, the accuracy of the network models is somewhat surprising. Den-

ning and Buzen (1977) have suggested that the assumptions needed to define

state transition probabilities as such in the Markov chain representing a

network of queues may in fact be too strong. They derive similar expres-

sions to those of Jackson, Gordon and Newell from an operational point of

view. That is, rather than defining p(n) as a probability, they define it

as the proportion of time the system spends in state n in an observation
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period (0,T). This quantity is related to observed quantities like A.(n),

the number of arrivals in (O,T) at station i when n customers are present,

and x.(n), the number of service completions in the same period. They
1

make no assumptions regarding service time distributions and arrival process

characteristics. Their assumptions regarding the one-step behavior of the

system--namely, that observable state changes are the result of the movement

of single jobs either into or out of the system or between two nodes--is

very similar to the local balance requirement of Chandy et al. ,(1974).

2.2.2 Approximate Methods for the Analysis of Network of Queues Models

The exact methods discussed above are restricted to system models satis-

fying certain assumptions on service time distributions, arrival processes

and queueing discipline. Exact solutions for more general systems are hard

to obtain and in many cases they have not yet yielded to exact analysis

(Kleinrock, 1976). What is needed are approximate methods which retain the

qualitative behavior of actual systems and permit good estimates of the

quantities of interest such as average queue lengths.

The accuracy of approximate methods is dependent on the methods used

to model the flow processes within the network. The elements within the

network are decomposition points where flows diverge, merges where there is

convergence of flows and the actual servers themselves (Disney, 1975). A

key simplifying assumption usually made is that arrivals and departures at

network nodes constitute renewal processes. That is the time intervals

between arrivals or departures are independent, identically distributed

random variables.

For optimization purposes, a decomposition approach seems ideal. The

results of Jackson (1963) show that an open network with exponential servers

and Poisson arrivals can be exactly analyzed by looking at each node in

isolation. Open networks with general service time distributions may like-

wise be analyzed so long as they satisfy the conditions of Baskett et al.,

(1975) and Chandy et al., (1977); namely, that the local balance equations

must be satisfied. In general, however, open networks do not satisfy the

conditions required to yield a product form solution and it is here that

assumptions are made concerning flow processes in the network so as to apply
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approximate methods.

Kuhn (1976) studies a network consisting of G/G/1 elements arbitrarily

connected by considering the propagation of the mean and coefficient of

variation C. of the interarrival times in the network. The coefficient of

variation is defined as

c ... . ..... (2.10)
Ci E 2 E(ti) (2.10)

where E(ti) = expected value (mean) of ti

E{ti} = mean square value of ti

at = standard deviation of t.

A heuristic expression which is exact for isolated M/G/1 systems is used to

calculate the average waiting time and hence queue lengths at network nodes.

The results of the decomposition approach are found to be close to observed

simulation results for open networks.

Closed networks with exponential servers can be decomposed, depending

on the relative magnitudes of the service rates at the nodes. This is use-

ful in computer systems where, for example, the central processing unit

might be much faster than the other devices (Courtois, 1975). The parametric

method of Chandy et al., (1975) might prove to be useful in situations where

the performance of a single workstation is of particular interest. They show

that the behavior of a workstation in a closed system with exponential

servers does not change if the rest of the network is replaced by a single

composite queue with a service rate dependent on n, the numbers of customers

in the composite queue. A necessary condition is that the network must

satisfy local balance equations (Chandy et al., 1977) (Chandy, 1972). The

method has been extended to give an iterative approximate method for general

networks (Chandy et al., 1974).

The diffusion approximation uses the central limit theorem to approximate



N(t), the number of customers in a single queue by a continuous random variable

x(t) whose propagation obeys the diffusion equation

a 1 a2
- p(x o ,x;t) = - p(x o ,x;t)

D- p(x ,x;t) (2.11)

where p(xo,x;t) is the probability density function of x(t) given an initial

condition x , and a and B are the expected value and variance of the instan-

taneous change in x(t) which in this case are independent of x(t)

= lim var (x(t+At) - x(t))/At (2.12)
At+o

= lim E (x(t+At) - x(t))/At (2.13)
At+O

The steady state solution of (2.11) taken in the limit as t becomes large

is an explicit expression for P (X) = Pr(x < X) which is discretized by

integrating over an appropriate interval to obtain p(n), the diffusion ap-

proximation of the probability of having n customers in the queue.

The boundary conditions used in solving the diffusion equation are very

important. Kobayashi (1974), Kobayashi and Reiser (1974) impose reflecting

barriers at the boundary x(t)=O and thus their solutions are accurate during

a busy period or for a queue whose utilization is close to unity. Gelenber (1975)

assumes that once. x(t) is at the boundary it remains there for an exponen-

tially distributed time interval and then instantaneously jumps to some internal

internal value with a given probability. This leads to a more accurate

approximation, especially for a lightly loaded server. The constants a and

are chosen by assuming via the central limit theorem (Kleinrock, 1976),

that N(t) may be approximated by the continuous random variable x(t) with

mean (X-p)t and variance (p va_- vb)t, where X and P are the mean arrivalmE~a (X-~)tand arince ~Ia
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and service rates, va and vb are the variance of the interarrival and

service times respectively, (Gelenbe, and Pujole, 1975).

The diffusion approximation has been applied to open networks of queues

by considering a vector valued diffusion process (Kobayashi, 1974). A product

form solution results. A simpler approach is to use the diffusion approxi-

mation to analyze each queue individually and to note that the arrival process

at any queue is the superposition of departure processes from other queues

and perhaps from outside the network (Gelenbe and Pujole, 1975) (Kobayashi, 1974).

Closed queueing systems have been analyzed using the diffusion approx-

imation yielding product form solutions (Kobayashi, 1974). The decomposition

of the closed network is made difficult by the fact that equation (2.2) does not

have a unique solution and the distribution over a finite number of customers.

This results in simultaneous equations to be solved, and normalizing constants

which have to be evaluated. These difficulties are overcome by assuming that

the number of customers inside the network is large and that a bottleneck

station exists (Kobayashi, 1974) (Gelenbe and Muntz, 1976). The solution of the dif-

fusion equation is then made to fit this asymptotic case.

The diffusion approximation is similar to the decomposition approach

of Kuhn (1976) in that the behavior of the network of queues is taken to

depend on the first and second moments of the stochastic processes.

2.3 Modelling and Optimization of Flexible Manufacturing Systems

2.3.1 Modelling of Systems With Stochastic Operation Times

A flexible manufacturing system consists of M workstations connected

by a transportation system. There are P different types of pieces being

produced simultaneously. Each piece of type i has S. manufacturing strategies

available to it. A strategy is simply a sequence of operations required to

complete a workpiece. Alltogether, there are S strategies enumerated in the

system, with

P

S = Si (2.14)
i=l

The number S may be large if there are a large number of options available

in the system so that it might not be worthwhile to identify all possible
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strategies in advance.

For each piece of type i, the matrix Ti represents all possible manu-
1

facturing options. The elements of Ti are t.j, the time to perform operation
I 1J

k at workstation j on a piece of type i. The number k represents a particular

operation and does not imply that there are strict precedence constraints.

As an example, consider the component in Fig. 2.1, which is an idealized

representation of the housing for a two way hydraulic control valve. The

part is made from a casting which has the correct external dimensions. The

operations required are the drilling and tapping of holes to the required

tolerances.

A flexible manufacturing system produces a family of such parts which

are of different sizes, built to different tolerances and materials. It will

be assumed for the sake- of this example that the left hand edge is machined

first. The part then goes to the loading station for re-fixturing before

the right hand edge is machined. For modelling purposes, the left and right

hand edges are identified as two distinct types of pieces each with its own

T. matrix.

For the left hand end of the part in Fig. 2.1, the following operations

are identified. They are referred to by the superscript k in the variable
k

tij-

k=l : Drill and tap the four bolt holes

k=2 : Drill and bore valve chamber to required tolerance

k=3 : Drill axial passage

k=4 : Drill and tap outlet lines.

k=5 : Drill and tap supply line

The definition of the operations is dependent on the capability of the

machines and the distribution of tools amongst them. Operation 2, because

of close tolerance requirements,may need a rough cut and then finishing which

might not be done at the same machine. Drilling and tapping similarly may

be done at two different machines. In this example, however, we will assume

that each operation is completed during a single visit to a workstation.



87049AW030

k= 1: Drill and top 4-20

S holes, 1" deep

k = 2: Drill, bore 1" dia. 0 

2 holes, 1' dcep

k 3: Drill 2 dia.
2 ,

through hole - -

k= 4: Dri II 2 d:ia 

2 holes -

k= 5: Drill 1" dia. \

(not through hole) _

Fig. 2.1. An Example of a rWorkpiece
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The only precedence constraints in this example are:

1. Operation 2 should precede both operations 3 and 5.

2. Operation 3 should precede operation 4.

Suppose there are four machines available to manufacture the valve housing.

The figures in Table 2.1 show the locations at which the operations can be

performed and the length of time in seconds that each operation takes. An

entry of - (infinity) indicates that the operation cannot be performed at

that location. The top row gives the machine number and the column is the

operation number. The element tij of the Matrix Ti will be the number in

row k and column j of the table.

A strategy is a single sequence of workstation visits in which all

necessary operations are performed. Two possible strategies are shown in

Table 2.2. In strategy 1, operations are performed in the order 1-2-3-5-4,

while the order is 1-2-4-5-3 for strategy 2.

Chapter 3 describes a method of generating strategies during the solu-

tion of the optimization problems formulated below.

If the strategies are enumerated in advance, the variable T.. repre-

sents the total time a piece following strategy 1 spends at workstation j. In

the example above, the variables T..i for strategy 1 are Til = t = 15,
2 3 4 5 1 5 ,

ti2 + t i2 55 andT 4 t + t = 55. Workstation 4 is notTi2 i2 i2 i3 i3 i3

used, hence Ti4 = 0. A graphical representation of strategies 1 and 2 of

Table 2.2 is shown in Figure 2.2. The number in the circle is the work-

station number and the one underneath is the duration of the visit. Above

each circle are the particular operations being performed. The initial node

L and the final node U are the loading and unloading stations, respectively.

Since the operation of the workstations is of primary concern, it will

be assumed that the transportation system has a large enough capacity so that

it does not reduce the performance of the system. After the important rela-

tionships affecting the performance of the workstations are introduced, it

will be shown that the transportation system can be easily modelled using

the same ideas.

Assuming that the matrices Ti are available for all workpieces, the flow
rate1-~ ote pc twk

rate of type i pieces to workstation j for operation k is defined as x.. The
13
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j -Workstation

. .1 2 ... 3 4

Operatio

1 15 " X 70

2 co 30 X 40

3 = 25 20 c

4 45 = 30 X

5 40 c 25 c

Table 2.1 . Machining Times tk . for Operations1)

at the Workstations on Part i, the Valve

Housing



Strategy 1 Strategy 2

Visit Operation Machine Operation Machine

1 i 1 1 1

2 2 2 2 2

3 3 2 3 3

4 5 3 4 3

5 4 3 5 1

Tab.le 2,2 Two Possible Strategies for the Manufacture
of the Valve.



-22-

87049AW033

2 4,3 5

30 50 40
2,3 5,4

15 55 55

Fig. 2.2. Graphical Representation of Strategies
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system controller monitors these variables and can affect them by varying

the loading rate and allocating pieces entering the system to the strategies

available.

The total arrival rate X, at workstation j is

P
= I xi j (2.15)

i=l k

k
The variables x.. are related by conservation of flow equations and the

production ratio requirement. Conservation of flow states that the flow

rate of pieces undergoing any operation k is equal to the production rate

of that type of piece. This is stated as

M k M M

x .. X-l xij = R. i=1,...,P (2.16)
j=l j=1 j=l

where R. is the production rate of type i pieces. The total production rate

is given by

P P M

R = R. = x.. (2.17)
i =l i=l j=1

The summation is carried out with k=l for convenience. The production ratio

requirement states that pieces of type i comprise a fraction a. of the total

production. This can be expressed as a relationship between R in equation

(2.16) and the flow rate of pieces-going for operation number 1

M P M
J-1 1 . ' x

Ie t he (2.18) s
j=1 i=l j=l

where the c. satisfy
1
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0 < a. < 1 i=., P (2.19)

ai. = 1 (2.20)

An important performance measure of a workstation is the utilization

u., defined as the probability that a workstation is occupied. Suppose that

in an interval of time (0,T) the number of type i pieces passing through
k

workstation j for the operation k is nj.. The total time that the station

is occupied is thus

X i nij tXj (2.21)

i=l k 

The utilization can then be written as

Uj = T i- I nij tij (2.22)
i-l k

But it can be recognized that n. i/T is the average flow rate x.. so that

u (X) xij t. (2.23)
ik

The methods of network-of-queues analysis can now be applied so as to
k

express other system performance measures as functions of x=-x... Optimiza-
13 k

tion problems can then be formulated so as to pick the assignments x.. which
13 -

maximize the production rate or perhaps some other index of performance.

The total number of customers inside the system either receiving service

or waiting in queues is important. Let qj (x) be the average queue length at

workstation j. The in-process inventory can then be defined as
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M
I = ~ qj(x) (2.24)

j=l

The calculation of qj(x) depends on specific assumptions about the service

processes at the workstations. If a manufacturing system has exponentially

distributed service times and the arrival of pieces into the network con-

stitutes a Poisson process, the result of Jackson (1963) discussed in

Section 2.2.1.can be invoked. The workstations can be studied in isolation

as M/M/1 queues. In this case, the average length is (Kleinrock, 1975)

u. (x)
qj(x) = (2.25)

l-u (x)

Similarly if the conditions of Baskett et al., (1975) hold, the relation-

ships for M/M/s or M/G/o queues in equilibrium can be substituted in (2.25).

For general networks approximate methods can be used to evaluate qj(x).

The presence of pallets in a system causes added complication. From

the point of view of the pallets, the system is closed since there are a

finite number of pallets circulating in the system. The methods of analyz-

ing closed queueing systems can then be applied. Secco-Suardo (1978) ex-

presses the probability distribution function (2.4) for a closed network

with N customers as a function of the strategy assignments Yi. He suggests

that it is possible to use a non linear programming method to maximize the

throughput of the loading station and thereby attain the maximum production

rate. The results of Denning and Buzen (1977) suggest that this method might

be applicable to a wider class of systems than that with exponential servers.

The optimization problem is one of assigning operations to workstations

so as to maximize some performance index. The assignments will be subject

to constraints imposed by the problem structure.

In a stochastic system, the two important indicies are the production

rate R, which should be maximized, and the in-process inventory I, which

should be kept at a minimum. A natural objective function in this case
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would be a weighted sum of the two. The weights would reflect the return in

maintaining a certain production rate as compared to the cost incurred in

keeping a certain level of in-process inventory. Thus the following non-

linear programming problem results:

NLP 2.l M M

1 1Maximize 81 X 1 2x) (2.26)j=1 j=l

subject to xk.l - I x., = 0 i=l,...,P, k > 1 (2.27)
j 13 Ij ~

M P M

I xij - . xl = 0 i=l ...,P (2.28)
j=l 3=1 i

u. = I Ie x±3 tk < 1 j=l, .,- M (2.29)
i=l k

Xj > 0 Vi,j,k (2.30)

In the objective function (2.26) the production rate of pieces of type 1 is

maximized. The ratio constraint (2.28) makes it unnecessary to include the

production rate of the other types of pieces. The constraint (2.28) due to

the production ratio requirement can be written in a form which is easier

to evaluate since it does not involve summing over all the types of pieces.

M a, M
I X.ij a . 1Xlj 0 (2.31)

j=l i3 a1 j=l

Equation (2.27) is the flow conservation constraint. The limited capacity

of the workstations results in (2.29) which states that the utilization of

any workstation can not exceed unity if a steady-state equilibrium is to be

reached.
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It should be noted that it is not necessary to identify strategies in order

to formulate NLP2.1. This point will be discussed in Section 2.3 and further

elaborated on in Chapter 3.

The problem NLP2.1 can be modified. There might be cases where the

average in-process inventory is required to remain below a certain level Q.

This can then be expressed as a constraint to give NLP2.2

NLP2.2 M
Maximize ' xij (2.32)

j=l 1]

subject to (2.27), (2.29), (2.30), (2.31)

M

and I q.(x) < Q (2.33)
j=1 

Where queue lengths grow without bound as utilization approaches unity,

constraint (2.33) may make (2.29) redundant.

Enumerating Strategies in Advance

There are instances where it is either necessary to enumerate strategies

in advance or the number of possible strategies is not large and they can be

readily identified. For example, if the four workstations in the example

given above are arranged linearly, as in Fig. 2.3, there are then only two

possible strategies. They are depicted in Fig. 2.4. The number of possible

strategies Si for a given piece normally depends on the nature and number of

the operations and not just the geographic layout of the workstations.

Let yt be the flow rate into the network of pieces following strategy Q.

The production rate is the total flow rate into the network r

S

R I Yy (2.34)
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where

p
S = 7 Si, and Si is the number of strategies available for a

piece of type i

The arrival rate X. at workstation j is

X. = Y (2.35)
sm(j)

where m(j) is the set of strategies that use workstation j. The utilization

is given by

Uj = j (2.36)
kem(j)

These quantities can be used in NLP 2.3 and NLP 2.4 to find the optimal

mixture of strategies in the system. The two programs NLP 2.3 and NLP 2.4

are analogous to NLP 2.1 and NLP 2.2 respectively. The relationship be-

tween yR and xij is given by equation (2.43) and (2.90).

NLP 2.3 S M

Maximize 1 7 y, Q 2 j q(Y) (2.37)
1 =l j=l

subject to

i YZtQ. < 1 (2.38)
SmE (j)

S

7i Yk - I i Yn = 0 (2.39)
ES (i) n=(

y > 0 (2.40)
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NLP 2.4 

Maximize I y (2.41)
4=1

subject to (2.38), (2.39), (2.40)

and

M
I ((y) < 0 (2.42)

j=l

Constraint (2.39) expresses the production ratio requirement. In

calculating the average queue length q4(y) at the workstations, use is made

of (2.35) which expresses the arrival rate at a workstation as a function

of strategy assignments y

Modelling of the Transportation System

The transportation system can be modelled as a network of arcs and nodes.

The nodes are either merges or diverges of arcs, or the actual workstations

themselves. It is natural to view most transportation systems as trans-

portation networks (Magnanti, 1977). Hence network models are applied to

a wide class of transportation systems. In flexible manufacturing systems,

network models can be used to model conveyer belts or systems where pieces

are carried on a vehicle moving along a guideway.

For convenience, it is assumed that the nodes are numbered so that

the first M are workstations and the remainder merges or diverges. Further-

more it is assumed that the arcs are numbered so that arc i leads to worksta-

tion i, with the rest of the arcs being numbered M+l, M+2, and so on. The

arc leading into the loading station is labelled 0. This allows congestion

effects at the loading station to be modelled. The network of Fig. 2.3,

for example, has the labels shown in Fig. 2.4. The circled numbers re-

present nodes while the rest are arc numbers. Define r.. as the flow rate
13

of type i pieces on arc j of the network. From the definitions,

r..i = x. j = 1,....,M (2.43)
k
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The problem NLP 2.1 can be modified to become

NLP 2.1a

P M

Maximize ri - (2 x) + gqr) (2.44)
i=l j=1

subject to (2.27), (2.29), (2.30), (2.31), (2.43)

and I r.. - Y r.. = 0 V n (2.45)
jEA(n) 3 jD (n)

ir.. < d (2.46)

r.. > 0 (2.47)

where the rio is the flowrate of type i pieces into the network. The con-

straint (2.45) expresses flow conservation at network nodes in which A(n)

is the set of arcs leading to node n and D(n) is the set of arcs carrying

pieces away from the node. Arc capacity constraints if present are expressed

by (2.46)

The in-process inventory consists of pieces queueing at the workstations

qi(x) and those in transit in the network g(r). The derivation of g(r) is

dealt with below. The total in-process inventory is thus on average

M

I = I qj( x) + g(r) (2.48)
j=l 

This is incorporated in the cost function (2.44). Similarly NLP 2.2 can be

written as

NLP 2.2a

Maximize 7 rio (2.49)

subject to (2.27), (2.29), (2.30), (2.31), (2.43), (2.45), (2.46)
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and

%(X) + g(r) < Q
i=l

xik rij > ° (2.50)

The number of pieces on any arc l in the network is on the average given by

·Z = ft t. (2.51)

where fZ is the total flow rate on the arc and tZ is the average travel

time on the arc. This is an example of Little's formula (Kleinrock, 1975).

If the arcs are subject to congestion effects, the travel time is then an

increasing function of the total flowrate fZ. The total flow rate is given

by

fz= ri (2.52)

Then g(r) = I (2.53)
Z>M Z

The transportation system can be handled in a similar fashion where the

strategies are enumerated in advance.

The transportation network has path constraints characterized by net-

works of possible strategies such as Fig. 2.2. Each arc on the strategy

network corresponds to a flow between two workstations. In a densely

connected transportation system, there is a choice of paths between the two

workstations while a simple system as in Fig. 2.5 provides no choice.

Chapter 3 has a further discussion of these constraints and how the net-

work structure may be exploited in order to solve the routing problem.

2.3.2 Modelling of Deterministic Systems

A deterministic flexible manufacturing system is one in which the

processing times are entirely deterministic. The arrival process into the
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system is deterministic in the sense that workpieces can be introduced into

the system at pre-determined time instants. The assignment problem can be

formulated and solved as a job-shop scheduling problem (Fisher, 1970).

There are added complications however. An optimal steady state assignment

is being sought. This means that the number of jobs to be assigned is not

only undetermined, but it is also likely to be large. For a similar reason,

the time interval over which the assignments have to be made is undetermined.

Each of the jobs to be scheduled has options as to which workstation it can

go to for a particular operation. All of these factors increase the size

and complexity of the scheduling problem. From a control point of view,

precise schedules worked out in advance are difficult to implement, especial-

ly over long time intervals.

One way of overcoming these difficulties is to use a periodic schedule

(Hitz, 1979). A periodic schedule is one in which a certain sequence of

operations at the workstations is repeated at regular time intervals.

There is a set of integer numbers ni, i=l,...,P such that

p
n. = .i nz (2.54)

if ni is the number of type i pieces to be manufactured in a period. A

schedule is sought in which there is no idle time on the bottleneck work-

station. The bottleneck is the station j that maximizes i..jni, in which
i1

Sij is the total time that pieces of type i spend at workstation j during

their manufacturing process. The schedule should be such that it can be

repeated without leaving any idle time on the bottleneck workstations. In

order to derive iij' the strategies used to manufacture each of the pieces

should be determined; then Eij = E TZj.

The aggregated flow approach used in stochastic models affords a way

of simplifying the assignment problem. It will now be extended to deter-

ministic systems.
k

Consider a time interval (0,T). Let n.. be the number of type i pieces
1)
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that are sent to workstation j for operation k in the interval (0,T). The
k

assignments n.. are to be made in a manner which maximizes the total pro-

duction while maintaining the ratio requirement (2.54). The following

integer program can thus be solved in order to achieve this objective:

IP 2.1

M- P

Maximize y y n.. (2.55)
j=l i=l 1

subject to (2.54)

M k M k-l
and I n.. = n.. k=2,... (2.56)

j=1 j=1

? ? k k
Ly ; ij n.. < T (2.57)

i=l k

k >k
nij > O (2.58)

k
n.. integer

The objective function (2.55) is the total production. Constraint (2.56)

requires that all operations are carried out on all the pieces. Expres-

sion (2.57) reflects the fact that all manufacturing processes must be

completed in the inverval (0,T). The solution of IP 2.1 could serve as a

basis for the periodic scheduling algorithm. The problem would be in

determining T, which would then be the period of the schedule.

The flow rates in the interval (0,T) can be defined as

k
k n. .

x.. = - - (2.59)
T

With this transformation, consider the following linear program derived

from IP 2.1
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LP 2.1

Maximize X xij (2.60)
i j

M 1 P M

s.t. Y.; .1 X..I X..I (2.61)
j=l 1) 1 i=l j=l 

I X1 i X ,j (2.62)

I I x. t < 1 (2.63)i k kk
ik

kX 0 (2.64)

The relationship between LP 2.1 and NLP 2.1 or NLP 2.2 is obvious.

The constraints (2.61), (2.62), and (2.63) are identical to (2.28), (2.27),

and (2.29) of NLP 2.1 or NLP 2.2. The deterministic problem does not

take into account the buildup of queues within the system. This ac-

counts for the difference between LP 2.1 and the non-linear programs in

the stochastic case.

If xj.. is the optimal solution of LP 2.1 then fi.. = T is optimal in

IP 2.1 if Tx.. is integer. Otherwise it provides an upper bound on the optimal
1)

value of the production rate. The time horizon over which the optimal assign-

ment is carried out is long compared to the operation times t... Thus the
Ak 

numbers n.. are large. The difference between the optimal solution of IP

2.1 and n.. are thus negligible (Salkin, 1975).

Secco-Suardo (1978) derives a similar linear program for maximizing

the throughput of a network modelled as a closed network of queues. In

the limit as the number of customers inside the network grows large, it

is found that the throughput is proportional to the ratio of the relative

utilization of the bottleneck workstation to that of the loading station.

The problem is then one of finding the max min u. (x). This is formulated

.1-~._1i ] 3
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as a linear programming problem similar to LP 2.1.

Baskett et al.., (1975) show that the marginal probability distribution

of having n customers at a queue depends only on the mean serVice and arrival

rate. This indicates that the asymptotic result holds for general networks

satisfying Baskett et al.'s (1975) assumptions. Furthermore, as a variance

of the service time distribution goes to zero, the linear program described

is unchanged as long as the assumptions - including that service time dis-

tributions have rational Laplace transforms - remain satisfied. The

deterministic case can thus be viewed as a limit of the class of systems

to which the stochastic network of queues theory applies.

The work rate theorems of Chang and Lavenberg (1972) show that the

throughput of a closed network is proportional to the ratio of the relative

utilization of the bottleneck station and the loading station. They make

no assumptions regarding the queue discipline. The only restriction on

service time distributions is that they should have finite non-zero

expectations.

The linear programs of this chapter yield the maximum asymptotic

throughput solution for networks with general service time distributions.

It should be noted however that they do not take into account the build

up of queues within the network.

2.4 An Approximate Method for Finding the Production Rate of a Balanced

Closed System

The linear programming formulation of Section 2.3.2 finds the limit-

ing maximum production rate in a closed system as the number N of pieces

in the system becomes large. The effect of a limited number of pallets is

important. Simulation results show that the production rate of the system

increases asymptotically to a maximum value as the number of pallets inside

the system increases (Horev et al., 1978). Closed queueing network models

also exhibit this rise in throughput as the number of pieces inside the

network grows (Ward, 1980) (Secco-Suardo, 1978).

An estimate of the production rate as a function of the number of

pallets can be derived. In a system where there are only single server

stations with exponentially distributed service times, the probability
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that there are n i pieces at station i is given by (Gordon and Newell, 1967)

M n.
1 1

P(nl' n2'..nM) = (MN) Xi (2.65)

with

M = number of stations

N = number of pallets

X. = relative utilization of station i

and

in.= N (2.66)

The relative utilization is defined as

e.
X. = (2.67)

where pi is the service rate of station i, and ei are constants satisfying

e. = Pie. with Pji being the probability that a workpiece goes to
. j=l 31ji 31

station i immediately upon completion of service at station j.

The factor G(M,N) is a normalizing constant,

M n.
G(M,N) = I I X (2.68)

1
S i=l

where S is the set of all partitions of N pieces at M stations.

Assume that the system is balanced in the sense that all stations have

the same relative utilization. Then,

e.
X. = = X Vi (2.69)

1 li
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Substituting (2.69) into (2.68) gives

M n.

G(M,N) = x =I X (2.70)
S S

The number of partitions in S is M( 1

The normalizing constant is then

(MN) N+M-1 XN (N+M-1)! N(271)G(M,N) = M (2.71)
IM-1) (M-l)!N!

The throughput T. of station i is given by (Secco-Suardo, 1978)

G(M,N-1)
Ti = ei G(MN) (2.72)

From (2.71) and (2.69) this can be written as

T. - N (2.73)
i N+M-:1 i

The assumption behind (2.73) is that the utilizations of all stations

in a balanced system are equal for all values of N. If R is the limiting

maximum production rate of the balanced system, the actual production rate

if the number of pallets is limited is

P = R (2.74)
N+M-1

This is established by noting that P is the throughput of the loading station.

The relationship (2.74) then follows naturally from (2.73).

The approximation can be extended. If in (2.65) there are (M-l) balanced

stations and station M (for convenience) has a relative utilization

q(O<q<l) times that of balanced stations, (2.70) can be written as



-40-

M-1 n. nM
G(M,N) = I (X 1) (qX) (2.75)

S i=l

This becomes

G(M,N) = XN E qM (2.76)

This model corresponds to the practice of modelling the loading station

and transportation system as a server in a closed network of queues model.

Its utilization is usually lower than that of the servers corresponding to

the workstations.

Equation (2.76) is a polynomial in q with nM = 0,...N. The coefficient
N N

of q is X times-the number of partitions of (N-nM) pieces in (M-l)

machines and is given by N+M-2-\ ). Thus
M-2

G(M,N) = XN i (N+(M-2)-i) (2.77)
i=0 (N-i) I (M-2) 

The expression G(M,N-1)/G(M,N) is thus a ratio of two polynomials

N-l

X biqi
G(M,N-1) i=0 (2.78)

(2.78)
G(M,N) N

X Y aq

where

b. = (N-l+ (M-2) -i) (2.79)

(N+(M-2)-i)!

a. = (N+-i)! (M-2)-i) 1 (2.80)

From (2.79) and (2.80) it can be seen that b ai, andi+l i
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ai+l N-i
= _______ (2.81)

a. N+M-2-i

Thus if M > 2, then a < a..
i+l 21

The probability that there are nM = j pieces at the nonbottleneck

station is,from (2.65) and (2.75)

N

PM( j) = G(M,N) a q (2.82)

Since q is less than 1 and ai+l < a. for M > 2, then PM(j+l)< PM(j). If

q is sufficiently small, or in other words if the nonbottleneck station

is much faster than the other balanced stations, it is reasonable to ap-

proximate G(M,N-1)/G(M,N) by considering only the coefficients ao and

alof the polynomials. This gives an approximation with the form

G(M,N-l) 1 1 (2.83)
G(M,N) X A+Bq

where A and B are constants. By equating coefficients for the first two

terms in (2.78) and applying (2.80),

A =N+-2 (2.84)
N

B = (2.85)
N(N+M-3)

Substituting into (2.83) gives the expression

G (M,N-1) 1 N (N+M-3) (2.86)
G(M,N) X (N+M-2) (N+M-3) + (M-3)q
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Note that for q = 0,

G(M,N-1) 1 N
G(M,N) X N+M-2

This is equivalent to (2.74) but with one station less. In practice, the

expression (2.86) is found to vary only slightly with q (Fig. 2.6) and it

is better to use the simple expression (2.87) since it involves less com-

putation.

To generalize, if the number of bottleneck stations, MB , with equally

high relative utilization is larger than two, an approximation to the

production rate P as a function of the number of pallets and the limiting

maximum production rate, R, is

N
P =N+ R (2.88)

N+MB1

The equation (2.88) is useful because for a balanced system it is

possible to obtain a good assessment of the production rate and the number

of pallets required by solving a linear program and a simple equation. It

is also possible to estimate the return from an investment on pallets. In

a system with four balanced workstations, it takes approximately 27 pallets

to have a production rate 90% (i.e., XG(M,N-.) = 0.9) of the limiting rate.
G(M,N)

To raise that to 95% requires an additional 30 pallets. This assumes

stochastic effects which are implicit in the closed queueing network model.

The rate at which the ratio XG(M,N-1)/G(M,N) approaches unity as N +X

is important. It determines the number of pallets that are needed in a

system in order to have a production rate close to the asymptotic maximum.

The rate depends on the number of bottleneck stations in the system. The

more balanced the system is, the slower the convergence. Intuitively this

may be explained by the fact that in a balanced system, the pallets

distribute themselves evenly at the machines. The asymptotic production

rate is achieved when there is no idle time at the bottleneck stations.
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Thus the more balanced a system is, the larger the number of pallets needed

to do this. In Fig. 2.6, the ratio (2.87) is plotted for two different

values of M and it can be seen that for the higher value of M, it approaches

the asymptote much more slowly than for the lower value.

It may happen that the highest asymptotic production rate is achieved

by a strategy assignment which produces a balanced system. It is also

possible that for finite N, a different assignment leading to an unblanced

system has a higher production rate. This is because the unbalanced system

approaches its limiting production rate faster than the balanced system as

N increases.

In Fig. 4.19, the throughput as a function of N for a four-workstation

system modelled as a closed network of queues is shown. For N=13, the

production rate for the unbalanced system is the same as that of the bal-

anced system. The balanced system needs about 30 pallets to reach 90% of

its asymptotic throughput whereas the unbalanced system needs only 15. As

N increases, the balanced system has a higher throughput.

In choosing the optimal mix of strategies, the number of pallets, if

small, should be considered. The optimization model suggested by Secco-

Suardo (1978) is a method of tackling such problems.

2.5 Some Characteristics of the Solutions of the Optimization Problems

Let x.j denote an optimal assignment of operations in a flexible
13

manufacturing system. The constraints due to the workstation capacity

limitation are, at the optimal point

Xi tx i < 1 (2.89)
n P 2.1 some will be satisfied as equality constraints and the others ask

In LP 2.1 some will be satisfied as equality constraints and the others as

inequalities. The workstations corresponding to constraints satisfied as

equalities are the bottleneck stations. The production rate of the system

can only be increased for a particular parts requirement by increasing the

speed of the-bottleneck workstation (i.e., decreasing t k. for bottleneck

stations).
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In NLP 2.1 and NLP 2.2, it is likely than none of the constraints are

satisfied at the boundary. The values of u. then give a measure of the

relative workloads at the stations.

A common industrial practice when assigning manufacturing strategies

to workpieces is to do it in such a way that the workloads at the work-

stations are balanced (Hutchinson, 1977). That is,the values of u^i are as

uniform as possible. While this may be optimal for a system designed for

a certain specification of parts, in general it will not be optimal for an

arbitrary mix of workpieces. The lifetime of a flexible manufacturing

system is almost certainly longer than the production run of any specification

of parts being produced. It seems unlikely therefore that a given production

requirement utilizes all workstations evenly.

Given the parts specifications, machining and production ratio require-

ments for a flexible manufacturing system, the optimization procedure

produces an optimal assignment of strategies and the utilizations of all

the workstations. A shrewd production manager may then be able to under-

take the manufacture of additional parts which are not in the original

order. From the solution of the optimization, he can see how much idle

time there is at each of the workstations. He then matches this idle time

to the production requirements of any additional items which might be in

short supply or are needed to maintain inventory levels. This is clearly

an improvement. The productivity of the system is thereby increased and

the workstations have a more balanced workload.
Ak

The variables xij and r..i assign flow rates through the workstations

and on the arcs of the network. They do not,however,define a unique rout-

ing for the pieces through the network. The strategy flow rates y£ do

define a unique routing because each strategy defines a path through the

network from the loading to the unloading station. The relationship
k

between yv, xij and rij is given by (2.43) and

r.. = | yy (2.90)
i 13 £sp(j)
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with p(j) being the set of strategies which use arc j. Thus given a
^k

solution i.. and x..ij to the optimization problem, it is not possible to

choose a unique set of strategies y .

The real-time system controller has to maintain the optimal flow
Ak

rates x.. and r..ij. Equations (2.90) and (2.43) mean that the controller

has some freedom in choosing the actual path followed by an individual

piece through the system. It may be possible therefore for a local con-

troller at a workstation to make a decision as to where to send a work-

piece next, acting on information received from a central controller or

from the other workstations themselves. Alternatively by deciding on the

strategy a workpiece is to pursue at the loading station, the only task

remaining for the local controller is that of keeping a workpiece on its

proper path. Switching a workpiece from one strategy to another during

its passage through the system is another possible control action.

Chapter 3 discusses optimization methods which generate the strategy

flows y¥. This involves, in addition to ij and xij, storing additional

information about the optimal solution which describes the sequence of

visits to the workstations and the path followed on the transportation

system.
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3. OPTIMIZATION TECHNIQUES FOR
FLEXIBLE MANUFACTURING SYSTEMS

3.1 Introduction

In order to implement efficient algorithms to solve the mathematical

programming problems of Chapter 2, the structure of the problems must be

exploited. In addition to finding the optimal value of the objective

function, the routing of the workpieces and ordering of operations must

be resolved. This may in principle be done by enumerating all possible

strategies in advance but the problem structure is such that enough in-

formation is generated during the solution so that only a subset of the

strategies need be considered in finding the optimal solution.

Section 3.2 covers linear programming problems. These are important

not only in their own right but also because they form the strategy gener-

ating step in the solution of all the optimization problems. The decompo-

sition principle of Dantzig and Wolfe (1963) is applied and the column-

generating sub-problems are shown to produce a strategy for each type of

workpiece.

The non-linear programming problems NLP 2.1 and NLP 2.2 are treated

in Section 3.3. A modified form of the Cantor-Gerla extremal flow algorithm

is used to solve NLP 2.1. The augmented Lagrangian method is used to attach

the non-linear constraint in NLP 2.2 to the objective function. The extremal

flow algorithm is then used to iteratively solve a sequence of linearly

constrained problems. In each case, the decomposition method is used to

solve the flow generating sub-problems.

3.2 Linear Programming and Flow Optimization in Flexible Manufacturing
Systems

Linear programming is the most widely used form of optimization. There

have been many recent advances in algorithms for specialized application in

areas such as multi-commodity network problems. The flexible manufacturing

system has a structure which is suited to some of these algorithms. The

importance of linear programming is further enhanced by the fact that it

is used in non-linear optimization problems as part of the solution procedure.
k

Assume that the elements x.. of the flow vector defined in Section 2
:LJ
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are ordered in such a way that x, the flow vector, can be partitioned

into a set of vectors xi which describe the flow due only to pieces of

type i. The linear program LP2.1 can be written as

LP 3.1 Maximize R (3.1)

subject to

E T.xi < 1 (3.2)
i=l i

c·x = a.R i=l,...P (3.3)
11 1

A.x. = 0 il, ...P (3.4)
1 1

Xi > 0 (3.5)

in which R is the scalar production rate. The vector ci has elements 0

and 1 such that
M 1

c.x. x.. (3.6)

Thus cixi is the production rate Ri of type i pieces. The production ratio

constraints are represented by (3.3). Since £Z . = 1, (3.3) and (3.6) imply

that the production rate R can be expressed as

P P M 1
R cX.= Z x. = (3.7)

i 1 i=l j=l i

The matrix T. comprises the elements tij, which are the operation times
1 

for type i pieces. The flow conservation constraints are defined by (3.4),

the matrix A. being composed of elements which are -1, 0, or 1.

The constraints in LP 3.1 consist of a set of decoupled constraints

(3.4) and coupling constraints (3.2) and (3.3). Decomposition methods can

therefore be applied to take advantage of the special structure of the

flow conservation constraints.

The flow conservation constraints (3.4), define a convex cone .i

(Bazaraa, 1976). Let x. (s=l,...) be a set of solutions to A.x.=0.
s s

The vectors x. (i=l,...P) are in the cone and define xs to be

s s
x = Z x. (3.8)

i=l1
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s k
The vector x consists of flow rates x.. which satisfy the flow conser-

vation constraints. By scaling xi so that

c.x. = i. (3.9)

the ratio requirement constraints are also satisfied. The linear program

LP 3.1 can now be stated as

LP 3.2

Maximize Z qs (3.10)
s

Such that

P

s q T.x. < 1 (3.11)
i=l

qs > 0 V s (3.12)

The problem may be interpreted as one of choosing the optimum weighting

q, on the flows x . The objective function (3.10) is of this form because

each of the x is normalized to represent a unit production rate. Thus the

production rate R due to the weighted combination of flows x is

p
R = E E q cixs

(3.13)
i=l

Using (3.9) and (2.18) this can be seen to be

p

R= E qa = q (3.14)
s i=l q s

This method is a direct application of the price-directive decomposition

method of Dantzig and Wolfe (1963). The constraint set in the decoupled

subsystems are convex cones. The vectors x5 are columns in LP 3.2 and they

are generated as needed by using a column generating method (Dantzig, 1963).

If TSRM are the dual variables associated with the constraint set (3.11),

the x. can be obtained by solving P sub-problems (Lasdon, 1970):
3.
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LP 3.3

Minimize (XTi) xi (3.15)

such that A.x. = 0 (3.16)
1

c.x. = C. (3.17)

x. > 0
1 -

The solutions are the vectors x. which are used to define the columns

xS. The optimal solution is reached in the master problem LP 3.2 when the

dual variables XI are all non-negative, indicating that the production rate

can not be increased further by introducing a new column into the basis.

Solving the sub-problems corresponds to the operation of "pricing out"

the columns of a linear program in the simplex method (Dantzig, 1963). In

this case, however, the number of columns in LP 3.2 is not only large, but

the columns are not known in advance. The sub-problems, in effect, find the

column with minimum reduced cost which is to enter the basis.

The sub-problems LP 3.3 are easy to solve. Using the vector f{rTi, the

master problem LP 3.2 allocates a cost equal to j .t?. for each piece of type

i at workstation j for operation k. The sub-problems LP 3.3 then find the

sequence of workstation visits with the lowest overall cost and allocates

to it a flow equal to ati for pieces of type i. This is easily accomplished

by finding the workstation with the lowest cost for each operation and setting

the corresponding variable equal to Ci. That is, for each k find

k k
ks is j 

and then set x. = a. and x..=O for js. The solution xs to LP 3.3 is
is I i

a strategy since it defines a sequence of operations for each type of

workpiece. At this stage, if the subscripts k do not denote strict

precedence constraints, the ordering of the operations can be resolved and

stored. To resolve the ordering one need only send the workpieces along

the shortest physical path in the transportation system which visits the

required workstations. This is a traveling salesman problem in which only

a subset of the nodes have to be visited.
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With the sub-problems seen to be generating strategies, the master

problem can be interpreted as choosing the optimal combination of strategies

so as to maximize the production rate. The overall procedure is summarized

in the flow chart of Fig. 3.1. It is assumed that an initial flow x is

available. This can be generated by assigning a flow cli on an arbitrary

strategy for each type of piece.

The decomposition approach results in a significant saving in

computational effort. The initial linear program LP 3.1 with many

constraints is replaced by the master problem LP 3.2 with fewer constraints.

The computational effort required to solve a linear program is proportional

to m , where m is the number of constraints (Bradley, 1977). The sub-

problems LP 3.3 resulting from decomposition are easily solved leading

to further savings in computational-effort.

3.3 Non-Linear Optimization in Flexible Manufacturing Systems

The special structure of the flexible manufacturing system can be

exploited in order to implement efficient non-linear programming techniques.

The method of attack involves breaking the problem into flow-generating

linear programs @hich can be solved using the decomposition method of

Section 3.2)and non-linear optimization problems with a reduced number of

variables and simpler constraints.

The problem NLP 2.1 consists of a nonlinear objective function to be

maximized subject to a set of linear constraints. A number of methods

exist which exploit the convex structure of the linear constraint set

to generate feasible ascent directions (Nguyen, 1974). Algorithms in

this category include the Frank-Wolfe (Nguyen, 1974), gradient projection

(Luenberger, 1973), and the reduced gradient (Himmelblau, 1972) methods.

In addition to obtaining the optimal solution, the routing of workpieces

in the network must be resolved. The Dantzig-Wolfe (1963) decomposition

principle applied to the linear program not only gives rise to sub-problems

which are easy to solve, but also resolves the routing problem by generating

strategies. It would be advantageous to incorporate this property into a

method for solving the non-linear optimization problem.

The problem NLP 2.1 is in the form

NLP 3.1

maximize f(x) (3.19)

subject to

C T.x. < 1 (3.20)
1 1 -

i=l
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Start with an initial
set of strategies

;j = 1,o..

Find optimal mix
of current XSby
solving LP 3.2

Generate new strategies
by solving minimum cost
problem LP 3.3 for each
type of piece

no /Optimality conditions
satisfied for LP 3.1

yes

Optimal solution

Fig. 3.1. Flow-Generating Decomposition Algorithm

Fig. 3.1. Flow-Generating Decomposition Algorithm
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c.x = - c x i=l,. ..P (3.21)
13 1 al 1

A.x. = 0 (3.22)
1 1

x. > 0 (3.23)
1 -

The constraints (3.20)-(3.23) are the same as those of LP 3.1 in Section

3.2. The flow conservation constraint (3.21) here is in a slightly

different but equivalent form.

The set Q defined by the linear constraints (3.20)-(3.23) is convex,

closed, and bounded. Because of (3.22), every member of Q can be expressed

as a vector sum of the elements of the lower dimension convex cones .i defined

in Section 3.1. Any point in the set Q can be expressed as a convex combination

of the extreme points I of the set(Bazaraa, 1976). That is, any point xsQ

can be expressed in the form

x = E w1z4 (3.24)

with E wZ = 1 (3.25)

w Z> 0 (3.26)

Cantor and Gerla (1974) optimize non-linear functions subject to linear

network flow conservation constraints by considering such convex combinations.

The extreme points are generated by solving linear programs over the linear

constraint set. The method can be adapted to solve NLP 2.1. The essential

'difference lies in the interpretation of the extreme points. In the

Cantor-Gerla extremal flow algorithm, the extreme points are identified as

characterizing flows following the shortest origin-destination path when a

certain metric is defined on the arcs of the network. In the flexible

manufacturing system, the extreme points correspond to certain weighted

combinations of strategies. For this reason the adaptation is much closer

to Defenderfer's tree flow (TR) formulation of the Cantor-Gerla algorithm

(Defenderfer, 1977).

Substituting equations (3.24)-(3.26) into NLP 2.1 gives rise to the

following non-linear programming problem with the variables wI
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NLP 3.2 max f{E wz }1 (3.27)
w=(W ... )

subject to (3.25) and (3.25)

This problem can be solved by the gradient projection algorithm (Cantor and

Gerla, 1974) (Luenberger, 1973). It is called the restricted master problem

(Dantzig, 1963) if the set of all convex combinations of , , referred to

as the convex hull of 4 , is a subset of Q. The dimension of the set Q

is NA. Any element xEQ may be expressed as the convex combination of

at most NA+l linearly independent extreme points 4, (Bazaraa, 1976). Thus

if n <NA linearly independent vectors WZ are available, only members of a

certain subset (the convex hull of W,£) of Q can be expressed as the convex

combination of the available extreme points 4.

Let x* be a solution to the restricted master problem. By applying

the Karusch-Kuhn-Tucker optimality conditions for a mathematical program

(Bazaraa, 1976) and noting that S is a convex set, x* is at least a local

maximum if

e'(x-x ) < 0 (3.28)

af
where e = -' 

X---X*

If f(x) is a concave function, then f(x*) is the optimal value over the

whole set. Thus to find the next extreme point to be incorporated in the

solution procedure, the following linear program is solved (Cantor and Gerla, 1974)1

LP 3.4

maximize ex (3.29)

subject to (3.20) - (3.23)

This is the flow generating sub-problem and is the same as LP 3.1 save for

the objective function, which does not include costs on xi. This is re-

flected in the objective function in the de-coupled sub-systems which for

LP 3.4 become (ei - 7riTi) (Lasdon, 1970), where ei= af/ax i-

Each of the extreme points 4, can be expressed as
* * s

4e , E q5 x q i 2 s Xi (3.30)~s qs s ii
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where q* is the solution of LP 3.2. The optimal solution of NLP 3.2

is thus x*= E w*4 . The flow vectors x (as described in Section (3.2))

consist of single strategies for each type of workpiece. Thus the solution

of NLP 3.2 contains all the information necessary to route all of the work-

pieces through the system.

The optimal point in the program is reached when for some solution

i to LP 3.4,

Q = e' (~ -x*)< 0 (3.31)

The procedure may be terminated when QQ is below a given tolerance

level with the assurance that x* is always feasible.

The program NLP 2.1a, resulting from the incorporation of the

transportation system into the optimization problem, can also be dealt

with in the same way. Applying the method of Cantor and Gerla to this

problem results in the following flow generating linear program

maximize e r (3.32)

subject to (2.27), (2.29), (2.30), (2.31), (2.43)

(2.46), and (2.47)

k
The vector r contains the elements x. and r.., and er is defined as

af

e = r (3.33)
r ar r=r*

where f (r) is the objective function (2.44).

This is a multi-commodity flow problem with shared resources at certain

network nodes (the workstations). There is a further constraint in

that the workpieces must pass through some specified nodes in going

from the origin to the destination.

Applying the decomposition method of Section 3.2 to LP 3.5 results

in the following sub-problems which have to be solved for each type of

workpiece

LP 3.6 minimize (TiTi - eir) r (3.34)
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subject to (2.27), (2.29), (2.30), (2.31), (2.43) and (2.46)

and r o = Ci (3.35)

with er ie (rpr Prwith er= (e ir...e ) and r = (rl rp

The constraint (3.35) normalizes the solution vector so that the ratio-

requirement constraint is satisfied when all of the sub-problems have

been solved.

If (niTi - eir) is interpreted as a vector of costs incurred in

traversing each arc of the network, LP 3.6 can be interpreted as a

constrained minimum cost routing problem for each type of workpiece.

The constraint is that it must pass through one of the permissible work-

stations for each operation. Provided there are no closed paths with a

total negative cost, LP 3.6 has a bounded solution which involves sending

all of the flow along the shortest path which passes through the required

set of nodes.

The objective function from section 2.1 is
M

f (r) 1 r. - { .(x) + g(r)} (3.36)
- 'jz=l

af
Thus the gradient -a = er is given by

If Xa -= -2 j k at the workstations
ij j ax j=l,... M (3.37)

(-6a 9r) on network arcs (3.38)
2 arij

i3 j>m
af 

arij

1 -2 r on the input (3.39)
io arc j = 0

In actual systems, the travel time where congestion effects are present

is an increasing function of the flow rate. Thus g (r)/ ar.. is a positive
1)

quantity. Similarly the average queue length qi(x) is an increasing

function of x. Thus the metrics on all the arcs of the network except

the one from the loading station (j=0) are positive. The arc j=0

is an input arc and does not form a part of any closed path. With this

formulation, therefore, there are no closed paths with a total negative

cost. Shortest-path algorithms-may then be used to solve the shortest-

path problem. Dreyfus (1969) reviews constrained shortest-path algorithms
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which could be used to solve the sub-problems. Kershenbaum and Golden

(1976) solve constrained shortest-path problems where the order of visiting

the nodes is not specified by a labelling algorithm. This could be useful

where the ordering of the operations is not resolved. The use of shortest-

path algorithms in flexible manufacturing systems should prove to be fruitful

because they are unlikely to have as a dense a network as occurs in trans-

portation and computer communication systems. For typical shortest-path

algorithms, the number of computer operations required to solve the problem

is of the order of N3 where N is the number of nodes in the network. The

network model of a manufacturing system such as that of Fig. 1.1 has far

fewer nodes than, for example, urban traffic networks in which shortest-path

algorithms have been applied (Nguyen, 1974). Furthermore, the ratio of the

number of arcs to the number of nodes in a manufacturing system is relatively

small. This can lead to savings in the computation time of shortest-path

algorithms (Steenbrink, 1974).

A flow graph summarizing the TR formulation of the Cantor-Gerla

algorithm is given in Fig. 3.2. The method has the advantage that only

convex combinations of the extreme points are considered in the non-linear

optimization. The number of variables is consequently much less than in

the original problem. If at some stage the weight wk on some extreme point

is zero, it can be dropped from the set thereby keeping the number of variables

small. Finally the application of the algorithm resolves the routing problem

in the flexible manufacturing system.

The problem NLP 2.2 with non-linear constraints can be expressed as

NLP 3.3
minimize f(x) (3.40)

xEQ

subject to h(x) < 0 (3.41)

where i is the set of feasible flows and

h(x) i=l qi(x) - (3.42)

The solution to NLP 3.3 is the pair (x,n) which satisfies the Karusch-

Kuhn-Tucker conditions (Bazaraa, 1976). Namely
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Start with initial set of
extremal flows tr I' A= 1, ....

Solve NLP 3.2 to find
minimum in convex hull

of , I ,....

Generate a new extremal
flow by solving LP 3.4
using the decomposition
algorithm of Fig. 3.1

no Check if optimality
conditions (3.31 )
are satisfied

yes

Optimal solution is

x= Zwz*l

Fig. 3.2. Tree Flow Formulation of the Cantor-Gerla

Extremal. Flow Algorituhm
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Df(x) + ah(x) (343)
ax +n = 0 (3.43)

~h(x) = O (3.44)

fl > 0 (3.45)

If f(x) and h(x) are convex functions then f(x) is a global minimum within Q.

otherwise it is a local minimum.

The classical penalty function method attaches the constraint (3.41) to

the objective function by means of a quadratic penalty function. The problem

NLP 3.4 is then solved for an increasing penalty weight W ,

NLP 3.4

minimize B(x,W )=f(x)+W s {[h(x)J} (3.46)
xE•2

! t t > 0 (3.47)
where (t) = (3.4

(0 t < O

If xs solves NLP 3.4, it is known (Luenberger, 1973) that

lim x =x (3.48)
W ->co s

lim W h(x ) = (3.49)s s
W ~o

s
The penalty function approach suffers from numerical difficulties because the

Hessian of f(x,W s ) becomes ill-conditioned as Ws becomes large. Furthermore,

succeeding steps of the optimization process do not make use of previous

information on f(x) and (x) (Himmelblau, 1972).

The Langrangian function for NLP 3.3 is defined as

L(s,)ns f(x) + r= h(x) (3.50)

The dual function is defined as

D(nl) = min L(x,ns ) (3.51)
xsQ

It can be shown that (Bazaraa, 1976)

f(x) < sup D(nl) (3.52)
n

A necessary condition for the inequality to be satisfied as equality is that

Q, f(x) and h(x) should be convex. A duality gap is said to exist otherwise

(Bazaraa, 1976) (Lasdon, 1969). Where there is no duality gap, NLP 3.3
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could be solved by way of the dual function (3.51), with the knowledge that

n is the solution to

sup D(nl)
n >0 (3.53)

and x solves

min L(x,l) (3.54)

This method has been used to decompose large non-linear programs (Lasdon, 1968).

Hestenes (1969) and Powell (1968) introduced the penalty Lagrangian method

in order to overcome the disadvantages of classical penalty methods.

Rockafellar (1973) (1974) extended the method to inequality constrained problems

and gave convergence proofs using duality theory.

The algorithm is as follows

NLP 3.5
2 2_s

f (x) +n sh (x) th (x) ] 2 h(x)> W

(3.55)
minimize L(x,ns,W)=

xeSI s -ns
f (x) -4W h(x)< W

If X solves NLP 3.5, apply the update (3.56) and repeat

Is + w h(ss) h(x )> W

nsl h(3.56)

0 h(x ) < W

The solution is reached when conditions (3.43)-(3.45) are satisfied. This

particular form of the Lagrangian function has the advantage that it has a

continuous first derivative. The dual associated with L(x,l ,W) is

D(n,W) = main L(x,n ,W)
xESI

It can be shown (Rockafellar, 1973, 1974) that for W sufficiently large but

finite

D(f,W) = sup D(T,W) = inf L(x,l) = f(x) (3.58)
xand is independent of W.

and is independent of W.
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Furthermore,
aD (nsw) T,

sn= max (h(x ),- W ) (3.59)

The update rule (3.56) is thus a fixed-step-length, steepest ascent maximi-

zation of D (T ,W) .

Bertsekas (1975) has explored the convergence properties of penalty

Lagrangian methods. They have arbitrarily fast linear convergence rates.

That is, the rate at which ns converges to n and hence x to x is linear in

the number of steps. The rate can be arbitrarily varied by choosing the

weight W on the quadratic penalty term. Several methods (Betts, 1977)

(Miele, 1971, 1972) have been suggested for increasing the rate of convergence

by altering the updating rule (3.56).

In practice, the overall performance of the algorithm is found to depend

also on the penalty weight W. If W is large, rs converges rapidly to Ti.

However, the number of gradient steps required to minimize L(x,n s,W) grows

with W. This is because the Hessian of L(x,Rs,W) becomes increasingly ill-

conditioned as W becomes larger. An improved update rule for the Ts allows

a smaller penalty weight W to be used while maintaining a favorable convergence

rate for Tls . An extrapolation method has been found to be quite effective in

speeding the convergence of the algorithm. The method is given here for one

constraint but it can be generalized to several constraints. For more than

one constraint, the advantage would have to be weighed against the additional

effort required for matrix inversion.

Define h (Ts ) as

hT() = h(x) jx=x (3.60)

where as before xs minimizes L(x, s,W).

The solution of NLP 3.3 occurs at n where h (r)=0. Figure 3.3 is a graph

of h (Ti). Minimizing L(x,rTs,W) obtains the point P1 on the graph. The update

(3.56) produces n s+l and the subsequent minimization of the penalty Lagrangian

produces P2. At this stage rather than applying (3.56), a linear approximation

is made to h (Ti) and the next estimate of Tn is made by extrapolation to give

h (Tl {T 1 Ti}
Rn s+ Rs+l s+ls

rs = n +
s+2 s+l hn(R s) - h (s+l) (3.61)

Subsequent values of Tni are obtained by extrapolating from the two latest
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Start with an initial
estimate on Kuhn-
Tucker Vector's

F function (3.55) and
solve NLP 3.5

Are optimality conditions \yes x is optimal withs
satisfied the associoted K-T

vector
no

Apply update rule (3.56)
to find S7s + 1

Fig. 3.4. The Augmented Lagrangian Algorithm
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estimates. This is equivalent to a Newton method (Luenberger, 1973) because

in extrapolating, an approximation is being made to the second derivative of

D(n) .

The minimization of the Lagrangian function NLP 3.5 subject to a linear

constraint set can be done using the extremal flow algorithm, Fig. 3.2. The x-

variables in NLP 3.5 are then the weights W on the extreme points Tk

Fig. 3.4 is a flow chart summarizing the algorithm.

3.4 Conclusion

Optimization methods which exploit the structure of the flexible manufacturing

system models have been discussed. The decomposition method for linear programming

problems has the strategy generating sub-problems LP 3.3 which are co-ordinated by

a linear program with fewer constraints than the original problem. The method is

iterative. Strategies are generated successively until the co-ordinating program

finds an optimal combination. Thus only a subset of all the possible paths

through the system is considered.

The extremal flow algorithm for optimizing non-linear objective functions,

subject to linear constraints, expresses the flow vector x as a convex combination

of the extreme points of the feasible flow set Q. The extreme points are gen-

erated as required by linearizing the objective function at a current point and

solving the resulting linear program by the decomposition method of section 3.2.

In this way, not all extremal flows need to be considered in order to arrive at

an optimal solution.

The augmented Lagrangian algorithm converts the nonlinearly constrained

problem into problems with only linear constraints. The extremal flow algorithm

can then be used to minimize the Lagrangian functions L(x,ns ,W) subject to the

linear constraint set. An attractive feature of this scheme is that when rl is

close to the Karusch-Kuhn-Tucker vector n, the optimal points of the

Lagrangian function x(n ) are close to the optimum x. The number of additional

strategies that have to be generated in order to optimize successive Lagrangians

is then small.
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4. NUMERICAL RESULTS FOR TWO- AND FOUR-WORKSTATION SYSTEMS

4.1 Introduction

In order to test the applicability of the ideas of Chapter 2 and 3, some

hypothetical systems were postulated and optimized. In the stochastic case,

a two-workstation system with two different kinds of pieces was used. The

workstations were assumed to have an exponential service time distribution with

Poisson arrival processes. This model serves a useful role as a test bed for

the proposed algorithms and for gaining insight into how the optimal strategy

choice depends on system parameters.

One might ask how realistic these assumptions are. At the present stage

of the investigation the types of variation in the duration of time a work-

piece spends at a workstation are not known. However, in the Baskett et al.

(1975) model, the behavior of a network of queues is strongly dependent on

the mean of the service and interarrival time distributions and not on higher

moments. Particularly relevant is the operational result of Denning and Buzen

(1977) which is derived without making any assumptions as to the distribution

of random processes involved. It can be expected that systems with non-

exponential servers and non-Poisson arrival processes will behave in the same

qualitative manner.

The assumptions made will not fit actual systems. The exponential

distribution has the memoryless property. Thus no matter how long a piece

has been at a workstation, the time remaining until service is complete is

still exponentially distributed with the same mean. This is not a realistic

assumption for many manufacturing processes. The same observation holds for

a Poisson arrival process for which the time between arrivals is exponentially

distributed. The effect of these factors is to make calculations of average

queue lengths less accurate. The effect on the optimal strategies is diffi-

cult to judge, and will require some study.

Section 4.2 presents the model and optimization results for different

values of system parameters. In Section 4.3 the linear model for systems

which are nearly deterministic is applied to a four-workstation simulation

where the size of the in-process inventory is not of concern. The flow

optimization results are used to run a simulation of the system and the

results are discussed.
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4.2 Optimization Results for a Two-Workstation System

Consider the system depicted in Figure 4.1. The work-stations and the

loading station have exponentially distributed service times with mean l/pi

at station i. The service time distribution is independent of the type of

piece being worked on.

There are two types of pieces being manufactured. The first needs one

operation which may be performed at either workstation. The second needs

two operations, one at workstation 1 and the second at workstation 2. The

operations can be done in either order. The four possible strategies, two

for each piece, are summarized in Figures 4.2 and 4.3. Also shown are the

tij matrices from which the strategies are derived by the method of Section

2.3.1. In this case the four strategies are easily identified. The variables

yp Z = 1,...,4 represent the flow rate of strategy Z pieces into the system.

The ratio requirement is that two type 2 pieces should be produced for

every type 1 piece. This can be expressed mathematically as

2(Y1 + Y2) - (Y3+y4) = 0 (4.1)
The total production rate is

4
R = Z y2 (4.2)

The in-process inventory I consists of pieces on the transportation system and

pieces awaiting service at the workstations. The pieces travel at constant speed

on the transportation system. Thus the travel time is proportional to how far

a piece travels while following a certain strategy. The travel time on each

arc of the network (see Fig. 4.1) is taken to be T (independent of the arc).

The travel time for each strategy is given in Table 4.1. This assumes that

no piece is ever rejected from a workstation, which is consistent with the

assumption that input queues have infinite capacity. The number of pieces

in the transportation system is thus on average

t[4Cy1+ y2
) + 3Y3 + 9Y43 (4.3)

The system is modeled as an open network of queues. Thus at workstation j,

the average queue length is given by (Kleinrock, 1975)
7 Yi
EM (j)

Yqj y j = 0,1,2 (4.4)
J JM (j)
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strategies I and 2

Fig. 4.2. Machining Options for Type 1 Pieces
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Fig. 4.3. Machining Options for Type 2 Pieces
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strategy\ 1 2 3 4

T 4T 4T 3T 9T

Table 4.1: Average Time TZ on the Transportation Network

for each Strategy, Two -Workstation Example

speed ~. Average

Workstation in piece-/hr. Operation time
i \ (minutes) 60/4j

loading station 30 2

1 6 10

2 5 12

Average travel time on each arc 1.2 minutes

Table 4.2: System Parameters, Two-Workstation Example
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where M(j) is the set of strategies that use workstation j.

The loading station is labelled j = 0. An arrival at the loading

station is considered to be an order by the system controller to load a

particular piece. The queue at the loading station is thus the pieces

and pallets awaiting service because their loading orders cannot be

carried out immediately. The empty pallets and raw material inventory are

thus not included in qo(y). An accurate assessment of the utilization of

the loading station is obtained since its service rate is matched against

the arrival rate of load commands.

Combining (4.3) and (4.4) gives the total average inprocess inventory

as
2

IY(y) = q. + [4(y1 + 2 + y 3 + y4 (4.5)

The optimization problem is to maximize the production rate while keeping

the average in-process inventory below a set level Q. This is stated as
4

NLP 4.1 Maximize R = Y (4.6)

subject to (4.1) and

I (y) < Q (4.7)

YZ < 0 (4.8)

The constraint on the average level of in-process inventory is expressed in

(4.7) where Q is the desired level and is motivated by the desire to keep

the input flow rate E y. into the system at a level which does not over-

whelm the system. IN non-deterministic system is offered work at a rate

very close to its service rate, the result is a rapid build up in the queue

lengths at the servers (Kleinrock, 1975). If a complete congestion model

were available that took into account queue blocking, overflow onto the

transportation system and congestion effects on the network links there

would be no need to limit input flow rate by use of constraint(4.7). However,

limiting the size of the in-process inventory is often desirable because floor

space and the pallets needed add to the cost of the system.

The parameter values used in the experiment are shown in Table 4.2.

In the first experiment the value of Q was varied from 2 to 10 and the resulting

optimal strategies, production rates, and station utilizations are shown in

Figs. 4.4 - 4.8.
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The optimization was carried out using the augmented Lagrangian algorithm.

The speed of the algorithm is found to depend on how fast the estimate to the

Kuhn-Tucker vector converges to the true value and on the number of line searches

needed in the unconstrained minimization of the Lagrangian function. Typically

in this example with two explicit constraints, it takes less than five Lagrangian
-5

minimizations to find the maximum to an accuracy of 10 in the constraint func-

tion value. Execution time is about 2 seconds (C.P.U) but can be improved sig-

nificantly by the use of an improved unconstrained minimization algorithm.

It should be noted that if there is no constraint on the average in-

process inventory, the problem becomes a linear program. The optimal solution

of this program is the limiting maximum production rate of the system as 0 + 00.

For all values of Q, type 2 pieces always follow strategy 3. That is,

they go to station 1 first and then to station 2. This is because strategy

4, which involves extra travel, increases the in-process inventory without a

corresponding increase in production.

The proportion X of type 1 pieces that are sent to workstation 1 (referred

to as the optimal split) is shown in Fig. 4.4 as a function of Q. When the

average in-process inventory is low, the optimal split is high since workstation

1 is the fastest station. As the number of pieces in the system increases, more

type 1 pieces are diverted to workstation 2. Secco-Suardo (1978) found a similar

change for a system modeled as a closed network. In his formulation, the optimal

split depends on the number of pallets available. As can be expected, the

production rate increases with Q (Fig. 4.5.) but a saturation effect is in evidence.

The maximum possible production rate is 6.6 pieces per hour when the restric-

tion on the average level of in-process inventory is lifted (i.e., as Q + a).

Both stations are then fully utilized.

The effect of increasing Q on the utilizations of the workstations and their

queue lengths is shown in Figs. 4.6 and 4.7 respectively. The utilization of the

workstation increases in a way which keeps the queue lengths approximately in

constant proportion. Thus as the average level of in-process inventory is

increased, the optimal split changes in a way that keeps the workstations

balanced in the sense that their levels of utilization are approximately equal.
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A useful output of the optimization program is the value of the

Lagrange multiplier associated with the constraint on average in-process

inventory. As can be seen in Fig. 4.8, the multiplier decreases as Q is

increased. Since the multiplier can be interpreted as the rate of change

in the optimal objective function, with Q, the return in terms of increased

production rate decreases dramatically as Q is increased.

In the second set of results, the average value of in-process inventory

Q is required to be 10. The speed 12 of workstation 2 is fixed at 5 pieces

per hour, and that of workstation 1, p1' is varied from 2 to 10 pieces per

hour. The results are compared to the asymptotic case in which there is

no limit on Q.

The optimal split for type 1 pieces for Q - 10 and Q = X are shown

in Fig. 4.9. The difference between the two is small. There are three

operating regimes. When pi is very small compared to u2 all type 1 pieces

are sent to workstation 2. Similarly if 11 is large compared to 12 the

optimal split is unity and all type 2 pieces to to workstation 1.

This would indicate that when the difference in speed between the two

workstations is great, it is not worthwhile making the slower station

flexible. Eveni if it has the capability of performing operations on a type

1 piece, it is not utilized. On the other hand this flexibility may be

valuable when the faster machine is unavailable due to a failure or to

routine maintenance.

in the range where the speed of workstation 1 is about + 40% that of

workstation 2, the optimal split changes rapidly from zero at the lower

speed to unity at the higher speed.

The three regions are evident in the effect on utilization and average

queue lengths shown in Figs. 4.10 and 4.11 for Q = 10. The change in

optimal split keeps the utilizations of the two stations close to each other.

For this system, at least, the optimization produces a balanced load on the

two workstation.

The utilization ul of workstation 1 does not decrease monotonically as

p11 the speed of the station, increases. This counter-intuitive behavior

can be examined by changing the variables in NLP 4.1. Let R be the production rate
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and X the split for type 1 pieces. Since strategy 4 is never used, the

strategy flow rates can be expressed using the ratio requirement constraint

as

Y 3R (4.9)

Y = (1-A) (4.10)2 3

2
y3 = T R (4.11)
3 =

The utilizations u1 and u2 of the workstations are, from (4.9) - (.4.11),

R
U1 = 3 (4.12)

u (3-X) (4.13)

where p1 and p2 are the service rates at workstations 1 and 2, respectively.

The number of pieces on the transportation network and at the loading

station is negligible compared to those queuing at the workstations. The

optimization problem NLP 4.1 can thus be stated as

NLP 4.2

Maximize R (4.14)
R,A

subject to

I (R,+) = 1 < (4.15)
A 1-u 1-u -

X < 1 (4.16)

X > 0 (4.17)

R > 0 (4.18)

The in-process inventory constraint (4.15) limits the total average number

of pieces queueing at both workstations. It results from the substitution

of (4.9) - (4.13) into (4.4).

The problem may be solved algebraically by applying the Kuhn-Tucker

optimality conditions. The Lagrangian function is

L(R,) = R + Tr 1(I (R,X )-Q) + 7r2 (-1)-'3 (4.19)

where (7r1,r2,3,rT) > 0 is the Kuhn-Tucker vector.

Firstly, it should be noted that the optimal solution always occurs

on the boundary IX (R,X) = Q. By equating IX (R,X) to Q, for fixed X, a



quadratic equation in R results

A1A2(Q+2)R - (Q-l)(A 2 1l+A11 2)R + PP2
Q = 0 (4.20)

where

Al = (2+X)/3

A2 = (3-k)/3

If X = 0, necessary conditions for optimality are 2= 0,3>0 and aL(R,X)/aX > 0.

Using (4.19), these conditions imply that

] (2 - R)/( 1 2 ) (4.21)

with RO being the solution of (4.20) for X=0. The solution of (4.21) depends

on the average in-process inventory Q through (4.20). For fixed F12' the range

of il in which it is optimal to have a mix of strategies for type 1 pieces thus

depends on the average level of in-process inventory Q.

The roots of (4.20) as a function of ~p are plotted in Fig. 4.12 with the

split, X, as a parameter, Q = 10 and p2 = 5. For workstation 1 speed p1 < 3.3,

the highest production rate is achieved with X = 0. In this range of 1 where

X = 0 is optimal, the production rate growth is approximately linear with 1I

from 0 to 3, but falls off thereafter. Larger values of X then become optimal

as 1I increases beyond 3.

The effect of p1 on workstation utilizations u. and u2 is shown in Figs.

4.13 and 4.14, with X as a parameter. For the X = 0 case, all type 1 pieces

are sent to workstation 2, and workstation 1 handles only type 2 pieces. Be-

cause of the production ratio requirement, workstation 1 is the bottleneck

station for low values of p1l and constrains both u2, the utilization of work-

station 2, and the production rate, R. Both u2 and R rise with p1' linearly

at first, and then more slowly as u2 approaches a value of 0.9 (limited by the

in-process inventory constraint) and workstation 2 becomes the bottleneck. This

in turn causes u1 to decrease.

A similar argument holds when X=1. By applying the Kuhn-Tucker conditions

to (4.19) it is shown that

[12 <(2 R (4.22)
wher -i1-sl)/(U 2- R1)

where R is the solution of 4.20 for X=l
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In this region, all type 1 pieces go to workstation 1. As its

speed increases, its utilization drops. When p1 > p2 , station 2 is the

bottleneck and it determines the maximum production rate.

From (4.19), if 0 < X < 1, then 2 = T = 0. The Kuhn-Tucker
3

optimality conditions are, in this case:

aL O . (4.23)
.R -

Some algebraic manipulation reveals that

u1 = 1 - ~ 1 (4.24)

Differentiating with respect to pI

du
1- ) > . (4.25)

dpl - Q 2

Thus, in this region the utilization of workstation 1 increases with :.

A similar argument shows that u drops as p increases.

There are two changes taking place as p increases. The production

rate R and the split X are both increasing. The rising production rate tends

to increase the utilization of both stations. The change in X means that

type 1 pieces are being switched from station 2 to station 1. It appears

that the changing split has the effect of raising the throughput of station

1 at a faster rate than the increase on pI. At station 2, the effect is to

actually reduce the throughput of the station, thereby lowering the utiliza-

tion. The gradient (4.25) varies inversely with Q, and when Q is large,

is close to zero. The graph of Fig. 4.15 shows the utilization of both

stations for Q = X . For 3.3 < B1 < 7.5, the utilizations of both sta-

tions are 1, as predicted by (4.24) and (4.25).

The non-monotonic shapes of the curves in Fig. 4.10 are determined by

the solution of NLP 4.2. One might ask whether or not this kind of behavior

results only from the model or reflects phenomena which can be observed in

actual systems.

The optimization method suggested by Secco-Suardo (1978) makes use

of the exact solution of the closed network-of-queues model. For the two-

workstation system, the problem may be stated as (see the Appendix):
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NLP 4.3

Maximize f () (4.26)

subject to

_ << 1 (4.27)

where f (X) = G(M,N-1)/G(M,N) and is the ratio that determines the through-

put of the network. It is defined by equation (2.19). If the Kuhn-Tucker

optimality conditions are applied, three conditions are again found to

govern the optimal choice of X:

<__ (<0 = 0
df(X) 0 o < X < 1 (4.28)dX 0X=l

The solution of (4.28) determines for what range of pI it is best to have

a mix of strategies for type 1 pieces.

Intuitively, at either boundary, X = 0 or X = 1, the behavior of the

two models should be the same. As the speed of workstation 1 increases for

fixed X, the production rate grows until station 2 becomes the bottleneck.

As a result, the utilization of station 1 drops while that of station 2 in-

creases. This is indeed the case, as is shown in the Appendix.

In the interior of the constraint set 0 < X < 1, behavior is determined

by the solution of (4.28). The defining relationship for G(M,N-1)/G(M,N)

indicates that this involves finding the roots of a high-order polynomial.

In the Appendix,the behavior of the closed network model for the two-

workstation system is investigated and is found to be remarkably similar

to that of an open network model with a constraint on the average level of

in-process inventory.

The graphs of Figs. 4.12 and A.1 show the effect of varying the speed

1l of workstation 1 on the production rate R for different values of the

split X. Both models exhibit the approximately linear growth in R when

P1 is small, followed by a saturation effect. The closed network-of-

queues model predicts a higher throughput than the open network model.

For X = 0, for example, the asymptotic throughput for the former is five

pieces per hour, compared to 4.5 pieces for the latter. Similarly, the
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utilization 1 of workstation 1 is higher for the closed network model

(Figs. A.3, 4.10 and 4.13).

The effect of X on the production rate for fixed values of plis sim-

ilar for both models, as is shown in Figs. A.2 and 4.16. The maximum

throughput for any P1 occurs at about the same value of X for both cases.

The two models apply under different assumptions. The open network

model looks at the system from the point of view of the workpieces. The

average queue length in an open system grows very rapidly as the arrival

rate at the server approaches the service rate. This effectively limits

the throughput of the bottleneck station and hence the production rate

when there is a constraint on the in-process inventory.

In the closed queueing network model, the number of customers in the

system is fixed. This model can be viewed as modelling the system from

the point of view of the fixed number of pallets circulating in the system.

The utilization of the bottleneck station can approach unity if the number

of pallets is large enough. It is this fact that explains the higher

throughput and utilization in the closed network-of-queues model.

The variation of the throughput of the two-station system with the

relative speed of the two stations and the split should be investigated

by means of a simulation. It can then be seen whether or not the counter-

intuitive behavior of the system model reflects a phenomenon that occurs in

actual systems, or is in fact only a property of the mathematical models.

The sensitivity of the production rate to changes in the split can

be judged from Figs. 4.12 and 4.16. Figure 4.12 shows the effect of p1

on the production rate with the split as a parameter and Q = 10, and the

optimal production rate in Fig. 4.17 is seen to be the envelope of the

curves in Fig. 4.12. The three operating regions can be seen. For

3.3 5 p1 < 7.5, the optimal split is sensitive to the relative speeds P1

and p2 of the two workstations. The peaks of the curves in Fig. 4.16 are

fairly flat, which indicates that small variations in X about the optimal

do not reduce the production rate greatly.

The graphs of Fig. 4.17 showing the effect of p! on the production

rate and Fig. 4.10 on station utilizations, emphasize the importance of

analyzing a flexible manufacturing system as an interconnected system.

The results here illustrate the effect of changing two system parameters;

the speed of workstation 1 and the split. In an actual system, many more
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parameters can be varied, and a trade-off between the many conflicting

requirements is needed before an optimum choice of parameter values can

be made. An analytic technique such as the flow optimization method for

evaluating the performance of a given system is an essential tool in the

planning and operation of a flexible manufacturing system.

If two different systems are being compared, it is essential to

choose the correct split for each, otherwise the comparison would not

yield the correct result. For example, assume that in the design of the

two-machine system, two versions of workstation 1 are available. The

cheaper version works at a rate p1 = 4 pieces per hour and the more expen-

sive works at p1 = 6 pieces per hour. Using a fixed value of X = 0.2

would show the faster workstation producing only a 6% improvement over

the slower machine. However, using the optimal values of X( = 0.19 for

)1! = 4 and X = 0.75 for p1= 6) shows the true improvement to be 22%. If

installing the faster workstations costs 10% more than the slower, the

wrong decision would be made if the comparison were made with X = 0.2

for both versions.

4.3 Results for a Four-Workstation Deterministic System

4.3.1 Five-Part Example with Strategies Enumerated in Advance

The system of Fig. 4.18 has four workstations, and is simulated as

a discrete step process on a digital computer (Horev et aL, 1978). There

are five different types of pieces to be manufactured.

In operating the simulation, the policy was to give each piece two

alternative paths through the system. The first priority route is the

preferred one, and the second is available if for some reason the first

cannot be used.

The first and second priority routes can be viewed as strategies in

the flow-optimization approach. The strategies, two for each piece, are

shown in Table 4.3. All machining times are deterministic and the system

is assumed never to fail. Using only the first priority route for each

piece, the relative workload on each workstation is given in Table 4.4.

The system does not have equal loads at the workstations and is said to

be "unbalanced" (Ward, 1980). The maximum production rate of the system

operated in this manner is easily calculated. Under this policy workstation
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87049AW023

W.S. #2:2 W.S. #3

WoSo #1 W o S. #4

LOADING UNLOADING
STATION STATION

Fig. 4.18. A 4-Workstation System



-93-

.,:) ~ ~ p 4: ? 
HE-a r o 4oJ 

H H,-n o

*,1k o1 ~ orl( ,0 (DX~~~ H N ^ v -CJ~~~~~ Inrz4

.J

° 0 Cl " (4 0 ' 0 °

r~~~~~~i 00 H H H~~~~~~~~~~~~

E-~4 1 0 0 P 

040

.- 1-,-I r,-IH H

H H

0~~~~~~~~~~~~~~~~L



-,94-

o
o
u'l0Ln

r. 0
0 0 '- CN Ln 03 tl
.,-I N - . 0 '. .0

-. 13 0~ 0 ' 0i

-P P r

wH Hw 0.4)d

--I U '1 4 --I 4-) wl I Ir

rq 4J .14 3 d

.,4 t H-H t~ Q-I

o~~~~~~~~~~~~~~~~~~~~U*In -4 U4· J p 13H 4J 4J,-
E~~~~~~~~~~~~O ·r oraa ~ ~ ~ ~ ~ d - - - -

4J U) 0 O ' 
O 0 4 l:

43 .o 0
o Io , ,o I D , ,- I o4 

· rl~~ ar a, a -I- Ot

Ca rq en o a
0d H -, - I. L ad

0 -ri tp d v 4 4

A4 r( Pc L
NA- *v4 YO )

43 EnS

4-,-I H 1d o

'.0 LA Oi L10 : °-H43 , .,~ . '~· ~ ·r ',~
4n 

0

O~~~~~~~~~~~~~~4 1~ to 4N U-'I n 4) 4. )

O ·rl id 3r O O
>1 n 0 El a) ) 

0 N~~~t. 0 0 U)

·

-H -r (N H-IN 0 (N r 0 0

· : O : P· 0. O edcOE~
0 N r0 A 0 '. U

-,.- -,-C) 't /
rq 4i~~~~~~~~~~U) 4·- U )·

V 00c~~~~~~~~~~~~~~~~~~~~~~~~~,- ·r

0~~~~~~~~~-H~~~~~~~~~

43oo

4a 3 Uk~~~~~~~~~~~~~~~~i rl
~~~' O · rl L, P U a, ~~~w - 0 

k pi~.

U) H (N (0 ~ 4 U) 4

·rlO I H -1 I a

P4

-P nj E-4

4J tn cq co O 0
'O rg 04r)P

P4 E-f -P~~u f 
0 I o
4-) - a)

N~~~~~~~~~~~~~
0~~~~~~~~~~~~~ $4 Ln P.E4J

w V- CN v



-95-

3 is fully utilized. Let R be the total production rate. Pieces 2,

3, and 5 use station 3; their respective ratio requirements are 0.2,

0.12, and 0.4. The time Ti each piece spends at workstation 3 is given

in Table 4.3. The production rate R thus satisfies:

R(a T + a T + c ) = 1 (4.28)
22 33 55

where ai is the ratio requirement for a type i piece. Using the values

shown, R = 0.2137 pieces per unit time.

The optimization method of Section 2.3.2 can be applied to this

case to determine the optimal proportion of each type of piece to follow

the first priority route. There are 10 strategies. Using the variables

y 2(Z = 1,...,10) to indicate the flow rate into the network of pieces

following strategy Q, the linear program LP 2.1 applies.

The optimal split for each type of piece is shown in Table 4.3.

The results are intuitively satisfying. Workstation 3 is the bottleneck

station when only the first priority routes are used. The production

rate is increased by using the alternative path for a proportion of the

pieces that require station 3 on the first priority route. This is most

evident for type 5 pieces, for which 40% are diverted to the second path.

As a result, the workstations are balanced with equal loads at each station.

The total production in an interval of 1500 time steps is predicted

by the optimization to be 433 pices (Table 4.5), which is a 35% improve-

ment over the output calculated from (4.28) using first priority routes only.

4.3.2 A Scheduling Procedure for the Loading Station

A major problem to be solved before flexible manufacturing systems

can be used to their full potential is the tactical problem of deciding

precisely when a particular piece should be loaded into the system. In

order to examine the effect of implementing the strategies suggested by

the optimization, a simple loading strategy has been improvised. The

variable y-, is the optimal flow rate of strategy 2 pieces through the

network. To achieve that flow rate, a strategy L piece should be loaded

into the system every tQ = 1/yr time units on the average. If a piece

is to be loaded at its appointed time, and the loading station is busy,
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it is put into a queue at the loading station. Since the loading opera-

tion is generally much faster than the operations at the workstations,

the utilization of the loading station is low, and consequently the pro-

portion of time it is idle is high. Thus, on average, the number of

pieces that cannot be loaded immediately when they are required is small.

This loading strategy was tested on the discrete simulation using

the first priority routes only and the optimal split for the strategies.

The results are summarized in Table 4.4. Using the first priority routes

only, 302 pieces were produced in the simulation interval of 1500 time

units. The utilization of the workstations is very close to the predicted

levels. When the optimal strategy mix is implemented, 406 pieces are pro-

duced in the same interval, an improvement of 34%. The workstations are

balanced with utilization close to unity. The production rate predicted

by the optimization result and the simulation production rate are within 6%

of each other, using first priority routes only and 7% with optimal splits.

The 35% improvement in production rate predicted by the optimization is

achieved to within 1% when the optimal splits are used in the discrete

simulation.

There are two factors which account for the differences between the

predicted and simulation results. First, the simulation interval (0,1500)

covered an initial startup period when there were no pieces in the system.

This had the effect of lowering the average utilizations of the workstations

and the production. Second, congestion effects in the transportation system,

which are not included in the linear model, have an adverse effect on the

performance of the system.

The simulation results of Table 4.4 were achieved with a large number

of pallets (10 for each piece strategy) and at least 10 queueing (buffer)

spaces at each workstation. The actual production rate, when the number

of pallets is limited, may be approximated by the method of Section 2.4.

If the asymptotic production rate is R, the true production rate is approx-

imately

P = R (4.29)
N+ M-1
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where N is the number of pallets and ~ is the number of stations

with equally high relative utilizations. For the four-machine system,

the approximation is compared to the network-of-queues solution (Ward, 1980)

for optimal and non-optimal strategies in Fig. 4.19. The approximation

is closer to the network-of-queues result as N, the number of pallets,

grows. The transportation system in the network-of-queues model is

treated as a multi-server station with a service time proportional to the

time that workpieces spend on the conveyor. The relative utilization of

the transportation system therefore drops as its speed is increased. The

approximate solution in Fig. 4.19 is closer to the network of queues solu-

tion for the higher line (transportation system) speed, illustrating

the point that the accuracy of the method is highest when the relative

utilization of the non-bottleneck workstation is low compared to that of

the bottleneck stations.

The occupancy of the queueing space at each of the workstations is

shown in Fig. 4.20, for both the first-priority routes only, and with the

optimal splits applied. For each station, the proportion of time P(n) during

the simulation interval when there were n pieces in the workstation buffer

is plotted as a function of n.

For the case in which the workstations are not balanced, two buffer

positions is the maximum requirement. This occurs at workstation 2, where

two pieces were waiting for service for 12% of the simulation interval. At

all other stations, buffer occupancy was never more than one piece. The

buffers are empty more than 80% of the time at stations 3 and 4, and 78%

at station 1.

For the balanced case using optimal splits, the buffer requirements

change drastically only at workstation 1. In this case, up to seven buffer

positions are required. Despite the fact that all stations have the same

utilization, the use of the buffers is quite different. This might perhaps

be explained by looking at the strategy diagrams of Table 4.3. Station 1

is required by five of the strategies for a relatively short time period.

However, one of the strategies (part 3 on the second route) requires an

operation at station 1 which takes 26 time units. This relatively long
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operation is a likely cause of the large buffer requirement at station 1.

The utilization of the other buffers is not different from the unbalanced

case, except that there were three pieces waiting at workstation 2 in one

instance.

The graphs of Fig. 4.20 show the limitations of the simple loading

strategy. In order for it to be effective, there must be adequate waiting

room at the stations. This might not present too great a problem for a system

producing small, inexpensive pieces, but where the cost of providing buffer

spaces and additional pallets is considerable, an improved loading strategy

would offer a substantial advantage. This point is further discussed in

Section 5.3.2.

4.3.3 Six-Part Examples: Strategies Not Enumerated in Advance

The linear program LP 2.1 is suitable for cases in which the number of

strategies is too large to be enumerated in advance. The processing time

matrices Ti are shown in Table 4.6 for six parts to be manufactured in the

four-workstation system of Fig. 4.18. This is an example of an extremely

flexible system; most of the operations can be performed at any machine.

If, in the example, the operation numbers k were to denote strict precedence

constraints, there would be 207 possible strategies. The number becomes

much bigger if the precedence constraints are relaxed.

The formulation of LP 2.1 produces a linear program with 56 x.. varia-

bles. The number of constraints is 19, of which four are inequality constraints

and 15 are equality constraints due to flow conservation and ratio require-

ment constraints.

The problem was solved for two different product ratio requirements by

a commercial linear programming code. In this example, the strategies
^k

could be easily identified from the optimal solution x.. and are given in
^k 1

Tables 4.7 and 4.8. In general, the x.. variables do not produce unique

strategy assignments. For a type 2 part with the ratio requirement of Table

4.7, the optimal flow rates through the workstations are given in Table 4.9.

The strategy diagram for this part type can thus be drawn as in Fig. 4.21.

Several combinations of the four possible strategies can result from the

flow rates of Table 4.9. The three strategies shown in Table 4.7 are one

1 International Mathematical and Statistical Library (IMSL) on
IBM (VM) 370/168.
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k-operation 1 2 3 4 op-k\ 1 2 3 4

1 9 1.0 1.1 1 3.0 3.4 1 3.2 I 3.9

2 1 5.9 1 4.8 1 5.6 1 6.0 : 1 1

3 135.S 13.7 13.2 1 2 2.0 2.8 ' 1.9 t 2.8

t ;- part type 1 tj - part type 6

j-workstation

1 4perat. t 2 1..3 1
3 3.9 43.2 141 3.2
2 2.9 2,7 2.3 12.5
3 1.0 10.9 1 1.1
4 5.4 16.1 15.6 16.0

.t2 - part type 2

j-workstation
k-operation\ 1 1 2 3 1 4

1 I 00 Ic 3.0 3.2 13.1
2 1 4.3 4.4 14.3 14.6

t3j - part type 3

n\ j-workstation
k-operation\ 1 2 1 3 1 4

1 4. I 4.4 11.4 15.6

k
t4j -part type 4

j-workstation
operation\ 1 2 1 3 1 4

1 2.0 12.9 1 co 13.0
2 3.7 1 3.9 13.0 '3.9
3 14.9 1 '.9 15.0 ,5.9

t4 - part type 5
Si

Table 4.6 - t.. Matrices and Operational Requirements
j for 6 Part Example
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part 1 2 3 4 5 6

ratio requirement 0.2 0.3 0.1 0.1 0.1 0.2

Results

Y m Operations
strategies Machine flow rate

Part Tij Total time pieces/min split

12 3

, .06225 .65

5.8 3.2

1 2 3
-.03295 .35

1.0 4.8 3.2

1 2 3 4

.02813 .20

6.1 0.9 6.0

12 3 4

2 .0856 .60

6.1 0.9 5.4

1 2 3 4

.02913 .20

3.6 2.3 0.9 5.4

12

3 & _> O .04760 1.0

7.4

1

4 .04760 1.0

1.4

1 2 3
.04760 1.0

2.0 8.0

1 2

6 L .09520 1.0

3.0 1.9

Production rate .4760

Table 4.7 - Example 1 - Optimal-Strategy Assignments
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part 1 2 3 4 5 6

ratio requirement .1 .05 .25 .3 .1 .2

L,m Operations

part strategies Machine- pieces/min. split
......_ Ti Total time

1 2 3

1 (93 *L)5 1~4)-3-~ 2t~j~lt~--CU) .06564 1.0

1.0 4.8 3.2

1 2 3 4

2 .L 4 2 1 03282 1.0

3.6 2.3 0.9 5.4

1 2

.1490 .76

3.1 4.4

1 2

.0033 .02

3.1 4.3

12

.04472 1.0

7.7

1

4 .1641 1.0

1.4

1 2 3

.06075 .93

2.0 3.0 4.9

1 23

5L~fi-~l)--f-- .0049 .07

2.0 8.0

1 2

6 .1313

3.0 1.9

Production rate .6564

Table 4.8- Example 2 - Optimal-Strategy Assignments
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j machine

operation 1 2 3 4

1 0.0 0.0 0.0 0.1428

2 0.0 0.0 0.02913 0.1137

3 0.0 0.1428 0.0 0.0

4 0.1147 0.0 0.0 0.02813

Table 4.9 - Optimal Flowrates xk . for Type 2 Workpiece,
13

(Six-Part Problem Example 1)

2 4

2 4
t2 4 24

Figure 4.21 Strategy Diagram for Type 2 Workpiece

Six-Part Problem Example 1
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such combination which can realize the optimal flow rates.

The fact that different strategy assignments can result in the same

optimal flow rates through the workstations means that it is not necessary

to assign workpieces to strategies at the loading station. A central con-

troller (or perhaps local controllers) could be left to decide on the loca-

tion at which the next operation is to be done when a workpiece leaves a

workstation. The objective in this case would be to maintain the optimal
^k

flow rates x... For a type-2 workpiece in this example (Fig. 4.21), on

completion of operation 3 at workstation 2, the controller would have a

choice of performing operation 4 at either station 1 or 4. If a workpiece

is assigned to a strategy at the loading station, there would be no further

choices, since each strategy precisely defines the sequence of workstation

visits. The controller's task is then the simple one of keeping each piece

on its assigned strategy.

The optimal assignments produce balanced workloads at the workstations

for both production ratio requirements. It is interesting to note, however,

that the ratio requirement of Table 4.8 produces a production rate 38% higher

than that of Table 4.7.

In both cases, the pieces with the high ratio requirements are assigned

to more than one strategy, whereas the other pieces, in general, seem to be

assigned to a single strategy. This is a sensible policy. Suppose, for

example, the piece with the highest ratio requirement were to be assigned

to a single strategy. The production rate of this piece would then be lim-

ited to the service rate of the slowest machine on that route. Because the

proportion of each piece in the output is specified, the production rate of

the pieces with the smaller ratio requirements is also limited by the same

machine. It is likely that the flow rate of these pieces into the system

would then be unable to utilize fully the remaining workstations. This

would not only lead to an unbalanced system, but would give a production

rate below that which the system can attain with an optimal assignment.

The optimal assignments were implemented on the discrete time simu-

lation using the loading strategy discussed in Section 4.3.2. The worksta-

tion utilizations and the proportion of time P(n) that there were n pieces in
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each queue are illustrated in Figs. 4.22 and 4.23 for the simulation inter-

val of 1500 time steps. The maximum number of pieces at any workstation

did not exceed five for either case.

Also shown in Figs. 4.22 and 4.23 are the predicted and actual pro-

duction of pieces in 1500 time steps, and the percentage differences. In

example 1, the optimization predicts performance within 4%. For example 2,

the error in the prediction of the production is 9%. Note also that the

utilization of workstations 2 and 3 is lower: 0.8791 and 0.8753, respectively.

The initial transient period and congestion may partly account for this.

The simple loading strategy could also be partly at fault because it loads

pieces at predetermined time instants without taking into consideration the

conditions prevailing within the system. This may have the effect of in-

creasing congestion on the transportation network.

4.4 Conclusion

The modelling techniques of Chapter 2 have been applied to two- and

four-workstation examples, and the results compared to discrete simulations

under the same conditions for the latter case. In the two-machine system,

stochastic machining times were considered and the performance of the system

was evaluated for different parameter values. The optimization results are

intuitively pleasing. The optimal strategy assignments in this case produce

approximately equal workloads at the workstations, providing that the service

rates at the two workstations are not too widely different.

The linear model for deterministic systems was applied to a four-

workstation simulated system. The optimization gave a balanced system with

an improved production rate. In two 6-part examples, where strategies were

not enumerated in advance, the formulation of LP 2.1 proved to be effective

in providing enough information to assign strategies to the workpieces.

This is a saving in computation, because a search over hundreds of

possible strategies was not necessary.

The optimal strategy assignments were implemented on the discrete sim-

ulation using a simple loading strategy devised to utilize the optimal flow

rates. The production rates and workstation utilizations obtained were close

to the values predicted by the optimization results.
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The network flow optimization approach has shown itself to be a

quick and efficient method of carrying out trade-off studies on a flexible

manufacturing system and of choosing optimal strategy assignements. Some

further development is necessary before the method can be applied to more

general systems. The results presented show that it is a method which can

be implemented as part of the control system in flexible manufacturing

systems.
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5. OPEN AREAS FOR FUTURE RESEARCH

5.1 Introduction

There are a number of problems remaining before the network flow opti-

mization approach can be applied to more general systems. Two related areas

discussed in Section 5.2 are concerned with failures of workstations and

limited queueing or buffer spaces. The possible roles for the network flow

optimization method in solving strategic and tactical problems are examined

in Section 5.3.

In operating a flexible manufacturing system, decisions have to be made at

various levels depending on the length of time scale involved (Hutchinson,

1977). These levels may be divided for convenience into two categories.

At the tactical level, the moment-by-moment functioning of the system is of

interest. The state of the workstations, the position of individual pieces

and the stage they have reached in their manufacturing process are the kinds

of variables that a tactical level controller would monitor and act upon.

Above the tactical level is the strategic decision making level. It is

very broad in scope and covers aspects ranging from the planning of production

and the configuration of the system to the allocation of work-pieces to

strategies. The time scale involved ranges from a few hours to perhaps

several months.

The flow optimization method appears promising as a component of decision

making schemes at both the strategic and tactical levels; but ways of

handling additional effects need to be devised.

5.2 Reliability and Limited Capacity Constraints in Flexible

Manufacturing Systems

The network flow analysis described in Chapter 2 assumes that each

queue in the system has infinite capacity in the case of an open system, and

sufficient space to hold all of the pieces in the case of a closed system.

It is further assumed that all workstations are reliable and never fail.

Reliability and the capacity of the buffer or queueing space at each work-

station are closely related issues (Schick and Gershwin, 1978). Buffers are

put at workstations so as to smooth the production in a system subject to



breakdowns. A buffer can prevent a workstation from becoming idle

immediately when another station which supplies it with some part has

broken down.

Failures in a flexible manufacturing system are of two kinds. Minor break-

downs occur when, for example, a tool breaks and has to be replaced, or when

the pallet handler misaligns a pallet and an operator has to be called to

align the pallet properly. A workstation in a flexible manufacturing system

is a complex device and is subject to many types of failure. The time between

failures and the time to repair can thus be modelled as stochastic processes.

The exponential distribution, because of its memoryless property, is a good

model when failures of all types are considered (Schick and Gershwin, 1978).

Other distributions can be used-to model cases where for example a system is

more likely to fail if it has been in operation for a long time (Sivazlian

and Stanfel, 1975). Major failures result in a workstation or the transpor-

tation system being out of service for a lengthy period of time, and can also

include scheduled down time for maintenance.

Methods of handling failures will depend on their severity, i.e., whether

they are minor or major. One way of handling minor failures as described

above is to incorporate them as a stochastic component of station processing

times. The non-linear programming formulation of Chapter 2 can then be

applied.

Major workstation failures require a different approach, since it is

unreasonable to incorporate them in stochastic processing times. The best

way seems to be a temporary reconfiguration of the operating strategy. A

flexible system need not be stopped due to a single workstation failure. If

the system configuration is such that there is no operation which can only

be performed at a single station, production can continue at a reduced rate

using the remaining stations. New optimal strategies would have to be

evaluated using the network flow optimization approach. It is also possible

to work out contingency plans in advance so that when a particular workstation

fails, the optimal operating strategies using only the remaining stations are

available for immediate implementation.
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When a failure occurs, it may not be immediately known whether it is

a minor or a major problem. Improved failure identification procedures

are needed. Research is being conducted, for example, into automatic tool

wear sensors (Cook and Subramanian, 1977) and using such monitoring devices

it might be possible to at least estimate the repair time. Maintenance

personnel could also enter their estimates of the repair time when called to

a failed machine. The decision rule as to whether or not to switch to a new

strategy will require a careful analysis of the causes of workstation

failures and the length of time it takes to diagnose and repair the fault.

Finite buffer spaces affect the performance of a production line.

A particular problem in a flexible manufacturing system is that if a part

attempts to enter a workstation at which the buffer is full, it is rejected

and it has to remain on the transportation system. It is important that

effects due to finite capacity constraints should be modelled and taken into

account in computing optimal strategies.

The analysis of unreliable transfer lines with finite buffer spaces

leads to a large system of simultaneous equations which have to be solved

(Schick and Gershwin, 1978). The equations have a special structure which

can be exploited in order to produce an efficient solution procedure. It is

likely however that direct analysis using Markov process (Kleinrock, 1975)

techniques will prove untenable for a flexible manufacturing system.

Lavenberg (1975) has studied the stability and maximum throughput of

open networks with finite capacity constraints. For a network such as that

in Figure 5.1, there is a certain maximum arrival rate X below which the

network is stable in the sense that the steady state average number of cus-

tomers in the system remains finite. The maximum throughput for such a

network is X, provided that the interarrival times have probability distri-

bution functions with rational Laplace transforms. In all but simple cases,

the calculation of X is very difficult (Lavenberg, 1975).

The behavior of queues with finite capacity constraints may be usefully

approximated by a diffusion process. Gelenbe (1975) considers a diffusion

process x(t) on the interval (O,M). The assumption is made that at either

boundary, x(t)=O or x(t)=M, the process remains at the boundary for an
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exponentially distributed time interval before jumping into the interior.

The exponential distribution assumption could be relaxed by assuming a dis-

tribution with rational Laplace transforms. This suggests a method of ap-

proximating a network of queues with capacity constraints. A vector valued

diffusion process x(t) which is constrained so that 0 x. (t)< mi., where mi is
1 1 1

the buffer capacity at workstation i, can be considered (Kobayashi, 1974).

Alternatively each queue could be assumed to behave in the network as it

does when it is in isolation.

In this manner an approximation to two important quantities can be

obtained. The first is the probability that a workstation and its associated

queue are empty. From this quantity, the utilization of the workstation can

be evaluated and the bottleneck stations can be identified. The second is

the probability that the buffer is full. The proportion of pieces arriving

at the workstation that-are rejected is related to this probability. Thus

the additional traffic on the transportation system due to station rejection

can be evaluated.

Conceptually, the modelling of closed queueing systems with a limited

capacity at each station should not differ significantly from the unlimited

capacity case. A valid assumption in modelling a flexible manufacturing

systems is that pieces enter the transportation network when they leave a

workstation. The model of Figure 5.2 (Solberg, 1977) is then applicable.

The effect of limiting the capacity at each workstation is to reduce the num-

ber of states in the Markov chain model of the system without altering the

interstate transition structure of the Markov chain. It remains to be seen

whether a product form solution exists (Gordon and Newell, 1967), (Baskett

et al.,1975) for the transition balance equation, or if not, whether a sum-

of-products form is appropriate (Gershwin and Berman, 1978), (Gershwin and

Schick, 1979).

An important question to be answered is to what extent do limited buffer

sizes affect the optimal mix of strategies? A simulation study of a flexible



manufacturing system is needed to investigate this issue. If the optimal

mix is insensitive to changes in buffer size, then it could be found as-

suming that infinite buffer spaces are available. The maximum production

rate would then be found by solving the limited capacity model with known

strategies. A saving in computation results because the complicated limited

capacity model is not solved repeatedly.

5.3 Application of Network Flow Optimization to Strategic
and Tactical Problems

Production planning and inventory control are problems which have had

considerable attention (Lee, 1978). The advent of flexible manufacturing

systems capable of producing several different products simultaneously is

expected to have a considerable impact on this area of production management

(McRainey, 1977).

Traditionally, the production manager is faced with the problem of

scheduling a number of products through a manufacturing facility so as to

satisfy a forecast demand which might not be perfectly known, while main-

taining a certain level of in-process inventory (Sivazlian and Stanfel 1975).

A considerable cost is incurred in changing from the production of one

product to the production of another.

A number of methods have been applied to this problem. Gorenstein (1970)

finds economic lot sizes for tire production in a eight week period by a

linear programming method. In his case the set-up time for the molds is

substantial, and furthermore, each mold can only produce one type of tire at

a time. Linear and integer programs have been used for multi-product

scheduling in chemical plants (Eilon, 1969) (Royce, 1970). Each product is

produced in batches and the reactors are not capable of handling more than

one product at a time.

A hierarchical approach to production scheduling has been suggested

(Bradley et al., 1977) (Gabbay, 1975). At the highest level, an aggregated

plan is made over a relatively long horizon, taking into account factors

such as estimated demand patterns and costs which are usually the concern of

top management. Decisions made at the highest level act as constraints on

middle and shop floor management. This approach is motivated by the desire

to avoid large production planning problems which result if all factors are,
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included in one problem. Furthermore, where future demands are not ac-

curately known, the detailed model is solved with parameters which may

fluctuate after the plan is established, leading to a poor utilization of

resources (Gabbay, 1975).

The hierarchical planning procedure is suited to flexible manufacturing

systems (Hutchinson, 1977). At the lowest levels, however, management is

by computer control with a minimum of human intervention. As a result, great

attention will have to be paid to the flow of information between and within

the various hierarchies.

The flow optimization technique finds the mix of operating strategies

that maximize the production rate or any other performance index, given a

system configuration and parts specifications. As such it could be incor-

porated into decision making schemes which involve flexible manufacturing

systems.

Although it is possible to manufacture several kinds of products

simultaneously, there will be cases where it is impracticable to maintain

machine tooling for all of the required types at the same time. One is then

faced with the problem of scheduling subsets of the part types to manufacture

in rotation, each for n shifts of a given month, for example, so that a

certain production requirement is met and inventory is maintained at desired

levels. The flow optimization method can be used as a component of a scheme

which searches over possible part combinations in order to find an optimal

production plan.

Typically the decision variables in a planning problem are xi (j), the

number of type i units to be produced during period j of the planning

horizon. The period could be a shift of eight hours and the horizon a week,

for example. To establish what the actual production would be in period j

with the assignment x (j), the flow optimization could be solved. The ratio

requirement constraint for type i piece would be

x. (j)
(5.1)

i
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The output of the flow optimization is then R i }), the production rate of

type i pieces in period j. Thus if the period has a length of time T, the

actual number of pieces produced is xi. (j) = TRi (j). The total production

over the entire horizon is then given by C Z x (j).
iStarting wth an initial assignment, the total production could be

Starting with an initial assignment, the total production could be

evaluated by solving the flow optimization problem for each period. A new

assignment would then be evaluated by calculating, for example, the gradient

of the objective function and finding a feasible direction which improves on

the value of the objective. The process would be repeated until an optimal

point is reached. The change over from one product mix to another might

have to consider the set-up costs involved in changing tools and control

programs. If set-up costs are negligible and the future demand is known

perfectly, the problem may be formulated as a deterministic, discrete time

optimal control problem. In the face of uncertain demands, it becomes a

stochastic problem.

A problem unique to flexible manufacturing systems is that of configuring

a system for a given parts mix, ie., which workstations to tool for which

part types. Each workstation in a flexible system has a limited tool magazine

capacity. The problem is, given all the manufacturing requirements of the

pieces, how should the configuration of operational capabilities be chosen

so as to attain a maximum production rate while at the same time maintaining

enough flexibility in the system so that the system is relatively immune to

failures. The optimal solution x to the flow optimization problem may include

certain x.. variables which are zero. In this case, operation k on a type
13

i piece is not carried out at workstation j. This indicates therefore that
the necessary tools should not be loaded at that station. An extension of

the flow optimization method can be made so as to include tool capacity cons-

traints and set-up costs. There would also have to be constraints to ensure

that there is enough flexibility in the system to guard against workstation

failures. A mixed integer programming problem is likely to result.

The operational problem is concerned with the instant-to-instant

control of a flexible manufacturing system. Atthis level, such things as the

precise loading schedules, the location of pieces in the system, and their



next operation are monitored, similar to the control of a job shop. The

general job shop problem is in a class of problems termed NP-complete

(Kanellakis, 1978) which are extremely difficult to solve. Heuristic

algorithms which exploit the special features of a flexible system will

therefore have to be developed.

The loading strategy described in Chapter 4 uses the strategy flow

variables y~ to determine loading intervals for each type of piece. When

tested in a discrete simulation, the method achieved the predicted high

utilization rates at the workstations. However it needs fairly generous

buffer sizes at the workstations. This might be a problem in a system pro-

ducing large heavy pieces. The loading strategy may be improved upon.

Under the simple procedure, a type i piece should be loaded at the time in-

stants ti + nCi (n=0,1,2,...,), where ti is the initial loading time and Ci

is the interval evaluated from the optimal flow rate. However, so long as

a type i piece is loaded within the interval (ti + nCi. ti + (n+l)Ci), the

average flow rate can be maintained. Thus the precise instant within the

interval at which the piece should be loaded could be evaluated from data

about the state of the system, thereby realizing a closed-loop control

policy.

A periodic scheduling technique described in Section 2.3.2 (Hitz, 1979)

finds a schedule for the minimum integer number of parts satisfying the ratio

requirement. The schedule is required to leave no idle time at the bottleneck

workstation and to be such it can be repeated without idle time. In order

to generate strategies and identify the bottlenecks in the system, a pre-

liminary step might be to apply the flow optimization algorithm to the problem.

The scheduling problem is important, particularly if the system is

subject to disturbances. Minor random failures and other uncertainties which

delay workpieces during their passage through the system preclude detailed

schedules over long time horizons. A good scheduling policy for this kind

of system is one which quickly attains the maximum production rate starting

from some initial condition. It should be flexible enough to accommodate
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random disturbances such as tool failure and blockages. This means that an

effective policy will most probably be closed-loop control. Because of the

computational complexity of scheduling problems (Kanellakis, 1978), heuristic

algorithms are necessary. This is an aspect of flexible manufacturing systems

that requires a considerable amount of further research.

5.4. Summary of Open Areas

The problem of modelling of flexible manufacturing systems with finite

buffers at the workstations has been discussed. This is a difficult problem

to treat analytically and approximate techniques should be developed.

Simulation studies should be made so as to gain an understanding of the ef-

fect of limited buffer sizes on the optimal strategy mix.

The effect of flexible manufacturing systems on production management

and inventory control has also been discussed as an open area for investi-

gation. The problem of how the best configuration of operational capabilities

in a flexible system should be chosen may be answered by the flow optimization

approach. Integer variables and additional constraints and cost terms will

have to be included in the problem formulation for practical application.

Algorithms for the real-time control of a manufacturing system are an

important element in the management hierarchy, and particularly important

for flexible manufacturing systems. The optimal flow rates may provide a

good starting point in evaluating loading strategies which achieve high

production rate while keeping the required buffer capacities small.
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6. CONCLUSION AND SUMMARY

The analysis of the movement of individual pieces through a manufacturing

system leads to combinatorial problems which are known to be difficult to

solve. This report has presented a network flow optimization approach to the

problem of choosing the best mix of operating strategies in a flexible

manufacturing system. An operating strategy is a sequence of operations

required to manufacture a workpiece and defines a path through the system.

All possible routes do not have to be identified in advance. The solution

method of Chapter 3 generates the strategies for each type of piece as part

of the solution. The optimal proportion of each type of piece to be routed

along each path is provided by the algorithm. Only a subset of all possible

strategies need to be considered in order to arrive at the optimal combination.

Systems in which the machining times are non-deterministic give rise

to non-linear programs because of the build up of queues at the workstations.

Deterministic machining times and arrival processes result in linear

programs. The asymptotic maximum production rates of systems where the

processing times have general probability distributions are found by identical

linear programs.

The non-linear programs are solved by the augmented Lagrangian algorithm

which adjoins the nonlinear constraints to the objective function to form

a Lagrangian function. The Lagrangian is minimized subject to linear cons-

traints by considering convex combinations of the extreme points of the

feasible flow set. A decomposition method which results in a set of strategy

generating subproblems, each involving only one type of piece, is used to

generate the extreme points as they are needed. This reduces the computa-

tional requirement because the nonlinear optimization is carried out with

fewer variables than the original problem.

Numerical results presented in Chapter 4 are intuitively pleasing. For

a two-workstation system, choosing the routing so that the utilizations of

the two workstations are equal, or nearly so, is optimal when the difference

in the speeds of the two workstations is not great. However, when the speed

difference is large, the optimal assignment does not produce equal loads at

the two stations. The optimal mix of strategies is thus found to be sensitive

to the relative speeds of the two workstations.
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The linear programming formulation gave good predictions for the

performance of a discrete simulation of a four-workstation system. For the

parts specification used, the maximum production rate was given by a route

assignment with equal loads at all four machines. A simple loading strategy

devised to produce the optimal flow rates into the system resulted in high

utilization of the workstations when applied to the discrete simulation.

A number of problems remain before the network flow optimization approach

presented here can be applied to more general systems. In calculating the

average in-process inventory, the assumption was made that there are infinite

buffer spaces at each workstation.' In general this is not the case. Analytic

methods for dealing with finite buffers in flexible manufacturing systems

are needed.

The issue of reliability was raised in Chapter 5. The best course of

action in the event of a workstation failure will depend on a number of

factors, including the expected time to repair the machine. Decision rules

will have to be developed so that the system controller can decide which

strategies to use when a station drops out of service. It is clear also that

in choosing the best operating strategies, the reliability of the workstations

should be taken into account,

The optimization calculates the best mix of operating strategies given a set

of part specifications and a system configuration. Production planning in an

organization with a flexible manufacturing system involves choosing both the

numbers of different types of pieces to be made during a certain period of

time, and the configuration of operational capabilities within the system.

The network flow optimization method appears to be a promising component of

a scheme to tackle such a problem.
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APPENDIX

The Closed Network of Queues Optimization Model

Applied to the Two-Workstation System

In Section 2.4, it is shown that

M n.
G(M,N) = XE x.i (A.1)

s 1=1

where xi is the relative utilization of station i. The production rate of a

flexible manufacturing system modelled as a closed queueing network is given

by [Secco-Suardo, 1978]

G(M,N-1) (A.2)
G(M,N) L

where xL is the relative utilization of the loading station.

It can be shown that

M

G(M,N) = E A. N (A.3)

i=l

where

A. = H 1 -x

1 
j=l x

jdi

provided that each workstation can be modelled as a single server in the network

model.

If the relative utilizations for the two-workstations are scaled so that

Xi is the arrival rate at station i due to a unit throughput, the production

rate can be written, using (A.3), as

N N

G(M,N-1) X1 2
P = = (A.4)

G(M,N) N+l N+l

The split for type 1 pieces (the proportion going to workstation 1) is X. From

(4.12) and (4.13), the relative utilizations of the two workstations when there

is a flow rate of 1 piece per hour is
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X1 = 3 1 (2+X) (A.5)

x2 = 3 (3-X) (A.6)

The problem NLP 4.2 follows direction from (A.4). The reader is referred to

(Secco-Suardo, 1978), (Ward, 1980) and (Solberg, 1971) for a complete discussion

of the evaluation of G(M,N) using generating functions.

The function (A.4) is plotted in Fig. A.1 as a function of p1 for 2 = 5,

N = 10, and with X as a parameter. This should be compared to Fig. 4.12 where

the production rate for the open network model is plotted under the same condi-

tions. In Fig. A.2, the production rate as a function of X with p1 as parameter

is shown. A comparison should be made between Figs. A.2 and 4.16. Figure A.3

shows the variation of the utilization of workstation 1 with p1 for two values

of X. The value of X which gives the highest production rate for each value of

P1 can be determined from Fig. A.2. The utilization of station 1 when the

optimal X is used is superimposed on Fig. A.3. A comparison between Fig. A.3

and Figs. 4.10 and 4.13 can be made. A discussion of the similarities and

differences of the open and closed network models is given in Section 4.2.
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