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ABSTRACT

1. Human resources

- For automakers, the total cost of paying average workers is around $40000 per year (mean
value); the numbers range from $30000 to $60000 (except for a Central European facility where it
is much lower). On average, direct pay is three times the amount of benefits. In general, worker
qualification does not affect the benefits policy within an automobile engine plant.

- Overall, the average age of workers in engine plants is slightly above 40 years old. There is no
difference by geographic region. In older engine plants, workers do tend to be older. Annual
turnover rates are around 5%. Mean values for unionization levels are 7990 for hourly workers,
45% for salaried workers. It is common for production workers to be assigned different tasks; the
engine plants where the union contract restricts the kind of activities are located in North America.

- A majority of engine plants surveyed have work teams, and they are deployed in all departments.
In most cases, work teams were introduced about five years ago. Sometimes, work team leaders
are not elected. The average training received is 41 hours per employee per year. Fluctuations in
the values are large. European facilities tend to have more training. Respondents felt that inspecting
one’s work, being well trained, designing one’s workplace and having suggestions accepted are
factors which can help workers make high quality engines. Workers and management interact via
meetings and surveys. There are usually fewer than 2 suggestions per worker per year. The more
training people get, the more likely they are to make suggestions.

2. Logistics

- Delivery of parts to the assembly department of engine plants: the Japanese-owned facilities get a
much higher fraction of these components delivered more than once per shift, compared to other
plants. There are more instances of “just-in-time” practice for castings and parts delivered to the
machining departments.

- Engine and vehicle assembly plants: for half of our sample, the average delivery pace of finished
engines to the car assembly plant is once per shift or more frequently. Engine plants which deliver
engines very frequently no matter how far their customer vehicle assembly plants are located. The
average value of the average delivery size of finished engines is 273 units (the results are very
variable, but in general, the more engines are produced per unit time, the larger the batch size). For
one out of two engine plants, the average transit time to the customer vehicle assembly plant is less
than half a day; however, there are many cases where finished engines are delivered to vehicle
assembly plants located very far away.

3. Maintenance policies

- Total Productive Maintenance (TPM) is in place in all of the plants surveyed, but this is quite
recent (implementation started between 1990 and 1994). In two out of three cases, it is based on a
centralized planning and information system. All of the key maintenance items mentioned in the
questionnaire are taken care of by all engine plants; however, the frequency at which maintenance
is done varies a lot from plant to plant (average: one and a half times per week).
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- Throughout all departments of engine plants, breakdowns are caused on average mostly by
mechanical problems and then by electrical problems although there is a lot of variation between
plants. For those types of failures, there is no link with any downtime statistics. Hydraulic failures
occur more frequently in those plants which are older.

4. Production technologies

- Several of the engine plants surveyed are currently undergoing major changes. For a new engine
variant, most engine plants can deal with the adaptation by using much more than half of the
existing machines. In engine plants, a “minor upgrade” can stop lines anywhere between less than
24 hours to more than a week. Currently, assembly lines in engine plants can handle more
flexibility than machining lines. When different engines are built in sequence, the pattern used most
often is 1-1- 1-2-2-2 (batch sizes range from 6 to 100’s of engines).

- Current and future design and acquisition processes for equipment do not differ. There is one
policy for the whole plant. For a majority of engine plants, the methodology is as follows: the
automobile company takes care of defining the requirements, it has a large influence (along with an
affiliate or sister company sometimes) for the planning process, but the design and building of
equipment is done by an outside equipment or system supplier. Two areas where answers differ a
lot concern the system integration and the actual installation of equipment in engine plants: in some
cases, the automobile company is in charge, while in other cases, an outside firm does the job.

5. Quality

- Engines made in European plants have more complaints per 1000 than the North American or
Japanese ones (caution: we have rather few of these data points from non-European plants).
Engine quality as measured by complaints per 1000 units after engines are delivered: 3-month
quality data are quite good predictors of 12-month data.

- In almost all engine plants, Statistical Process Control (SPC) data are collected and displayed at
the line or work station. Engine plants also get back some engine performance and warranty data.

- In most instances, communication of engine design information is done via fax or hardcopy.
Sometimes, CAD systems (mostly 2-D) are used to exchange design dat~ however, whether CAD
systems are used or not, is not a function of the age of the engine plant or of the lines. In a majority
of cases, the exchange of information between the plant and the engine design department take
place weekly, with actual design changes happening monthly. On average, half of the design
changes are due to the engine engineering department, in order to improve the engine and to fix
design or performance problems. Other causes for design changes are the meeting market needs,
fixing production problems, and responding to the evolution of regulations.

- All plants conduct hot testing of engines; in two facilities, only some of the engines are hot-
tested. The test can last from 45 seconds to 18 minutes. The (few) all-aluminum engines of our
survey are among those which undergo longer periods of hot testing. Less than 7% of the engines
fail the hot test the first time. By looking simultaneously at the engine quality data and at the hot
testing results, we did not find any correlation: hot test duration does not uncover problems which
cause quality complaints 3 or 12 months after the engines are delivered to customers.
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- According toourrespondents, production technologies thatcan becritical formanufacturing high
quality automotive engines concern machining operations more than the sub-assembly and final
dressing ofengines; interestingly, these technologies are most often supplied by outside vendors.
In addition, organizational factors are seen as much more effective than automatization, in order to
produce high-quality engines.

6. Information systems

- Information systems are in place in engine plants, and they are used quite extensively.

- While centralized systems tend to be used mainly for planning purposes, non-centralized
computer systems can help compile some statistical data and tell about equipment problems. Rarely
are information systems actually used to give work assignments to employees.

7. Accounting procedures and investment decisions

- For a series of recent major installations of equipment in engine plants, it took around two years
between the approval of the plan and the moment when the first part was produced, and from there
on, an extra three to six months for full production levels to be reached.

- The top financial indicator used by car firms for measuring the “performance” of engine plants is
clearly variance from budget. Some financial ratios like return on equity or return on assets are not
used at all. For non-financial indicators, the quality of engines is most important, followed by
safety and environment concerns, logistical issues, and labor productivity.

- Product quality and internal rate of return are the two most important factors involved in engine
plant investment decisions.

- Most common practice is that indirect cost allocation uses standard or actual labor hours.

- Activity-based costing systems were in place in 30% of the engine plants surveyed ( 1995 data).

8. Plant improvement efforts

- The persons surveyed do not think that more automation will be the key for progress in engine
manufacturing. For the future, a strong desire is the ability to improve the flexibility of the factory,
of the machines, and of the material flow. Interestingly, the respondents most interested by
flexibility improvements are based in engine plants which currently deal with rather low levels of
engine variety.

- On the list of factors which can help improve operations in engine plants, is the need to establish
better contacts with people in the engine design department and with the suppliers of machinery.
Also, being able to build more engines in less space is an important goal for several respondents;
actually, those most interested by this issue are from engine plants where the utilization of space is
already more efficient than on average.

This study was sponsored by the International Motor Vehicie Program. The authors gratejidly
acknowledge its support.
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ABSTRACT

1. Human resources

- For automakers, the total cost of paying average workers is around $40000 per year (mean
value); the numbers range from $30000 to $60000 (except for a Central European facility where it
is much lower). On average, direct pay is three times the amount of benefits. In general, worker
qualification does not affect the benefits policy within an automobile engine plant.

- Overall, the average age of workers in engine plants is slightly above 40 years old. There is no
difference by geographic region. In older engine plants, workers do tend to be older. Annual
turnover rates are around 5%. Mean values for unionization levels are 79% for hourly workers,
45% for salaried workers. It is common for production workers to be assigned different tasks; the
engine plants where the union contract restricts the kind of activities are located in North America.

- A majority of engine plants surveyed have work teams, and they are deployed in all departments.
In most cases, work teams were introduced about five years ago. Sometimes, work team leaders
are not elected. The average training received is 41 hours per employee per year. Fluctuations in
the values are large. European facilities tend to have more training. Respondents felt that inspecting
one’s work, being well trained, designing one’s workplace and having suggestions accepted are
factors which can help workers make high quality engines. Workers and management interact via
meetings and surveys. There are usually fewer than 2 suggestions per worker per year. The more
training people get, the more likely they are to make suggestions.

2. Logistics

- Delivery of parts to the assembly department of engine plants: the Japanese-owned facilities get a
much higher fraction of these components delivered more than once per shift, compared to other
plants. There are more instances of “just-in-time” practice for castings and parts delivered to the
machining departments.

- Engine and vehicle assembly plants: for half of our sample, the average delivery pace of finished
engines to the car assembly plant is once per shift or more frequently. Engine plants which deliver
engines very frequently no matter how far their customer vehicle assembly plants are located. The
average value of the average delivery size of finished engines is 273 units (the results are very
variable, but in general, the more engines are produced per unit time, the larger the batch size). For
one out of two engine plants, the average transit time to the customer vehicle assembly plant is less
than half a day; however, there are many cases where finished engines are delivered to vehicle
assembly plants located very far away.

3. Maintenance policies

- Total Productive Maintenance (TPM) is in place in all of the plants surveyed, but this is quite
recent (implementation started between 1990 and 1994). In two out of three cases, it is based on a
centralized planning and information system. All of the key maintenance items mentioned in the
questionnaire are taken care of by all engine plants; however, the frequency at which maintenance
is done varies a lot from plant to plant (average: one and a half times per week).
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- Throughout all departments of engine plants, breakdowns are caused on average mostly by

mechanical problems and then by electrical problems although there is a lot of variation between
plants. For those types of failures, there is no link with any downtime statistics. Hydraulic failures
occur more frequently in those plants which are older.

4. Production technologies

- Several of the engine plants surveyed are currently undergoing major changes. For a new engine
variant, most engine plants can deal with the adaptation by using much more than half of the
existing machines. In engine plants, a “minor upgrade” can stop lines anywhere between less than
24 hours to more than a week. Currently, assembly lines in engine plants can handle more
flexibility than machining lines. When different engines are built in sequence, the pattern used most
often is 1-1- 1-2-2-2 (batch sizes range from 6 to 100’s of engines).

- Current and future design and acquisition processes for equipment do not differ. There is one
policy for the whole plant. For a majority of engine plants, the methodology is as follows: the
automobile company takes care of defining the requirements, it has a large influence (along with an
affiliate or sister company sometimes) for the planning process, but the design and building of
equipment is done by an outside equipment or system supplier. Two areas where answers differ a
lot concern the system integration and the actual installation of equipment in engine plants: in some
cases, the automobile company is in charge, while in other cases, an outside firm does the job.

5. Quality

- Engines made in European plants have more complaints per 1000 than the North American or
Japanese ones (caution: we have rather few of these data points from non-European plants).
Engine quality as measured by complaints per 1000 units after engines are delivered: 3-month
quality data are quite good predictors of 12-month data.

- In almost all engine plants, Statistical Process Control (SPC) data are collected and displayed at
the line or work station. Engine plants also get back some engine performance and warranty data.

- In most instances, communication of engine design information is done via fax or hardcopy.
Sometimes, CAD systems (mostly 2-D) are used to exchange design data; however, whether CAD
systems are used or not, is not a function of the age of the engine plant or of the lines. In a majority
of cases, the exchange of information between the plant and the engine design department take
place weekly, with actual design changes happening monthly. On average, half of the design
changes are due to the engine engineering department, in order to improve the engine and to fix
design or performance problems. Other causes for design changes are the meeting market needs,
fixing production problems, and responding to the evolution of regulations.

- All plants conduct hot testing of engines; in two facilities, only some of the engines are hot-
tested. The test can last from 45 seconds to 18 minutes. The (few) all-aluminum engines of our
survey are among those which undergo longer periods of hot testing. Less than 7% of the engines
fail the hot test the first time. By looking simultaneously at the engine quality data and at the hot
testing results, we did not find any correlation: hot test duration does not uncover problems which
cause quality complaints 3 or 12 months after the engines are delivered to customers.
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- According to our respondents, production technologies that can be critical for manufacturing high
quality automotive engines concern machining operations more than the sub-assembly and final
dressing of engines; interestingly, these technologies are most often supplied by outside vendors.
In addition, organizational factors are seen as much more effective than automatization, in order to
produce high-quality engines.

6. Information systems

- Information systems are in place in engine plants, and they are used quite extensively.

- While centralized systems tend to be used mainly for planning purposes, non-centralized
computer systems can help compile some statistical data and tell about equipment problems. Rarely
are information systems actually used to give work assignments to employees.

7. Accounting procedures and investment decisions

- For a series of recent major installations of equipment in engine plants, it took around two years
between the approval of the plan and the moment when the first part was produced, and from there
on, an extra three to six months for full production levels to be reached.

- The top financial indicator used by car firms for measuring the “performance” of engine plants is
clearly variance from budget. Some financial ratios like return on equity or return on assets are not
used at all. For non-financial indicators, the quality of engines is most important, followed by
safety and environment concerns, logistical issues, and labor productivity.

- Product quality and internal rate of return are the two most important factors involved in engine
plant investment decisions.

- Most common practice is that indirect cost allocation uses standard or actual labor hours.

- Activity-based costing systems were in place in 30% of the engine plants surveyed ( 1995 data),

8. Plant improvement efforts

- The persons surveyed do not think that more automation will be the key for progress in engine
manufacturing. For the future, a strong desire is the ability to improve the flexibility of the factory,
of the machines, and of the material flow. Interestingly, the respondents most interested by
flexibility improvements are based in engine plants which currently deal with rather low levels of
engine variety.

- On the list of factors which can help improve operations in engine plants, is the need to establish
better contacts with people in the engine design department and with the suppliers of machinery.
Also, being able to build more engines in less space is an important goal for several respondents;
actually, those most interested by this issue are from engine plants where the utilization of space is
already more efficient than on average.

This study was sponsored by the International Motor Vehicle Program. The authors gratejidly
acknowledge its support.
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Introduction

Comments Relative to the Analysis of Part C from the

IMVP Engine Plant Study Questionnaire.

Description of Procedures in Automotive Engine Plants

The goal of this working paper is mainly to communicate the information contained in Part C of the

questionnaire about engine plants which had been filled out by the respondents of companies

participating in the IMVP International Automotive Engine Plant Survey of 1995.

The topics covered are the following:

1. Human resources

2. Logistics

3. Maintenance policies

4. Production technologies

5. Quality

6. Information systems

7. Accounting procedures and investment decisions

8. Plant improvement efforts

Also, we wish to answer to some of the sponsors’ strong desire to know what is happening in

engine plants all over the world, in terms of plant procedures and organization. Obviously, the

clients of this study who are operations people wonder what their competitors are doing, and this

study can help them figure this out in some ways.

The abstract of this paper is a much shorter version of this document (it is like a 3-page “executive

summary”), where the most striking findings are highlighted.

To those companies which have had some of their engine plants participate in the survey, we send

along with this document a set of all the graphs and tables with the individual answers from the

numerous charts which are inserted throughout this paper.
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A few general remarks:

Please keep in mind that the information presented here is a “snapshot”, because it only

corresponds to what has been indicated to us by engine plants about their situation around 1995.

This survey tries to capture how a series of engine plants operate; most of them are located in

Europe and in North America (including one Japanese transplant); two are in Japan. More than 20

very different families of engines are manufactured in the facilities for which we have answers.

The data presented in the graphs and described in the text below can deal with answers to questions

which all respondents might not have understood or interpreted in the same manner (especially in

this third section of the questionnaire).

You will notice that in some instances, there are more answers than in other instances; this is

because a few portions of the questionnaires were not filled out by some of the plants participating

in the survey.

Some of the data from Part C had already been analyzed and shown via viewgraphs at earlier

occasions during presentations to the sponsors of this IMVP study. A few results had also been

included in Guillenno Peschard’s Master’s thesis at MIT (June, 1996), titled: “Manufacturing

Performance: a Comparative Study of Engine Plant Productivity in the Automotive Industry”.
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1. Human resources

Annual pay of workers; direct pay vs. benefits

Two graphs are used to describe the results contained in Table C. 1 of the questionnaire about the

pay of workers in engine plants.

Chart 1.1 describes the companies’ total annual cost of paying an entry-level, average, and

experienced worker. Most of data points fall in the range between just under $30000 per year and

$45000 per year (in two cases, the results are quite higher than this range of values, while in one

other plant, the pay is much less, as it is a Central European facility). The graph also indicates in

which region of the world the engine plants are located (E = Europe, NA = North America). The

three engine plants operated by Japanese companies did not answer to this question. As an

exercise, we mention the effect of the rise of the U.S. $ between 1995 and 1997 (average of +22%

against the currencies involved in our sample): assuming no pay change in the engine plants, the

salaries in 1997 $‘s are plotted in the right columns. So, currency fluctuations and the resulting

variations in the results plotted make it quite irrelevant to try to correlate pay numbers with other

parameters or answers from the survey.
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Chart 1.1

When the data were indicated by respondents (only 11 cases), we plotted on Chart 1.2 the relative

distribution of direct pay versus benefits. On average, direct pay is three times as much as

benefits (76% vs. 24%). We notice that the two engine plants where benefits (as a percentage)

are greatest are located in developing countries. On the other extreme of the chart, the four engine

plants where benefits (as a percentage) are smallest are located in countries from Northern Europe.

We also note that, within an engine plant, the relative distribution between direct pay and benefits

basically does not change whether one looks at entry-level, average, or experienced workers:

salary policy is plant- and country-dependent more than it is a function of worker qualification.
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Relative Distribution Of Direct Pay And Benefits For Workers
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Chart 1.2

Age of workers, turnover, and unionization in engine plants

All of these data from Table C.2 of the questionnaire are shown on Table 1.1; they date from 1995

or just prior to that time. Since most of the engine plants from the survey are located in North

America (NA) and in Europe, we have decided to give the specific numbers by region as well.
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lTable C.2 (cf. ~aae 30 of questionnaire) I I

Miscellaneous information about workers in engine plants (1995 data)

1-
1 I

Ayeraqe aae of workars
1

I I

Hourly workers Salaried workers

Average Min Max Your plant Average Min Max Your plant

All 38 ~ 25 47 41 32 47

FJ4 39 ~ 25 46 ~ 44 43 45 :

Europe 37 ~ 29 47 41 34 47

L
1 I [

Amrual turnover rate I , I
! I

Hourly workers Salaried workers
Average I Min Max Your plant Average Min Max Your plant

_All 4.4% ~ 1 ,0% 8.870 4.3% 0.0% 12.4% I

M 3.2~o 1 ,9% 5.O~o 6.2% 1 .5% 8.5%

Europe 5.O~o 1 .0% 8.8?L0 4.2% 0.0% 12.4% ~
II

I I

Percent in unions I

Hourlv workers Salaried workers

Averaae ~ Min Max Your Dlant Averaae Min Max Your plant

All 79% : 0 ?/0 10070 45Ya o % 100% 1

M 80% o % 100% 6 % o % 11% :

Eurooe 78% [ 33% 100% 63% o % 94% :

Table 1.1

Concerning the average age of workers (values vary around a mean of 40 years), there is no

major difference between North American and European engine plants: the average, minimum and

maximum values are quite comparable too. A question which then comes to mind is the following:

does the age of workers have anything to do with how old the engine plant is? Chart 1.3 plots

those two sets of values one against another, and from the statistical analysis, we can conclude that

the age of engine plants and the average age of hourly workers are positively correlated. The same

holds true (with slightly less statistical confidence) for saluried workers, as shown on Chart 1.4.

So, the older the engine plant, the older its workers (on average).
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Age Of SALARIED Workers vs. Age Of Engine Plant
(cf. Table C.2 on Page 30 of Questionnaire)
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Chart 1.4

Annual turnover rates are almost always inferior to 10% -- typically, half of that. Table 1.1

enables to see the differences which exist between hourly and salaried workers, and between North

America and Europe.

Hourly workers in engine plants are more unionized (average of 79%) than salaried workers

(average of 45%). The details are indicated on Chart 1.5. There are some engine plants where all

hourly workers belong to unions.
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Percentage Of Automotive Engine Plant Workers In Unions
(cf. Table C.2 on Page 31 of Questionnaire)

100%

%:-”‘-’“---
. 100%

-.—..—. — —.
‘.\ -- -+

90% –
~. =.\ ..-. 90%-.

‘:\

80Y. — ~ Average = 79% >—S~—x-- ‘“:~ ‘ -- ... .\ 80%
\\\- -. . .. .

\ ‘ \
70~o —

. .
\

*
- 70%

t\ ‘., x

60% \.
60%

\’. ..
‘.. \

so% ‘- \\
x

: 50%

{ Average = 45% “I
\

40% –
/,

\ \ \ ~ 40%

o
\’\\

so% \ \ \ \ 30%

‘, ‘\.\
20%

\ ‘\ ‘\, 20%

y. ‘\.
1O’zo ~ . 10%.

I
1

o%

L
m

Hourly Workers

jobs performed

Chart 1.5

by production

‘4 !0%

Salaried Workers

workers ?Non-production

Description of tasks

In Table 1.2, we present the answers from Table C.3 of the questionnaire. It indicates which duties

can be performed by the different categories of employees within automotive engine plants.
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1
~stion asked: who rx+’forms the following jobs?

Catecaw s of emDlovees Production Maintenance Other hourly SkWed trade Superwsor Enqineerinq staff Quality control staff
Duties (Number d ,- . “umber .1 answers) workers workers workers

.A@M machmes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Do rework or reoa$r to parts andfor to assemblies ....”.......-...

. . .
. . ., . .

Make minor repairs to machmes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.Set or adtust tools . . . . . . . . . . . . . . . . . . . . . . . .

Sharoen tools . . . . . . . . . . . . . . . . .

Pweventlve maintenance on nmchmes
. . . . . . . . . . . . . . . . . . . . . . . . . .=-. . . T.

Inspect wrxk, do qauq!n.aand measur!nq . . . . . . . . . . . . . . . . . . . ..

Record statistical Drccess data

. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . ..- . . .. . . . . . . . .

.A@vzes statistical Drccess data

. . .
. . . . . . . . . . . . . . . .-. . . . . . . . . . . . . . . . . . . . . . . . . .. .. . . . . . . . . .

Do material handhng inside a shcg . . . . . . . . . . . . . . . . . . . .

Do material handlma between shoos . . . . . . . . . . . . . ..— . .

Manaae inventory . . ..- . . . . . . . . . . . . . . . . . . . . . . . .

Repair machines . ...+ . . . . . . . . . . . . . . . . . . . . . . . . . . .

I

t I Note: it IS possible that several Cateqorles of emDloyees perform the same duty I

Table 1.2

Overall, one can notice that:

* Some categories of employees have job descriptions which seem to be well defined (e.g.

maintenance workers, supervisors, and quality control staff people). For example, the quality

staff will just be in charge of inspecting work, doing gauging and measuring, along with

recording and analyzing statistical process data.

* On the contrary, production workers are often assigned to a series of many

different tasks in engine plants. Also, other hourly workers and skilled trade people can

have several duties.

* Aside from analyzing statistical process data, the engineering staff if not involved very much

in the activities listed in this table. Nevertheless, it is interesting to note that, out of 16 engine

plants, the 3 belonging to Japanese companies account for almost 40% of the cases where

engineering people are doing some of the jobs listed (aside from analyzing statistical process

data). Thus, we can imagine that Japanese “methods” encourage engineers to get more

involved on the factory floor. It may be that some of this is due to the fact that Japanese

companies tend to have fewer levels of hierarchy than European or American automakers,

hence increasing the variety of activities which the engineering staff has to deal with.

Production workers

Chart 1.6 indicates the date when production workers started performing mm-production jobs for

the 12 engine plants where such things are possible. These 12 facilities comprise 11 engine plants

where the union contract does not restrict the number of different types of work which hourly

workers can perform, plus one plant which is not unionized and where it is OK for production

workers to do non-production work occasionally.
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Date When Production Workers Began Doing Non-Production
Jobs (In 4 Cases Out Of 16, This Does Not Even Occur)

(cf. QC1 and QC2 on page 31 of the questionnaire)
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Chart 1.6

The 3 engine plants where the union contract does restrict the kind of

which can be performed by production workers, are all located in North America.

activities

On the graph, we have also indicated the number of years it took between the opening of the plant

and the time when “work flexibility” began. In half of the cases, it was immediate, but in the other

half, it took a long period to happen.

Quality circles in engine plants

Analysis of the survey shows that there are problem-solving groups (such as quality circles,

Kaisen groups...) in all but one of the participating engine plants.

However, the extent to which these groups are deployed varies a lot from plant to plant: anywhere

between 6 and 38 groups (for a majority of facilities), around 100 (two instances) or even many

more (400 groups) in one specific engine plant (which is very large indeed). Chart 1.7 shows this.
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Number Of Formal Groups (e.g. Quality Circles) Which Meet
On A Regular Basis In Engine Plants
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Chart 1.7

Work teams in engine plants

Among the engine plants which participate in this survey, only two had introduced work teams

more than five years ago. The 10 others which do have work teams, have started this between

1991 and 1993. And when work teams were introduced in an engine plant, it was in all areas of the

plant at the same time. Work teams within a department such as machining, subassembly or

assembly and testing always have a team leader.
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Number Of Work Teams In Engine Plants (By Plants)
(cf. Table C.4 page 31)
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Chart 1.8

It is interesting to observe, though, that these team leaders are only elected in about one third of the

cases. When team leaders are elected, they are elected no matter what part of the engine plant you

consider. So, the decision about having work teams and electing team leaders depends on the

engine plant, not on the departments within the plant.

Regarding the actual number of work teams existing in the various engine plants, these values are

largely a function of the size and capacity of these facilities. For your information, we have plotted

the raw data indicated to us by the engine plants. Do keep in mind, though, that the size of each

work team can vary from one plant to another. We can conclude from Chart 1.8 and Chart 1.9 that

there are almost always more work teams in machining than in other areas of engine plants like

subassembly or assembly and testing. Some of this certainly has to do with the relative sizes of

these departments.
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Chart 1.9

Training hours in engine plants

The average % values are given in a pie chart about training topics (cf. Chart 1. 10). The

percentages correspond to the average of 14 plants’ respective distribution of time spent by topic.
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Training Topics (% of Hours Spent: Average of 14 Plants)
(cf. Table C.5 on Page 32 of Questionnaire)
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Chart 1.10

The following table is included so that you can realize how much emphasis can be given to a

certain training topic: listed below are the maximum % of training hours spent on each topic by a

plant; note that it is only a percentage value. Besides, within a plant, one can imagine that the

amount of training focused on one particular subject may change a lot from year to year.
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lMaximum YO of training time spent on...
Basic skills: 440/o

lntc3p3130Md skills: 230/.

Assembly task procedures: 24%

Machine operation: 19%

Machine adjustment: 407.

Machine repair: 237.

Use of info, systems: 15°/0

SPC (statistical process control): 20’70

Efficient workplace design: 120/.

Machine maintenance scheduling: 31?4.

Problem solving techniques: 20%

Safety: 40°/0

Others: 26”/.

For every topic (except for machine operation), there is always at least one plant telling that they

spend none of their training hours on this topic. In other words, the minimum % of training

hours spent on any topic is 0% (except for machine operation, where it is 4%). Since there were

many topics in the list, this is not surprising.

Chart 1.11 presents a much better picture of what is happening in terms of training in engine

plants, because it indicates the actual number of hours of training an employee receives every year.

For clarity purposes, we have divided the topics from the list into three major categories:

* “operations” correspond to tasks which are directly related to the production of engines

along the machining and assembly lines (assembly task procedures, machine operations,

machine adjustment, machine repair),

* “control” deals with topics which indirectly affect the manufacturing process (use of

information systems, statistical process control, efficient workplace design, machine

maintenance scheduling),

* “others” (basic skills, interpersonal skills, problem solving skills, safety, others).
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Number of Hours of Training per Year per Employee
(cf. QC5, QC6 and Table C.5 on Page 32 of Questionnaire)
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Chart 1.11

The main findings from Chart 1.11 are the following:

* Among the 14 engine plants for which we have answers about training practices, the average

time devoted to training is 41 hours per employee per year; this corresponds to a total of

five days of work every year.

* The number of hours of training varies tremendously from plant to plant, ranging from 12 to

100 hours. Of course, these kinds of practices can very well change from one year to the next,

so training should be a research subject which is investigated over a long period of time.

* Those plants which spend the most time on training are based in Europe.

* Also, the way in which training hours are spent differs greatly from plant to plant, as shown

by the relative importance of the three categories of training topics on the bars of the graph

(“operations”, “control” and “others”).

* The training hours which employees get are always paid for by their company, except in one

engine plant where most of the training hours are not paid.
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Factors influencing quality

This relates to the answers in Table C.6 of the questionnaire. It is important to note that the

respondents were asked to evaluate the relative importance which several factors had on the

workers, in order to obtain high quality engines.

lAnalysis Of Questionnaire (Part C): Table C.6 And Question QC7 (Pages 32-33) 1
I I

I
I
1 1 I -===s
I 1

Table C.6: Question asked: “In vour opinion, how important are the foliowinu to
J

the workers in helpinq them produce hiqh quality encrines ?‘

] Factors Influencing Quality
I I

Table 1.3

As shown by Table 1.3, for the people surveyed, those factors which are the most influential

for workers to help them produce high quality engines are:

* inspecting one’s work

* being well trained

* designing one’s workplace

* having their suggestions accepted

Then, a second category of factors came up as being quite important too. They are:

* team work

* doing one’s maintenance tasks
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We got mixed feelings about unionization and its “impact” on quality. Do keep in mind that, except

for one case, all the engine plants answering to these questions have a large proportion of

unionized workers.

Regarding workplace design, a vast majority of respondents from the engine plants told that it is

“veV impo~~t” or “important”that workers take part in “designing their workplace”. It is thus a

bit strange to see that in some of these same plants, the plant personnel is involved very late in the

sequence of events in engine and plant design (as indicated by the data from Table C. 17 which was

included in the presentation made in Paris in October of 1996). Maybe that some of this has to do

with the interpretation of the categories “taking part in designing the factory” and “taking part in

designing their workplace” for the effect on quality. Nevertheless, one of the numerous lessons

which came up from the study of lean production is that efficient use of work space can matter a lot

(for example by helping reduce the amount of time spent moving parts around).

Interestingly, according to our respondents, monetary incentives for workers which would be

connected to the output, do not appear to have any expected payoff in terms of quality. Some

reasons for this might be that:

1. Such methods have been experimented and they have not been too successful.

2. On an individual basis, one worker in a large plant has almost no impact on the overall

output of engines.

Nevertheless, it would be interesting to have the opinion of the workers themselves about this

issue !

There are factors which were not listed in the questionnaire and which some companies thought

had an important impact on quality; this is why we have indicated them at the bottom of the table of

results under the category “others” (cf. Table 1.3).

Methods used by management to understand the needs and motivations
of workers

By going through the answers, it turns out that meetings with workers, and internal surveys

addressed to them, are common practice in automotive engine plants, in order for management to

get an idea of what workers ‘ “feelings” are. These interactions appear to be organized more or less

rigorously. Besides, workshops can also be a way of sharing information and requests, which is

probably less formal than meetings and surveys. We can also note differences in the frequency at

which those events are scheduled. For more details, refer to the list of methods on Table 1.3 about

QC7.
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Remark: one answer to question QC7 mentions a phoneline/hotline as a means of communication

between management and workers. Very recently, Continental Airlines has been an example of a

highly successful company turnaround. Among different ways to achieve a high level of employee

motivation and participation in the success of their company, there are toll free phone numbers

which anyone at Continental can call in order to send comments or suggestions, and in order to

know the firm’s stock price or to get a weekly update from the CEO. Another practice learned

during this transformation of the company and that was greatly emphasized by the CEO was that it

is extremely wise to have people focus on a few key metrics of performance; the tough

part is to determine which metrics to pick. It is known that people do pay attention to operating

performance factors which are measured and tracked over time. One ought to keep in mind that,

within large organizations like engine plants, all workers obviously do not react identically towards

improvement, because they have a different opinion about the real benefits which the success of

their firm can bring to them.

Suggestion policies, incentive programs, kind of information about
performance which is available to the workers

In all but one of the 15 plants for which we have answers, a formal suggestion program

has been adopted, and performance is regularly evaluated (question QC8).

Answers to question QC9 show mixed results concerning outstanding work awards; however, in a

vast majority of engine plants (12 out of 15), special recognition awards are in place as part of

incentive programs for workers. Performance is evaluated on a regular basis in almost all plants.
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GRAPH: Average Number Of Suggestions Per Worker Per Year
INFO: About Incentive Programs And Information Flows

(cf. QC8, QC9 and QC1O on Page 33 of Questionnaire)

~

Answers to question QC8: “is there a formal ~

suggestion program in the engine plant?”: I
. **y~s*~= 74

- “NO” = 1
- No answer = 1

■ Rejected I

~QC9: Incentive programs in engine plants E!Acceptedl
—’- Formal suggestion program: 14 “YES” / 1 “NO” 1%

- Outstanding work awards: 8 ‘“YES” I 7 “NO”

— - Special recognition awards: 12 “YES” / 3 “NO”
- Regular performance evaluation: 14 “YES” / 1 “NO”

—,

,=~QC 10: /+0 w is information about quality and

—i production disseminated among workers? ~
1- Posting of info for entire plant: 14 “YES” / 1 “NO”

—- Posting of info at each line, workstation: 15 “YES” / 1 “NO !
- Comrmterized trackin~ and displav for all: 7 “YES” / 8 “NO ~ m

m

Engine Plants

Chart 1.12

The average number of suggestions per worker made in a year ranges widely, from about O to as

many as 12 suggestions. Actually, Chart 1.12 shows that there were three groups of engine plants,

in terms of worker suggestion results:

1. For the vast majority of engine plants (more than two thirds of those which answered), the

average number of suggestion per worker is less than 1.5 per year. The rate of acceptation

ranges between one third and 10(Y70.

2. In two instances, workers make more than 10 suggestions per year, but in one case, very

few are accepted while in the other case, almost all suggestions are accepted.

3. Two other engine plants yield answers where workers make, on average, between 2.5 and 5

suggestions per year. In these two plants, more than half of the suggestions are accepted.

Information about quality and production is systematically posted in the facilities, whether it is

overall plant data, or information specific to a particular workstation or line within a department.

However, less than ha~of the engine plants say that they have a computerized tracking and display

system which can disseminate information about quality and production for all employees.
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Is there some link between training and suggestion practices?

We have plotted on Chart 1.13 the number of suggestions versus the amount of training, in order

to see if there is any correlation between these two factors (we skipped two data points where the

average number of suggestions per employee per year is very high compared to the rest of the

dataset). Statistically, we are confident that more suggestions goon a par with a greater amount of

training received. In other words, results from our sample suggest that, in general, the more

training hours employees get, the more suggestions they make. An explanation for

this could be that in plants where more training takes place, the employees feel that their company

cares more for them, and their awareness translates into a desire to improve operations, e.g.

through the use of suggestion programs.

Possible Link Between Training And Suggestion Policies?
(cf. QC5 on Page 32 and QC8 on Page 33 of Questionnaire)
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Hours of Training per Enployee per Year

Chart 1.13
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2. Logistics

This section deals with some aspects of logistics from Part C of the Engine Plant Study

questionnaire which have not been communicated yet, such as transit times and lead times between

engine plants, their suppliers, and the vehicle assembly plants. Inventory and work-in-progress

data had been presented at earlier occasions such as meetings with IMVP sponsors.

Fractjon of parts deljvered more often than once per shjft

Fraction of parts which are delivered to the machining department more than once per shift:

average from our data = 39% (min. = O%, max. = 90%). This mean value is way higher than for

parts delivered to the assembly department. Some obvious reasons are that castings which will be

machined constitute bulky, heavy, and rather expensive parts, so they ought not to be stored too

long inside engine plants; thus, they tend to be delivered at a quite frequent pace. We wondered if

there is any kind of difference between engine plants operated by Japanese companies and those

from Western firms (European and North American automakers), but Chart 2.1 suggests there is

no differentiation in the results, unlike what follows in the paragraph about parts delivered to the

assembly department.
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Percentage Of Parts Delivered To The MACHINING
Departments Of Engine Plants More Than Once Per Shift

(cf. Table C.8 on Page 34 of Questionnaire)
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Chart 2.1

Fraction of parts which are delivered to the assembly department more than once per shift:

average for the Japanese-owned engine plants which answered = 77%, while for all the others, it is

only 3YO of parts, on average (min. = 09?0,max. = 10?ZO)!This is a huge difference between

Japanese firms and western firms, in terms of delivery policy for those parts which are

delivered more often than once per shift to the assembly department of engine plants. Even though

we have few data points from Japanese companies, the striking contrast had to be pointed out. The

data are plotted on Chart 2.2.
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Percentage Of Parts Delivered To The ASSEMBLY
Department Of Engine Plants More Than Once Per Shift

(cf. Table C.8 on Page 34 of Questionnaire)
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Chart 2.2

With Chart 2.3 and Chart 2.4, we want to see if a company which delivers a higher fraction of

parts more often than once per shift to the machining departments of an engine plant also does so

for the assembly department? Our survey suggests that it is not the case: even after removing the

two data points from Japanese firms (cf. Chart 2.4), statistical analysis does not yield a strong

correlation at all. It might be that a there is no such thing as a uniform delivery policy for parts

delivered to the machining and assembly departments of engine plants, because these are two very

different types of components in terms of weight, packaging, price, batch size, etc...
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Percentage Of Parts Delivered More Often Than Once Per
Shift To Automotive Engine Plants: WESTERN FIRMS

(cf. Table C.8 on Page 34 of Questionnaire)
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Chart 2.4

Transit time to the nearest and farthest suppliers of engine parts

The transit time data presented in the charts are separated in two categories: on the one side,

components like castings which are delivered to the machining departments of engine plants, and

on the other side, parts which are needed in the assembly department.

In the questionnaire, a distinction is made between those suppliers which deliver more often than

once per shift to the engine plant, and the others. The answers comprise 18 families of engines. Let

us consider the suppliers which deliver more than once per shift to the engine plants. It is

interesting to note that these suppliers “exist” in only 8 cases when it comes to delivering parts to

the assembly department, while there are 10 engine families for which suppliers deliver more than

once per shift to the machining department. Parts like castings which are delivered to the machining

departments can be quite bulky and expensive compared to components which are delivered to the

assembly department of engine plants, so it makes a lot of sense to put more emphasis on just-in-

time delivery methods for the parts delivered to the machining department. Because they are bulky,
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I

these parts cannot be delivered in batch sizes of large quantities; because they are expensive, the

engine plant should not want to keep too many in inventory.

As shown later, there are some suppliers which deliver more than once per shift and which are

located quite far away from the engine plant.

On the horizontal axis of both Chart 2.5 and Chart 2.6, the engine families are “ranked” according

to increasing transit time between the plant and the nearest supplier.

On Chart 2.5 and Chart 2.6, the vertical scale indicating transit time is logarithmic!

1. Parts for the MACHINING departments (cf. Chart 2.5)

Transit Time to Nearest and Farthest Suppliers (MACHINING)
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(cf. Table C.8 on Page 34 of Questionnaire)
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Chart 2.5

the plants which answered to the questionnaire, 8 have their

closest supplier to the machining departments at one hour or less of transit time.

Never does the closest supplier of components for the machining departments require more than

one day of transit time.
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1

Those plants which have their nearest suppliers extremely close to them do not

of their suppliers very close, in terms of transit time.

In a majority of cases, the nearest casting supplier is one which delivers more

necessarily have all

than once per shift;

we can imagine that logistics people have made sure that this would be the case.

Some engine plants have suppliers which are located very far away (cf. transit times of a month or

more for the farthest suppliers in 4 cases).

However, for the suppliers which deliver more than once per shift (it is fair to say that they

probably operate in just-in-time), the transit times are much shorter overall than for the other

suppliers.

Do keep in mind that the questionnaire asked only about the closest and farthest suppliers; hence,

only these extreme values can be shown on the charts.

2. Parts for the ASSEMBLY department (cf. Chart 2.6)

Transit Time to Nearest and Farthest Suppliers (ASSEMBLY)
(cf. Table C.8 on Page 34 of Questionnaire)
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Before looking at the transit time numbers themselves, we should keep in mind that there

obviously are more suppliers which deliver parts to the assembly department than suppliers which

deliver parts to the machining departments of engine plants.

For suppliers of parts delivered to the assembly departments of engine plants, the closest suppliers

which deliver more than once per shift are often separated from the engine plant by extremely short

transit times: in 5 cases, less than one hour.

Even though the engine families of most engine plants surveyed (13 out of 18) had their closest

parts supplier located less then two hours of transit time away, in 4 cases, one day of transit time

was the minimum transit time.

Like in the previous section (machining department), those plants which have their nearest

suppliers extremely close to them do not necessarily have all of their suppliers very close, in terms

of transit time to the assembly department.

There are suppliers which deliver more than once per shift to the assembly department of engine

plants, and which are located more than a day away (in terms of transit time)!

Do keep in mind that the questionnaire asked only about the closest and farthest suppliers; hence,

only these extreme values can be shown on the charts.

Lead time between the suppliers and the engine plants

While the transit time discussed in the previous section is the time it takes to transport an item

between the supplier and the engine plant, the leud time represents the actual time from the

placement of an order to the delivery of the item to the engine plant. Respondents were asked to

give their answers in one of five following categories of lead time values:

‘1‘ = continuously or more than once per hour (i.e. more frequent deliveries)

’2’ = two to four times per shift (using shifts of eight hours)

’3’ = once per shift

’4’ = once per day

’5’ = less than once per day (i.e. less frequent deliveries)

Horizontal axis: note that the engine families at the bottom of Chart 2.7 and Chart 2.8 do not

match, because the ranking method used (by increasing average category number) might not give

identical sets, and because we have 13 answers for the machining department data and only 12 for

the data about deliveries to the assembly department of engine plants.
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Lead Time for Delivery of Raw Materials to the MACHINING
Departments of Engine Plants

(cf. Table C.8 on Page 35 of Questionnaire)
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5

Lead Time for Delivery of Parts to the ASSEMBLY
Department of Engine Plants

(cf. Table C.8 on Page 35 of Questionnaire)

Till
% = less than once per (\

Engine Families (12)

Chart 2.8

Analysis of the data

With suppliers which deliver more than once per shift, deliveries of parts to both the machining

and assembly departments of engine plants tend to be more frequent than with the other kind of

suppliers. There is nothing surprising about this.

Only in about one third of cases (both for the machining and assembly departments of engine

plants) does the shortest lead time correspond to delivery of parts which is done once per shift or

even more frequently than that.

There is no answer in the category ‘1‘, which means that never does the delivery of any part to

engine plants from our survey happen continuously or more often than once per hour.

In a vast majority of instances (for both the machining and assembly departments of engine plants),

the longest lead time is quite high (category ’5’), meaning that those deliveries occur at a pace less

frequent than once per day.
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Frequency and size of delivery of finished engines to the vehicle
assembly plants

This first series of questions from Table C.9 deals with the delivery pace of finished engines to the

vehicle assembly plants. We have answers corresponding to 21 different engine families, but in

regards to the average delivery pace, there are 19 answers.

Chart 2.9 (number of answers)

Chart 2.9 indicates the number of engine families which are delivered for each of the five

frequency categories proposed (from “less than once per day” to “continuously or more than once

per hour” -- cf. above). Actually, the distribution of engine families is plotted for the most

frequent, for the average, and for the least frequent delivery paces used by engine plants in our

survey.

Frequency of Delivery of Finished Engines between Engine
Plants and Vehicle Assembly Plants
(cf. Table C.9 on Page 35 of Questionnaire)
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Chart 2.9

Regarding the average delivery pace of finished engines, in about 50% of cases

engines are delivered to the assembly plants once per shift or even more frequently.
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However, when one looks at the numbers for the nzost~requent delivery pace utilized, we find that

9 outof21 engine families are delivered to the assembly plants more frequently than twice per shift

(categories ‘ 1‘ and ‘2’).

Some plants deliver finished engines very frequently even when it concerns their least frequent

delivery pace.

Chart 2.10 and Chart 2.11

These two charts are identical, except for the numbers indicated under the horizontal axis: along

with the frequency of delivery of finished engines to vehicle assembly plants, we have decided that

it might be interesting to show two parameters:

* average production volume per shift

* average delivery batch size

Horizontal axis: engine families are ranked by increasing average values of category number (a

lower category number corresponds to more frequent deliveries).

The left portions of Chart 2.10 and Chart 2.11 illustrate the last point made in the previous

paragraph: engine plants which deliver finished engines very frequently do so in a

systematic manner.

Chart 2.10 shows that the pace of delivery of finished engines to the vehicle assembly plants does

not depend on how many engines are built per shift.
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Frequency of Delivery of Finished Engines between Engine
Plants and Vehicle Assembly Plants (by Engine Family)

(cf. Table C.9 on Page 35 of Questionnaire)
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Chart 2.10

In Chart 2.11, we wanted to see if the batch size affects the frequency of delivery of finished

engines to vehicle assembly plants. It turns out that those engine families which are systematically

delivered very frequently (i.e. somewhere between continuously and twice per shift) are shipped in

quite small quantities compared to other instances where the batch size values can be much ku-ger.
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Frequency of Delivery of Finished Engines between Engine
Plants and Vehicle Assembly Plants (by Batch Size)

(cf. Tabla C.9 on Page 35 of Questionnaire)
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Chart 2.12 and Chart 2.13

On Chart 2.12, we plot the minimum, average and maximum number of engines which are sent in

one shipment to the vehicle assembly plants.
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Number of Finished Engines per Delivery between Engine
Plants and Vehicle Assembly Plants
(cf. Table C.9 on Page 35 of Questionnaire)
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Chart 2.12

Between all the engine families surveyed, the average value of the average delivery size of finished

engines is 273 units (which is more engines that can flt in one truck; indeed, several engine plants

from the survey use rail transport to send their engines to the vehicle assembly plants). This is

roughly twice the average delivery size (143 unit) of the smallest batches which are shipped out of

engine plants.

The bar-graph (cf. Chart 2.12) illustrates the extreme variety in shipment and logistical procedures

which are in place at the participating engine plants.

In 5 instances (out of 18 answers), finished engines are delivered to their customer vehicle

assembly plants in only one batch size (there does not seem to be any striking common feature

between these 5 engine families). Nevertheless, most engine families studied in our survey end up

being shipped to the assembly plants in a variety of diflerent batch sizes; these differences can be

due to:

* several modes of transportation being used

* usage of the engine family in different vehicles assembled in different locations
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* fluctuation in the demand for an engine family

The labels under the horizontal axis of Chart 2.12 indicate the engine families’ average production

volume per shift, to see if production rate goes in par with delivery size . . .

Delivery Size of Finished Engines vs. their Average
Production Volume per Shift

(cf. Table C.9 on Page 35 of Questionnaire)
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Chart 2.13

. . . Chart 2.13 provides a partial answer to this question. Omitting two data points out of a total of

18, we ran a regression between the batch size of finished engines and the number of engines

produced per shift. The result of this statistical analysis is not too surprising: the higher the

number of engines being produced during one shift, the larger the average batch size of

the shipments of finished engines to vehicle assembly plants.

Transit time between the engine plant and the vehicle assembly plants

Observations

Because we can observe very large variations in transit time, we find it important to indicate both

the average (in boldface) values (39 hours) and the median (in italic) values (10 hours) of the

transit times plotted on Chart 2.14.
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Transit Time between Engine Plants and Vehicle Assembly
Plants
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~
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:

48

24

0

‘ - average transit time: 39 h (l Oh)

- longest transit time: 54h (33h)

Engine Families

Chart 2.14

For our sample of engine families, the data indicate that half of them have an average transit

time to their customer vehicle assembly plants of less than half a day.

About two thirds of the engine families are sometimes shipped to vehicle assembly plants located

less than 6 hours away from the engine plant.

The shortest transit time between an engine plant and a vehicle assembly plant is sometimes very

short, because there are instances in our sample where the two facilities me located in the same

place (no more than a few buildings apart).

However, there are many engine plants which also deliver engines to vehicle assembly plants

located quite far away.

Conclusions

As a conclusion from

equal-sized groups:

Procedures in Engine Plants

this chart, we can divide the participating engine plants into two roughly
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1. Those engine plants which deal only with vehicle assembly plants located very close to

them. They are of different sizes, there are some older and some newer facilities among these

plants, which are located in Europe, North America, and in Japan. One can notice, though, that

the parent companies of the engine plants from this group are either Japanese or from nations

of Northern Europe.

2. Others, where the transit time to some customer vehicle plants is almost a week.

However, almost all engine plants are located less than one day apart from at least one vehicle

assembly plant with which they deal. This makes a lot of sense -- although the location of a new

engine plant can sometimes be influenced by political factors (e.g. tax incentives), in general,

companies will try to locate them quite near from a major automobile assembly plant where some

of the engines will be delivered.

Transit Time and Shipment Batch Size between the Engine
Plant and the Vehicle Assembly Plants

(cf. Table C.9 on Page 35 of Questionnaire)

180

160

140

40

20

0
0 200 400 600 800 1000 1200 1400 1600

Shipment Batch Size (Number of Engines)

Chart 2.15

Chart 2.15 shows, between each engine plant and its customer vehicle assembly plants, the range

of transit time values plotted versus the number of engines delivered by batch (minimum, average

and maximum). It is hard to deduct any trend linking the two parameters.
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Lead time for the delivery of finished engines to vehicle assembly plants

In this last row of Table C.9 and on the corresponding Chart 2.16, lead time represents the time

from placement of an order to delivery of the finished engine at the vehicle assembly plant.

Responses are given in a format which has already been described earlier in this section about

logistics (for example, a lead time of 3 hours will be in category ’2’ which means “two to four

times per shift”): so, on the vertical axis of Chart 2.16, the lower the category number, the

shorter the lead time between engine and vehicle assembly plants.

Lead Time (i.e. Time from the Placement of an Order to
Delivery of the Engine)

(cf. Table C.9 on Page 35 of Questionnaire)

K

‘Mshortest lead time~

❑ average lead time

4 ltflonaest lead time

3+

2

,1

0 I7.., = continuously or more than once per our ,

Engine Families

Chart 2.16

The way results are displayed on Chart 2.16 differs from the graph about transit times, but we can

still roughly distinguish the same two groups of engine plants:

1. Those which consistently have a rather short lead time (less than an 8-hour production shift)

between the engine plant and the vehicle plants. About these plants, we can make the same

remark as in part 1. of the preceding section.

2. Others, where it can take much more than one day for a vehicle assembly plant to receive a

finished engine from the engine plant.
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3. Maintenance policies

This section about maintenance policies in automotive engine plants covers questions QC 11 to

QC 19 (cf. pages 35-37 of the questionnaire), as well as the data from Tables C. 10 to C. 12.

General information

Table 3.1 summarizes the answers from the respondents to our survey.
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Maintenance Policies in Engine Plants 1
~

cf. pages 35-37 of the questionnaire
In most instances, there are answers from 15 different plants

I

QCI1 Do you have a Total Productive Maintenance (TPM) program in this plant?
I

1 15
I m o

QC12 !How many years has TPM been in operations?
1

Average = 2.4 years (data from 1995 questionnaire) ,

Ranges from 1 to 5 years

— 1
I

QC13 ! % of machines covered by TPM
I

~
] Average = 5070
I Median = 6070 ~

~Ranges from 3°L to 100°/0 of machines I
,

~
I

QC14 Is the TPM system based on a centralized planning and information system;

11’

tQ 4

I

QC15 : Is the TPM system...

1
... manual? 4!

... computer-based? &

... both? 31

- QC 11: All engine plants surveyed said that they had a TPM (Total Productive Maintenance)

program.

- QC12: However, as of 1995, TPM was a very recent policy for these companies Indeed, at

that time, it had been in use for 1 to 5 years, depending on the engine plant (average = 2.5 years).

- QC 13: The fraction of machines covered by TPM ranges from almost none of the equipment

of it (average = 50%).
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- QC 14: In a vast majority of cases (11 out of 15), the TPM program is based on a centralized

planning and information system.

- QC15: Also, in 1995, almost all plants’ TPM systems were computer-based to some extent.

However, the 4 which were run without any computer assistance were all based on a centralized

planning and information system.

Table 3.2 summarizes the answers from the respondents to our survey.

}C16 What items are keDt track of for each machine? I
c Table C.1O Are the data or information displayed at the machine? !

I

Item Item tracked? ~Data displayed? ~Item tracked anc
(Number of ‘*’ = number of answers) data displayed?
Instructions for preventive maintenance ***** : ** ● ******

Instructions for common repairs ***** ● * ****

Downtime record ● ****** ** ● **

_Lessons learned ● ****’ * *******

List of future repairs needed ● ******+* I * ● **

Training histo ry of repair people ********** I ● ***

I—.
I I

I

ac17 How many times is preventive maintenance done per week?
~

Average = 1,5 times per week I ,

Ranqes from 0.5 to 15 times per week i
Number of plants which said once a week: 6

~

I

I ~

3C18 How many hours of productive maintenance are done each week?

Averaqe = 2.1 hours Per week (8 answers)
Ranges from 1 to 4 hours per week i

Other kinds of answers:
* Employee(?) hours per week spent: 170, 300, 300, 1000, 4400
* 1 hour per machine
● 15 minutes per dav per worker

(

I

ac19 Items which are attended to durinq Preventive maintenance
1

ml m
Lubrication 15 I o

Tightening things 1 12 : 3
General cleaning I 14 1’

Cleaninq out drains and filters , 12 2

Spec checklist of elec, mech, and hydr ite~ 12 3:

Calibration 13 2,

Table 3.2
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- QC 16: Which items do people keep track of? Do they display the information? The proposed list

of items is:

* instructions for preventive maintenance,

* instructions for common repairs,

* downtime record,

* lessons learned,

* list of future repairs needed,

* training history of repair people.

The answers to this question and the results from Table C. 10 are given on Table 3.2. There are 15

engine plants for which we have information about maintenance policy. It turns out that for a

vast majority of the plants (between 11 and 14), the six items listed above are either

tracked or the information is displayed, or both.

Regarding one particular item, we were very interested to check if there was any correlation with

some other manufacturing data. Precisely, in those plants where the downtime record of machines

is displayed, are downtime values actually lower than in the plants where they are not displayed?

By performing the Student t-test, we can conclude that there is no such correlation: no matter

which downtime data one looks at (should it be unscheduled, scheduled, or total downtime),

whether it is displayed along the machines or not doesn’t “differentiate” plants

with low downtime from plants with high downtime values. This does not mean that

displaying downtime records will not help lower downtime, but there is no evidence that this

procedure (alone) does !

- QC17: The frequency at which maintenance is done in engine plants dramatically varies

from one facility to another. Indeed, it ranges between:

* once every two weeks, to...

* 15 times per week.

In 6 plants is maintenance done only once per week. This compares with an “average maintenance

frequency” of one and a haZf times per week (because the average duration between maintenance

events is 0.67 week).

- QC18: To this question about time spent on maintenance, the respondents answered in

different ways. However, out of 8 engine plants which answered in terms of “hours per week”,

the average value is just above 2 hours (ranges from 1 to 4). Some other kinds of answers were

given, as shown on Table 3.2 (e.g. “ 15 minutes per day per worker”, or “ 1 hour per machine”, or

the number of employee-hours spent per week).
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- QC 19: Some key maintenance items were mentioned in the questionnaire, in order for us to

know if engine plants attend to them as part of their preventive maintenance policies. As shown in

Table 3.2, for all of these items, almost all plants did care about them.

Preventive maintenance, breakdown and repair policies

Tables C. 11 and C. 12 examine the extent to which suppliers of equipment and the

company itself are involved in the engine plants’
* preventive maintenance policiesj

* breakdown and repair policies.

automobile

Maintenance Policies in Engine Plants I
I I

cf. paqe 36 of the questionnaire

[

Table C.11 How Irequenl is each of the foilowinq situations for Your preventive maintenance policies? Cl’ = most fraquent, ‘2’ = next most frequent)

Preventive Maintenance Policies
I

Situation Most frequent .,. Least frequent
1 2 3 4 5 6

The equipment supplier mainta!ns machmes
7

. . . . . . . . I . .
An outside contractor mm’ntains them

. . . . . ... . . . .

Another d;vision of our companv or affihate ,. , ., . . . .

company mamtains them
The supplier trains our spatial maintenance . . . . . . . . . . . . . . .

crew which then does the maintenance
The suoplier trains our production workers I

. . . !. . . . . . . .

who then do tha main fananca
Our company trams our own maimanance craw “’”’”’”””l ‘“’” . .

Our mmpanv trains the production . . . I . . . . . . , . . .

workers who do the maintenance I
Note: not all respondents gave answers between 1 and 7

I I

Table C.12 How frequent is each of the followma situatmns foryour breakdown and repair volicies? (’1’ = most frequent, ‘2 = next most frequent)

Breakdown end Repair Policiee.— )

Situation IMost frequent... Least frequent
II 2 3 4 5 6 “’l 7

The eouipment supplier maintains machines . . . . . . . . . . I . .
An outsrde contractor mamtains them . . . . .

I
. . . . .

.—
Another division of our companv or affiliate . . . . . . . .

companv ma!ntains them
The supplier trains our special ma!ntanance . . . . . . . . . . . . .

crew wtich then does the majntenanc$

The supplier trains our producdon workers .,. . . . . . . . .

who then do the maintananc8
Our company trains our own maintenance crew

. . . . . . . . . . . . . .
I !

Our company trains the production
. . .,, . ...!. . .

I
workes who do /ha maintenance I I

Note: no! al! respondents gave answws between 1 and 7 I I

Table 3.3

For both of these policies, the two most frequent situations are that the engine plants’ maintenance

crews are trained by (i) the company (most often) and (ii) by the equipment supplier; there is no

incompatibility that both situations happen, because we can easily imagine that an engine plant with

its own maintenance crew also wants that these people be trained by the suppliers of some of the

machines which might be newer or more complex.
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Sometimes, machines in engine plants are maintained by either the equipment supplier or by an

outside contractor.

We should note that for the preventive maintenance policies, it is very common practice for engine

plants to have some of the production workers trained in addition to the dedicated maintenance

crew members.

Overall, the answers to questions in both tables look very much alike: as a group, the plants

surveyed have quite similar approaches towards preventive maintenance policies and towards

breakdown and repair policies (see the data displayed on Table 3.3).

Types of breakdowns (% distribution)

For each department of the engine plants (machining lines, assembly and test lines), we asked what

kind of breakdowns were most frequent. The answers are given as percentages by type of

breakdown. Keep in mind that the actual number of breakdown occurrences might vary a lot from

plant to plant.

The five different categories of breakdowns are:

* mechanical,

* electrical,

* hydraulic,

* tool breakage,

* “other” types of breakdowns.

By looking at average values (cf. Chart 3.1 ), one can conclude a few things:

1. Mechanical failures account for more than 40% of breakdowns in all of the

departments within the engine plants surveyed.

2. Electrical failures are the second most occurring types of breakdowns overall. It

is in the assembly and test departments that their occurrence (as a % of all breakdowns) is highest,

probably due to the kind of equipment present in these departments.

3. Consequently, engine plant breakdowns due to hydraulic, tool breakage, or other kinds of

problems, represent about 2590 or less of the instances of breakdowns in the machining lines and

in the assembly and test lines. Not surprising y, one can note that tool breakage breakdowns are

extremely infrequent (less than 1Yoof instances) in the assembly and test departments, i.e. in the

non-machining departments of engine plants.
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TYPES of Breakdowns in Engine Plants (Average Values)
(cf. Table C.13 on Page 37 of Questionnaire)

60%

%

g 20%
.-
3
n.-

0%0
Block Head Crank Camshaft Corm. rod Assy. &

Department of the Engine

Chart 3.1

test

Plant

However, beyond these average values which clearly indicate to us that an overwhelming fraction

of breakdowns are due to mechanical or electrical problems, it is important to note that the relative

distribution of breakdowns varies greatly from plant to plant. This point is illustrated

by Chart 3.2. We wondered if the types of breakdowns could be correlated with the age of the

engine plant. Most of the time, the regression between the age of plants and the ?iovalues of a type

of breakdown does not show any significant result. However, hydraulic breakdowns clearly

constitute the category for which the correlation with the age of engine plants is strongest, and this

holds true for a12of the machining departments, and for the assembly and test departments: namely,

the older the engine plant, the higher the fraction of breakdowns which are due to

hydraulic problems. For mechanical breakdowns, it is the contrary: older engine plants tend to

have relatively fewer breakdowns due to mechanical problems, but the correlation is not very

strong at all.
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TYPES of Breakdowns in Engine Plants (All Values) ‘-’-- ““’$’:-
(cf. Table C.13 on Page 37 of Questionnaire)
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Chart 3.2

We then considered those breakdowns which overall occur most frequently, i.e. those due to

mechanical and electrical problems. We tried to see if there was, throughout the machining lines of

cylinder blocks, crankshafts and cylinder heads, any kind of relation between the share of

breakdowns due to mechanical and electrical failures, and the downtime values for these

production lines. As shown by the statistical analysis on the graphs of Chart 3.3 and Chart 3.4,

there is no consistent or strong correlation between any kind of downtime value (be it

unscheduled, scheduled, or totaI) and the percentage of breakdowns due to mechanical failures

(Chart 3.3) or electrical failures (Chart 3.4).
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4. Production technologies

Results from the analysis of Table C. 17 (sequence of events in engine and plant design) and Table

C. 18 (desirable properties of machines) from the questionnaire have already been shared with the

sponsors of this study in the end of 1996.

Flexibility and equipment procurement are topics of strong interest in the engine R&D and engine

manufacturing “communities”. When reading articles about “modular” engines, or when visiting

engine plants, one can easily catch a glimpse of some pros and cons associated with flexible

equipment. For example, “flexible” machines are often very expensive, but flexibility can help

make better use of existing production capacity; moreover, flexible machines are sometimes

brought into reduce the cycle time of some complex machining operations. Also, on the technical

side, a 90-degree vee angle for a V-6 engine is not the optimal configuration, but it enables the

blocks of V-6 and V-8 engines to be machined on the same line, thus enabling the engine plant to

be more flexible in its response to relative ups and downs of demand for V-6 and V-8 engines.

Flexibility

Following are some data covering approximately twenty engine families, on the topic of plant

flexibility currently in place throughout the automotive industry.

- QC20 asked about the time frame for major upcoming changes concerning the main machining

and assembly lines in engine plants. On Chart 4.1, we plot the year when this next major change

will take place; one can note that around the 1996-1997 period, we are in the middle of great

“overhaul” activity for many engine plants. For your information, we also show the dates when

each engine plant opened and when it was last refurbished. It is interesting to note that plants

which are not that old (e.g. which have operated since the mid-eighties) are facing major changes

quite soon. Maybe that some of this is due to an increasing pressure nowadays to upgrade engines

(and therefore engine plants) more frequently than previously, as the life-span of engine families

gets shorter. Obviously, answers to a question like this one are subject to the respondents’

appreciation of the degree of “change” affecting the engine plants.
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Major Changes in Machining and Assembly Lines of Engine
Plants

2010 [cf. QUO on Page 38 of

2000

13Time period before the next major
u change takes place

1960 —
❑ Time period between opening of

engine plant and last refurbishing
1

!!i
----

Ii

Engine Plants & Location

Chart 4.1

- QC21: the percentage of machines which can be reused in an installation for a new

engine variant is over 50% except for one case (cf. Chart 4.2). Many engine plants are much

more flexible than that, though, because half of them indicate that more than 9090 of the machines

can be reused. Again, with such data, one has to be aware that respondents might not all have in

mind the same kind of “variant change” when they answer to this question...
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Chart 4.2

- QC22: how long is an engine plant machining or assembly line stopped due to the installation of a

“minor upgrade”? Like for so many sections of this questionnaire about engine manufacturing,

the answers from the plants surveyed vary a lot. In a majority of cases, it takes between one

and five days . . . but some plants require three to four weeks, while two others need much less than

24 hours (cf. Chart 4.3)!
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Chart 4.3

- QC23 lists a series of tasks which we want to know if engine plants are capable of performing.

Answers regarding these kinds of flexibility are shown on Chart 4.4 which is quite self-

explanatory. We can notice that, as a group, engine plants in 1995 were capable of more

flexibility in the assembly departments than in the machining departments. For only

three cases is the engine plant equipment such that several engine families can be machined on one

line (this select group includes the two Japanese facilities from our survey). These three engine

plants are not among the older ones, as they date from after the mid- 1980’s. In those three

facilities, several variants can be assembled as well.
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Types of Flexibility Engine Plants Are Capable of in 1995
(cf. Question QC23 on Page 38 of Questionnaire)

Number of Answers from Engine Plants

o 2 4 6 8 10 12 14 16

add new operations eaaily I
11

T

machine several variants
~

machine several families
1

assemble several variants

T ❑ Yes:

dress several families in one
line ‘-

switch variants in machining

in less than 15 min

switch variants in assy in less 15
than 15 min

others ~ “Other” = ability to machine steel and cast iron at the same time

Chart 4.4

In Table 4.1, we summarize answers to questions QC24 to QC28
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‘Iexibility (cf. Questionnaire on Pages 38 and 39)
I I

IC24: All but one of the 16 respondents say that they can estimate the cost of adding a new engine variant

CIC25:Most likely effects which adding a new variant will have on the operations of the plant
Plant # 1 Plant # 2 Plant # 3 Plant # 4

most imiloftant effect intewated lines retoolinc! new machines capacity new machmes
next... matl flow management more Iloorwace Ioaistics more floor sQace
next,.. loss of cauactv for setuptime more mamower people more manpower
next... mfo system modilicabon less capac!tv quality less capacltv
ne_xt... componentssuppliers Saletv

I
Plant # 8 Plant # 9 Plant # 10 Plant # 11

mouortant effect, less overall capacitv compatibtlitv ot process capital investment new tools

pext... quahtv lost mesns ratio control-prod svstem control upmade of machines

next,.. new machmes investment imDact on overall capacivtv

nBXt,..

change parts of equip

more people necassarv Ioaistics buv new machines

next... more storaae soace times of execution

I
QC26:Sequencing pattern the assembly line is capable of:

+Nosetvanem: 9 cases (/16)
. . 1-2-1 -2-1-2-: 4 cases (/16)

. ““’ Batches like 1-1-1 -2-2-2-: 9 cases [/16)

QC27: Sequencing pattern usually used:
“ No set pattern: 6 cases (/16)

. . 1-2.1 -2-1-2-: 1 case 1/16)

““ Batchaa like 1-1-1 -2-2-2-: 1 0 cases [/16)

u. Batch size: 6. 6, 24, (40-70), 50, 64, (36. 72 or 144), 300. 400. a few hundreds

QC28: Flexibility improvements for future
I Planta Plantb Plant c Plantd
same approach addedCNCcells modularmanufacturingin all added CNC mlc cells

machinina and assemblv oDeration$

—
I Plant a Plant h Plant i Plant I

eliminate or dominate chanqee no further ulans naw displacement (stroke change), Diesel engine manufacture m thw plant,

4 valves per cyl., reduce variants within companv
.
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QC25 (cent’d)
~

Plant # 5 Plant # 6 Plant # 7
requiring new machines rebuilding of machines new machines, stations
more storage space changed work distribution space

less overall capacity changed logistic cycle technology
more direct people integration into existing prod flow

new machines storaae

Plant # 12 Plant # i 3 Plant # 14

cost increase require new machine or adapt existinq ones investment
reduced overall caoacitv 1 reduced productivity new tools labor
investments required for new machines, tooling, test equipment new control instruments ground
more personnel may be trained schedule for test and stati!ng logistic

effect on quality storage areas capacitv
more logistics personnel required

more complex control svstems
-

—
more storaqe area required

I

more trainirw required for personnel
I

more work involved for spare parts
-

I 1

I

~

..—
‘

QC28 (cent’d)
Plante Plant f I
reducesizeof batch maintenance,operator flexibility improvement

Plant k I
~

acquire new flexible machines
~

! ~

Table 4.1 (ii)

- QC24: 15 out of 16 respondents claim that they can estimate the cost of adding a new engine

variant. This is quite surprising: indeed, during our visits to automotive engine plants, management

people always indicated that, as their facilities had had to manufacture more and more engine

variants, they did not know what overall impact it had on the cost structure and on the productivity

of their engine plant.

- QC25: we asked to the engine plants what kind of impact there could be, due to the addition

of a new variant. A variety of answers were given: they are summarized in Table 4.1. We can

point out some of the effects which were mentioned most frequently:

* logistical concerns (especially inside the engine plant itself),

* capacity problems,
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* impact on machines,

* quality and labor issues (to a lesser extent).

- QC26 and QC27 refer to the assembly line of engine plants, looking at the sequencing patterns

which can be used and those which are actually being used. The most preferred and used

sequencing pattern is 1-1-1-2-2-2. In such instances, batch sizes vary enormously, from 6

to hundreds of engines. Table 4.1 describes the answers given by engine plants.

Equipment design and acquisition

In this document, the only data presented is the one from Tables C. 14, C. 15 and C. 19. Some

information about the equipment acquisition process (cf. Table C. 16), the sequence of events in

engine and plant design (cf. Table C. 17), and desirable properties of machines (cf. Table C. 18)

had already been shared with IMVP sponsors (cf. package of slides sent after the meeting in Paris

in October of 1996).

Tables C.14 and C.15

Interestingly, for all but one engine plant, the current and future processes for designing

and acquiring equipment are identical. As shown on Table 4.2, for 11 out of the 15

respondents, the way things works is as follows:

1. In most circumstances, the company specifies the requirements for the

equipment, but other companies design, build and install it.

2. Sometimes, the company buys the equipment from other companies and installs it.

3. Even less frequently, the company designs and builds the equipment and installs it.

Results from the analysis of results from Tables TC14 and TC15 of the questionnaire (p. 39) I

ACTUAL (TC14) and DESI RFD (TC 15) eauioment desiqn and acau iaition orocaa aafalDENTlcALina&l~e@se t~
I I I

Situations: Type of answer series:

“ our company specifies the requwements for the equipment, but other companies design, build and install it 1 21

;’ our comDanv buvs the 8QUit3ment from other comoaniea and installs it L 1 I

““” our company designs and builds the equipment and installs it I 3 I

I 1.
Number of instances I

; ! 2 2

Note about Anawera: one 0I
UI = most freauent situation Jhese two mwnces,
..=nx moat fr~ es ired orocess is 1/2/3

“3” = next most freauent situation

Table 4.2

Note that for two engine plants, the only process in place is that the company specifies the

requirements for the equipment, but other companies design, build and install it.
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Table C.19

In this table, engine plants tell us in detail about who

acquisition strategy for their existing machining,

A) Machining

takes the leading role regarding the

assembly, and test lines.

On Chart 4.5, when we indicate the average, minimum, and maximum number of answers, it is

those values calculated between the different machining lines from our sample. One can notice that

there is almost no difference between the various machining lines: in other words, for any

machining line, the acquisition strategy is identical; by acquisition strategy, we comprise these six

activities: definition of requirements, process planning, design, building, system integration and

installation of equipment. When one looks at the answers plant by plant, one also observes the

same pattern: in every engine plant, the acquisition strategy is basically similar across

all machining lines.

Acquisition Strategy for Existing MACHINING Lines
(cf. Table C.19 on Page 43 of Questionnaire)

Number of Anewers from Engine Plents
o 2 4 6 8 10 12

Requirements defined by...

Process planning by...

Designed by,..

Built by...

System integration done by...

Installed by,..

~.., ::k:and!,.“
‘ Min. number ‘~

+
of answers ,; \ of answers J

,0 ,!AF,!

IM “AF and “ES”

1~ “ES” :

~ 1
la “OC and “ES 1

I

EntiW takina the lead:
I

I“o(js our company

~“AF = an affiliate or sister company
~“ES” = outside equipment or system supplier
——.

I I

Chart 4.5

The most common practice for the equipment acquisition strategy of existing machining lines is:
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- ln a vast majority of cases, the automobile company takes the lead for the definition of the

requirements; sometimes, it is helped in that with an affiliate or sister company.

- Process planning is another area where the company and possibly an affiliate or sister

company have a strong saying.

- On the contrary, management of the design and of the building of machining line

equipment is done by outside equipment or system suppliers in most instances.

However, there are a few engine plants for which a department from the company takes the

lead in the design and building of machines; although we do not have answers from many

Japanese firms, their data suggest that in their case, it is frequent that the company takes the

lead in designing the line and/or in actually building the machines. A few European automobile

firms also indicate that an affiliate company can be in charge of the design and/or the building

of machining lines. When analyzing the results from Table C. 16, we had already learned that a

small group of companies have a dedicated engineering department or an affiliate company

which can build machines for their engine plants.

- Answers from the engine plants indicate that systems integration and the installation of

equipment are areas where, in some cases, it is the company which is in charge, while in other

cases, some outside company takes care of it.

B) Assembly and test lines

For the assembly urzd test lines, the overall results are actually not very different from how the

acquisition strategy is conducted for existing machining lines. This is why the graphs from Chart

4.6, Chart 4.7 and Chart 4.8 (see next page) are almost identical to Chart 4.5.
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Acquisition Strategy for Existing HEAD Assembly Linea
(cf. Table C,19 on Page 43 of Ciuestlonnaire)

Number of Answers from Engin. Plants

0 2 4 6 8 10 12

Rwir~@~s *fiI@ by

Processpianrungby..

■ TC and.AF’ ,

W@+@ by...

BuM by.

Systemrn@fmtim d-me by,

‘0L7 . cw mpa.y ~

lnstdled by... 1AV . m dfdiale or sister company
I

Es . out.k!+ eq.wnenl or sysfcmq-

Acquisition Strategy for Existing FINAL Assembly Lines
(cf. Table C.19 on Page 43 of Questionnaire)

N.mb.r of Answ.rs from Engin. Plants

0 2 4 6 8 10 12

1
Reqwemnfs dsfirmdby... I I

Acquisition Strategy for Existing Engine TEST Lines
(cf. Table C.19 on Page 43 of Questionnaire)

N.mb.r of Anew.r. from Engln. Plants

0 2 4 6 8 10 12

I I
, t

PmcassPiambw by... III ~1 I
DA@ by...

Bull by

System!ntwrabondom by

Installedby
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5. Quality

Tables C.20 andC.21 are about scrap and rework rates in machining and assembly departments of

engine plants. The results had already been shared with the sponsors of the IMVP Engine Plant

Study at prior occasions.

Quality performance measures

The following paragraphs correspond to data from Table C.22 of the questionnaire.

Customer satisfaction index

Only very few engines plants had such data available, but for those which did, there are always

around 80% of satisfied customers after 12 months (concerning engine quality).

“Initial” engine quality

These numbers, which are plotted on Chart 5.1, indicate the fraction of finished engines which

come back from the vehicle assembly plant to the engine plant. For half of the cases, fewer than

0.05% of engines are returned from the assembly plant (this is the overall median value). There are

large variations, particularly when one looks at the location of manufacture of engines: for our

sample (which concerns 17 data points in this case), Europe is the place where most of the

poorer-quality engines are built (compared to North America -- we do not have much data

about Japan).

Procedures in Engine Plants Artzner, Whitney -- MIT/ IMVP -- Oct. 1997 Page 69



1.2%

1.170

0.170

0.0%

Delivery Quality of
(cf. Table C.22 on Page

Engines (Initial)
44 of Questionnaire)

+-~

(

7’ ‘ ‘-rage=QQ~(mzEmK-)

t
/

Europe (10) North America (7)

Location of Plant (# of Engine Plants or Families)

Chart 5.1

Evolution of engine quality data

As shown by Chart 5.2 and Chart 5.3, the difference of quality results between European and

North American engine plants still exists when one looks at quality measures once the engines are

installed in vehicles. Indeed, we have data about the number of complaints per 1000 engines, 3

months and 12 months after delivery . . . and in both instances, the average and median numbers

of complaints are much higher for engines made in European plants. However, we

should keep in mind that our sample of North American engine plants does not comprise that many

facilities.
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Delivery Quality of Engines (after 3 Months)
(cf. Table C.22 on Page 44 of Questionnaire)

50

45 x

.
40a

.-
535— +

0
z 30 ~.

~ 25 ,

~ 20 —[Median .20 >
.-
(U

:15
0

+

o 10
I

.T~

Avarage = 8.2 ~

5
•~ /

k%

o +—
Europe (8) North America

Location of Plant (# of Engine Plants or Families)

Chart 5.2
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Warranty Data -- Delivery Quality of Engines (12 Months)
(cf. Table C.22 on Page 44 of Questionnaire)

350

300

m

“$ 250

0
0
: 200

=
a
@ 150
z.-
a
z
E 100

s

50

0

Europe (9) North America (6)

Location of Plant (# of Engine Plants or Families)

Chart 5.3

We thought that it might be interesting to see how these values evolve over time, so we plotted on

the same graph the number of complaints per 1000 engines, 3 months and 12 months after

delivery. In all cases, as time goes by, the number of customer complaints about engine quality

increases largely, by an average factor of around 4 (which is also the ratio between 12 months and

3 months). See Chart 5.4 and Chart 5.5 for more details. So, 3-month quality data is a decent

predictor of 12-month quality data, but, as we shall see in a later section, having a longer hot test

duration does not necessarily help uncover engine-related complaints occurring after the car is

delivered. On Chart 5.5, we also give an indication of where the Japanese engines stand: our

answers only concern two engines (including one made in a U.S. transplant) and quality numbers

3 months after delivery are quite good, but we do not have data for 12 months after delivery.
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Evolution of the Qualitv of
(cf. Table C.22 on Pag; 44

350 -

300

Delivered Engines
of Questionnaire)

50

00

50

0

Procedures in Engine Plants

3 months 12 months

Number of Months after Delivery

Chart 5.4
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Quality of the Engines Delivered: Warranty Data (12 Months)
vs. Quality Data 3 Months after Delivery

(cf. Table C.22 on Page 44 of Questionnaire)

3’0 ““~-

o

. ---+--— -–—~
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x~
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‘x
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x ----
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. ---- -------------- . . . ----
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~ade in North America:
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Chart 5.5

Reliability of engines

The metric used to assess the reliability of engines is the number of breakdowns per 1000 units, on

a yearly basis. Although we have fewer answers from engine plants to this particular question, the

results are plotted on Chart 5.6 (by region of manufacture): in most instances, there are between

O and 5 breakdowns per 1000 engines per year.
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Reliability of Engines
(cf. Table C.22 on Page 44 of Questionnaire)

35 --

o

I

I

Europe (7) North America (5)

Location of Plant (# of Engine Plants or Families)

Chart 5.6

Long-term quality

We do not have enough data from the questionnaires we got back, in order to perform any kind of

analysis on this subject. Apparently, information about long term quality was not often made

available to the respondents.

Comparison with J.D. Power engine quality data

The 1995 Engine Quality Report ‘Mfrom J.D. Power & Associates determines engine plant quality

by measuring the number of “things gone wrong” (per 100 engines) over the first year of vehicle

ownership by customers in the U.S. market. A series of engine-related problems which have been

encountered by customers are taken into account, each with equal weight; the study uses vehicle

identification numbers of the vehicles surveyed to trace back the manufacturing plant of the engine.

There are only 9 families of engines which are common to the J.D. Power study and to our survey.

We are unable to correlate their engine quality results with any of the measurements that we

have (whether it is the reliability, or the quality of engines 3 or 12 months after delivery).
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Quality data collection

In the questionnaire, there is also some information about how people in engine plants gather

important data which are related to the quality of the manufacturing process.

Quality data collection: cf. part C.5.2 of questionnaire (pages 44 and 45) I

I
I

Table 5.1

- QC29: in almost all engine plants, SPC (Statistical Process Control) data are collected and

displayed at the line or work station.

- QC30: in most cases, a typical Cp used is 1.33; this value also

about Cpk. Other answers given are indicated on Table 5.1.

represents

- Questions QC31 through QC34 deal with data collection: we asked what part of in-process data

and final test data are collected automatically in real time and are sent electronically to a central data

processing center. Table 5.1 gives the number of answers obtained in each of four categories. The

main conclusion is that, in a majority of cases, only a modest fraction of the data are gathered either

electronically or automatically.

- Finally, engine performance and warranty data are sent to the engine plant in 14 out of 15 cases;

thus, the engine plant can have some valuable feedback.
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Design/manufacturing interaction

- QC36 is about the kind of access to design data that engine plants actually have. Answers were

given by 13pkmts. In70fthem, there isabsolutely nokind of CAD (Computer Aided Design)

data which is available about the design of the engine. However, when CAD data does exist, it is

mostly 2-dimensional rather than 3-dimensional. We checked that the use of CAD systems is not a

function of the age of the engine plant or of the date when the manufacturing lines were last

refurbished. The major conclusion from this question is that, for people in engine plants, the most

frequently used means of access to engine design is clearly via fax or hardcopy (cf. Table 5.2).

Table 5.2

- With question QC37, we wanted to know how ojien information is exchanged between the

engine plant and the engine design department. It turns out that in a majority of cases, weekly

exchanges are most frequent. Other plants said that most of the time, they were exchanging

design data on a daily or monthly basis. Please see Table 5.2 for further details.

- QC38 asks about the frequency of design changes. The kind of answer which was most often

given by engine plants is “monthly”. As shown on Table 5.2, there are plants for which design
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changes occur only yearly, while in other cases, it can be

can wonder whether the question was always understood

Reasons for design changes

weekly or even daily! In light of this, we

correctly by the respondents . . .

Table C.23 asks about the estimated relative distribution (as a percentage) of the reasons for which

there have been design changes of engines in the three years before 1995. Roughly half of the

occurrences of design changes come from the engine design department in order to

improve the engine and to fix design or performance problems. Three other categories (namely:

changes to fix production problems, new variant to meet market needs, changes in law and

regulations) each represent between 119Z0and 12’-%0of the reasons for which there have been design

changes in the engine plants surveyed. For more details about the results,

or to Table 5.2.

New
n

Reasons For Changes
(cf. Table C.23

Changes in law or
regulations

11?40

In Engine
on Page 45

Design: Years
of Questionnaire)

please refer to Chart 5.7

1993-1995

Worker suggestions
V.

Changes to fix
Dealer suggestions d production problems

3% ‘k 12’%0

Customer A
suggestions ~

5~o

variant to meet
Iarket needs I

12’%

Design dept. changes
to improve engine

28%

Chart 5.7

By looking at the “Min.” and “Max.” columns on Table 5.2, one can realize that, for each of the

categories, the percentage value can vary quite a lot from one plant to another. Chart 5.8 also

shows this variability in fuller details, for the engine changes which have occurred because of
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Testing: cf. part C.5.4 of questionnaire (page 46)

1
QC39 IS ~ engine hot tested? ] How long?

“YES” 14. I From 45 seconds to 18 minutes

“NO” ; 2, cf. chart in worksheet “Graph QC39,40,42°

QC40

.“ ‘==1

Is a samtie of engines hot tested? What percent of engines?

!Those two plants which hot-test only a sample do It fOr 507. or 80% of en mes

~cf. x-axis of the chart in worksheet “Graph QC39,40,42°

QC42 ;What percent of engines pass the hot test the first time?

~From 93% to 100’7.
~cf. data labels of chart in worksheet “Graph QC39,40,42°

=

QC43 ~Is each engine cold tested?

“YES” 6
“NO” 10’

e

QC44 What percent of engines pass the cold test the first time? ~
,86%, 9670, 96Y0, 99%, %).A~o, 99.9%

I

QC46 :Is testing done by the same people who do the dressing of engines?
“YES”! 2:

“NO”~ 131 s
Other: “ves” in process, “no” in final test

I

I

QC47 1s the engine control unit married to engine before test and kept with it after test?

1 “YES”( 21

“NO”I 141 ~

Table 5.3

QC39: all engine plants conduct hot tests; all but two of them conduct hot tests for every engine

which they produce. The duration of the hot testing varies from 45 seconds to 18 minutes, as

shown on Chart 5.9. The (few) engines of our sample which have aluminum blocks are among

those being hot-tested for longer periods (10 minutes and 15 minutes), but they are not the only

ones.
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HOT Testing of Engines in Engine Plants
(cf. QC39, QC40 and QC42 on Page 46 of Questionnaire)

18 H

16 ——- Average duration of hot test is 6.4 minutes
Average rate of first time failure of hot test is 1.5V0 +z mv

u.z =- . . . . . . --- r.

Engine Families & Fraction of Engines Being Hot-Tested

Chart 5.9

- QC40: in the two engine plants where only a sample of the engines are hot-tested, this fraction is

50% in one case and 80% in the other case.

- QC41: description of the hot test. Answers from our sample indicate that there are many methods

in place in the automotive engine plants.

- QC42: the percentage of engines which pass the hot test the first time is between 93% and 100%.

Chart 5.9 indicates the fraction of engines which fail the hot test. We did check that there is no

correlation between the duration of the hot test and the rate of first-time failure at

this test.

By looking simultaneously at hot test results and at engine quality data, we were not able to

correlate either the length of hot testing or the rate of failure, with number of complaints per 1000

engines after 3 or 12 months of use (cf. Chart 5.10 and Chart 5.11). Also, there is no link between

the duration of hot testing and either initial engine quality or engine reliability (cf. Chart 5.12 and

Chart 5. 13). Hence, we can conclude that the types of problems that are detected during

hot testing at the end of the engine manufacturing process are different from the types of
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problems which occur to engines during the time when they are operated by vehicle

owners; like we stated in an earlier portion of this section about quality, a longer hot test does not

help uncover engine-related problems happening after the car is delivered. Hot testing can reveal

problems associated with the quality of purchased components and with the manufacturing process

exclusively, while the customer quality data (complaints per 1000 engines) also comprise problems

which have to do with wear and tear, driving conditions etc...

Engine Quality after 3 Months vs. Length of Hot Test
(cf. Table C.22 and QC39 on Pages 44 and 46 of Questionnaire)
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Engine Quality after 12 Months vs. Length of Hot Test
(cf. Table C.22 and QC39 on Pages 44 and 46 of Questionnaire)
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Chart 5.11
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Initial Engine Quality vs. Length of Hot Test
(cf. Table C.22 and QC39 on Pages 44 and 46 of Questionnaire)

0 2 4 6 8 10 12 14 16 18

Length of Hot Test (min.)

Chart 5.12
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Engine Reliability vs. Length of Hot Test
(cf. Table C.22 and QC39 on Pages 44 and 46 of Questionnaire)
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Chart 5.13

Cold testing:

- QC43: contrary to hot testing, cold testing of engines is done only in a fraction of engine plants (6

out of the 16 from our sample).

- QC44: when cold testing is conducted, the percentage of success the first time ranges between

86% and almost 100% (most of the values are above 96%: cf. Table 5.3).

Other information about testing:

Data about the kind of problems found in final testing of engines (cf. Table C.24 of the

questionnaire) are presented in Table 5.4.
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Table C.24 Problems found in final’ testing (cf. page 46 of questionnaire),
=1

I
,,

L/stealbelow am the answers given by the respondents
~

II

electrical connections II bad tniectors 1

power contribution lbad smark gluas

II

injector cable not connected water and oil leakage

im!mlse sensor camshaft not OK diesel fuel Ieakaae

#etrol tube loose iniection default

assembly faults leaks

leakage Ioudnesslnoise

component faults from vendor assy errors

balance fixina of TBI umt

timina wrono iqnition seauence
leaks wronq time belt tension

1

missing thermostat joint oil Iaaks

loose bolts abnormal noisa

leak in water pump electrical connection, miss!nq Dart, etc.

water leak

oil leak

funct!on arror

Table 5.4

- QC45 asks about some of the important in-process tests performed before any hot or cold

testing of the engine. Table 5.5 gives a list of the different answers gathered via the survey of

engine plants. There is no tendency towards shortening the duration of hot tests in more modem

engine plants, as shown by Chart 5.14. Obviously, people in engine plants desire to eliminate as

many non-necessary steps as possible, especially those which do not add any value to the engines

being produced: however, when it comes to in-process testing, the quest for quality must prevail,

and there is not much preventive error-proofing that can be done with problems involving two or

more parts (like tasks where leaks are checked for in the lubricating or cooling systems at various

stages of machining and assembly). [Note: on the contrary, for problems of selective assembly,

quality, or dimensioning which involve only one part, error-proofing is feasible, but one must be

particularly secure about the quality of components from ones supplier and from oneself!]
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QC45 ~Important in-process tests which are done before hot or cold tests (cf. page 46 of questionnaire)

I [

Listed below are the answers given by the respondents –
I

~

1,
2 rolling tests torque to turn after crank, cam & timing chain cranking torque - short block

vibration torque to turn after piston & rod leakage oil seal

2 leak tests: crankshaft and head valves
—

,,
torque to turn, cam+crank torque to tum leak test of short block

torque to turn, after piston fastener torque manual test of crank floating

rear seal air test / cam-crank end game
— ,,

II
leak test—. cranshaft bearing detection, rotation of crank in block leaks in water and oil galleries

automatic screwing stations rotation of crank, rod and pistons

piston height, sealing, valve leaks

,,
leak oil, water, fuel Ieakaqe test (block and head) axial execution measurinq

crank torque friction performance

gear backlash bolt torque / angle control

,,
(too many tests listed to indicate here) leak in connections moduct audits

ermine bad function process audits

bad assembly of principal harness

Table 5.5
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There Is No Tendency To Shorten The Duration Of Hot
Testing In More Modern Automotive Engine Plants

(cf. QC41 on Page 46 of Questionnaire)

I

: ●

~ 14
c /

,-
engines (tend to require

longer test periods due
E
-12

5
: 10 *.. I

w T

1965 1970 1975 1980 1985 1990 1995

Date When Production Line Was Last Refurbished

Chart 5.14

- QC46: it clearly appears (cf. Table 5.3) that, in general, the people affected to engine

testing are not the ones who work on the engine dressing line (except in a few plants).

- QC47: the only two engine plants where the engine control unit (ECU) is married to the engine

before the test and kept with it after the test are the Japanese facilities from our survey. ECUs are

not just a function of the engine variant; they are programmed according to the car model (and its

options) to which the engine will be fitted. Even though sequencing is such that the engines are, in

most cases, dedicated to a particular vehicle when they are undergoing their final dressing, there is

no need to send the engine with an ECU to the vehicle assembly plant, because under the hood in

the engine compartment of the car, the ECUs are generally not fixed on the engine itself, in order to

avoid vibration or temperature problems (among other things). [However, we can imagine that in

some future applications, a well-insulated engine control unit will increasingly become an integral

part of the airlfuel intake system, as suggested by the recent Ecotec inline-3 gasoline engine from

Opel and by integrated intake module concepts from companies like Siemens or Bosch.]
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Critical technologies and technical factors for high quality production

What are critical engine manufacturing technologies? Table C.27 of the questionnaire tries to give

some elements of response. Out of 16 engine plants for which we have answers, 11 did list a few

of the casting, machining, assembly or testing technologies which they see as critical for the high

performance and quality of engines. In Table 5.6, we indicate the results: one can see that some

respondents gave “more” information than others. Overall, honing of the cylinder liner is often

cited, as it constitutes a crucial operation (issues are the machining process itself and surface

treatment). Technologies for camshaft finishing and treatment are also among those which are

critical, according to our respondents. Crankshafts and crankshaft bearings, along with connecting

rod cracking, do constitute other areas of interest for critical technologies, but to a smaller extent

than cylinder honing and camshaft manufacturing. One can notice that the answers from this table

almost all concern technologies which find an application in the machining departments of engine

plants, so the assembly and testing sections seem to be less technologically-intensive.

Table C.27 on Page 48: Critical Technologies (we haveanswerafor I I/16 engine plants)

Question: “ What critical casting, machining, assembly or testing technologies do you have in the plant

~that aive vour emrines hiah Derforrrrance and qualitv , and who sumrlied these technolorjes?”

Plant # IPlant 1 Plant 3 Plant 5

technology no touch piston handling cylinder block honing TPS kanban, JIT, m!stake proofing, built-m quality

advantaae reduce aluminum piston handlinq damaqe low oil em!ss! on, hiqh hfetime of anaina flexibifitv, Qood utilization of human resources

made bv... bought from supplier bought from supplier ‘made by” [our] company

non contact plsfon aaaina finisina of crank and camshaft

reduce piston damaae, increase pracmon noise and hfatjme

bought from supplier bought from supplier

dual wheal camshaft lobe ar[nders hardeninq of camshaft

reduces facility & tooling dollars low waar, hfe time Plant 6

bouqht from sutmher bouaht from suuolier

alu castina for cylinder head
I cost , auality

bouaht from supplier

CNC turn-broaching for crankshaft

Plant 2 ]Plant 4 flexibility. quality, better machine output

bouaht from supplier

tunastene inerf qaa for cam treatment I block hiah speed w Iinder bore micro finishmq for crankshaft

cam surface hardness hiah carracifv qualitv

bought from supplier bought from supplier
—

bought from supplier

cvlmder honina con rod cracked tOO% measuring of cam’s form

surface state fewer machinmq steps, better auahty aualitv

bouaht from supplier bought from suppher bought from supplier

assembly: Iaak test, end functmn test cast iron cams hardened bv WIG-m eltina and nltrunzac

t

m-lme testing capacity cost, quality

Ibouaht from suDplter Ibouaht from suppher
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Table C.27 on Page 48: Critical Technologies

Question: “What critical technologies do you have in the plant that give your
e~uine hiqh IXSrfornrance and quality, and who sulsD\ied these technologies?

Plant 7 Plant 9 Plant #

honing of cylinder bore hone cylinder bore technology

minimize wear and oil use .emerqencv runnina lubrication, low oil consumption advantage _
bought from supplier made by an affiliate made bv,..

laser welding of bucket-type tappets roll crankshaft bearing

imllroved process securitv and aualitv, reduced cost increase durability

made by en affiliate bouqht from sup~lier

machining of valve fitilng/seating in the cyl. head

low emissions: hiaher !wecision minimizes friction

[
weight-reduced bucket-type tappet

reduced friction work Plant 10

bouaht from suptiier !
plasma-nitrating essembly I
independence af Particular (ZeOMetPJ : environmentally-friendlv hiah aualitv

bought from supplier made by an affiliate ,

tension-controlled screw connections

process securi tv in maintaining the toraue
bought from supplier

connecting rod cracking
Plant 11

clean down

Plant 8 no cleanar rub out
bought from supplier

stitch boring

better micro A size
bought from supplier

Table 5.6 (ii)

Who supplies these critical manufacturing technologies in the field of automotive engines? For the

overwhelming majority of our answers, the technologies are outsourced to specialized companies

(which are often small firms).

The results from Table C.28 give an indication of how a series of technical factors are “important”

for the respondents from the engine plants surveyed. By “important”, we mean “important in order

to obtain high quality production” in the machining and assembly processes of engine

manufacturing.

Chart 5.15 enables to tell which factors are most important for engine plants taken as a group. It is

striking that organizational factors, such as maintenance policies and cleanness of the plant,

are clearly regarded as highly important issues by all plants. By contrast, the results show that

automatization and the extensive use of computer systems are not viewed as the ultimate solution to

help obtain high quality engines. One could put such an opinion in parallel with the recent drop in

interest and commitment for complex robotized lines in automobile factories: higher quality cannot

be obtained just by installing more robots and many complicated machines.
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Technical Factors for High Quality Production of Engines
(cf. Table TC 28 on Page 48 of Questionnaire)

Number of Answers from Engine Plants

‘requen:~~:me’oo’o+ 8’0!
T

,. ------- —--- ., _-:-_ _. 1 I 1111-IJIUWS3 lrturnsmrmty UI

machining operations

Regular prevantiva

maintenance of machines

Automatic assembly of

critical parts

Keeping plant clean and

dust out of assemblies

Using bar codes, computer

displays...

Othef

mmmmm*mmmm*mawmmmmmmmmmmmm=mmmmm99mm9mmmmmmmmmmmnmmmammm*mmmmmmml

I

. ,

‘mVery important

■ important

❑ .Somewhat important

❑ Not very important

Iil. ~ Other facfors: standardized tool change, and standard work in assembly “ ‘I

automation “ checking & maintenance of measuring equipment ‘

written test Procedures ‘ SPC “ desian suitable for construction “,
\ suitable transportation devices “ corract machine for specific task ,

Chart 5.15
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6. Information systems

The purpose of this section is twofold:

1. See to what extent information systems are currently in use in engine plants.

2. Learn about who can access the engine plant operating data.

Central and non-central information systems

Firstly, we asked about the capabilities of the central information system.

Chart 6.1 presents the number of positive and negative answers given by the different respondents

concerning a dozen of functions. The most common tasks which are performed by the central

information systems of engine plants are maintaining production orders and compiling production

statistics. In a significant number of facilities, functions dealing with maintenance and statistics are

also taken care of by the central information system.
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Functions of Central Information System
(cf.

Maintain production

orders

Compile production

statistics

Schedule operations

and maintenance

Compile quality

statistics

Compile downtime
statistics

Simulate ops & maint

to help schedule

Assign people to lines

Notify people of
machine stoppages

Simulate operations
for training

Compile engine test
data

Dispatch repair

crews

Compile sensor-

readings

Other

Table C.29 on Page 49 of Questionnaire)

o 2 4 6 8 10 12 14
$ :,

I
7
7

!,
~ ,:

13

❑ Yes,
I ,mNo ;,-

—.
Other answer: “; I

,,,

,,

I

I

10 ~

I

10 ;

~

10

‘Other functions: test eqpmt, warehouse organization, ~
2 personnel, investments, parts lists, design change

I ( documents, days of work * scrap reduction ,/

Chart 6.1
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Secondly, we looked at those tasks which are handled by non-central computer systems.

It appears that these computers (which can be located on or near the plant floor) are much more

used than the central computer system in order to compile data and statistics. These “local”

computer systems are also the ones which people can rely on (in a majority of engine plants) to

know about equipment problems and to deal partly with them (more details are on Chart 6.2).

We can observe that it is still quite rare in engine plants (only 4 cases out of 13 or 14 answers) that

either the central or the non-central information system is used to actually give work instructions to

people, like assigning workers to production lines, or dispatching repair crews.
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Functions of

(cf.

Compile quality

statistics

Compile downtime
statistics

Compile engine test

data

Notify people of

machine stoppages

Assist diagnosis of
breakdowns

Display production

goals and progress

Compile sensor
readings

Display oper
instructions in text

Simulate ops & maint
to help schedule

Dispatch repair

crews

Assign people to lines

Display oper

instructions in graph

Simulate operations
for training

Other

Table C.30

o 2

1 1

/Von-Centra/ Information
Systems

on Page 50 of Questionnaire)

4 6 8 10 12
,

11

I

,,_

i:!

-“ ~

Other answer:
“mixed”

!
r

11 ~

p
l!’

~~Other function: inventory control ~,’.
I I I

Chart 6.2
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Access to engine plant operating data

In most instances, full access to plant operating data is not granted to all employees. Whether it is

age, location or some other characteristic, we cannot find anything that distinguishes the 3 engine

plants where full access is granted to all. Note: it may be that people who have access to the plant

data do not necessarily consult this information. However, as shown on Chart 6.3, not allowing

full access to all employees does not mean that the operating data can only be accessed by either

salaried employees or by managers. On the contrary, it appears from the information of question

QC50, that employees in engine plants can have access to a certain amount of operating data, most

probably the one that directly interests their job.

Who Has Access To Engine Plant Operating Data?

Full access by all
employees

Partial access by all
employees

Access by salaried
employees only

Access by managers
only

(cf. Question QC50 on Page 50 of Questionnaire)

o 2 4 6 8 10 12

~Yes
‘=~ 1

Chart 6.3
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7. Accounting procedures and investment decisions

The data about the estimated value of several production lines of engine plants had already been

used and presented to the sponsors of this study at

capital productivity of the machining and assembly

estimated value divided by production per shift).

Example of a recent major installation

prior occasions. The goal was to compare the

lines on a similar

of equipment

basis (i.e. by looking at the

Chart 7.1 summarizes the useful answers to questions in Part C.7.2 of the questionnaire. It deals

with an example of a recent, major replacement of manufacturing equipment (such as a set of

machines, a production line... ) in the engine plants surveyed.

Major Installation of Equipment in Engine Plants
Time Elapsed Between Approval of the Installation and Full Production of

Parts
(cf. QC53, QC55 and QC56 on Page 51 of Questionnaire)

60 ~

54 Vzl k?%l
G 1st production parts to full production

48 ~
EiApproval of installation to 1st production parts

42 ;

ii
24

18

12

6

0

—

—
$ s s s s 8 # # # s $ m

>
z 0 0 0 U-J m 0 0 0 0

0 0 0 m w m o c-l 0 0 z
Engine Plants, and % of Plant Affected by Installation

Chart 7.1

- In general, it takes around two years between the approval of the major

installation plan, and the moment when the first part is produced.
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-From there on, three to six months seems to be acomrnon time lapse to reach full

production with the new equipment.

- One can note that there are some cases (cf. categories with “100%” on the horizontal axis) where

the whole plant was renovated (or built) and where full production happened quite rapidly (say,

one year and a half) while in other cases, such important overhauls have been much more lengthy.

Engine plant performance measures

In this section, the respondents were asked to rank, by decreasing level of importance, several key

ratios which are used by their company in order to monitor the performance of the engine plant.

There are two categories of indicators which we asked about: financial and non-financial ratios.

Financial indicators

Table 7.1 presents the number of instances where each of the proposed financial indicators is

mentioned, along with its importance in the eyes of respondents. The overwhelming number one

indicator which is viewed as important to assess the financial performance of an engine plant is

“variance from budget”. mote: in the IMVP Vehicle Assembly Plant Study, “variance from

budget” also ranks first in importance, but along with other financial indicators as well.]

C.7.3. Engine Plant Performance Measures I

Table C.31: Key Ratios -- Top-5 Financial Indicators (cf. Questionnaire Page 51)

R~nk in importance (1 = mO.St important)
N.13.No re-ranking for this datasheet

~–
,

I

(Most important... ) (... Least important)
Rarrk 1 2 3 4: 5

Firrancia/ indicators I(Number of instances (out of the 14 plants which answered) = number of ‘“’~
Cash flows I . I *.. *

—

Contribution to margin I * * .

Cost of capital; ‘ ● *. I .*

Economic income i ● * .

Gross marain ~ ●

. . I

Inventorv levels I * ,**. ,. ...1 . .1
Return on sales’ ● . . .

Operatina income 70of sales, ‘ ●
; “ *

.
Return on assets ●

,

Return on eauitv,
Sales or sales arowth I

. . ●

I

Variance from budget 1“ * “ ● ‘ ● ● ● ● 8 ‘
Residual income i * I

I

Table 7.1

It is interesting to note that several financial ratios are not used and/or not viewed as important by

many of the engine plants surveyed. For instance, return on equity and return on assets do
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not matter at all, when automakers evaluate the performance of their engine plants (nowadays).

This is clearly very different from what happens in many other industries. But we ought to bear in

mind that the market for automobile engines is still very much a captive one. With this in

mind, we can understand that “sales or sales growth” are very insignificant factors: these numbers

are directly a function of how many cars are built by the parent car firm.

Some attention is paid towards controlling capital and inventory costs. This makes sense, because

engine plants (more than many other production facilities in the automotive supply chain) are places

where a lot of expensive capital equipment is installed and used in order to machine, assemble and

test sophisticated items like engines. Concerning inventory, we wanted to see what the inventory

levels are in those plants which regard them as a crucial financial indicator. By looking at Chart

7.2, one can conclude that the engine plants whose respondents say that controlling

inventory levels is most important, do tend to have lower levels of inventory

currently (for this correlation, we use a normalized inventory value).

Inventory Value (Normalized) vs. Relative Importance of
Inventory Cost Control when Looking at Financial Factors

(cf. Tables B.7 and C.31 on Pages 7 and 51 of Questionnaire)

$35,000 .. .. . . . . . . . . . ... . . . . . . . ... . . .-. . ...?-- . ... . . . . . . . . . . . . . . . .
; Decreasing interest In controlling Inventory levels I o

*
,’ --------- . . . . . . . . . -------- . . . . . . . . . . -------- ------- .-I

5 $30,000
L----- b---- ---- ----- ----- --

z I -’!
a 4 f’ These 2 pkmts

did not rank ~z I
- ~$25,000

~ I

-u I inventory level i~
I

&U~ I ‘icontrol as one I,

~ :$20,000
~! 4 of the top-5 ,,!!

I
I financial ‘“

5:
I

I
n ● \. indicators

L’

2 --$15,000
;64 I :
>

● —

co +
u= ●

: -$10,000 s.-
%
E ●

z $5,000
z f

(‘7’ = most important of the top-5 financial indicators )

$-
1

1 2 3 4 5
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Non-financial indicators

Clearly, the quality of the engines produced constitutes the top priority for companies when

they evaluate their engine plants: all respondents ranked “product quality” as one of their very most

important non-financial indicators of engine plant performance. [Note: the same holds true for

vehicle assembly plants, we were told by the IMVP researchers who are in charge of that study.]

C.7.3. Engine Plant Performance Measures ,
Table C,31: Key Ratios -- Non-Financial Indicators (cf. Questionnaire Page 51)

Rank in importance (1 = meet important)
N.B. Re-rankingfor this datasheet,so that answersspan the [1-5] rank range \

I

(Most important...) I (... Leaat important
Rank 1 2’ 3 4 5

Non-financial indicators (Number of instances (out of the 14 tiants which answered) = number of ‘“
Direct labor productivity ●

. . . . ..* .

Delivery performance ‘“’ . . . . . ●

Equipment productivity * .— . . ****

Overall labor Droductivitv . . . ● * **. * **

Machine uotime . . ! .*. ● * . .

Manufacturing flexibility ‘ *.*.

Market growth
Market share I

Material vield ●

I
● ● **

Product aualitv ● ***”***** ‘*’ ~ !
Safetv, environment *..** .* ● * ●

Technological capability . . . .

Schedule performance * .* I* ..* : * . .
I

I I I

1 Note: two or more indicators can be aiven the same rank bv a respondent.

Table 7.2

Overall, the next item to be listed as most important for engine plant “monitoring” covers safety-

and environment-related issues (see Table 7.2). [Note: for vehicle assembly plants, safety and the

environment are important too, but not as much as in the present study about engine plants.]

Attention is also quite high regarding:

* logistical issues like delivery performance and schedule performance,

* labor productivity (direct and overall).

Finally, we asked about the relative importance that is given to financial indicators (vs. non-

financial ones) when firms assess their engine plants. Chart 7.3 shows that the weight of jimzncial

indicators varies between 10’ZOand W90 for the 13 plants for which we have answers. About this

topic, there is no striking difference in practice between plants located in North America and those

from Europe.
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Weight Given To Financial And Non-Financial Indicators When
Assessing Engine Plants

(cf. QC57 on Page 52 of Questionnaire)

l~non-financial
lmfinan~ial I

E Mm E E IU4 EN41U4 J E E E

Engine Plants & Location

Chart 7.3

Investment decisions

Table 7.3 indicates the relative importance of several factors when investment decisions concerning

engine plants are made.
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C.7.4. Investment Decisions

Table C.32: Factors Involved in Investment Decisions (cf. Questionnaire Page 52)
I I

Rank in im~ortance (1 = most important)

I

(Most important... ) : (... Leaat important~
Rank 1 2 3’ 4 5 6
Factors Number of ‘“’ = number of instances (out of 15 engine ~lants which answered)

Technoloqicsl need . . . . . . . . . . . . .

Internal rate of return (IROR) ‘“”’””” ““ . . .

Technological opportunity
. . . ..*. ... ,.. . .

Product rwality ., .,... ... . .*. .
1

Payback .* ..!. . . . . . .j
Safety/ergonomics

. . . . . . . . . .
1’””

I
~–

Note about IROR used by companies: answers are 15%, 30%, 35%, 40% (twice), >40Y0
I

Note about payback period used:

I Number of years 1 2 31 Other 51 6

Number of srrswers 1 4 1 I Engine 11’2 life II 1

Table 7.3

- As a group, engine plants rank “product quality” and “internal rate of return” as the two most

important factors involved in investment decisions. Then, by decreasing importance, come

technological need and the other factors listed in Table C.32.

- Engine plants located in North America all rank “internal rate of return” as their number one or

number two most important factor.

- We have also indicated what internal rates of return are commonly used by companies: it ranges

from 15% to more than 40%.

- Concerning payback, a 2-year period is most commonly used, but results differ once again

among the engine plants surveyed (from 1 to 6 years).

Indirect cost allocation

Table C.33 in the questionnaire deals with indirect cost allwation: while many factors were

proposed in the list, in general, respondents indicated that only a few of them are in use in their

company: more precisely, “standard labor hours” is by far the most commonly used

method, followed by “actual labor hours”, as can be concluded by Table 7.4.
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C.7.5. Indirect Cost Allocation

Table C.33: Methods for Indirect Cost Allocation (cf. Questionnaire Page 52)

Question: Which of the following ~-methods is/are used to assign indirect costs? ,
I t

Frequency (Most frequent...) (... Least frequent)

Factors Number of answers

Standard labor hours . *,*.**...

Standard labor cost .* . ●

Actual labor hours .*. * *.. .

Actual labor cost .*! “.

Material consumed (std. units) ● ! ,

Standard machine hours . ● * I
Material consumed (std. cost) * I .

Actual machine hours . , .

Material consumed (actual cost) . . . I ●

Table 7.4

Activity-based costing systems

At the time when these engine plant surveys were filled out (i.e. around 1995), only 5 out of 16

engine plants said that they used an activity-based costing (ABC) system. Nothing

specific seems to distinguish those 5 engine

and in Japan; there are old and new plants

might have some engine plants with ABC in

ABC system.

plants: they are located in Europe, in North America

among them. Also, we observed that an automaker

place while some of its other facilities do not use an

Activity-Based Costing
I

QC 58 (page 53): Is an activity-based costing (ABC) system in use in this plant?
QC 59 (page 53): If yes, what percent of cost centers are in the ABC system?

I I

Answers given by the engine plants surveyed:! I

I I
i I

llyEsm\ 5 ! (0/0 of cost centers affected by ABC: 330/., 80Y0, 99Y0, 100Y0, 100%)

No Answerl 3! I

Table 7.5

[n those plants where ABC is used, the percentage of cost centers affected was usually

809’oand 100~0 (except 33% in one engine plant), as shown in Table 7.5.

between
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8. Plant improvement efforts

Table C.35 deals with plant improvement efforts: from a list of 11 items in the questionnaire,

respondents from engine plants were asked to indicate how important each of them was. The items

cover issues such as plant flexibility, cost improvements, different kinds of productivity, the

interaction with other services within the company as well as with suppliers of components and

industrial equipment.

How Important Are
The

o

The Following For Improving Your Plant In
Future? (cf. Table C.35 page 53)

Number of Answers from Engine Plsnts

2 4 6 8 10

Increase flexibility of factory
.

Decrease direct labor cost

Decrease indirect labor cost

Increase flexibility of machines

.
Increase flexibility of material I

flow ,, ;pVery

12 14

Replace direct workers with lfi Somewhat important
machines I

Improve contact with design 1
I I ❑ INot very important ~

office I
1 I :, I Ill

Improve contact with machine~

suppliers I
Make more engines in less space

Make more engines for less
investment

Increase productive time of
machines_— I ,

Chart 8.1

The data presented on Chart 8.1 enable to make the following conclusions:

- “Automation”: for most people, the replacement of direct workers by machines does

not represent a top priority. This is even the least important of the many items proposed

in the table! However, it is interesting to note that labor productivity seems to be a metric which

is monitored with a great deal of attention in the automobile industry.

- The desire to improve flexibility of engine factories is very strong (in general, it

is even stronger than the desire to improve the flexibility of machines and of the material flow,

which are also two priority items). Other very important items are the reduction of both direct
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and indirect labor cost, along with a better usage (time-wise and money-wise) of the

manufacturing equipment deployed in engine plants.

- Logically, respondents also estimate that it is fairly important to improve (the quality of)

their contacts with people in the design office and with the suppliers of machinery. [Note: this

desire makes a lot of sense, all the more as we have seen in Chart 5.7 that changes in engine

design (which is something which affects the way they are manufactured) are very often caused

by the engine design department.]

- About the desire to be able to build more engines in less space, we made an interesting

finding, by comparing the answers from Table C.35 to some quantitative data about the engine

plants. On Chart 8.2, we separated the group of 5 engine plants whose respondents

claim that “building more engines in less space” is “very important”. It turns out

that the plants from this group already use less space, compared to the average floor space

utilization of our sample! It might imply that, the more efficient you (already) are at producing

engines in less space, the more you realize that such an issue is crucial.

Desire to Build More Engines in Less Space vs. Average
Utilization of Floor Space in All Departments of Engine Plants

(cf. Table C.35 page 53, Table B.19 page 19)
2.0 I 1

1.8

00

F
--------.....----.................=--........

Engines families for which machmmg and t–1
; assembly lines use, on average, more space per ;
‘ unit per shift (compared to the average for all ;

“. plants) are located above the dashed line .r
s----------- . . . . . . . . . . . . . . . . . . . . . . . . ---. ” I

----

How important

:~ ~ Not very important ‘

is it to be able to build more enaines in less sDace ?

Chart 8.2

Procedures in Engine Plants Artzner, Whitney -- MIT J IMVP -- Oct. 1997 Page 105



Comments on flexibility

In Table C.35 whose results we have just talked about, there are 3 types of flexibility which are

mentioned: the flexibility of the factory, the flexibility of machines, and the flexibility of material

flow. The respondents almost always answered that it was “very important” or “somewhat

important” to improve these types of flexibility. We wanted to check if their answers depend on the

level of engine variety which their plants are currently dealing with. Chart 8.3, Chart 8.4 and Chart

8.5 help tackle this issue. Note: the variety index plotted on these graphs is identical to the one

which had already been used in previous presentations: it ranges between O and 1, and it increases

with the number of engine variants (Omeans no variety at all).]

For each of the three flexibility topics, those plants which claim that “it is very important

to increase the flexibility” are basically those which currently deal with less engine

variety than the other plants which estimate that increasing the flexibility is “somewhat

important”. A reason for this might be that, in engine plants where the variety index is low, people

expect and/or fear that in the future, they will certainly have to manufacture more engine variants,

and therefore, they believe that it is very important to increase the flexibility of their operations.

Desire to Increase the Flexibility of the Factory vs. Level of
Variety which Engine Plants Face

(cf. Table C.35 page 53)
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Desire to Increase the Flexibility of Machines vs. Level of
Variety which Engine Plants Face

(cf. Table C.35 page 53)
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Desire to Increase the Flexibility of Material Flow vs. Level
of Variety which Engine Plants Face

(cf. Table C.35 page 53)
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Conclusion

With this paper, we wanted to share findings about policies and procedures currently in place

throughout automotive engine plants all over the world. By analyzing the results from this IMVP

survey, we could see that, while some aspects of lean production have been successfully

implemented in several facilities (e.g. more training goes along with a higher rate of suggestions by

workers), in many aspects of this comparative study (such as logistics, maintenance, and

accounting procedures), the industrial environment in which engine plants operate makes them less

exposed to some of the pressures that have forced automobile assembly plants to increasingly

adopt the lean production paradigm.

Some specific characteristics of automotive engine plants ought to be kept in mind, namely:

- Engine plants are very capital-intensive facilities.

- Engines can be produced there for very long periods of time with only small, incremental

modifications (although the life span of engine families is shrinking, it is still much longer than

the life span of cars).

- The engine components for which the pace of technological evolution is fastest are not

actually made at the engine plants; rather, they are often outsourced.

- Automotive engine plants almost always operate in a captive market situation, and they are

placed one step behind vehicle assembly plants in terms of feeling the competitive pressure

from other automakers.

Following are selected striking observations which can be made in conclusion of this paper. On the

one hand, we have seen the following: (i) there is a big difference between Japanese and Western

firms in terms of how frequently engine parts are delivered to the assembly departments of engine

plants; (ii) maintenance programs like TPM have only been in place for a few years; (iii) a major

installation of equipment often takes more than two years to be implemented; (iv) sales growth,

return on assets or on equity do not count at all as important financial indicators used by cti

companies to evaluate the performance of their engine plants. These examples illustrate how

difficult it is for lean principles to diffuse throughout many engine plants of automobile

manufacturers. On the other hand, there are some signs showing that people within engine plants

recognize the need for their whole organization to become leaner, by better utilizing resources (in

terms of equipment, space) and by continuing to empower workers; moreover, top-priority items

for automotive engine plants are increased flexibility and strengthened communication links with

other departments involved in engine design and manufacturing.
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