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Abstract 
 

Among encountered problems in digital and analog communications, there is mismatch between canals and sources. As 
regards theory of information, unfortunately, this mismatch found expression in information loss during transfer to 
reception side. In order to settle the problem, the solution consists in adjustment of probability law at source so that we 
maximize the mean mutual information. For a little number of symbols, either at emission or at reception, the work can 
be done analytically with some difficulties. Unfortunately, the problem have tendency to become more and more difficult 
and complicated as number of symbols increases. In this case and as alternative, we propose a non-traditional 
optimization method, namely genetic algorithm, which will express, with regard to our problem, all its efficiency through 
this paper with some conclusive applications. 
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1. Introduction 
 
In a communication system, we try to convey information 
from one point to another, very often in a noisy 
environment.  
 The question is what is the maximum amount of 
meaningful information which can be conveyed? This 
question may not have a definite answer because it is not 
very well posed. In particular, we do not have a precise 
measure of meaningful information. Nevertheless, this 
question is an illustration of the kind of fundamental 
questions we can ask about a communication system [1]-[5]. 
 Information, which is not a physical entity but an 
abstract concept, is hard to quantify in general. This is 
especially the case if human factors are involved when the 
information is utilized.  In other words, we can derive utility 
from the same information every time in a different way. For 
this reason, it is extremely difficult to devise a measure 
which can quantify the amount of information contained in 
an event. 
 Shannon introduced two fundamental concepts about 
information from the communication point of view. First, 
information is uncertainty. More specifically, if a piece of 
information we are interested in is deterministic, then it has 
no value at all because it is already known with no 
uncertainty. Consequently, an information source is 
naturally modeled as a random variable or a random process, 
and probability is employed to develop the theory of 
information. 

 Second, information to be transmitted is digital. This 
means that the information source should first be converted 
into a stream of 0's and 1's called bits, and the remaining 
task is to deliver these bits to the receiver correctly with no 
reference to their actual meaning. This is the foundation of 
all modern digital communication systems [1]-[5].  
 In the same work, Shannon also proved two important 
theorems. The first theorem, called the source coding 
theorem, introduces entropy as the fundamental measure of 
information which characterizes the minimum rate of a 
source code representing an information source essentially 
free of error. The source coding theorem is the theoretical 
basis for lossless data compression. 
 The second theorem, called the channel coding theorem, 
concerns communication through a noisy channel. It was 
shown that associated with every noisy channel is a 
parameter, called the capacity, such that information can be 
communicated reliably through the channel as long as the 
information rate is less than the capacity. 
These two theorems, which give fundamental limits in point-
to-point communication, are the two most important results 
in information theory. 
 Shannon's information measures refer to entropy, 
conditional entropy, mutual information, and conditional 
mutual information. They are the most important measures 
of information in information theory [1]-[5].  
 Now, let us put ourselves in the situation of a 
transmission system for which the channel is established as a 
memoryless one. Our purpose through this survey is then, to 
define the optimal probability law at emission side which 
will give the maximal mutual information with reception 
side. For this aim we will use genetic algorithm as 
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optimization process to do the task, but before we will give 
some basic notions in information theory.  
 
 
2. Information measures 
 
We begin by introducing the entropy of a random variable. 
As we will see shortly, all Shannon's information measures 
can be expressed as linear combinations of entropies. The 
entropy H (X) of a random variable X is: 
 
H X = − p x log p x

!

                                                                                                      (1) 

 
 The base of the logarithm can be chosen to be any 
convenient real number greater than 1. When the base of the 
logarithm is 2, the unit for entropy is the bit. 
 The definition of the joint entropy of two random 
variables is similar to the definition of the entropy of a single 
random variable. The joint entropy H (X, Y) of a pair of 
random variables X and Y is defined as [1]-[5]: 
 
H X, Y = − p x, y log p x, y

!,!

                                                                              (2) 

 
 For two random variables, we define in the following the 
conditional entropy of one random variable when the other 
random variable is given. Fig. 1 shows correspondence 
between two random variables X and Y. 
 

 
Fig. 1. Correspondence between two random variables X and Y 
 
 
 Every correspondence is weighted by conditional 
probability p (yj ⎜xi). For random variables X and Y, the 
conditional entropy of Y given X is defined as: 
 
H Y  �X = − p x, y log p y  �x

!,!

                                                                        (3) 

 
 For random variables X and Y, the mutual information 
between X and Y is defined as [1]-[5]: 
 

I   X, Y = − p x, y   
log p x, y
p x   p y

!,!

                                                                              (4) 

3. Discrete memoryless channels 
 
A channel is a communication device with two ends, an 
input end, or transmitter, and an output end, or receiver. A 
discrete channel accepts for transmission the characters of 
some finite alphabet          X = {x1,..., xs}, the input alphabet, 
and delivers characters of an output alphabet Y = {y1,..., yr} 
to the receiver.  
 Every time an input character is accepted for 
transmission, an output character subsequently arrives at the 
receiver. 
 Let the input alphabet be X = {x1,..., xs}, and the output 
alphabet be Y = {y1,..., yr}. By the assumption of 
memorylessness, the probability that yj will be received, if xi 
is the input character, depends only on i, j, and the nature of 
the channel. We denote this probability by qij. The qij are 
called the transition probabilities of the channel, and the s×r 
matrix Q = [qij] is the matrix of transition probabilities or 
channel matrix. After the input and output alphabets have 
been agreed upon, Q depends on the channel itself. We 
could say that Q is a property of the channel. Note that: 
 
Q =
p y!  �  x! ⋯ p y!  �  x!

⋮ ⋱ ⋮
p y!  �  x! ⋯ p y!  �  x!

                                                                                            (5)        

 
With:                          
 

q!" =
!!!

!!!

p y!�x!

!!!

!!!

= 1  

 
for each i; that is, the row sums of Q are all 1. 
 
And: 
 

p y! = p y!,   x!

!!!

!!!

= p y!  �  x!

!!!

!!!

p x!                                                 (6) 

 
 We have a memoryless channel with input alphabet X, 
output alphabet Y, and transition probabilities qij. For i ∈ 
{1,..., s}, let pi denote the relative frequency of transmission, 
or input frequency, of the input character xi. In a large 
number of situations, it makes sense to think of pi as the 
proportion of the occurrences of xi to be transmitted through 
the channel. 
 
 
4. Channel capacity of a discrete memoriless channel 
 
Let a source emit symbols x1, x2,…, xs. The receiver receives 
symbols y1, y2,…, yr. The set symbols yj may or may not be 
identical to the set xi. With these considerations, we may 
write [6]-[8]:  
 

I X, Y = p y!,   x!   log!
p y!  �  x!
p y!

  
!!!

!!!

!!!

!!!

 

 
After some development, we can write:  
 

Y X 

x1 

x2 

x3 

xs 

y1 

y2 

y3 
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I X, Y

= p x!   p y!  �  x!   log!
p y!  �  x!
p x!   p y!  �  x!!!!

!!!
  

!!!

!!!

!!!

!!!

                    (7) 

 
 The last equation is given in term of input symbol 
probabilities and channel matrix. 
 The capacity of a discrete memoryless channel is defined 
as the maximum of I (X,Y) with respect of p(xi) [7]-[8]: 
 
C = max I X, Y ! !!                                                                                                                                       (8)  
 
That is: 
∂I X, Y
∂p x! !!!,!,…,!

= 0                                                                                                                                      (9) 

 
 Where X and Y are respectively the input and the output 
of the generic discrete channel, and the maximum is taken 
over all input distributions p (xi). 
 We are interested in communication, the transfer of 
information; it is reasonable to suppose that we ought, 
therefore, to be interested in the mutual information between 
the input and output systems. It would be interesting to 
know the maximum value that I (X, Y) can have. As 
indicated, that maximum value is called the capacity of the 
channel, and any values of p1,..., ps for which that value is 
achieved are called optimal input (or transmission) 
frequencies for the channel.  
 If you accept I (X, Y) as an index, or measure, of the 
potential effectiveness of communication attempts using this 
channel, then the capacity is the fragile acme of 
effectiveness [6]-[8]. This peak is achieved by optimally 
adjusting the only quantities within our power to adjust, 
once the hardware has been established and the input 
alphabet has been agreed to, namely, the input frequencies. 
The main idea of this section is to show how to find the 
optimal input frequencies. But before launching into the 
technical details, let us muse a while on the meaning of what 
it is that we are optimizing. 
 The only instances we know of when the optimal input 
frequencies are not unique are when the capacity of the 
channel is zero. Certainly, in this case, any input frequencies 
will be optimal. We conjecture that if the channel capacity is 
non-zero, then the optimal input frequencies are unique. 
 The capacity equation is function of both the pi and qij, 
supposing there is a solution of the equations at positive pi. 
Then for every small wiggle of the qij there will be a positive 
solution of the new capacity equations quite close to the 
solution of the original system. 
 We can say that there are optimal input frequencies for 
channel if and only if p1,..., ps satisfy, for some value of C, 
the following: 
  

p x!

!!!

!!!

= 1 

 
And: 
 

  p y!  �  x!   log!
p y!  �  x!
p x!   p y!  �  x!!!!

!!!
  

!!!

!!!

= C 

 

 Furthermore, if p1,..., ps are optimal input frequencies 
satisfying these equations, for some value of C, then C is the 
channel capacity [1]-[5]. 
 This theorem may seem, at first glance, to be saying that 
all you have to do to find the capacity of a channel and the 
optimal input frequencies is to solve the capacity equations 
of the channel. However, there is a loophole, a possibility 
that slips through a crack in the wording of the theorem. It is 
possible that the capacity equations have no solution or no 
solution with all the pi positive. 
 Generally, determination of optimal input frequencies is 
hard work and with no guarantee to find the best solution, 
especially for great number of inputs and outputs. 
Consequently, we propose in this paper an alternative for 
maximization of mutual information, i.e. determination of 
channel capacity C, based on non-traditional method, 
namely genetic algorithm. This algorithm doesn’t require 
any derivative information and do not fail where others do. 
Moreover, genetic algorithm guarantees good solution, even 
if it is not the best, with easy possibility to integrate as many 
constraints as we need.  In the next section, we give some 
basic definitions about this heuristic algorithm. For our 
purpose and as we will see later, the mutual information I 
constitutes the fitness, which is the unique link between 
genetic algorithm and the entire problem.  
 
 
5. Anatomy of a genetic algorithm 
 
A genetic algorithm (GA) offers an alternative to traditional 
local search algorithms. It is an optimization algorithm 
inspired by the well-known biological processes of genetics 
and evolution. Evolution is closely intertwined with 
genetics. It results in genetic changes through natural 
selection, genetic drift, mutation, and migration. Genetics 
and evolution result in a population that is adapted to 
succeed in its environment. In other words, the population is 
optimized for its environment [9]-[17]. 
 A combination of genetics and evolution is analogous to 
numerical optimization in that they both seek to find a good 
result within constraints on the variables. Input to objective 
or cost or fitness function is a chromosome. The output of 
the objective function is known as the cost when 
minimizing. Each chromosome consists of genes or 
individual variables. The genes take on certain alleles much 
as the variable has certain values. A group of chromosomes 
is known as a population. For our purposes, the population is 
a matrix with each row corresponding to a chromosome. 
 

pop =

chrom!
chrom!

⋮
chrom!

=
gene!! ⋯ gene!"
⋮ ⋱ ⋮

gene!" ⋯ gene!"
 

 
 Each chromosome is the input to fitness function. The 
cost associated with each chromosome is calculated by the 
fitness function. 
 

f

chrom!
chrom!

⋮
chrom!

=

cost!
cost!
⋮

cost!

 

 
 It is the cost that determines the fitness of an individual 
in the population. A low cost implies a high fitness. In other 
side, GA operations work only with numbers [9]-[12].  
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 Often, the numerical values assigned to genes are in 
binary format. Continuous values have an infinite number of 
possible combinations of input values, whereas binary 
values have a very large but finite number of possible 
combinations of input values. Binary representation is also 
common when there are a finite number of values for a 
variable. However, when the variables are continuous, it is 
more logical to represent them by floating-point numbers. In 
addition, since the binary GA has its precision limited by the 
binary representation of variables, using floating point 
numbers instead easily allows representation to the machine 
precision [9]-[12]. 
 This continuous GA also has the advantage of requiring 
less storage than the binary GA because a single floating-
point number represents the variable instead of nbits 
integers. The continuous GA is inherently faster than the 
binary GA, because the chromosomes do not have to be 
decoded prior to the evaluation of the cost function.  
 Although the values are continuous, a digital computer 
represents numbers by a finite number of bits. When we 
refer to the continuous GA, we mean the computer uses its 
internal precision and round-off to define the precision of the 
value. 
The algorithm has the following steps: 
 
1. Create an initial population. 
2. Evaluate the fitness of each population member. 
3. Invoke natural selection. 
4. Select population members for mating. 
5. Generate offspring. 
6. Mutate selected members of the population. 
7. Terminate run if stop criteria or go to step 2 if not.  
 
 These steps are shown in the flowchart in Fig. 2. 
 

 
Fig. 2. Genetic algorithm flowchart 
 
 
 The initial population is the starting matrix of 
chromosomes. For our case, we have s variables used to 
calculate the output of the cost or fitness function, and then a 
chromosome in the initial population consists of s random 
values assigned to these variables. For N chromosomes, our 
random population matrix is then of size s N. 

 The chromosomes are passed to the cost function for 
evaluation. Each chromosome then has an associated cost. 
Formulating the cost function is an extremely important step 
in optimization.  
 Only the healthiest members of the population are 
allowed to survive to the next generation. We use two ways 
to invoke natural selection. The first is to keep m healthy 
chromosomes and discard the rest. This will be achieved by 
sorting chromosomes based on their fitness and only m 
chromosomes are retained. A second approach, called 
thresholding, keeps all chromosomes that have a cost below 
a threshold cost value. The chromosomes that survive form 
the mating pool, or the group of chromosomes from which 
parents will be selected to create offspring. 
 The fittest members of the population are assigned the 
highest probability of being selected for mating. We used 
two common ways for choosing mates, which are roulette 
wheel and tournament selection. The population must first 
be sorted for roulette wheel selection. Each chromosome is 
assigned a probability of selection on the basis of either its 
rank in the sorted population or its cost. Rank order selection 
is the easiest implementation of roulette wheel selection. 
Chromosomes with low costs have a higher percent chance 
of being selected than to chromosomes with higher costs. 
The second approach consists in selection of two groups of 
chromosomes from the mating pool. The chromosome with 
the lowest cost in each group becomes a parent. Enough of 
these tournaments are held to generate the required number 
of parents. The tournament repeats for every parent needed. 
Tournament selection works well than roulette wheel.  
 Offspring can be generated from selected parents in 
different ways. We combine variable values from the two 
parents into new variable values in the offspring as:  
 
vo1 = αvp1 + (1 – α) vp2 
vo2 = (1 – α) vp1 + α vp2     
 (10) 
 
with:  
 
α: random number on the interval [0, 1] 
vo1: value in the offspring 1 
vo2: value in the offspring 2 
vp1: value in the mother chromosome 
vp2: value in the father chromosome 
 
 Mutation induces random variations in the population. 
The mutation rate is the portion of values within a 
population that will be changed. Mutation for continuous 
variables can take many different forms. One way is to 
totally replace the selected mutated value with a new random 
value. This approach keeps all variable values within 
acceptable bounds. An alternative is to randomly perturb the 
chosen variable value. We add a normally distributed 
random value to the variable selected for mutation. Care 
must be taken to ensure that the values do not extend outside 
the limits of the variables.  
 This generational process is repeated until a termination 
condition has been reached. Common terminating conditions 
are: 
 
• Set number of iterations. 
• Set time reached. 
• A cost that is lower than an acceptable minimum. 

Initial  
population 

Mutated  
population Yes  

No  

Fitness evaluation  

Parents 
Offspring  

Keep discard 

Parents 

Generate  
offspring 

Natural  
selection 

Mating  
pool 

Mutate  

Done?  
	
  

Stop criteria 

End  
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• A best solution has not changed after a set number of 
iterations. 
 
 These processes ultimately result in the next-generation 
population of chromosomes that is different from the initial 
generation. Generally the average fitness will have increased 
by this procedure for the population, since only the best 
chromosomes from the preceding generation are selected for 
breeding [9]-[17]. 
 
 
6. Results 
In this section, we will give some results, certain for 
comparison with theory, others for calculation code 
efficiency proof.   
 
6. 1. First application  
 
 As one can see on figure, in this first application, we 
have a ternary symmetric channel with X={x1, x2, x3} and 
Y={y1, y2, y3}. The channel matrix is given by:     
  
 

Q =
1 0 0
0 p 1 − p
0 1 − p p

 

 
 
 

 
 
 
 With a lot of math and exhaustive calculus, one can 
deduce that optimal input frequencies are: 
 
p x!
=

1
1 + 2!  !"#!  !! !!! !"#!   !!! !!                                                                                                  11  

 

p x! = p x! =
1 − p x!

2

=
2!  !"#!  !! !!! !"#!   !!!

1 + 2!  !"#!  !! !!! !"#!   !!! !!                   (12) 
 
and the channel capacity: 
 
C = max I X, Y ! !!  
 
C
= log! 1
+ 2!  !"#!  !! !!! !"#!   !!! !!                                                                                                         (13) 
 
 
 The base for logarithm is 2. 
 

 Now we give results of simulation to prove the 
efficiency of our approach and to validate the calculation 
code based on genetic algorithm. For different values of p, 
Tab. 1 resumes theoretical values of input frequencies and 
channel capacity, while Tab. 2 resumes simulated values. 

 
Table 1. Theoretical values of optimal input frequencies	
  

p p (x1) p (x2) p (x3) C 
0 0.3333 0.3333 0.3333 1.5850 

0.1 0.4090 0.2955 0.2955 1.2898 
0.2 0.4520 0.2740 0.2740 1.1457 
0.4 0.4950 0.2525 0.2525 1.0146 
0.5 0.5000 0.2500 0.2500 1.0000 
0.7 0.4794 0.2603 0.2603 1.0606 
1 0.3333 0.3333 0.3333 1.5850 

	
  

Table 2. Simulated values of optimal input frequencies 
p p (x1) p (x2) p (x3) C 
0 0.3353 0.3340 0.3317 1.58493 

0.1 0.4089 0.2959 0.2943 1.28992 
0.2 0.4542 0.2757 0.2691 1.14598 
0.4 0.4955 0.2570 0.2465 1.01501 

0.5 
0.4984 0.0121 0.4885 1.00032 
0.4964 0.4741 0.0285 1.00041 
0.5000 0.1761 0.3229 1.00041 

0.7 0.4804 0.2604 0.2582 1.06090 
1 0.3332 0.3336 0.3342 1.58510 

	
  
 
 Except for p = 0.5, theoretical and simulated values are 
very close. For p = 0.5, theoretical values are unique but for 
simulated values there is fluctuation except for p (x1). This 
can be explained easily. In fact for p=0.5, any couple of p 
(x2) and p (x3) have the same impact on value of C. that is 
for p = 0.5, we have the minimal value of C and no influence 
of p (x2) and p (x3) on it. This is why we have swinging 
values for p (x2) and p (x3). Of course we have always 
p(x2)+p(x3)=1–p(x1)=0.5. 
 The following figures show convergence, which is 
evident, for input frequencies and channel capacity through 
generations. 

 
Fig. 3. Convergence for input frequency p(x1) 
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Fig. 4. Convergence for input frequency p(x2) 
 

 
Fig. 5. Convergence for input frequency p(x3) 
 

 
Fig. 6. Convergence for channel capacity  
 
 
6. 2. Second application 
 
For this second application, we have X={x1, x2, x3, x4, x5} 
and Y={y1, y2, y3, y4}. We set the following channel matrix: 
 

Q =

0.48 0.24 0.16 0.12
0.12 0.16 0.24 0.48
0.12 0.48 0.24 0.16
0.16 0.12 0.48 0.24
0.24 0.12 0.16 0.48

 

 
 For this channel matrix, the obtained optimal input 
frequencies are: 
 

p (x1) = 0.2820 

p (x2) = 0.1113 

p (x3) = 0.2609 

p (x4) = 0.1939 

p (x5) = 0.1510 

 
and the corresponding simulated channel capacity is: 
 

 
Fig. 7. Convergence for input frequency p(x1) 
 

 
Fig. 8. Convergence for input frequency p(x2) 
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Fig. 9. Convergence for input frequency p(x3) 
   

  
Fig. 10. Convergence for input frequency p(x4) 
 
 
C = 0.20865 
 
 As usual, the following figures show convergence, which 
is perfect, for input frequencies and channel capacity 
through generations. 
 

 
Fig. 11. Convergence for input frequency p(x5) 

 
Fig. 12. Convergence for channel capacity 
 
6. 3. Third application 
 As third application, we take X={x1, x2, x3, x4} for 
Y={y1, y2, y3, y4, y5, y6}. The channel matrix is generated 
randomly and is given by: 
 
Q

=
0.2808 0.4043 0.0001 0.0013 0.3080 0.0055
0.0478 0.0234 0.6014 0.0189 0.0038 0.3047
0.1911 0.4897 0.0020 0.2655 0.0001 0.0516
0.0001 0.2886 0.0240 0.0000 0.0029 0.6844

 

 
The simulated optimal input frequencies are: 
 
p (x1) = 0.3226 
p (x2) = 0.2911 
p (x3) = 0.1856 
p (x4) = 0.1997 
 
and the corresponding channel capacity is: 
 
C = 0.94833 
  
 Below and as ever, figures show excellent convergence 
for input frequencies and channel capacity through 
generations. 
 

 
Fig. 13. Convergence for input frequency p(x1) 

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Generations

In
pu

t f
re

qu
en

cy
 v

al
ue

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Generations

In
pu

t f
re

qu
en

cy
 v

al
ue

0 200 400 600 800 1000 1200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Generations

In
pu

t f
re

qu
en

cy
 v

al
ue

0 200 400 600 800 1000 1200
0

0.05

0.1

0.15

0.2

0.25

Generations

Ch
an

ne
l C

ap
ac

ity

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generations

In
pu

t f
re

qu
en

cy
 v

al
ue



S.	
  A.	
  Djennas,	
  L.	
  Merad	
  and	
  B.	
  Benadda/	
  Journal	
  of	
  Engineering	
  Science	
  and	
  Technology	
  Review	
  6	
  (3)	
  (2013)	
  16-­‐24 
	
  

 
	
  

23 

 
Fig. 14. Convergence for input frequency p(x2) 

 
Fig. 15. Convergence for input frequency p(x3) 

  
Fig. 16. Convergence for input frequency p(x4) 

 
Fig 17. Convergence for channel capacity 
 
7. Conclusion 
 
For efficient transmission, it is necessary to adapt sources to 
channels. The theory says that we can emit symbols without 
loss, if information rate is less than the capacity of channel. 
This parameter is defined as the maximal mutual 
information between input and output across channel. The 
mean mutual information is function of input frequencies 
and the transition probabilities. It is necessary to have 
measure to this entity, to maximize it and to give assessment 
about channel by its capacity.  
 Once the channel is established, the maximization of 
mutual information is achieved by optimally adjusting the 
input frequencies. The work is hard and very constraining 
with much math. To alleviate the procedure, we introduce a 
genetic algorithm based optimization to bring solution. In 
fact with this algorithm, there is no need to derivative 
information and the task is simplified to just formulation of 
the fitness function, which is the mutual information for our 
case. This function is the only link between our purpose and 
genetic algorithm.  
 The different simulations carried out, show an excellent 
approach and give very conclusive results. This is very 
encouraging and constitutes a support to our survey. 

 
______________________________	
  

References 
 

1. C. Arndt, “Information measures”, Springer, 2001. 
2. T. M. Cover, J. A. Thomas, “Elements of information theory”, Wiley-

Interscience, (2006).   
3. I. Csiszár, J. Körner, “Information theory: coding theorems for 

discrete memoryless systems”, Cambridge University Press, (2011). 
4. D. C. Hankerson, G. A. Peter, D. J. Harris, “Introduction to 

information theory and data compression”, Chapman and Hall/CRC, 

(2003). 
5. M. V. Volkenstein, R. G. Burns, A. Shenitzer, “Entropy and 

information”, Birkhäuser Basel, (2009). 
6. I. Land, S. Huettinger, P. A. Hoeher, J. Huber, “Bounds on mutual 

information for simple codes using information combining”, Annals 
of Telecommunications, (2004). 

7. T. M. Cover, M. Chiang, “Duality between channel capacity and rate 

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Generations

In
pu

t f
re

qu
en

cy
 v

al
ue

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generations

In
pu

t f
re

qu
en

cy
 v

al
ue

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generations

In
pu

t f
re

qu
en

cy
 v

al
ue

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generations

Ch
an

ne
l C

ap
ac

ity



S.	
  A.	
  Djennas,	
  L.	
  Merad	
  and	
  B.	
  Benadda/	
  Journal	
  of	
  Engineering	
  Science	
  and	
  Technology	
  Review	
  6	
  (3)	
  (2013)	
  16-­‐24 
	
  

 
	
  

24 

distortion with two-sided state information”, IEEE Transactions on 
Information Theory, Vol. 48, No. 6, pp. 1629-1638, (2002). 

8. G. Caire, S. Shamai, “on the Capacity of some channels with channel 
state information”, IEEE Transactions on Information Theory, Vol. 
45, No. 6, pp. 2007-2019, (1999). 

9. R. L. Haupt, S. E. Haupt, “Practical genetic algorithms”, Wiley-
Interscience, (2004). 

10. C. R. Reeves, J. E. Rowe, “Genetic algorithms - principles and 
perspectives: a guide to GA theory”, Springer, (2002). 

11. S. N. Sivanandam , S. N. Deepa, “Introduction to genetic 
algorithms”, Springer, (2010). 

12. F. Rothlauf, “Representations for genetic and evolutionary 
algorithms”, Springer, (2010). 

13. E. Alba, M.Tomassini, “Parallelism and evolutionary algorithms”, 
IEEE Transactions on Evolutionary Computation, pp. 443-462, 
(2002). 

14. I. Kushchu, “Genetic programming and evolutionary 
generalization”, IEEE Transactions on Evolutionary Computation, 
pp.431-442, (2002). 

15. A. Rogers, A. Prugel, “Genetic drift in genetic algorithm selection 
schemes”, IEEE Transactions on Evolutionary Computation, pp. 298-
303, (1999). 

16. A. Konaka, D. W. Coitb, A. E. Smith, “Multi-objective optimization 
using genetic algorithms: A tutorial”, Reliability Engineering and 
System Safety, pp. 992-1007, (2006).  

17. H. Maaranen, K. Miettinen, A. Penttinen, “on Initial populations of 
a genetic algorithm for continuous optimization problems”, Journal of 
Global Optimisation, pp. 405-436, (2007) 


