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I. INTRODUCTION

Since its prediction by Einstein1,2, Bose-Einstein condensation (BEC) has played an im-

portant role in many-particle quantum mechanics. From a physical point of view, this type

of condensation refers to the fact that a �nite fraction of the particles occupy the same one-

particle state in the thermodynamic limit and that this macroscopic occupation of the same

state induces a coherent behaviour in the many-particle system bearing some resemblance

with a superconducting behaviour. Indeed, this observation led to the well-known Bogoli-

ubov mean-�eld model of BEC (see, e.g., Ref. 3). On the other hand, from a mathematical

point of view the di�culties to establish BEC in interacting systems were soon realised. This

applies, in particular, to continuous systems and only recently rigorous results have been

obtained for them4�6. We stress that there exist various generalised notions of Bose-Einstein

condensation in the literature7�10. In this Note, however, we shall always refer to BEC as the

macroscopic occupation of a one-particle state in the thermodynamic limit. In particular,

we shall be concerned with the condensation into the one-particle ground state.

A related question to proving BEC in an interacting system is the following: Suppose that

a non-interacting many-particle system shows BEC as, e.g., a free gas in a three-dimensional

box. The question then arises, whether this condensation is stable under perturbing the free

gas by introducing repulsive particle interactions. In a number of cases it had been shown

that hardcore interactions destroy BEC11�13, and this was recently con�rmed for many-

particle quantum systems on (�nite, metric) graphs14. However, since hardcore interactions

can be viewed as very strong one might wonder whether small repulsive interactions can

be implemented such that the condensation survives. It appears that the answer strongly

depends on the type of condensation in the free system. Whereas the results of Ref. 6 show

that under some circumstances BEC is stable with respect to superstable repulsive two-

particle interactions, it was shown in another example15 that even small repulsive interactions

destroy the condensate. The reason for this very di�erent behaviour lies in the nature of

the one-particle ground state of the free gas. Whereas in the model of Ref. 6 this ground

state is a plane wave and, hence, completely delocalised, the ground state in the model of

Ref. 15 is localised at the boundary of the system. Intuitively, this explains why the e�ect

of repulsive interactions is much stronger in the latter system, leading to the destruction of

the condensate.
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It is our goal in this Note to prove that BEC of a free gas on a quantum graph into

the one-particle ground state is unstable under the addition of a fairly general repulsive

two-particle interaction. Quantum graphs are (rami�ed) one-dimensional models with a

potentially complex topology. Although quantum graphs are studied in various areas of

mathematics and physics (see, e.g., Ref. 16), they are particularly prominent in the �eld of

quantum chaos17. This is due to the fact that the spectral correlations of su�ciently complex

quantum graphs follow the Bohigas-Gianonni-Schmit conjecture18 and are well described by

random matrix theory. Contrary to what is often believed, BEC can occur in a free gas in

one dimension when attractive boundary conditions are chosen19. In a similar spirit, a free

Bose gas on a �nite graph can show BEC at �nite temperature. We previously identi�ed the

class of boundary conditions in the vertices of the graph that lead to BEC of a free gas and

showed that any condensation (in terms of singularities of the free energy) is destroyed by

adding hardcore two-particle interactions14. In this Note we now allow repulsive two-particle

interactions to be generated by a potential in the same way as in Ref. 15, where the case

of an interval (a graph with one edge in our language) with attractive boundary conditions

at one end was investigated. However, here we consider arbitrary (�nite) graphs and also

include interactions approaching the Lieb-Liniger model20 (constructed on graphs in Ref. 21)

in the thermodynamic limit. In all cases we prove that BEC into the one-particle ground

state is destroyed by the interactions at any �nite temperature.

It is important to note that besides being one of the few explicitly solvable many-particle

models, rigorous results concerning BEC in the Lieb-Liniger model are scarce. Recently, e.g.,

condensation in the Lieb-Liniger model on an interval with additional random potentials was

discussed in Ref. 22, proving condensation at zero temperature in a Gross-Pitaevskii regime.

The thermodynamic limit employed in Ref. 22 is a high-density limit since the volume of

the one-particle con�guration space is not changed. In this Note, however, we study BEC

on general (�nite) graphs at �nite temperature in the standard thermodynamic limit with

�xed density.

II. BACKGROUND

In this section we brie�y summarise relevant concepts of one-particle and many-particle

quantum graphs, as well as Bose-Einstein condensation. For more details on BEC see
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Refs. 23�25, on quantum graphs see Refs. 26�29 and on many-particle quantum graphs see

Refs. 21,30. For a discussion of BEC on quantum graphs see Ref. 14.

Let Γ = (V , E) be a �nite graph with vertices V = {v1, . . . , vV } and edges E = {e1, . . . , eE}

connecting the vertices. The graph is equipped with a metric structure by assigning a (�nite)

length le > 0 to each edge e ∈ E . Hence, each edge e is associated with an interval [0, le],

and this allows us to de�ne the one-particle Hilbert space,

H1 =
⊕
e∈E

L2(0, le) . (1)

In order to obtain a quantum graph one introduces a self-adjoint realisation of the Laplacian

inH1. As a di�erential expression the Laplacian acts on smooth functions F = (f1, . . . , fE) ∈

H1 as

−∆1F = (−f ′′
1 , . . . ,−f ′′

E) . (2)

Here the index 1 refers to the fact that (2) is a one-particle operator which, in our case,

serves as the one-particle Hamiltonian.

There are several ways to characterise self-adjoint realisations of the di�erential expression

(2), see Refs. 26,31. In the following we shall refer to the approach developed in Ref. 26.

This characterises the domains D1(P1, L1) ⊂ H1 on which −∆1 is self-adjoint in terms of two

linear maps P1, L1 on C2E, where P1 is a projection and L1 is a self-adjoint endomorphism

on kerP1. These maps act on the boundary values of functions and their derivatives on the

edges and hence implement the connectivity of the graph. Any self-adjoint realisation of

the one-particle Laplacian has compact resolvent. Its spectrum, therefore, is purely discrete,

with an eigenvalue count following a Weyl asymptotics. Moreover, there are at most �nitely

many negative eigenvalues, whose number is bounded by the number of positive eigenvalues

of L1
27.

Following the usual construction, the bosonic N -particle Hilbert space is the symmetrised

N -fold tensor product of the one-particle Hilbert space (1), i.e., HN
B = H1 ⊗s · · · ⊗s H1.

Accordingly, the N -particle Hamiltonian is given by

−∆N =
N∑
j=1

1⊗ · · · ⊗ (−∆1)⊗ · · · ⊗ 1 . (3)

As a di�erential expression this is a Laplacian in N variables. A number of self-adjoint

realisations of −∆N are discussed in Refs. 21,30, including non-interacting as well as inter-

acting ones. Non-interacting realisations (−∆N ,DN(P1, L1)) follow from a tensor product
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construction, where the domain DN(P1, L1) is an N -fold tensor power of the one-particle

domain D1(P1, L1). An important consequence is that the spectrum of (−∆N ,DN(P1, L1))

consists of eigenvalues that are sums of one-particle eigenvalues. For more details see Ref. 14.

Among the interacting realisations of the N -particle Laplacian developed in Ref. 21 is a rig-

orous version of

HN = −∆N + α
∑
i<j

δ(x(i) − x(j)) , (4)

de�ning a Lieb-Liniger model (see Ref. 20) on a graph. Here i, j are particle labels attached

to coordinates on the same edge. In this context−∆N stands for a non-interacting realisation

of the Laplacian; the interaction is a singular two-particle contact interaction, as indicated

by the δ-potentials.

In bosonic many-particle systems, BEC refers to the macroscopic occupation of a one-

particle state. We work in the canonical ensemble, i.e., with a �xed particle number N and

Hilbert space HN
B . The expectation value of a (bounded) observable AN in the Gibbs state

ωβ at inverse temperature β therefore is

ωβ(AN) =
1

ZN(β)
Tr(ANe

−βHN ) , (5)

where ZN(β) = Tr(e−βHN ) is the partition function and HN is the N -particle Hamiltonian

operator that is assumed to preserve the particle number. Condensation only takes place in

the thermodynamic limit, which in the canonical ensemble is obtained by letting the volume

of the one-particle con�guration space tend to in�nity while keeping the particle density

constant32. In the context of quantum graphs, the volume is the total length L =
∑E

e=1 le

of the graph.

De�nition II.1. In a quantum graph the thermodynamic limit is obtained by rescaling

each edge length le as nle, and letting n → ∞. At the same time the number of particles N

is increased such that the particle density ρ = N/L remains constant.

We denote the thermodynamic limit by writing L → ∞.

Although, strictly speaking, not needed in the canonical ensemble, some tools of second

quantisation will be useful in the following. Hence, we let FB be the bosonic Fock space

over the one-particle Hilbert space H1 de�ned in (1). When Φ = (φe)e∈E ∈ H1, the standard
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annihilation and creation operators in FB are a(Φ) and a∗(Φ). They can be represented as

a(Φ) =
E∑

e=1

∫ le

0

φe(x)ae(x) dx ,

a∗(Φ) =
E∑

e=1

∫ le

0

φe(x)a
∗
e(x) dx ,

(6)

with operator-valued distributions ae and a∗e attached to each edge that satisfy the CCR

[ae(x), ae′(y)] = 0 = [a∗e(x), a
∗
e′(y)] , [ae(x), a

∗
e′(y)] = δee′δ(x− y) . (7)

The particle number operator N̂ can be expressed as

N̂ =
E∑

e=1

∫ le

0

a∗e(x)ae(x) dx . (8)

If the N -particle system is in the Gibbs state (5), the number of particles in a given one-

particle state Φ ∈ H1 is ωβ(a
∗(Φ)a(Φ)).

De�nition II.2. Let Φ ∈ H1 be any (normalised, pure) one-particle state. We say that

Bose-Einstein condensation is exhibited in the state Φ at inverse temperature β > 0, if

lim sup
L→∞

ωβ(a
∗(Φ)a(Φ))

L
> 0 . (9)

In Ref. 14 non-interacting Bose gases on quantum graphs were classi�ed according to

whether or not they show BEC:

Theorem II.3. Let (−∆1,D1(P1, L1)) be a one-particle Laplacian on a graph and denote the

associated non-interacting N-particle Laplacian by (−∆N ,DN(P1, L1)). Then BEC occurs

for (−∆N ,DN(P1, L1)) below some critical temperature, if and only if the map L1 has at

least one positive eigenvalue.

The key mechanism that leads to condensation in the non-interacting Bose gas is a gap

in the one-particle spectrum that separates a �nite number of states, in particular the

ground state, from the states of positive energy. It is known that there can only be negative

eigenvalues of the one-particle Laplacian when L1 is not negative semi-de�nite, hence the

requirement for L1 to possess a positive eigenvalue. Furthermore, according to Lemma 3.3

in Ref. 14, the ground state eigenvalue converges to −L2
max in the thermodynamic limit,

6

http://dx.doi.org/10.1063/1.4946044


where Lmax is the largest eigenvalue of L1. Therefore, the essential condition for BEC is a

gap in the one-particle spectrum that persists in the thermodynamic limit.

It is generally assumed that a gap in the one-particle spectrum stabilises condensation,

or even makes it possible at all6. This is true, in particular, for a one-dimensional Bose

gas since no condensation is present for standard boundary conditions as expressed by the

well-known result of Hohenberg33. In three dimensions, where condensation occurs without

a gap, an additional gap stabilises the condensate. As an example, in Ref. 6 an arti�cial gap

was introduced, and it was shown that a certain class of repulsive two-particle interactions

does not destroy the condensate. However, although a gap in the one-particle spectrum

generally stabilises condensation, it still may not be possible to implement repulsive two-

particle interactions without destroying the condensate. An example for this was studied

in Ref. 15. The reason for the di�erences in the examples of Ref. 6 and Ref. 15 lies in

the strongly localised nature of the ground state of the model studied in Ref. 15. In the

cases covered by Theorem II.3 where BEC occurs, the ground states are localised around

the vertices of the graph. One thus expects a similar behaviour to the one found in Ref. 15.

III. RESULTS

In this section we start with non-interacting Bose gases that, according to Theorem II.3,

show BEC and then investigate the e�ect of additional, repulsive two-particle interactions.

Working in the canonical ensemble we shall de�ne a restriction of the N -particle Hamiltonian

to the (�nite) one-particle con�guration space32 and then investigate the particle number

density (9) of the one-particle ground state in the limit L → ∞. More explicitly, the

N -particle Hamiltonian is given by

HN = −∆N + UL
N , (10)

where (−∆N ,DN(P1, L1)) is such that L1 has at least one positive eigenvalue. Therefore,

according to Theorem II.3, the free Bose gas with Hamiltonian −∆N shows BEC below a

critical temperature. The interaction potential UL
N is de�ned in terms of a function UL :

R → R+ such that, in the language of second quantisation,

UL
N =

1

2

∑
e

∫ le

0

∫ le

0

a∗e(x)a
∗
e(y)UL(x− y)ae(x)ae(y) dx dy , (11)
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see also (6) and (7). We require the function UL to be (i) positive, in order to generate

repulsive interactions, and (ii) to result in a Kato-Rellich perturbation UL
N of −∆N , so that

HN is self-adjoint on the domain DN(P1, L1). Furthermore, we assume that

1. ∥UL∥L1(R) is �nite and independent of L,

2. For all L > 0 there exists AL, ϵL > 0 such that UL(x) ≥ ϵL for all x ∈ [−AL,+AL].

More speci�cally, we require that AL is either independent of L, or that limL→∞ AL = 0.

These families of potentials include δ-sequences, e.g., of the form UL(x) := LV (Lx) with

V ∈ C∞
0 (R), V ≥ 0 and ∥V ∥L1(R) = α > 0, so that limL→∞ UL(x) = αδ(x). This implies

that in the thermodynamic limit L → ∞ we may include Lieb-Liniger models, see (4) and

Ref. 21.

The following result is adapted from Ref. 15.

Lemma III.1. Let UL be a sequence of potentials with the properties described above. Then

the energy density remains �nite in the thermodynamic limit, i.e.,

lim sup
L→∞

ωβ(HN)

L
< ∞ . (12)

Proof. The proof follows the strategy outlined in Ref. 15. It uses a normalised one-particle

vector Φ ∈ H1 such that each component (Φ)e = φe ∈ H1(0, le) is supported in (0, le),

bounded in absolute value by 1√
Ele

, and equal to de√
Ele

on the interval [a, le − a] for some

a > 0 with de → 1 as le → ∞.

Furthermore, we require Φ to be such that there is a constant c1 > 0 with

∥∇φe∥2L2(0,le)
≤ c1 , ∀e ∈ E . (13)

Due to the repulsive nature of the potential one has

fL(β) =
1

βL
log Tr(e−βHN ) ≤ f 0

L(β) =
1

βL
log Tr(eβ∆N ) . (14)

De�ning ΨN = Φ⊗ · · · ⊗ Φ one gets

Tr(e−βHN ) ≥ e−β⟨ΨN ,HNΨN ⟩HN

≥ e−β(NEc1+c2
N(N−1)

2L ∥UL∥L1) ,
(15)

where c2 > 0 is a constant. As a consequence,

−
(
Ec1ρ+ c2

ρ2

2

)
− ϵ ≤ fL(β) ≤ f 0

L(β) (16)
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for L large enough, with some ϵ > 0. Finally, using the convexity of fL(β),

−ωβ(HN)

L
=

dfL
dβ

(β) ≥ fL(β)− fL(β − δ)

δ
, (17)

the Lemma then follows using the bounds (16) and taking into account that

lim supL→∞ f 0
L(β) exists. The latter property follows from a bracketing argument and

the explicit knowledge of the eigenvalues for Dirichlet and Neumann vertex conditions (see,

e.g., Ref. 30).

Following Ref. 15, the general idea is to show that BEC into the one-particle ground

state, after repulsive interactions are switched on, would contradict Lemma III.1.

Lemma III.2. Let Φ = (φe)e∈E ∈ H1 be a pure one-particle state. De�ne Φ1 and Φ2 as

(Φ1)e := φeχ[0,lδmin]
,

(Φ2)e := φeχ[le−lδmin,le]
,

(18)

where δ < 1
3
is some constant, lmin is the shortest edge length and χI is the characteristic

function of the interval I. Then, given that the potential UL described above is such that ϵL

and AL are both constant or ϵLA
3
L = O(L3δ+γ−1) with γ < 1− 3δ, one has

lim sup
L→∞

ωβ(a
∗(Φj)a(Φj))

L
= 0 , j = 1, 2 . (19)

Proof. We follow the strategy outlined in Ref. 15. For this, we partition the interval [0, lδmin]

into ⌈lδmin/AL⌉ sub-intervals Ij = [(j − 1)AL, jAL], 0 < j < ⌈lδmin/AL⌉. In the same way, we

partition [le − lδmin, le] into ⌈lδmin/AL⌉ sub-intervals Ĩj = [le − jAL, le − (j − 1)AL], 0 < j <

⌈lδmin/AL⌉. We then estimate:

ωβ(HN)

L
≥ −|E0|

N

L

+
1

2L
∑
e

∫ le

0

∫ le

0

UL(x− y)ωβ(a
∗
e(x)a

∗
e(y)ae(x)ae(y)) dx dy

≥ −|E0|
N

L

+
1

2L
∑
e

⌈lδmin/AL⌉∑
j=1

∫
Ij

∫
Ij

UL(x− y)ωβ(a
∗
e(x)a

∗
e(y)ae(x)ae(y)) dx dy

+
1

2L
∑
e

⌈lδmin/AL⌉∑
j=1

∫
Ĩj

∫
Ĩj

UL(x− y)ωβ(a
∗
e(x)a

∗
e(y)ae(x)ae(y)) dx dy ,

(20)
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where E0 < 0 is the ground-state eigenvalue of the one-particle Laplacian −∆1. Now, using

the lower bound on the potential, we obtain

ωβ(HN)

L
≥ −|E0|

N

L

+
ϵL
2L

∑
e

⌈lδmin/AL⌉∑
j=1

∫
Ij

∫
Ij

ωβ(a
∗
e(x)a

∗
e(y)ae(x)ae(y)) dx dy

+
ϵL
2L

∑
e

⌈lδmin/AL⌉∑
j=1

∫
Ĩj

∫
Ĩj

ωβ(a
∗
e(x)a

∗
e(y)ae(x)ae(y)) dx dy .

(21)

We de�ne φ
(i)
e := φeχIi and φ̃

(i)
e := φeχĨi

as the components of functions Φji, Φ̃ji ∈ H1, such

that (Φji)e = δejφ
(i)
j and (Φ̃ji)e = δejφ̃

(i)
j . However, for simplicity we restrict our attention

in the following to Φji. Using the Cauchy-Schwarz inequality for the Gibbs state25 we then

obtain,

|ωβ(a
∗(Φji)a(Φlk))|4 ≤ ω2

β(a
∗(Φji)a(Φji))ω

2
β(a

∗(Φlk)a(Φlk))

≤ ωβ(a
∗(Φji)a(Φji)a

∗(Φji)a(Φji))

· ωβ(a
∗(Φlk)a(Φlk)a

∗(Φlk)a(Φlk)) ,

(22)

and

ωβ(a
∗(Φji)a(Φji)a

∗(Φji)a(Φji)) = ωβ(a
∗(Φji)a

∗(Φji)a(Φji)a(Φji))

+ ∥φ(i)
j ∥2L2(0,lj)

ωβ(a
∗(Φji)a(Φji)) .

(23)

Next we establish two useful estimates. First, using the Hölder and then again the Cauchy-

Schwarz inequality, yields,

ωβ(a
∗(Φji)a(Φji)) =

∫ lj

0

∫ lj

0

φ
(i)
j (x)φ̄

(i)
j (y)ωβ(a

∗
j(x)aj(y)) dx dy

≤
∫ lj

0

ωβ(a
∗
j(x)aj(x)) dx

∫ lj

0

|φ(i)
j (y)|2 dy

≤ N

∫ lj

0

|φ(i)
j (y)|2 dy .

(24)

Second, again using the Hölder and the Cauchy-Schwarz inequality,

ωβ(a
∗(Φji)a

∗(Φji)a(Φji)a(Φji)) ≤
∫
Ii

∫
Ii

ωβ(a
∗
j(x)a

∗
j(y)aj(x)aj(y)) dy dx

·
(∫

Ii

|φ(i)
j (x)|2

)2

dx

≤
∫
Ii

∫
Ii

ωβ(a
∗
j(x)a

∗
j(y)aj(x)aj(y)) dy dx

:= Cji .

(25)
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Combining (22), (23), (24) and (25) we obtain

⌈lδmin/AL⌉∑
i,k=1

|ωβ(a
∗(Φji)a(Φlk))|4 ≤

⌈lδmin/AL⌉∑
i=1

Cji +N

⌈lδmin/AL⌉∑
k=1

Clk +N

 . (26)

Using the inequality |
∑n

j=1 aj|4 ≤ n3
∑n

j=1 |aj|4 then gives

|ωβ(a
∗(Φ1)a(Φ1))|4 =

∣∣∣∣∣∣
E∑

j,l=1

⌈lδmin/AL⌉∑
i,k=1

ωβ(a
∗(Φji)a(Φlk))

∣∣∣∣∣∣
4

≤ 2
E6l6δmin

A6
L

E∑
j,l=1

⌈lδmin/AL⌉∑
i,k=1

|ωβ(a
∗(Φji)a(Φlk)|4

≤ 2
E6l6δmin

A6
L

 E∑
j=1

⌈lδmin/AL⌉∑
i=1

Cji + EN

2

.

(27)

Hence,

ϵL
2L

E∑
j=1

⌈lδmin/AL⌉∑
i=1

Cji ≥
ϵLA

3
L

2
√
2E3l3δmin

1

L
ω2
β(a

∗(Φ1)a(Φ1))− Eρ

≥ ϵLA
3
L

2
√
2E3L3δ−1

(ωβ(a
∗(Φ1)a(Φ1))

L

)2

− Eρ .

(28)

De�ning

Dji :=

∫
Ĩi

∫
Ĩi

ωβ(a
∗
j(x)a

∗
j(y)aj(x)aj(y)) dy dx , (29)

one obtains in a similar way,

ϵL
2L

E∑
j=1

⌈lδmin/AL⌉∑
i=1

Dji ≥
ϵLA

3
L

2
√
2E3L3δ−1

(ωβ(a
∗(Φ2)a(Φ2))

L

)2

− Eρ . (30)

The right-hand sides of (28) and (30), therefore, provide lower bounds to (20). We choose

AL, ϵL both either constant, or such that ϵLA
3
L = O(L3δ+γ−1), where 0 < γ < 1 − 3δ. The

latter choice is possible as δ < 1
3
. Hence, the lower bounds in (28) and (30) tend to in�nity in

the thermodynamic limit, unless (19) is ful�lled. Lemma III.1, however, requires the energy

density to remain �nite, hence (19) follows.

To prove the absence of condensation into the one-particle ground state we need the

following statement.
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Lemma III.3. Let Φ0 = (φe)e∈E ∈ H1 be the normalised one-particle ground state with

components φe(x) = aee
−
√

|E0|x + bee
+
√

|E0|x and corresponding eigenvalue E0 < 0. Then,

max
e∈E

sup
L

(
|φe(0)|+ |φe(le)|

)
< ∞ , (31)

and the coe�cients are such that |ae| = O(1) and |be| = O(e−
√

|E0|le).

Proof. The squared norm of the function Φ0 = (φe)e∈E is

∥Φ0∥2 =
∑
e

(
|ae|2

2
√

|E0|

(
1− e−2

√
|E0|le

)
+

|be|2

2
√
|E0|

(
e2
√

|E0|le − 1
)
+ 2|(āebe)|le

)
. (32)

In order for this to equal one, as le → ∞, one has to require that |ae| = O(1) and |be| =

O(e−
√

|E0|le). Since φe(0) = ae + be and φe(le) = aee
−
√

|E0|le + bee
√

|E0|le the property (31)

follows.

As a consequence, the one-particle ground state is localised around the vertices of the

graph. This is similar to the model in Ref. 15 and di�ers essentially from the model in

Ref. 6.

We can now formulate the main result of this Note.

Theorem III.4. Let Φ0 ∈ H1 be the ground state of the one-particle system. Furthermore,

let HN be given with interaction potential UL as in Lemma III.2. Then,

lim sup
L→∞

ωβ(a
∗(Φ0)a(Φ0))

L
= 0 . (33)

Hence, in the interacting many-particle system there is no condensation into the one-particle

ground state.

Proof. We use the cut-o�s introduced in Lemma III.2 and write Φ0 = Φ1 + Φ2 + Φ3 where

(Φ3)e := φ0,eχ[lδmin,le−lδmin]
. This gives

ωβ(a
∗(Φ0)a(Φ0))

L
=

3∑
i,j=1

ωβ(a
∗(Φi)a(Φj))

L
. (34)

For the diagonal terms, �rst Lemma III.2 implies that

lim sup
L→∞

ωβ(a
∗(Φi)a(Φi))

L
= 0 , i = 1, 2 . (35)
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Then, Lemma III.3 yields that limL→∞ ∥Φ3∥H1 = 0. Using the Cauchy-Schwarz inequality

we hence obtain

lim sup
L→∞

ωβ(a
∗(Φ3)a(Φ3))

L
≤ lim sup

L→∞

N

L
∥Φ3∥2H1

= 0 . (36)

Using the Cauchy-Schwarz inequality the o�-diagonal terms can be bounded by the diagonal

terms,
ωβ(a

∗(Φi)a(Φj))

L
≤ ωβ(a

∗(Φi)a(Φi))

L
+

ωβ(a
∗(Φj)a(Φj))

L
, (37)

which concludes the proof.

Remark III.5. Theorem III.4 only proves that the condensation into the one-particle

ground state is unstable with respect to additional repulsive interactions. As already indi-

cated in the introduction, our result does not rule out other potential types of Bose-Einstein

condensation (see, e.g., Refs. 34,35).
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