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Publishihg INTRODUCTION

Since its prediction by Einstein!?, Bose-Einstein condensation (BEC) has played an im-
portant role in many-particle quantum mechanics. From a physical point of view, this type
of condensation refers to the fact that a finite fraction of the parti%s occupy the same one-
particle state in the thermodynamic limit and that this macroscepi¢ occupation of the same

with a superconducting behaviour. Indeed, this observati

state induces a coherent behaviour in the many-particle syste aring some resemblance
led“to the well-known Bogoli-

ubov mean-field model of BEC (see, e.g., Ref. 3). On the Hl)ei‘hand, from a mathematical
—

point of view the difficulties to establish BEC in interacting systems were soon realised. This
applies, in particular, to continuous systems and only tly rigorous results have been
obtained for them®%. We stress that there exist various generalised notions of Bose-Einstein
condensation in the literature” '°. In this Nd\g{t vt;; we shall always refer to BEC as the
macroscopic occupation of a one-parti ehﬁg in“the thermodynamic limit. In particular,

~

we shall be concerned with the condensation into the one-particle ground state.

A related question to proving BEC i?n.i\ﬂteracting system is the following: Suppose that
a non-interacting many-particle \&%\p
box. The question then arises, W‘% this condensation is stable under perturbing the free
si%rticle interactions. In a number of cases it had been shown

ws BEC as, e.g., a free gas in a three-dimensional

gas by introducing rep

CH 13 and this was recently confirmed for many-

that hardcore interaCtions“destroy BE
particle quantumysteéms oy (finite, metric) graphs'®. However, since hardcore interactions
can be viewe very, strong one might wonder whether small repulsive interactions can
be implemen a3uch that the condensation survives. It appears that the answer strongly
depends bu the ty) of condensation in the free system. Whereas the results of Ref. 6 show
that finder somé circumstances BEC is stable with respect to superstable repulsive two-
) rﬁ&*l&w ctions, it was shown in another example!® that even small repulsive interactions
déstroy we condensate. The reason for this very different behaviour lies in the nature of
w(&e—particle ground state of the free gas. Whereas in the model of Ref. 6 this ground
state is a plane wave and, hence, completely delocalised, the ground state in the model of
Ref. 15 is localised at the boundary of the system. Intuitively, this explains why the effect
of repulsive interactions is much stronger in the latter system, leading to the destruction of

the condensate.


http://dx.doi.org/10.1063/1.4946044

! I P | This manuscript was accepted by J. Math. Phys. Click here to see the version of record. |

Publishinglt is our goal in this Note to prove that BEC of a free gas on a quantum graph into
the one-particle ground state is unstable under the addition of a fairly general repulsive
two-particle interaction. Quantum graphs are (ramified) one-dimensional models with a
potentially complex topology. Although quantum graphs are studied in various areas of
mathematics and physics (see, e.g., Ref. 16), they are particularly(t{rominent in the field of

quantum chaos!'”. This is due to the fact that the spectral correl

iess of'sufficiently complex

quantum graphs follow the Bohigas-Gianonni-Schmit conjecture™and are well described by

random matrix theory. Contrary to what is often believe ,-§E an ‘occur in a free gas in
e

one dimension when attractive boundary conditions are ¢ n'%.In a similar spirit, a free

—-—

Bose gas on a finite graph can show BEC at finite temiperatuge. "We previously identified the

class of boundary conditions in the vertices of thé graph that lead to BEC of a free gas and

ular1tie:s)of the free energy) is destroyed by
adding hardcore two-particle interactions“.m'ote we now allow repulsive two-particle
th

interactions to be generated by a pote tiil\ ame way as in Ref. 15, where the case
of an interval (a graph with one ed ir&%nguage) with attractive boundary conditions

at one end was investigated. Howeve

showed that any condensation (in terms of si

ereswe consider arbitrary (finite) graphs and also
include interactions approaching the Figh-Liniger model®® (constructed on graphs in Ref. 21)

in the thermodynamic limit. INes we prove that BEC into the one-particle ground

1 actions at any finite temperature.

%esides being one of the few explicitly solvable many-particle
models, rigorouszsu ’(:onperning BEC in the Lieb-Liniger model are scarce. Recently, e.g.,
condensation in the Bieh-L

f. 22, proving condensation at zero temperature in a Gross-Pitaevskii regime.

state is destroyed by th

It is important toAote

iger model on an interval with additional random potentials was

on.genegal (éﬁite) graphs at finite temperature in the standard thermodynamic limit with
fixed detSsity.

NI

IT, BACKGROUND

In this section we briefly summarise relevant concepts of one-particle and many-particle

quantum graphs, as well as Bose-Einstein condensation. For more details on BEC see
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PublishiRgfs. 23-25, on quantum graphs see Refs. 26-29 and on many-particle quantum graphs see
Refs. 21,30. For a discussion of BEC on quantum graphs see Ref. 14.

Let I' = (V, €) be a finite graph with vertices V = {v1,..., vy} and edges € = {e1,...,ep}
connecting the vertices. The graph is equipped with a metric structure by assigning a (finite)
length I, > 0 to each edge e € £. Hence, each edge e is associat%d/with an interval [0, [.],
and this allows us to define the one-particle Hilbert space,

M= L*0,1) . (1)

eef

In order to obtain a quantum graph one introduces a self- Dn‘b-;;aalisation of the Laplacian
-
in ;. As a differential expression the Laplacian acts @h unctions F' = (f1,..., fr) €

H, as C

~AF = (— ST (2)
{ -
-particle operator which, in our case,

Here the index 1 refers to the fact that K a o

serves as the one-particle Hamiltonian.
\
There are several ways to charactetige selfsadjoint realisations of the differential expression

es
(2), see Refs. 26,31. In the follosi‘zf%sh}ll refer to the approach developed in Ref. 26.

This characterises the domaing D, (R, C H1 on which —A; is self-adjoint in terms of two
linear maps P, L; on C**, whe 1 18 a projection and L, is a self-adjoint endomorphism

on ker P;. These maps t@\Sle boundary values of functions and their derivatives on the
t

edges and hence impleme connectivity of the graph. Any self-adjoint realisation of

the one-particle Laplasian h,fts compact resolvent. Its spectrum, therefore, is purely discrete,

with an eigenvalue count following a Weyl asymptotics. Moreover, there are at most finitely

many negativeigenvalues, whose number is bounded by the number of positive eigenvalues
of L127. /
ng

usual construction, the bosonic N-particle Hilbert space is the symmetrised

Nfol nsos product of the one-particle Hilbert space (1), i.e., HY = Hi Q4 -+ @4 H;.
Al cordirff,'ly, the N-particle Hamiltonian is given by
\ N
o “AN =) 180 @(-A)®-- 1. (3)
j=1
As a differential expression this is a Laplacian in N variables. A number of self-adjoint
realisations of —Apy are discussed in Refs. 21,30, including non-interacting as well as inter-

acting ones. Non-interacting realisations (—Apy, Dy (P, L1)) follow from a tensor product

4
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Publishiegstruction, where the domain Dy (P1, Ly) is an N-fold tensor power of the one-particle
domain D;(P;, L1). An important consequence is that the spectrum of (—Ay, Dy (Py, Ly))
consists of eigenvalues that are sums of one-particle eigenvalues. For more details see Ref. 14.
Among the interacting realisations of the N-particle Laplacian developed in Ref. 21 is a rig-

orous version of

Hy=-Ay+a) 6" —aV) (4)

J/'\

defining a Lieb-Liniger model (see Ref. 20) on a graph. H Q:}l\Qp rticle labels attached

to coordinates on the same edge. In this context —Ay stan
hy

of the Laplacian; the interaction is a singular two-pakticle csn ct interaction, as indicated

or amon-interacting realisation

by the d-potentials. g

In bosonic many-particle systems, BEC refers to tﬁg macroscopic occupation of a one-
particle state. We work in the canonical e &f:)‘\leh\r with a fixed particle number N and
Hilbert space H5. The expectation va eSNbo ded) observable Ay in the Gibbs state

wp at inverse temperature 3 therefore is

ws( Tr(Aye ?) (5)

where Zy(8) = Tr(e PHn) isktition function and Hy is the N-particle Hamiltonian

operator that is assumedito prégerve the particle number. Condensation only takes place in

the thermodynamicdimif, whieh in the canonical ensemble is obtained by letting the volume

of the one-partiéle con fétion space tend to infinity while keeping the particle density

constant??. fﬁ‘) context of quantum graphs, the volume is the total length £ = Zle le

of the gr
Defi 1t10n In a quantum graph the thermodynamic limit is obtained by rescaling
eath-ed gth l. as nl., and letting n — co. At the same time the number of particles N

is creaésd such that the particle density p = N/L remains constant.

N\

We denote the thermodynamic limit by writing £ — oo.
Although, strictly speaking, not needed in the canonical ensemble, some tools of second
quantisation will be useful in the following. Hence, we let F3 be the bosonic Fock space

over the one-particle Hilbert space #H; defined in (1). When ® = (¢.)ces € Hi, the standard

3
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Publishimgnihilation and creation operators in Fp are a(®) and a*(®). They can be represented as
E le
= Z/ Pe()ae(x) dzx
e=1 0
E le
=Y [ e dr,
e=1 "0

a*(®)
with operator-valued distributions a. and a} attached to each @twfy the CCR

[ac(x), ae(y)] = 0 = [ag(2),ap(y)] s lac(e “y Jeer0(x — (7)

The particle number operator N can be expressed ab

N= Z/ ®)

L..
If the N-particle system is in the Gibbs Q\Q e number of particles in a given one-

(6)

particle state ® € H; is wg(a

Bose-Einstein condensation is exh

Definition II.2. Let & € H; an ﬁ)mahsed pure) one-particle state. We say that
i\ the state ® at inverse temperature 3 > 0, if

>0. 9
E—)oo E ( )
In Ref. 14 non-i erac ose gases on quantum graphs were classified according to
whether or not t y S W B/EC
Theorem I . 1, D1(Py, L)) be a one-particle Laplacian on a graph and denote the

associate nO}z imteracting N-particle Laplacian by (—Ayn, Dn(P1, L1)). Then BEC occurs
(P Ly)) below some critical temperature, if and only if the map L1 has at

-

The 1§y mechanism that leads to condensation in the non-interacting Bose gas is a gap
N}& one-particle spectrum that separates a finite number of states, in particular the
ground state, from the states of positive energy. It is known that there can only be negative
eigenvalues of the one-particle Laplacian when L; is not negative semi-definite, hence the
requirement for L, to possess a positive eigenvalue. Furthermore, according to Lemma 3.3

in Ref. 14, the ground state eigenvalue converges to —L? _ in the thermodynamic limit,

6
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Publishiwfcre Ly, is the largest eigenvalue of L;. Therefore, the essential condition for BEC is a
gap in the one-particle spectrum that persists in the thermodynamic limit.

It is generally assumed that a gap in the one-particle spectrum stabilises condensation,

or even makes it possible at all. This is true, in particular, for a one-dimensional Bose

gas since no condensation is present for standard boundary condi%ns as expressed by the

a%ens ion occurs without

well-known result of Hohenberg?®. In three dimensions, where

was introduced, and it was shown that a certain class of

a gap, an additional gap stabilises the condensate. As an exw Ref. 6 an artificial gap
Is1

9193 two-particle interactions
does not destroy the condensate. However, although a
_—

ossib%e

particle interactions without destroying the condensate.

in Ref. 15. The reason for the differences irfsthe e}@ples of Ref. 6 and Ref. 15 lies in

1r“he one-particle spectrum

generally stabilises condensation, it still may not b implement repulsive two-

example for this was studied

the strongly localised nature of the ground“sgate 0f the model studied in Ref. 15. In the

cases covered by Theorem I1.3 where BEC oecurs; the ground states are localised around

the vertices of the graph. One thus X§Ct a similar behaviour to the one found in Ref. 15.

III. RESULTS \\

In this section we sta

show BEC and then i

ith non-interacting Bose gases that, according to Theorem I1.3,
";% the effect of additional, repulsive two-particle interactions.
Working in the canoni al eny ble we shall define a restriction of the N-particle Hamiltonian
to the (finite) OZ—O

rticlecconfiguration space®? and then investigate the particle number
density (9) ’@ one-particle ground state in the limit £ — oo. More explicitly, the

nian is given by

3 Hy = -Ay+ U, (10)

ere J)AN,DN(Pl,Ll)) is such that L; has at least one positive eigenvalue. Therefore,

,COT to Theorem I1.3, the free Bose gas with Hamiltonian —Ay shows BEC below a
o

itical temperature. The interaction potential U% is defined in terms of a function U :

R — R, such that, in the language of second quantisation,

le  ple
Z/ / Y)Uc(z — y)ac(r)ac(y) dzdy , (11)
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Publishiseg also (6) and (7). We require the function U, to be (i) positive, in order to generate
repulsive interactions, and (ii) to result in a Kato-Rellich perturbation U% of —Ay, so that

Hy is self-adjoint on the domain Dy (P, L1). Furthermore, we assume that

L. Uzl 11wy is finite and independent of L,
2. For all £ > 0 there exists Az, e, > 0 such that Ug(z) > € for}kge [—Az, +AL].

More specifically, we require that A, is either independent f Lxor that lim, .., Az = 0.
These families of potentials include J-sequences, e.g., o X\Ug(z) = LV (Lx) with
Ve CE[R), V > 0and |[V]riw = o > 0, so that lim, U(z) = ad(z). This implies

that in the thermodynamic limit £ — co we may include LSeb— iniger models, see (4) and

-

Ref. 21.
The following result is adapted from Ref 1 D
Lemma III.1. Let Uy be a sequence ofp th the properties described above. Then

the energy density remains finite in the %@namzc limat, i.e.,
. (12)

Proof. The proof follows the £t &y t ined in Ref. 15. It uses a normalised one-particle
vector & € H; such that each C ponent = ¢. € H(0,1.) is supported in (0,1.),

bounded in absolute v. u%, and equal to \/ETe on the interval [a,l. — a] for some
a >0 with d, — 1 le/—>

Furthermore e re re/f> to be such that there is a constant ¢; > 0 with
||V90e||%2(o,ze) <ca, Veel. (13)

Due to the repulsive nature of the potential one has

b Fe(8) = 57 Tog Trle™™) < J2(3) = £ og TH(e) (14

ﬁ
%@N_q)@).”@@ one gets

\ ~ Tr<e_,8HN) > o AN HN YNy

15
> ¢ B(NEci+er Mgl 1) (15)
where ¢y > 0 is a constant. As a consequence,
Pz
— (Eclp + Cz§> —e < fe(B) < f2(B) (16)

8
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Publishifog C large enough, with some € > 0. Finally, using the convexity of fz(3),

eallln) _ 3z SB) = JeP9)

(17)

the Lemma then follows using the bounds (16) and taking into account that

limsup,_,. f2(B) exists. The latter property follows from a Q/cl@q\t:;g argument and
ve

the explicit knowledge of the eigenvalues for Dirichlet and Neu

e.g., Ref. 30). \ O
Following Ref. 15, the general idea is to show that Eb lr-lig he one-particle ground
state, after repulsive interactions are switched on, wolild*contsadict Lemma III.1.

Lemma II1.2. Let ® = (p.)ece € Hi be a pure (n?—par jele state. Define @1 and Py as

((I)l)e = @e%%a‘“—'
(P2)e 3—§7kl_m,le}a
\

where § < % 18 some constant, Ly, 4s th ortest edge length and x; is the characteristic

conditions (see,

(18)

function of the interval I. Then, give%t\tbe potential Uy described above is such that e,
%
L

and A are both constant or ex A \&( 1) with v < 1 — 36, one has
KWW(@)) o

lim sup — 18 =0, j=12. (19)

min

Proof. We follow the#étra o’ltlined in Ref. 15. For this, we partition the interval [0, 1%, ]

into [1°, /A;] subéi réals =10 — DAL, jAL), 0 < j < [I8:,/AL]. In the same way, we
partition [l, — (% ).into“[1%,./As] sub-intervals [; = [l — jAz I — (j — 1)Az], 0 < j <
(.. /A tDn estimate:

4 NN

ARl

-
Q& rap 2 ) [ Vel - pestatio @i dray
NI~

) I
> —|Ey| 7 .
1 [15n/AL]
o > Z /1 . Ur(z — y)ws(ai(z)a; (y)ac(r)ac(y)) dz dy
L Mh/Ac]
oz 2. Z /1 /I Ur(x — y)ws(az (z)az(y)ac(z)ae(y)) dedy ,
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Publishiwfcre Ey < 0 is the ground-state eigenvalue of the one-particle Laplacian —A;. Now, using

the lower bound on the potential, we obtain

ws(Hn)

N
> —|Ey|—
= —|B

[in/Ac]

5L 2 [ [ s g,
[
+ig:

(@) .

Bin/AL]
> | [ ettty
j=1 1 J1I;
We define gog) i= @exr; and Qe 1= exj, as the compone “}"fun‘ctions Dji, é]‘i € H,, such
that (®;). = 5ej(,0§i) and (i)ji)e = 5ej<;3§-i). However, r-;irn licity we restrict our attention

in the following to ®;;. Using the Cauchy—Schwa(—i-'neq ity for the Gibbs state?> we then

®
wa(a*(®5:)a(Pp))|* < wﬁ{\& ji))wi(a* () a(Pir))
M@ Dji)a*(Pji)a(Pyi)) (22)
(i)

%NL*(Q)M;)@ Qi )a” (P )a(Pu))

obtain,

IA

~

and %&
wﬂ(a*(%)a(@ji)a@) = wa(a™(Pji)a™(Pji)a(®ji)a(Pi)) (23
1657 120, wsla" (Rj)a(@5)) -
Next we establish two glh)imates. First, using the Holder and then again the Cauchy-

ielg,s,

Schwarz inequality,

i rly )
émz / : (@)@ (y)ws(ai(x)a;(y)) dedy

<a~§
8 < / wa(aj(z)a;(x)) do / o ()]? dy (24)
/ 0 0

y. 56
-~ SN/Iﬁwww-
0
Second, ai) using the Holder and the Cauchy-Schwarz inequality,
KSw5<a*<<1>ﬁ>a*<<1>ﬁ>a<<1>ﬁ>a<<bﬁ>> < [ [ sslai@aitaste)e;w) dyda
N . 0 ’
([ fwr) a

/I' ws(aj(x)a}(y)a;(x)a;(y)) dydz

(25)
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Publishifiginbining (22), (23), (24) and (25) we obtain

[8n/Acl [0 /AL [ /AL
> fwsla"(@)a@w)) < | D Cu+N > Gu+N| . (26)

Using the inequality | >"_; a;|* <n® 37", |a;|* then gives

E [4./Ac] \
|wa(a*(®1)a(®))|* = Z Z w6(a*(<1>ji)@@z\
jl=1 k=1
E [13n/A )

6763
- (1)l )| (27)

Hence,
(74
2L 4 (28)
Defining
(29)
one obtains in Sl
5
E Umm/Aﬂ b Al (Wﬂ(a*(q)?)a(q)?)))Q _E (30)
for 2 S o aE L £ :

=

The right-hand sides of (28) and (30), therefore, provide lower bounds to (20). We choose
%’c either constant, or such that e, A% = O(L3**7~1), where 0 < v < 1 — 35. The
att ice is possible as § < 3. Hence, the lower bounds in (28) and (30) tend to infinity in
J?t’h‘Mmodynamic limit, unless (19) is fulfilled. Lemma III.1, however, requires the energy

density to remain finite, hence (19) follows. O

To prove the absence of condensation into the one-particle ground state we need the

following statement.

11
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Publishihgmma I11.3. Let ®g = (@e)ece € Hi be the normalised one-particle ground state with

|Eolz

components p.(x) = ace” [Eolz 4 p et and corresponding eigenvalue Ey < 0. Then,

maxsup (|2 (0)] + e (le)]) < oo, (31)

and the coefficients are such that la.| = O(1) and |b,| = O(e” VIF )\

Proof. The squared norm of the function @y = (e )ece is

2 |ac|? —2+/|Eoll |bc|? | Eo|
[ Do = —(1—e °e)+— b 1) +2(a yz (32)
—\2v/|Eo| 2v/| By

In order for this to equal one, as [, — o0, one has t equ e that |a.| = O(1) and |b,| =

-

O(e~VIFlte). Since c(0) = ae + be and p,(l.) =gg@ ™" + b.eVI™le the property (31)
follows. - -

graph. This is similar to the model i 15 and differs essentially from the model in

As a consequence, the one-particle r(%\tafe is localised around the vertices of the
11%%\

Ref. 6. -~
We can now formulate the m of this Note.
Theorem II1.4. Let ®, be t ground state of the one-particle system. Furthermore,
let Hy be given with actzo potential Uy as in Lemma II1.2. Then,
)
/ hmsup Po)a(®o)) =0. (33)
L—00 E

Hence, in théunte actmg many-particle system there is no condensation into the one-particle

ground state. - 4

4

We Se e cut-offs introduced in Lemma III.2 and write ®; = &, + ®5 + $3 where

.0 - This gives

min’

ws(a”(®o)a(®y)) Z ws(a”(:)a(®;))

L ~ L (39
4,j=1
For the diagonal terms, first Lemma II1.2 implies that
"(Pi)a(P; :
lim sup S (@A) _ oy (35)
L—00 L

12
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Publishififen, Lemma II1.3 yields that limz_, [[®s]|%, = 0. Using the Cauchy-Schwarz inequality

we hence obtain

s 200" (@)l @)
L—o0 L

N
< lim sup |y 2, = 0. (36)
L—00 L

Using the Cauchy-Schwarz inequality the off-diagonal terms can b unded by the diagonal

terms,
wp(a”(Pi)a(®;)) _ wsla™(Pi)a(P:)) Wﬁ(@:@q)j))
I < 7 + N (37)
which concludes the proof. )-...__\ O

—
Remark III.5. Theorem III.4 only proves that th Con(bansatlon into the one-particle

ground state is unstable with respect to addltlo lswe interactions. As already indi-

cated in the introduction, our result does not r \%ut er potential types of Bose-Einstein
condensation (see, e.g., Refs. 34,35).

»\?‘
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