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A Bose gas in a double-well potential, exhibiting a true Bose-Einstein condensate (BEC) ampli-
tude and initially performing Josephson oscillations, is a prototype of an isolated, non-equilibrium
many-body system. We investigate the quasiparticle (QP) creation and thermalization dynamics of
this system by solving the time-dependent Keldysh-Bogoliubov equations. We find avalanche-like
QP creation due to a parametric resonance between BEC and QP oscillations, followed by slow,
exponential relaxation to a thermal state at an elevated temperature, controlled by the initial exci-
tation energy of the oscillating BEC above its ground state. The crossover between the two regimes
occurs because of an effective decoupling of the QP and BEC oscillations. This dynamics is anal-
ogous to elementary particle creation in models of the early universe. The thermalization in our
set-up occurs because the BEC acts as a grand canonical reservoir for the quasiparticle system.

PACS numbers: 67.85.-d, 67.85.De, 03.75.Lm

Common knowledge tells that many-body systems
come to thermodynamic equilibrium by coupling to a
heat reservoir. However, how can an isolated quantum
many-body system eventually come to rest from a given
initial non-equilibrium state, and is the final state a ther-
mal one? This is a long-standing problem, which has
recently received intense interest [1, 2], inspired by the
high degree of isolation and control possible in ultracold
quantum gases [3, 4]. While the unitary time evolution
of an isolated quantum system rigorously prohibits the
maximization of the total entropy and, thus, effective
thermalization is generically observed [3, 4].

Several mechanisms have been put forward in order to
resolve this contradiction, most notably the eigenstate
thermalization hypothesis (ETH) [5, 6]. It conjectures
that for a sufficiently complex quantum system the ther-
mal average of an observable at a given average energy is
practically indistinguishable from its expectation value in
an eigenstate of the system with that energy. The ETH
has been verified numerically for generic, non-integrable
systems and typical observables [7, 8], and was found
to fail for integrable systems [8, 9] with some exceptions
[10]. Another mechanism may be termed subsystem ther-
malization hypothesis (STH). It relies on the fact that,
even though total entropy maximization is not possible,
subsystems may thermalize by exchanging energy and/or
particles with other parts of the system, so that averages
of local quantities may be thermal. This mechanism has
been successfully invoked [11] even for integrable and
nearly integrable systems exhibiting pre-thermalization
dynamics [11–14]. The STH is also at the heart of hy-
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drodynamic behavior, where physical quantities first re-
lax to local averages and then evolve slowly, under the
rule of local conservation laws. However, a unified un-
derstanding of thermalization has not been reached, and
the thermalization mechanism seems to depend strongly
on the type of system [8–17].

In the present work we investigate the thermaliza-
tion dynamics of an interacting Bose gas trapped in
a double-well potential which supports a true Bose-
Einstein condensate (BEC), initially performing non-
equilibrium Josephson oscillations between the two wells
[18–21]. This is a prototype of a non-integrable system
with a natural subsystem structure, namely the BEC and
the system of incoherent excitations of Bogoliubov quasi-
particles (QPs). The existence of a true BEC phase pre-
cludes the system to be one-dimensional. Therefore, and
because of the large particle number considered, numer-
ically exact methods, like the time-dependent density-
matrix renormalization group (t-DMRG) [12, 15], are
not applicable here. Moreover, the slow thermalization
dynamics found below requires evolving the system to
large times, difficult to reach by these methods. In-
stead, the non-equilibrium Keldysh-Bogoliubov formal-
ism in the grand-canonical ensemble is appropriate here,
since the BEC acts as a particle reservoir for the QP
system (and vice versa).

We find rich dynamics, governed by three different time
scales. After an initial period of undamped Josephson os-
cillations [22, 23], QPs are created in an avalanche man-
ner (qp creation time, τc) due to a dynamically gener-
ated parametric resonance between the Josephson fre-
quency and the QP excitation energies. This leads to a
fast depletion as well as damping of the BEC amplitude
[24]. When the final number of QP excitations, allowed
by total energy conservation, is reached, however, the
QP system effectively decouples from the BEC oscilla-
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tions (freeze-out time of the BEC, τf ), and the total QP
number becomes nearly conserved. Under this approx-
imate conservation law the system enters into a quasi-
hydrodynamic regime which is characterized by slow, ex-
ponential relaxation of the QP system into a thermalized
state (thermalization time, τth). We prove this behavior
by a detailed spectral analysis of the oscillatory behavior
in the different time regimes.
Model and formalism. – The Bose gas is described by

the Hamiltonian

H =

∫
drΨ̂†(r, t)

(
−∇

2

2m
+ Vext(r, t)

)
Ψ̂(r, t) (1)

+
g

2

∫
drΨ̂†(r, t)Ψ̂†(r, t)Ψ̂(r, t)Ψ̂(r, t),

where Ψ̂(r, t) is a bosonic field operator, and g = 4πas/m
is a contact interaction constant, with as the s-wave scat-
tering length. Vext is the external double-well trap po-
tential. This system is known to exhibit Josephson os-
cillations [18–20]. In our approach the condensate is de-
scribed within a semiclassical two-mode approximation
[18], while the QP dynamics are described quantum-
mechanically [22, 23]. We now represent Ψ̂(r, t) in terms
of the complete basis B = {ϕ−, ϕ+, ϕ1, ϕ2, . . . ϕM} of the
exact single-particle eigenstates of Vext(r) after the cou-
pling between the wells is turned on at t = 0 by suddenly
lowering the barrier between the wells [23]. Hence for
times t > 0

Ψ̂(r, t) = φ1(r)a1(t) + φ2(r)a2(t) +

M∑
n=1

ϕn(r)b̂n(t) , (2)

The first two terms in Eq. (2) constitute the usual
two-mode approximation [18], i.e., φ1 and φ2 are sym-
metric and antisymmetric superpositions of ϕ− and ϕ+,
the ground state and the first excited state of Vext(r).
Hence, the wave function of φ1 (φ2) is localized in the left
(right) potential well, and aα(t) =

√
Nα(t) exp (iθα(t)),

α = 1, 2, are the corresponding BEC amplitudes. This
Bogoliubov substitution neglects phase fluctuations in
the ground states of each of the potential wells which
is justified for sufficiently large BEC particle numbers,
Nα(t) � 1, e.g., for the experiments [19]. For the ex-
cited states, ϕn, n = 1, 2, . . . , M , the full quantum
dynamics are taken into account by the bosonic creation
and destruction operators b̂†n, b̂n.

For t > 0 the Hamiltonian of our system is H =
Hcoh + HJ + Hcoll. Hcoh includes all coherent, local
contributions, i.e., all terms which are bi-linear in the
b̂n-operators and local in the well index α = 1, 2,

Hcoh = ε0

2∑
α=1

a∗αaα +
U

2

2∑
α=1

a∗αa
∗
αaαaα +

M∑
n=1

εnb̂
†
nb̂n

+K

2∑
α=1

M∑
n,m=1

[
a∗αaαb̂

†
nb̂m +

1

4
(a∗αa

∗
αb̂nb̂m + h.c.)

]
, (3)

where U and K are positive interaction constants, and εn
are the energies of the M equidistant levels of the double
well, separated by the trap frequency, εn = n∆. For
simplicity we neglect here and in the following a possible
level-dependence of the coupling constants.
HJ encompasses the Josephson terms, which are still

coherent but non-local in the well index,

HJ = −J(a∗1a2 + a∗2a1) + J ′
M∑

n,m=1

[
(a∗1a2 + a∗2a1)b̂†nb̂m

+
1

2
(a∗1a

∗
2b̂nb̂m + h.c.)

]
. (4)

The terms proportional to J ′ constitute QP-assisted tun-
neling between the wells.

Finally, the non-linear collisional terms Hcoll account
for QP interactions,

Hcoll =
U ′

2

∑
n,m=1

∑
l,s=1

b̂†mb̂
†
nb̂lb̂s (5)

+R

 2∑
α=1

∑
n,m,s=1

a∗αb̂
†
nb̂mb̂s +

2∑
α,β,γ+1

∑
n=1

a∗αa
∗
βaγ b̂n + h.c.


The time evolution of this system is described in

terms of the condensate population imbalance, z(t) =
N1(t)−N2(t)
N1(t)+N2(t)

, the phase difference between the BECs, θ(t)
and the QP occupation numbers n1(t), n2(t), . . . , nM (t).
They can be calculated from the classical C and the
quantum G parts of the two-time Green’s functions fol-
lowing standard field-theoretical techniques [25, 26],

Cαβ(t1, t2) = −i
(
aα(t1)a∗β(t2) aα(t1)aβ(t2)
a∗α(t1)a∗β(t2) a∗α(t1)aβ(t2)

)
(6)

Gnm(t1, t2) = −i
(
〈TC b̂n(t1)b̂†m(t2)〉 〈TC b̂n(t1)b̂m(t2)〉
〈TC b̂†n(t1)b̂†m(t2)〉 〈TC b̂†n(t1)b̂m(t2)〉

)
where T̂C denotes time-ordering along the Keldysh con-
tour. The Dyson equations for these functions read,∫

C

dt
[
G−10 (t1, t) − SHF (t1, t)

]
C(t, t2)

=

∫
C

dtS(t1, t)C(t, t2) (7)

∫
C

dt
[
G−10 (t1, t) − ΣHF (t1, t)

]
G(t, t2)

= 1δ(t1 − t2) +

∫
C

dtΣ(t1, t)G(t, t2) . (8)

In Eqs. (7), (8), the first-order (Hartree-Fock) self-
energies SHF ,ΣHF describe time-dependent level renor-
malizations, while the second-order collisional self-energy
contributions S,Σ induce damping of the QP and BEC
oscillations. The Dyson equations are expressed in terms
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FIG. 1: Dynamics of incoherent excitations for z(0) = 0.6,
θ(0) = 0, and ∆ = 9, u = u′ = 5, j′ = 40, r=300, Ntot =
5 · 105. nm is the occupation number of the m−th level, ntot

is the sum of allM = 5 levels. All occupation numbers shown
are normalized by the total particle number Ntot. The three
different dynamical regimes, separated by the characteristic
times τc and τf , are marked, as explained in the text. The
inset shows an enlargement of the long-time behavior.

of the spectral function Anm(t1, t2) = i(G>
nm(t1, t2) −

G<
nm(t1, t2)) and the statistical function Fnm(t1, t2) =

(G>
nm(t1, t2) + G<

nm(t1, t2))/2 = GK
nm(t1, t2)/2 and the

corresponding self-energies (see Supplementary Mate-
rial). We solve the resulting integro-differential equa-
tions numerically for total number of particles Ntot, level
spacing ∆, interactions U, U ′, K, J ′, R and initial con-
ditions z(0), θ(0), with all particles being initially in the
BEC, N1(0)+N2(0) = Ntot. All energies are expressed in
units of J : u = UNtot/J , u′ = U ′Ntot/J , k = KNtot/J ,
j′ = J ′Ntot/J , r = RNtot/J . In the numerical evalua-
tions we limit the number of levels which can be occupied
by the QPs to M = 5.
BEC and QP dynamics. – Fig. 1 shows the dynamics of

incoherent excitations for a typical parameter set, given
in the figure caption. The time-dependent occupation
numbers of all M = 5 levels, n1, n2, . . . , nM , and their
total,

ntot(t) =

M∑
m=1

nm(t) = −
M∑
m=1

[
ImFGmm(t, t)− 1

2

]
, (9)

are shown. Here FGmm is the regular (upper diagonal)
component of the equal-time statistical Green’s func-
tion Fmm in Bogoliubov space (see Supplementary Ma-
terial). From Fig. 1 one can readily identify three differ-
ent dynamical regimes, (I) an early regime of undamped
Josephson oscillations without QPs for t < τc [22, 23],
(II) a fast growth regime of the QP population, and (III)
a regime of slow relaxation to a stationary state for long
times. In the regimes (II) and (III) the nm(t) and ntot(t)
oscillate around their respective running mean values,
nm, avg(t) and navg(t) (averaged over one oscillation pe-
riod; smooth lines on top of the oscillating ones). To ana-

FIG. 2: Logarithmic plots of the relaxation behavior of the
QP system (upper two panels) and of the BEC population
imballance (lower panel), see text. The dashed vertical line
marks the freeze-out time τf where the BEC system and the
system of incoherent excitations effectively decouple. The
thin, black lines are guides to the eye. The insets show the
respective linear plots, for illustration.

lyze the functional dependence of this time evolution, we
show in Fig. 2 logarithmic plots of the deviation of the
total running mean navg(t) from its final value navg(∞)
(upper panel) and the momentary oscillation amplitude
∆n(t) = ntot(t) − navg(t) (middle panel) along with the
BEC population imballance z(t) (lower panel). All three
quantities show a steep crossover from the fast growth
regime (II) to the slow relaxation regime (III) at a freeze-
out time scale τf , with exponential relaxation for t > τf .

What are the mechanisms for fast growth (II) and slow
relaxation (III), and how is the steep crossover time τf
determined? A spectral analysis provides detailed in-
sight into these problems. We introduce the usual Wigner
“center-of motion” (CoM) time t = (t1 + t2)/2 and dif-
ference time τ = (t1 − t2) and Fourier-transform the
two-time Green’s functions AG(t1, t2) =

∑
nA

G
nn(t1, t2)

and FG(t1, t2) =
∑
n F

G
nn(t1, t2) with respect to τ . In

Fig. 3 (upper and middle panels) we plot the frequency-
dependent absolute values of AG(ω, t) ≡ A(ω) and
FG(ω, t) ≡ F(ω) in the long-time regime, t = 9.01/J >
τf . As expected, the spectra exhibit M = 5 approxi-
mately Lorentzian peaks corresponding to the five renor-
malized QP levels. They mark the Rabi oscillation fre-
quencies of the non-equilibrium QP system. Note that,
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FIG. 3: Absolute values of spectral (upper panel) and statis-
tical (middle panel) functions, Fourier-transformed with re-
spect to τ = (t1 − t2) for a fixed value of t = (t1 + t2)/2 =
9.01/J . The thin, black lines represent Lorentzian fits. The
weights w of each of the M = 5 Lorentzians are shown in
the insets. In the lower panel the power spectrum z(ω) of
the BEC population imballance is shown for τc . t . τf (red
line) and for t > τf (blue line). The vertical lines indicate
renormalized QP energies. ωJ∞ is the Josephson frequency
estimated for the decoupled, quasi-hydrodynamic regime (see
text).

at any instant t of the time evolution, the maximum time
interval available for τ is necessarily finite, −2t < τ < 2t
(see Supplementary Material). This limits the frequency
resolution of the Fourier Transform to 2π/4t and results
in the wiggly modulations of the Lorentzian peaks. For
τc < t < τf the spectra look similar, however with re-
duced ω−resolution (not shown). Fig. 3 (lower panel)
displays the power spectra of the BEC population im-
ballance z(t), Fourier transformed with respect to t for
τc < t < τf (red curve, regime (II)) and for t > τf (blue
curve, enlarged by a factor 10, regime (III)), respectively.
Inflationary QP creation. – In the fast growth regime

(II), the BEC oscillation spectrum z(ω) overlaps strongly
with the QP spectrum |A(ω)| and has even maxima at
the renormalized Rabi frequencies. This signals a dynam-
ically generated, parametric resonance, and the strong,
resonant QP-BEC coupling leads to the inflationary QP
generation observed in Fig. 1.
Approach to stationary state. – In the long-time regime

(III), the behaviour is strikingly different: the spectrum
of the BEC oscillations exhibits a single, sharp peak of
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FIG. 4: Distribution function b(ε̃n, t) for different CoM times
t. The thick purple line is a single-parameter fit of a thermal
distribution to the calculated b(ε̃n, t) for the largest time t =
9.01, with temperatue T as fit parameter. The fitted value is
T = 3.76 · 106 J .

substantially reduced weight which has almost no over-
lap with the QP spectrum. In fact, the BEC oscillation
frequency is close to the Josephson frequency ωJ∞ of a
semiclassical, interacting BEC, i.e. without locking to the
QP oscillations. ωj∞ may be estimated as [18], ωJ∞ ≈
2Jeff

√
1 + uJ/(2Jeff ), where Jeff = J+ntot(t→∞)J ′

is the QP-enhanced Josephson coupling. It is marked in
Fig. 3 by the thick, vertical line. Therefore, in the long-
time regime the BEC system performs nearly free, weakly
damped (due to the sharpness of the spectral peak) os-
cillations at nearly its own eigenfrequency ωJ∞. That is,
for t > τf the BEC and the QP subsystems are effectively
decoupled.

The mechanism for this freeze-out of BEC oscillations
may now be interpreted as a combination of total energy
conservation and a maximum entropy principle in the
QP subsystem. The latter implies that ntot(t) can essen-
tially not decrease (up to small oscillations induced by
the BEC driving). The energy EQP (t) of the QP subsys-
tem increases continuously with the occupation numbers
nm(t), but is limited by the maximum energy that can
be provided by the BEC system, i.e., by the difference
between the BEC energies in the initial and in the final
state, ∆EBEC = EBEC(t = 0)−EBEC(t→∞) (see Sup-
plementary Material). We find numerically that EQP (t)
indeed approaches this maximum value at t ≈ τf . Hence,
for t > τf , ntot(t) and EQP (t) become approximately
conserved in the grand canonical sense, i.e., particle and
energy exchange with the BEC are allowed, but the time
averages are approximately constant, c.f. Fig. 1. As a
consequence, the resonant dynamics of the BEC and the
QP systems must decouple, as seen from Fig. 3. Under
these dynamically generated, approximate conservation
laws the system enters into a quasi-hydrodynamic regime,
characterized by slow, exponential relaxation, where only
a redistribution of QPs between the individual QP levels
occurs.
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Thermalization. – To test if the long-time stationary
state is a thermal one, we calculate the QP distribu-
tion b(εn, t) for different CoM times t. It is defined via
the Green’s functions [25] by F (ω, t) = (−i/2)(2b(ω, t) +
1)A(ω, t) and, hence, is obtained for each level from the
Lorentzian weights wA,n, wF,n of these levels (c.f. Fig. 3)
as

b(ε̃n, t) =
wF,n
wA,n

− 1

2
. (10)

ε̃n, n = 1, . . . , M , are the level energies, renormalized by
interactions. As shown in Fig. 4, b(ε̃n, t) continuously ap-
proaches a thermal distribution. For large t this happens
only by a re-distribution of weights among the levels,
without total particle number increase. For even longer
times the agreement with a thermal distrubution will be
even better, since ,e.g., the occupations n2(t), n3(t) are
still growing, while n5(t) is still decreasing even for the
longest time shown, as seen in Fig. 1. As expected, the
final-state temperature T is high, since it is controlled by
the initial BEC excitation energy, ∆EBEC ∼ z(0)2NtotJ ,
which is a macroscopically large quantity.

To conclude, the system of coupled, oscillating BECs
and incoherent excitations thermalizes, because the con-

densates serve as a heat reservoir for the quasiparticle
subsystem. The condensate oscillations, in turn, get
damped by quasiparticle collisions. By studying the
system dynamics we found a steep coupling-decoupling
crossover of the condensate and the quasiparticle subsys-
tems at the freeze-out time scale τf . Prior to τf , the
condensate and the quasiparticles are strongly coupled
as a result of a dynamically generated parametric reso-
nance. For times t > τf , BEC and incoherent excita-
tions exhibit off-resonant behaviour and are effectively
decoupled. This freeze-out occurs as a consequence of
total energy conservation and entropy maximization in
the quasiparticle subsystem. In the off-resonant regime,
the quasiparticle system relaxes slowly to a thermalized
state with thermalization time τth � τf . The BEC
freeze-out and subsequent time evolution under a con-
servation law are reminiscent of pre-thermalization found
in low-dimensional, nearly integrable systems. However,
here the conservation law is generated dynamically in a
non-integrable system. The quasiparticle dynamics bears
similarities to models for the resonant creation and sub-
sequent freeze-out of elementary particles during the evo-
lution of the early universe.
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