
On the security of 2-key triple DES

Chris J. Mitchell
Information Security Group, Royal Holloway, University of London

www.chrismitchell.net

17th July 2016

Abstract

This paper reconsiders the security offered by 2-key triple DES, an en-
cryption technique that remains widely used despite recently being de-
standardised by NIST. A generalisation of the 1990 van Oorschot-Wiener
attack is described, constituting the first advance in cryptanalysis of 2-key
triple DES since 1990. We give further attack enhancements that together
imply that the widely used estimate that 2-key triple DES provides 80 bits
of security can no longer be regarded as conservative; the widely stated as-
sertion that the scheme is secure as long as the key is changed regularly is
also challenged. The main conclusion is that, whilst not completely broken,
the margin of safety for 2-key triple DES is slim, and efforts to replace it, at
least with its 3-key variant, and preferably with a more modern cipher such
as AES, should be pursued with some urgency.

1 Introduction

Despite the fact that it has long since been regarded as purely of historical
interest by many cryptographers, triple DES remains of considerable practi-
cal importance, particularly in the payments industry. This is true of both
its widely discussed variants, i.e. 2-key and 3-key triple DES.

In late 2015, NIST finally withdrew support for 2-key triple DES, something
that had long been trailed and that does not appear to have occurred because
of any new insights into the security of the scheme. However, this withdrawal
of support does not mean that the world has stopped using this variant, and
it also remains an ISO/IEC standard (albeit with ISO/IEC having published
warnings regarding the limited level of security that it provides).

As discussed below, 2-key triple DES has always been regarded as only

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/43779026?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
www.chrismitchell.net

giving a small margin of safety. In this paper we show that this margin is
even less than was previously thought. We do this in three main ways:

• we show how the well-known van Oorschot-Wiener attack can be gen-
eralised to allow its effectiveness to be considerably improved by ex-
ploiting ciphertext generated using multiple keys;

• we show how the DES complementation property can be used to gain
a factor of two efficiency improvement;

• we demonstrate how partially known plaintext/ciphertext pairs can be
used in the attack as well as fully known pairs, without significantly
damaging the attack’s computational or storage complexity.

We also briefly discuss possible practical approaches to the implementation
of attacks against 2-key triple DES, as well as considering the impact of the
generalised attack on the security of the ANSI retail MAC. We conclude
that the widely held assessment that 2-key triple DES only offers 80 bits of
security is by no means an overly conservative assumption. It also follows
that some of the most significant advice given to users of 2-key triple DES
in order to help avoid cryptanalytic attacks is of limited validity.

The remainder of the paper is organised as follows. In Section 2 we briefly
review the history of triple DES. This is followed in Section 3 by a discussion
of a generalisation of the van Oorschot-Wiener attack, which for the last 25
years has been the most effective known attack against 2-key triple DES.
In Section 4 we briefly discuss how the DES complementation property can
be used to double the attack speed. We turn in Section 5 to considering
how partially known plaintext/ciphertext pairs can be used in the attack.
We briefly review possible practical attack implementation strategies in Sec-
tion 6, before discussing the use of the attack method against the ANSI retail
MAC in Section 7. The paper concludes in Section 8.

2 Triple DES — a brief history

The DES block cipher was originally published as a US Federal Standard
(NBS FIPS PUB 46 [26]) as long ago as 1977 — for further details of its
origins see, for example, chapter 7 of Menezes, van Oorschot and Vanstone
[18]. DES, also known as the Data Encryption Algorithm (DEA), is a 64-
bit block cipher, i.e. it transforms a 64-bit plaintext block into a 64-bit
ciphertext block, employing a 56-bit key.

From day one it was criticised for the short length of its key. Even 40 years
ago, performing 256 encryptions, as needed for a brute force search for a key
using a single known plaintext/ciphertext pair, was just about within the

2

bounds of possibility using special-purpose hardware. Indeed, the design for
a special purpose brute-force device capable of finding a DES key within a
day was sketched by Diffie and Hellman, [5], and was estimated by them to
cost 10 million US dollars.

These concerns did not stop the very widespread adoption of DES, not only
within the US (where it became an ANSI standard, X3.92 [2]), but world-
wide, particularly within the financial sector. This was probably because
of the lack of any widely known public competitor schemes. Despite the
short key length, the use of DES was arguably a huge success and there
are no public domain examples, of which the author is aware, of significant
compromises because of the limited key length.

However, it became clear within a few years of its publication that a more
secure version of DES was required, allowing a longer key length. This need
gave rise to the two well-known versions of triple DES, one of which forms
the main focus of this paper. With the rise of triple DES, use of just one
iteration of DES, as originally standardised, became known as single DES.

The gradual switch to triple DES was supported by its standardisation by
NIST [21, 23], ANSI [3], and ISO/IEC [10, 11]. This switch was very timely,
as by the second half of the 1990s single DES has been broken in various
ways (all using brute force attacks). Of particular interest was the fact that
in 1998 a special-purpose DES breaking machine, Deep Crack, was designed
and built for a few hundreds of thousands of US dollars [6], vindicating the
1977 predictions by Diffie and Hellman. In fact, a large distributed software-
only attack (coordinated through the DESCHALL project) had shortly be-
fore succeeded in breaking a ‘DES challenge’ [4]. This served notice to the
world at large that single DES was no longer secure.

Since double DES (i.e. two iterations of DES encryption using independent
keys) has long been ruled out as offering very limited additional security by
comparison with single DES (see Diffie and Hellman, [5]), then the obvious
next alternative is to perform triple DES, i.e. three iterations of the DES
algorithm. The general idea of using three iterations of DES was mentioned
in 1977 by Diffie and Hellman, [5], as a way of dramatically improving
the security of DES. In practice, rather than performing three consecutive
encryptions, it has become the norm to first perform an encryption (using
key K1), then perform a decryption (using key K2), and finally perform
another encryption (using key K3). The encrypt-decrypt-encrypt approach
has the advantage of being backwards-compatible with single DES if K1 =
K2 = K3. This potentially makes migration from single to triple DES much
simpler. If K1, K2 and K3 are all chosen independently, encrypt-decrypt-
encrypt is known as 3-key triple DES.

As reported by Merkle and Hellman, [19], in 1978 Tuchman proposed a 2-key
variant of triple DES. This involves choosing K1 = K3, i.e. first encrypting

3

with K1, then decrypting with K2, and finally re-encrypting with K1. This
approach has the advantage of only involving two DES keys, reducing the key
storage and transmission requirements to the same as for double DES, but
giving significantly greater security than provided by double DES. However,
it is clear that 2-key triple DES is itself significantly less secure than 3-key
triple DES, and Merkle and Hellman [19] described an attack against 2-
key triple DES which is significantly more effective than the best known
attack against the 3-key version. They suggested that this means that the
3-key variant should always be used. Since Merkle and Hellman’s attack
was published in 1981, one other attack against 2-key triple DES has been
devised, namely that due to van Oorschot and Wiener, [28]; this latter attack
is discussed in Section 3 below.

The NIST standard for the DES algorithm, FIPS PUB 46-3 [21], was with-
drawn back in 1999. This signalled the end of standard-status for single
DES. The situation for 2-key and 3-key triple DES standardisation is much
less clear cut. Triple DES has been standardised by a variety of bodies in-
cluding NIST in SP 800-67, [23], and by ISO/IEC in the first and second
editions of ISO/IEC 18033-3, [10, 11]. All these standards specify both 2-key
and 3-key triple DES.

Despite the fact that 2-key triple DES is clearly less secure than the 3-key
version, it has been very widely used, particularly by the electronic payments
industry, where it remains in active use. For example, the current version
of the EMV standard, [7], used as the basis for security for credit and debit
cards worldwide, specifies that ‘The double-length key triple DES encipher-
ment algorithm (see ISO/IEC 18033-3) is the approved cryptographic algo-
rithm to be used in the encipherment and MAC mechanisms’ [here double
length is a reference to the 2-key variant of triple DES].

As a result, there is considerable industry pressure to retain both variants
as standards. At the same time, there has been considerable pressure both
from academia and from bodies such as NIST to phase out all use of DES
(and in particular 2-key triple DES) in favour of more modern, more secure,
and more efficient algorithms, such as AES, [22].

In this latter connection, for some years NIST has been particularly keen to
phase out triple DES, particularly the 2-key variant. Indeed, in the latest
revision of NIST SP 800-131A, [24], published in late 2015, it was announced
that support for 2-key triple DES had been withdrawn. A similar statement
can be found in the latest (January 2016) version of NIST SP 800-57 Part
1, [25]. This withdrawal of support is in line with previous announcements
on the subject. However, ISO/IEC has not followed the same path, and
both 2-key and 3-key triple DES variants remain as standard algorithms in
the most recent (2010) version of ISO/IEC 18033-3 [11], although use of the
3-key variant is recommended. ISO/IEC SC 27 (the committee responsible

4

for drawing up ISO/IEC 18033-3) has published guidance on the use of
triple DES in two standing documents, [12, 13]. Key statements from one of
these standing documents, [12], expressing sentiments that have been widely
reproduced elsewhere, are:

• ‘depending on the required security level, the maximum number of
plaintexts encrypted under a single key should be limited’; and

• ‘the effective key-length of two-key Triple-DES in specific applications
can only be regarded as 80 bits (instead of 112 bits)’.

The statement regarding 80-bit security has also been given in various doc-
uments produced by NIST (see, for example, Section 5.6.1 of NIST 800-57
Part 1, [25]). We reconsider both these claims at the end of this paper.

3 Generalising the van Oorschot-Wiener attack

3.1 The original attack

In 1990, almost a decade after the Merkle-Hellman attack was published,
a somewhat more practical attack against 2-key triple DES was described
by van Oorschot and Wiener [28]. This attack is more practical in that it
only requires known plaintext/ciphertext pairs, rather than chosen plain-
text/ciphertext pairs. We next provide a brief description of this attack.

The attack requires that the attacker has access to n plaintext/ciphertext
pairs (P , C), all created using the same 2-key triple DES key (i.e. the same
pair of DES keys (K1, K2) — we use this notation throughout). The main
idea is to fix a 64-bit value A, and to hope that eK1(P) = A for one of the
pairs (P , C). If this is true, then finding K2 only requires a single DES
key search, i.e. performing 256 DES operations. Of course, unless n is very
large, the guess is unlikely to be true, so the attack has to be performed for
many values of A. The larger the value of n, the larger the probability of a
successful attack using a value A, and hence the more efficient the attack.

The attack proceeds as follows, where eK(P) and dK(C) represent the DES-
encryption of P , and DES-decryption of C, respectively, using the key K.

1. Tabulate the (P , C) pairs, sorted or hashed on the plaintext values P ,
to create Table 1, which requires O(n) words of storage.

2. Now randomly select and fix (for steps 2–4) a value A. [This stage of
the attack will succeed if and only if A = eK1(P) for one of the known
plaintexts P . If steps 2–4 succeed with this value of A we can find the
target triple DES key; if not, we simply repeat with a different value
of A — see step 5.]

5

3. Create a second table (Table 2) as follows. For each of the 256 possible
DES keys i, calculate Pi = di(A). Next look up Pi in Table 1. If Pi is
found in the first column of Table 1, take the corresponding ciphertext
value C and compute B = di(C). Now store B together with i in Table
2, which is sorted (or hashed) on the B values. Note that the same B
value may occur more than once.

4. Each entry in Table 2 consists of a value of B and the corresponding
key i, where i is a candidate for K1; as described above, each (B, i)
pair is associated with a (P , C) pair from Table 1 where ei(P) = A.
The remaining task is to search for possible values of K2.

For each of the 256 candidates, j, for K2, calculate what the value B
would be if j had been used for K2, i.e. Bj = dj(A). Now look up Bj

in Table 2. For each appearance of Bj (if any) the corresponding key
i from Table 2, along with key j, is a candidate for the desired pair of
keys (K1, K2). Each such candidate key pair is then tested on at most
two other plaintext/ciphertext pairs. If this key pair gives the correct
results then the target triple DES key (K1, K2) has been found and
the task is complete.

5. If step 4 fails, then the process in steps 2–4 is repeated for a new
random value of A. [Note that, to avoid the (small) risk of repeating
values of A, the values could be worked through in some order].

We can summarise the complexity of this attack as follows.

• The time required to create and sort/hash Table 1 is negligible com-
pared to other computations given n << 256. As already mentioned
the space required is O(n).

• For each trial value A, Table 2 costs a little more than 256 DES compu-
tations to create (assuming Table 1 is hashed on the plaintext values
so that look-ups take a constant time). Because only 256 out of 264

possible 64-bit blocks are searched for in Table 1, the expected number
of entries in Table 2 is n/28, i.e. the storage required for Table 2 is
small by comparison with Table 1.

• Working with Table 2 to find candidate pairs of keys costs a further
256 DES computations. That is, testing a single value of A costs a
total of around 257 DES computations.

• The probability that one iteration of steps 2–4 will succeed, i.e. yield
the correct key pair, is approximately n/264, so the total attack cost
is approximately 2121/n DES computations (assuming the cost of the
various look-ups and tests is dwarfed by the DES calculations).

6

In summary, if we have 2t known plaintext/ciphertext pairs, i.e. n = 2t,
then 2-key triple DES can be broken using 2121−t DES computations and
O(2t) storage. For example, if n = 232, i.e. if we have as many as 4 billion
known plaintext/ciphertext pairs, then the key can be discovered in 289 DES
computations. In conclusion, launching an attack only becomes practical if
very large volumes of matching plaintext and ciphertext, all generated using
a single triple DES key, are available. This has led to the following two widely
drawn conclusions regarding the security of 2-key triple DES, referred to at
the end of Section 2.

• As a safe estimate, 2-key triple DES offers at least 80 bits of security.

• If the key is changed reasonably frequently (limiting n in the above
attack), practical attacks against 2-key triple DES are infeasible.

In the remainder of this paper we challenge the second conclusion, and also
provide evidence that the lower bound estimate of 80 bits of security is not
as conservative as it might seem.

3.2 Dualising the attack

The above attack can readily be dualised. That is, instead of choosing
and fixing a candidate for A = eK1(P), one could choose a candidate for
B = dK1(C). All possible encryptions of B can then be compared with
values of C in Table 1. This observation underlies the application of the van
Oorschot-Wiener attack to the ANSI retail MAC, as described in Section 7.

3.3 The generalisation

We start by making an apparently simple observation on the van Oorschot-
Wiener attack. That is, the attack will work just as well if the n plain-
text/ciphertext pairs are generated using a range of different triple DES
keys. Of course, when performing the tests in step 5, it is necessary to use
additional plaintext/ciphertext pairs that have been generated using the
appropriate triple DES key. Also, when the attack is successful, only one
of the keys will be found, and can only be used to decrypt other material
encrypted using that key. Nevertheless, depending on the application, this
could still have devastating consequences for security.

We can modify the algorithm described above to take account of this obser-
vation by changing steps 1, 3 and 4, as follows.

1′ Assemble the pairs (P , C) into subsets1, where all the pairs in each

1We require that each subset contains at least two, and preferably three, pairs, so that
candidates for (K1, K2) can be checked.

7

subset have been created using the same key, and assign each subset
a unique label s (we also use s as the label for the triple DES key
used to create the subset). Tabulate all the (P , C, s) triples (where
s is the key label), sorted or hashed on the plaintext values, to create
Table 1, which requires O(n) words of storage. Note that there may
be repeated P values, but this should not create a major difficulty.

3′ Create a second table (Table 2) as follows. For each of the 256 DES
keys i, calculate Pi = di(A). Next look up Pi in Table 1. If Pi is found
in the first column of Table 1, take the corresponding ciphertext value
(or values) C (and the label(s) s) and for each compute B = di(C).
Now store B together with i and s in Table 2, sorted (or hashed) on
the B values. Note that the same B value may occur more than once.

4′ Each entry in Table 2 consists of a value of B and the corresponding
key i and label s, where i is a candidate for K1 for label s; as described
above, each (B, i, s) triple is associated with a (P , C, s) triple from
Table 1 where ei(P) = A. The remaining task is to search for possible
values for K2.

For each of the 256 candidates, j, for K2, calculate what the value B
would be if j had been used for K2, i.e. Bj = dj(A). Now look up Bj

in Table 2. For each appearance of Bj (if any) the corresponding key
i from Table 2, along with key j, is a candidate for the desired pair
of keys (K1, K2) with label s. Each such candidate key pair is then
tested on at most two other plaintext/ciphertext pairs from the label
s subset. If this key pair gives the correct results then the triple DES
key (K1, K2) with label s has been found and the task is complete.

Apart from the fact that the tables have an extra value in each entry (the key
label, typically at most four bytes long), none of the attack complexities have
changed. I.e., if we have 2t known plaintext/ciphertext pairs, i.e. n = 2t,
then 2-key triple DES can be broken using 2121−t DES computations and
O(2t) storage. Here the meaning of ‘broken’ is slightly different, in that it
now means that one of the triple DES keys has been discovered, rather than
the single key used to encrypt all the n known pairs.

It is important to see that this means that changing the triple DES key from
time to time has no impact on the attack effectiveness. Of course, regular
key changes remain a good idea since, even if the attack is successful, only
the plaintext encrypted using the broken key can be recovered. Knudsen
and Robshaw, [16], observed that ‘It is interesting to note that changing
encryption keys does not necessarily provide much additional protection
against exhaustive search’ — prescient remarks!

An interceptor may not always know when keys have changed, so labeling
plaintext/ciphertext pairs may not be simple. In such a case, the known

8

plaintext/ciphertext pairs could be arranged in order of transmission, in the
hope that the pairs generated using a single DES key pair will be consecutive
in the list. When checking a candidate key pair, the two adjacent pairs in
this temporal ordering could be used to check whether the candidate is valid.

Finally, we observe that there is nothing specific to DES about the above
generalisation, or the original van Oorschot-Wiener attack for that matter.
The attack would work equally well against any triple-iterated block cipher
with the same key structure; however, we restrict our attention to DES here
since it is the only block cipher for which triple encryption is widely used
(at least as far as is known to the author). Also, the enhancement described
in the next section is specific to DES.

4 Exploiting the DES complementation property

The effectiveness of the generalised van Oorschot-Wiener attack can be im-
proved using the well-known DES complementation property (see, for ex-
ample, [18]). This property says that, for any 64-bit block P and any DES
key K (where X denotes the bit-wise complement of bit string X):

eK(P) = eK(P).

I.e., if P and K are complemented, then the output ciphertext is also com-
plemented. It is interesting to observe that Lucks [17] considered how to use
this property to improve the efficiency of his attacks on 3-key triple DES.

This property can be used to effectively double the number of plaintext/ciphertext
pairs, since every plaintext/ciphertext pair for the key K will give us an-
other pair for the key K. Another way of looking at this is that we can
perform the attack steps for A and A simultaneously, reducing the required
number of DES computations by half. Hence, if n = 2t, then 2-key triple
DES can be broken using 2120−t DES computations and O(2t) storage. E.g.,
if n = 232, i.e. if we have as many as 4 billion known plaintext/ciphertext
pairs, then the key can be discovered in 288 DES computations.

5 Using partially known plaintext

We next describe an attack enhancement designed to cope with the situa-
tion where we have ciphertext blocks for which we do not know the precise
plaintext value. For example, we may have a ciphertext block C for which
we know 56 of the 64 plaintext bits, but not the other eight, i.e. there is
a set of 28 possible values for P for a given ciphertext block C. The van
Oorschot-Wiener attack (and the variants we have so far described) cannot
use such information, rather restricting the attack scenarios.

9

Such a situation could easily arise in practice. To take a simple example
from the payments industry (where 2-key triple DES is in use), the ISO
9564-1 [9] Format 0 PIN block involves creating a 64-bit plaintext block
by combining an account number with a 4-digit PIN [9]. If a triple-DES-
enciphered Format 0 PIN block is obtained for which the account number
is known, then the only unknown information in the plaintext is the value
of the PIN, for which there are only 104 ≈ 213 possible values.

Such partial plaintext information can be used in a further modification to
the van Oorschot-Wiener attack. This modification arises from the observa-
tion that the attack will still work even if some of the plaintext/ciphertext
pairs are actually false. If a false pair generates a candidate key, then this
key will be rejected when it is checked against ‘correct’ pairs. Of course,
there is the danger that the check at the end of step 4 might be done using a
false pair, and hence a valid candidate would be rejected, but we can avoid
this if we assume checking is always done using valid data.

This observation can be used to make use of partial knowledge of a plain-
text block (for a known ciphertext block) by generating a set of plain-
text/ciphertext pairs all having the same ciphertext element. That is, we
generate all the plaintext blocks P which satisfy the known information,
and for each such ‘possible’ plaintext block we create a pair containing it
and the known ciphertext block. We then add them all to the set of known
plaintext/ciphertext pairs used in the attack. For example, if we have a ci-
phertext block C for which we know all but w bits of the plaintext block, we
then generate 2w plaintext/ciphertext pairs with plaintext blocks covering
all possibilities for the ‘missing’ w bits, all with the same value of C. Of
course, all but one of these pairs will be false, but this does not matter.

To see how this affects the attack, we give below a modified version of the
generalised attack technique given in Section 3.3 — only steps 1 and 4 are
changed, and hence we only show these steps. Whilst we could readily
combine this modification with the attack exploiting the complementation
property, in order to simplify the presentation we avoid doing this here.

We suppose that we have n ciphertext values, for some of which we have
only partial plainrexr. We assume that in every case there are at most 2w

candidates for the plaintext block, i.e. the set of mostly false pairs for a
single ciphertext block contains at most 2w pairs.

1′′ Assemble the pairs (P , C) into subsets including the sets of mostly false
pairs (as above), where all the pairs in each subset have been created
using the same key, and assign each subset a label s. Note that there
will be at most 2wn pairs. Tabulate all the (P , C, s) triples, sorted
or hashed on the plaintext values, to create Table 1, which requires
2wO(n) words of storage. Note that there may be repeated P values,

10

but this should not create a major implementation difficulty.

4′′ Each entry in Table 2 contain a B value and the corresponding key
i and label s, where i is a candidate for K1 for label s; as described
above, each (B, i, s) triple is associated with a (P , C, s) triple in
Table 1 where ei(P) = A. It remains to search for values for K2.

For each of the 256 candidates, j, for K2, calculate what the value B
would be if j had been used for K2, i.e. Bj = dj(A). Now look up Bj

in Table 2. For each appearance of Bj (if any) the corresponding key
i from Table 2, along with key j, is a candidate for the desired pair
of keys (K1, K2) with label s. Each such candidate key pair is then
tested on at most two other plaintext/ciphertext pairs from the label s
subset (where either the mostly false pairs are avoided, or where only
the partial information about the plaintext is used in the checking).
If this key pair gives the correct results then the triple DES key (K1,
K2) with label s has been found and the task is complete.

It remains for us to consider the complexity of this modified attack.

• Table 1 will contain at most 2wn entries. The time required to create
and sort/hash Table 1 remains negligible compared to other computa-
tions as long as n << 256−w. The space required is 2wO(n).

• For each trial value A, Table 2 costs a little more than 256 DES compu-
tations to create (assuming Table 1 is hashed on the plaintext values
so that look-ups take a constant time). Because only 256 out of 264

possible 64-bit blocks are searched for in Table 1, the expected number
of entries in Table 1 is 2w−8n, i.e. the storage required for Table 2 is
negligible by comparison with Table 1.

• Working with Table 2 to find candidate pairs of keys costs a further
256 DES computations. That is, testing a single value of A costs a
total of around 257 DES computations.

• The probability of a single iteration of steps 2–4 succeeding, i.e. giving
the correct key pair, is around n/264, and so the total attack cost is
approximately 2121/n DES computations (assuming the cost of the
various look-ups and tests is dwarfed by the DES calculations).

In summary, if we have 2t partially known plaintext/ciphertext pairs, i.e.
n = 2t, and we assume n << 256−w, then 2-key triple DES can be bro-
ken using 2121−t DES computations and O(2t+w) storage. For example, if
n = 232, i.e. if we have as many as 4 billion known (or partially known)
plaintext/ciphertext pairs, then the key can be discovered in 289 DES com-
putations. That is, the extra work introduced through the use of ‘false’

11

pairs is minimal as long as n << 256−w, i.e. t + w << 56. Of course, the
cost of storage has increased to O(2t+w), but this is still relatively modest
if t + w << 56. Note that we can reduce the total number of DES com-
putations to 2120−t by combining the above modification with that given in
Section 4. Returning to the PIN block example above (for which w ≈ 13),
if n = 232 then the attack complexity would not be significantly different to
the case where 232 fully known plaintext blocks are available.

In summary we have generalised the attack to the case where only partial
known plaintext is available, without significantly increasing the computa-
tional complexity of the attack; there is an increase in the memory complex-
ity, but the attack is still feasible. This, while not simplifying the attack,
means it will potentially apply in many more practical scenarios.

6 Implementation strategies

Whilst performing an attack on 2-key triple DES will clearly be a non-trivial
computation, it is perhaps worth considering how it might actually be done
in practice. Note that while we refer to steps 1–5 from the unmodified van
Oorschot attack, the remarks below also apply to all the modified versions
described above.

First note that step 1 is a one-off computation working with the known
plaintext-ciphertext material to create Table 1. This step should be per-
formed carefully to optimise the cost of the look-ups performed using Table
1 in subsequent parts of the attack. Next observe that there are obvious
ways in which the remainder of the attack can be parallelised.

• Performing steps 2–4 for a particular value of A is completely inde-
pendent of performing them again for a different value of A. All that
is required is access to a copy of Table 1, generated by step 1. That
is, software could be created which generated random values of A and
performed steps 2–4, and this software could be run without reference
to other running copies of the software — the only requirement is an
effective random number generator so that different instances of the
software generate different values of A (with high probability).

• Creating Table 2 in step 3 could be parallelised by partitioning the set
of possible keys i, so that multiple machines can create Table 2.

• Similarly, the use of Table 2 in step 4 could be partitioned by parti-
tioning the set of possible keys j. Note that each device performing
this part of the attack will require a copy of Table 2. Note also that,
as they are found, ‘candidate’ keys could be sent to a different device
for testing using entries from Table 1.

12

7 Attacking the ANSI Retail MAC

7.1 Background

We next consider the impact of the van Oorschot-Wiener attack on the
ANSI Retail Message Authentication Code (MAC) [1]. This MAC algorithm
appears to be used in the payments industry, since it is standardised in
A1.2.1 of the current version of EMV Book 2 [7]. The scheme, otherwise
known as CBC-MAC-Y or ISO/IEC 9797-1 algorithm 3 [8], operates as
follows. For the purposes of this paper we describe it in the context of use
with DES, although the remarks apply more generally. We also use the same
notation as employed previously.

A message D to be MAC-protected is first padded and split into a sequence
of q n-bit blocks: D1, D2, . . . , Dq. The MAC scheme uses a pair of keys K1,
K2. The MAC computation is as follows.

H1 = eK1(D1),

H` = eK1(D` ⊕H`−1), (2 ≤ ` ≤ q), and

M = eK1(dK2(Hq)),

where ⊕ represents bit-wise exclusive or, and M is the MAC. Note that, for
simplicity, we assume that the MAC is not truncated.

It is not hard to see that this amounts to encrypting the message using single
DES in CBC mode, but using 2-key triple DES on the final block; the MAC
M is then simply the encryption of the final block. This suggests that the
van Oorschot-Wiener attack may be relevant (and it is!).

The most effective general-purpose key recovery attack on the ANSI retail
MAC algorithm requires 257 DES operations and 232 known message/MAC
pairs, as described by Preneel and van Oorschot [27]. An alternative key
recovery attack, requiring only one known MAC/message pair but a larger
number of verifications, is due to Knudsen and Preneel, [15]; this attack
requires 256 DES operations, one known message/MAC pair, and 256 online
MAC verifications. Further key recovery attacks based on MAC verifications
have been devised, [14, 20], although they are more relevant in the case where
the MAC is truncated and so we do not describe them further here.

7.2 Applying the van Oorschot-Wiener attack

First observe that the applicability of the van Oorschot-Wiener attack to the
ANSI retail MAC does not appear to have previously been considered, very
probably because the ‘standard’ Preneel-van Oorschot attack is typically
more effective. As discussed in Section 3, the van Oorschot-Wiener attack

13

requires large volumes of matching plaintext and ciphertext generated using
a single key in order to be effective. Also, as discussed immediately above,
the Preneel-van Oorschot attack, [27], requires 232 known message/MAC
pairs, and if such material is available it is then significantly more efficient
than the van Oorschot-Wiener attack. That is, the van Oorschot-Wiener
attack does not appear to offer any advantage over the established Preneel-
van Oorschot attack.

However, the fact that van Oorschot-Wiener can be made to work where the
known ciphertext has bene generated using multiple keys, suggests that it
may have significance to this MAC scheme. We next sketch how the attack
can be applied in this case. For simplicity we look at the application of the
‘standard’ version of the attack (as described in Section 3), although the
generalised versions of sections 3.3 and 4 also apply.

We suppose the attacker has access to n message/MAC pairs ((D1, D2, . . . , Dq),
M), all created using the same pair of DES keys (K1, K2). Note that, for
simplicity, we consider the padded and split version of a message. As before,
we fix a 64-bit value A, and in this case hope that dK1(M) = A for one of
the known pairs ((D1, D2, . . . , Dq), M). If this is true, then finding K2 only
requires a single DES key search, i.e. performing 256 DES operations. Of
course, unless n is very large, the guess is unlikely to be true, so the attack
has to be performed for many values of A. The larger the value of n, then
the larger the probability of a successful guess of a value A, and hence the
more efficient the attack. The attack proceeds as follows.

1. Tabulate the ((D1, D2, . . . , Dq), M) pairs, sorted or hashed on the
values of M , to create Table 1, which requires O(2rn) words of storage
if we make the simplifying assumption that q is bounded above by 2r.

2. Now randomly select and fix (for steps 2–4) a value A. [This stage of
the attack will succeed if and only if A = dK1(M) for one of the known
values of M . If steps 2–4 succeed with this value of A we can find the
target key pair (K1, K2); if not, we simply repeat with a different
value of A — see step 5.]

3. Create a second table (Table 2) as follows. For each of the 256 possible
DES keys i, calculate Mi = ei(A). Next look up Mi in Table 1. If Mi

is equal to one of the value of M in Table 1, take the corresponding
ciphertext message D1, D2, . . . , Dq and compute

H1 = eK1(D1),

H` = eK1(D` ⊕H`−1), (2 ≤ ` ≤ q), and

B = Hq.

Now store B together with i in Table 2, sorted (or hashed) on the B
values. Note that the same B value may occur more than once.

14

4. Each entry in Table 2 consists of a B value and the corresponding key
i, where i is a candidate for K1; as above, each (B, i) pair is associated
with a ((D1, D2, . . . , Dq), M) pair from Table 1 where di(M) = A. The
remaining task is to search for possible values of K2.

For each of the 256 candidates, j, for K2, calculate what B would be
if j had been used for K2, i.e. Bj = ej(A). Now look up Bj in Table
2. For each appearance of Bj (if any) the corresponding key i from
Table 2, along with key j, is a candidate for the pair of keys (K1,
K2). Each such candidate key pair is then tested on at most two other
message/MAC pairs. If this key pair gives the correct results then the
target DES key pair (K1, K2) has been found.

5. If step 4 fails, then steps 2–4 are repeated for a new value of A.

7.3 Impact on security

The algorithm is very similar to that given in Section 3. As a result, the
complexity considerations are very similar too, with the following exceptions.

• Table 1 is now larger, containing a q-block message and a 64-bit MAC.
If, as above, we assume q ≤ 2r for some r, then Table 1 will contain
at most 2r+3n bytes.

• Computing an entry in Table 2 will take up to r+1 DES computations
instead of a single DES computation.

• Checking a candidate key pair will take up to r+2 DES computations.

However, as long as r is not too large, say r ≤ 210 then even if n is as large
as 240, Table 1 will contain at most 253 bytes. Since the number of entries in
Table 2 is much less than in Table 1, and similarly the number of candidate
key pairs is much less than 256, the other two differences do not affect the
overall attack complexity.

Given the generalisations to the van Oorschot-Wiener attack described above,
if we have 2t known message/MAC pairs, i.e. n = 2t, and the message length
is bounded above by 2r, then the ANSI retail MAC can be broken using
2120−t DES computations and O(2t+r) storage. For example, if n = 232, i.e.
if we have as many as 4 billion known message/MAC pairs, then one of the
DES key pairs used can be discovered in 288 DES computations. The main
novel observation here is that the known message/MAC pairs do not need
to all have been generated using the same pair of keys.

Hence if, for example, no more than 230 message/MAC pairs are available
generated using a single key, the Preneel-van Oorschot attack will simply
not apply, whereas the attack described above will. That is, limiting the

15

number of MACs generated using a single pair of DES keys, whilst effective
in mitigating the Preneel-van Oorschot attack, does not protect against the
generalised van Oorschot-Wiener attack.

These observations suggest that in practice this MAC scheme has become
dangerously weak. Unlike the encryption case, where known plaintext may
be difficult to obtain, known message/MAC pairs are likely to be readily
available whenever protected data is intercepted. Moreover, the attack out-
lined above will still work (with increased storage complexity) even if the
MAC is truncated, e.g. from 64 to 48 bits. Precisely the arguments given
in Section 5 apply, since a message/truncated MAC pair can be used to
generate 2t message/untruncated MAC pairs (only one of which is valid)
assuming the known MAC is truncated by deleting t bits.

8 Conclusions — the future of 2-key triple DES

The fact that the van Oorschot-Wiener attack works with both plaintext/ciphertext
pairs generated using a multiplicity of keys and with partially known plain-
text significantly enlarges the set of scenarios in which the security of 2-key
triple DES is at risk. Whilst obtaining 232 known plaintext-ciphertext pairs
all generated using a single key sounds difficult for an attacker, obtaining
the same number of only partially known plaintext/ciphertext pairs possibly
generated using a multiplicity of keys seems greatly more plausible. This is
why we suggest that the estimate of 80-bit security seems a very realistic
estimate, and does not leave much margin of safety. In particular, advice to
change keys regularly does not give the protection expected. Of course, per-
forming regular key changes is good advice, but does not reduce the attack’s
success probability; it only limits the impact of a successful attack.

80 bits of security does not seem very much today, given that 56 bits of
security, as provided by single DES, was deemed very risky 30 or more
years ago. It would therefore seem prudent to replace 2-key triple DES as
soon as possible, either with the 3-key variant or, preferably, with a more
modern and more efficient algorithm like AES. Use of AES also allows the
introduction of 256-bit keys, giving protection against possible attacks based
on quantum computing.

Finally we also observe that the observations in Section 7 cast very serious
doubt on the future viability of the ANSI retail MAC when used with DES.

Acknowledgements

The author would like to thank the reviewers for their helpful suggestions
and corrections, which have undoubtedly improved the paper.

16

References

[1] American Bankers Association, Washington, DC. ANSI X9.19, Finan-
cial institution retail message authentication, August 1986.

[2] American National Standards Institute, New York. ANSI X3.92–1981,
Data Encryption Algorithm, 1981.

[3] American National Standards Institute, New York. ANSI X9.52–1998,
Triple Data Encryption Algorithm — Modes of operation, 1998.

[4] M. Curtin and J. Dolske. A brute force search of DES keyspace.
http://www.interhack.net/pubs/des-key-crack/, November 1998.
[Online — accessed 2nd February 2016].

[5] W. Diffie and M. Hellman. Exhaustive cryptanalysis of the NBS data
encryption standard. IEEE Computer, 10(6):74–84, June 1977.

[6] Electronic Frontier Foundation. Cracking DES: Secrets of encryption
research, wiretap politics and chip design. O’Reilly and Associates,
1998.

[7] EMVCo. Integrated Circuit Card Specifications for Payment Systems
— Book 2: Security and Key Management, November 2011. Version
4.3.

[8] International Organization for Standardization, Genève, Switzerland.
ISO/IEC 9797–1, Information technology — Security techniques —
Message Authentication Codes (MACs) — Part 1: Mechanisms using
a block cipher, 1999.

[9] International Organization for Standardization, Genève, Switzerland.
ISO 9564–1:2002, Banking — Personal Identification Number (PIN)
management and security — Part 1: Basic principles and requirements
for online PIN handling in ATM and POS systems, 2nd edition, 2002.

[10] International Organization for Standardization, Genève, Switzerland.
ISO/IEC 18033–3, Information technology — Security techniques —
Encryption algorithms — Part 3: Block ciphers, 2005.

[11] International Organization for Standardization, Genève, Switzerland.
ISO/IEC 18033-3:2010, Information technology — Security techniques
— Encryption algorithms — Part 3: Block ciphers, 2nd edition, 2010.

[12] International Organization for Standardization, Genève, Switzerland.
ISO/IEC JTC 1/SC 27 N13432, ISO/IEC JTC 1/SC 27 Standing Doc-
ument No. 12 (SD12) on the Assessment of Cryptographic Techniques
and Key Lengths, 4th edition, May 2014.

17

http://www.interhack.net/pubs/des-key-crack/

[13] International Organization for Standardization, Genève, Switzerland.
ISO/IEC JTC 1/SC 27 N14908, First edition of SC 27/WG 2 Stand-
ing Document 4 — Analysis and status of cryptographic algorithms,
December 2014.

[14] L. R. Knudsen and C. J. Mitchell. Analysis of 3gpp-MAC and two-key
3gpp-MAC. Discrete Applied Mathematics, 128:181–191, 2003.

[15] L. R. Knudsen and B. Preneel. MacDES: MAC algorithm based on
DES. Electronics Letters, 34:871–873, 1998.

[16] L. R. Knudsen and M. Robshaw. The Block Cipher Companion.
Springer-Verlag, Berlin, 2011.

[17] S. Lucks. Attacking triple encryption. In S. Vaudenay, editor, Fast Soft-
ware Encryption, 5th International Workshop, FSE ’98, Paris, France,
March 23–25, 1998, Proceedings, volume 1372 of Lecture Notes in Com-
puter Science, pages 239–253. Springer-Verlag, Berlin, 1998.

[18] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of
Applied Cryptography. CRC Press, Boca Raton, 1997.

[19] R. C. Merkle and M. E. Hellman. On the security of multiple encryp-
tion. Communications of the ACM, 24(7):465–467, 1981.

[20] C. J. Mitchell. Key recovery attack on ANSI retail MAC. Electronics
Letters, 39:361–362, 2003.

[21] National Institute of Standards and Technology (NIST), Gaithersburg,
MD. Federal Information Processing Standards Publication 46-3 (FIPS
PUB 46-3): Data Encryption Standard (DES), October 1999.

[22] National Institute of Standards and Technology (NIST), Gaithersburg,
MD. Federal Information Processing Standards Publication 197 (FIPS
PUB 197): Specification for the Advanced Encryption Standard (AES),
November 2001.

[23] National Institute of Standards and Technology (NIST). NIST Special
Publication 800-67, Recommendation for the Triple Data Encryption
Algorithm (TDEA) block cipher, January 2012. Revision 1.

[24] National Institute of Standards and Technology (NIST). NIST Special
Publication 800-131A, Transitions: Recommendations for transitioning
the use of cryptographic algorithms and key lengths, November 2015.
Revision 1.

[25] National Institute of Standards and Technology (NIST). NIST Spe-
cial Publication 800–57 Part 1, Recommendation for Key Management,
January 2016. Revision 4.

18

[26] National Technical Information Service, Springfield, Va. National Bu-
reau of Standards (NBS) Federal Information Processing Standards
(FIPS) Publication 46—Data Encryption Standard (DES), April 1977.

[27] B. Preneel and P. C. van Oorschot. A key recovery attack on the ANSI
X9.19 retail MAC. Electronics Letters, 32:1568–1569, 1996.

[28] P. C. van Oorschot and M. J. Wiener. A known plaintext attack on
two-key triple encryption. In I. B. Damgard, editor, Advances in Cryp-
tology — EUROCRYPT ’90, number 473 in Lecture Notes in Computer
Science, pages 318–325. Springer-Verlag, Berlin, 1991.

19

	Introduction
	Triple DES — a brief history
	Generalising the van Oorschot-Wiener attack
	The original attack
	Dualising the attack
	The generalisation

	Exploiting the DES complementation property
	Using partially known plaintext
	Implementation strategies
	Attacking the ANSI Retail MAC
	Background
	Applying the van Oorschot-Wiener attack
	Impact on security

	Conclusions — the future of 2-key triple DES

