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Abstract. Service-oriented computing is a new paradigm where appli-
cations run over global computational networks and are formed by ser-
vices discovered and bound at run-time through the intervention of a
middleware. Asynchronous Relational Nets (ARNs) were presented by
Fiadeiro and Lopes with the aim of formalising the elements of an in-
terface theory for service-oriented software designs. The semantics of
ARNs was originally given in terms of sequences of sets of actions cor-
responding to the behaviour of the service. Later, they were given an
institution-based semantics where signatures are ARNs and models are
morphisms into ground networks, that have no dependencies on external
services.
In this work, we propose a full operational semantics capable of reflecting
the dynamic nature of service execution by making explicit the reconfig-
urations that take place at run-time as the result of the discovery and
binding of required services. This provides us a refined view of the execu-
tion of ARNs based upon which a specialized variant of linear temporal
logic can be used to express, and even to verify through standard model-
checking techniques, properties concerning the behaviour of ARNs that
are more complex than those considered before.

1 Introduction and Motivation

In the context of global ubiquitous computing, the structure of software systems
is becoming more and more dynamic as applications need to be able to respond
and adapt to changes in the environment in which they operate. For instance,
the new paradigm of Service-Oriented Computing (SOC) supports a new gen-
eration of software applications that run over globally available computational
and network infrastructures where they can procure services on the fly (subject
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to a negotiation of Service Level Agreements, or SLAs for short) and bind to
them so that, collectively, they can fulfil given business goals [1]. There is no
control as to the nature of the components that an application can bind to. In
particular, development no longer takes place in a top-down process in which
subsystems are developed and integrated by skilled engineers: in SOC, discovery
and binding are performed by middleware.

Asynchronous Relational Networks (ARNs) were presented by Fiadeiro and
Lopes in [2] with the aim of formalising the elements of an interface theory for
service-oriented software designs. ARNs are a formal orchestration model based
on hypergraphs whose hyperedges are interpreted either as processes or as com-
munication channels. The nodes (or points) that are only adjacent to process
hyperedges are called provides-points, while those adjacent only to communica-
tion hyperedges are called requires-points. The rationale behind this separation
is that a provides-point is the interface through which a service exports its
functionality, while a requires-point is the interface through which an activity
expects certain service to provide a functionality. The composition of ARNs
(i.e., the binding mechanism of services) is obtained by “fusing” provides-points
and requires-points, subject to a certain compliance check between the contract
associated to them. For example, in [3] the binding is subject to a (semantic)
entailment relation between theories over linear temporal logic [4], which are
attached to the provides- and the requires-points of the considered networks.

Providing semantics to ARNs requires to carefully combine different elements
intervening in the rationale behind the formalism and its intended behaviour. In
their first definition, ARNs were given semantics in terms of infinite sequences of
sets of actions, which capture the behaviour of the service. In this presentation,
the behavioural description was given in terms of linear temporal logic theory
presentations [2]. A more modern (and also more operational) presentation of the
semantics of ARNs, the one on which we rely in this article, resorts to automata
on infinite objects whose inputs consist of sequences of sets of actions (see [3]),
as defined in the original semantics of ARNs. Under this formalism, both types
of hyperedges are labelled with Muller automata; in the case of process hyper-
edges, the automata formalise the computation carried out by that particular
service, while in the case of communication hyperedges, the automata represent
the orchestrator that syncs the behaviour of the participants in the communica-
tion process. The behaviour of the system is then obtained as the composition of
the Muller automata associated to both computation and communication hyper-
edges. Finally, the reconfiguration of networks (realized through the discovery
and binding of services) is defined by considering an institutional framework
in which signatures are ARNs and models are morphisms into ground ARNs,
which have no dependencies on external services (see, e.g., [3] for a more in
depth presentation of this semantics).

Under the above-mentioned consideration, the operational semantics of ARNs
(as a set of execution traces) is based on the fact that a network can be reconfig-
ured until all its external dependencies (captured by requires-points) are fulfilled,
i.e., the original network admits a morphism to a ground ARN. In our work, we



consider that semantics is assigned modulo a given repository of services, forcing
us to drop the assumption that given an ARN it is possible to find a ground
network to which the former has a morphism. Regarding previous works, we be-
lieve that this approach results in a more realistic executing environment where
the potential satisfaction of requirements is limited by the services registered in
a repository, and not by the entire universe of possible services.

The aim of this work is to provide a trace-based operational semantics for
service-oriented software designs reflecting the true dynamic nature of run-time
discovery and binding of services. This is done by making the reconfiguration
of an activity an observable event of its behaviour. In SOC, the reconfiguration
events are triggered by particular actions associated with a requires-point; at that
moment, the middleware has to procure a service that meets the requirements of
the activity from an already known repository of services. From this perspective
our proposal is to define execution traces where actions can be either

– internal actions of the activity: actions that are not associated with requires-
points, thus executable without the need for reconfiguring the activity, or

– reconfiguration actions: actions that are associated with a requires-point,
thus triggering the reconfiguration of the system by means of the discovery
and binding of a service providing that computation.

Summarising, the main contributions of this paper are: 1) we provide a trace-
based operational semantics for ARNs reflecting both internal transitions taking
place in any of the services already intervening in the computation and dynamic
reconfiguration actions resulting from the process by binding the provides-point
of ARNs taken from the repository to its require-points, and 2) we provide
support for defining a model-checking technique that can enable the automatic
analysis of linear temporal logic properties of activities.

In this way, our work departs from previous approaches to dynamic recon-
figuration in the context of service-oriented computing, such as [5], which rea-
sons about functional behaviour and control concerns in a framework based on
first-order logic, [6], which relies on typed graph-transformation techniques im-
plemented in Alloy [7] and Maude [8],[9], which makes use of graph grammars
as a formal framework for dealing with dynamicity, and [10, 11], which proposes
architectural design rewriting as a term-rewriting-based approach to the devel-
opment and reconfiguration of software architectures. A survey of these general
logic-, graph-, or rewriting-based formalisms can be found in [12].

The article is organised as follows. In Sec. 2 we recall the preliminary no-
tions needed for our work. In Sec. 3 we give appropriate definitions for providing
operational semantics for ARNs based on a (quasi) automaton generated by a
repository and on the traces accepted by it. We also provide a variant of Linear
Temporal Logic (in Sec. 4) that is suitable for defining and checking properties
related to the execution of activities. As a running example, we gradually intro-
duce the details of travel-agent scenario, which we use to illustrate the concepts



presented in the Sec. 3 and 4. Finally in Sec. 5 we draw some conclusions and
discuss further lines of research.

2 Preliminary Definitions

In this section we present the preliminary definitions we use throughout this
work. We assume the reader has a nodding acquaintance of the basic definitions
of category theory. Most of the definitions needed throughout the forthcoming
sections can be found in [13–15]. For hypergraph terminology, notation and defi-
nitions, the reader is pointed to [16, 17], while for automata on infinite sequences
we suggest [18, 19].

Definition 1 (Muller automaton). The category MA of (action-based) Muller
automata (see, e.g. [3]) is defined as follows:

The objects of MA are pairs 〈A,Λ〉 consisting of a set A of actions and a Muller
automaton Λ = 〈Q, 2A, ∆, I,F〉 over the alphabet 2A, where

– Q is the set of states of Λ,

– ∆ ⊆ Q× 2A×Q is the transition relation of Λ, with transitions (p, ι, q) ∈ ∆
usually denoted by p

ι−→ q,

– I ⊆ Q is the set of initial states of Λ, and

– F ⊆ 2Q is the set of final-state sets of Λ.

For every pair of Muller automata 〈A,Λ〉 and 〈A′, Λ′〉, with Λ = 〈Q, 2A, ∆, I,F〉
and Λ′ = 〈Q′, 2A′ , ∆′, I ′,F ′〉, an MA-morphism 〈σ, h〉 : 〈A,Λ〉 → 〈A′, Λ′〉 con-
sists of functions σ : A→ A′ and h : Q′ → Q such that (h(p′), σ−1(ι′), h(q′)) ∈ ∆
whenever (p′, ι′, q′) ∈ ∆′, h(I ′) ⊆ I, and h(F ′) ⊆ F .

The composition of MA-morphisms is defined componentwise.

As we mentioned before, in this work we focus on providing semantics to
service-oriented software artefacts. To do that, we resort to the formal language
of asynchronous relational nets (see, e.g., [2]). The intuition behind the defi-
nition is that ARNs are hypergraphs where the hyperedges are divided in two
classes: computation hyperedges and communication hyperedges. Computation
hyperedges represent processes, while communication hyperedges represent com-
munication channels. Hypergraph nodes (also called points) are labelled with
ports, i.e., with structured sets M = M−∪M+ of publication (M−) and delivery
messages (M+),5 along the lines of [20, 21]. At the same time, hyperedges are
labelled with Muller automata; thus, both processes and communication chan-
nels have an associated behaviour given by their corresponding automata, which
interact through (messages defined by) the ports labelling their connected points.

The following definitions formalise the manner in which the computation and
communication units are structured to interact with each other.
5 Formally, we can define ports as sets M of messages together with a function M →
{−,+} that assigns a polarity to every message.



Definition 2 (Process). A process 〈γ, Λ〉 consists of a set γ of pairwise dis-
joint ports and a Muller automaton Λ over the set of actions Aγ =

⋃
M∈γ AM ,

where AM = {m! | m ∈M−} ∪ {m¡ | m ∈M+}.

As an example, Fig. 1 (a) depicts a process 〈γTA, ΛTA〉 where
γTA = {TA0,TA1,TA2} and ΛTA is the automaton presented in Fig.1 (b). The
travel agent is meant to provide hotel and/or flight bookings in the local currency
of the customers. Accomplishing this task requires two different interactions to
take place: on one hand, the communication with hotel-accommodation providers
and with flight-tickets providers, and on the other hand, the communication with
a currency-converter provider. In order for the composition of the automata
developed along our example to behave well, we need that every automaton is
able to stay in any state indefinitely. This behaviour is achieved by forcing every
state to have a self-loop labelled with the emptyset. With the purpose of easing
the figures we avoid drawing these self-loops. The reader should still understand
the descriptions of the automata as if there was a self-loop transition, labelled
with the empty set, for every state.
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Fig. 1. The TravelAgent process together with its automaton ΛTA

Definition 3 (Connection). Let γ be a set of pairwise disjoint ports. A con-
nection 〈M,µ,Λ〉 between the ports of γ consists of a set M of messages, a



partial attachment injection µi : M ⇀ Mi for each port Mi ∈ γ, and a Muller
automaton Λ over AM = {m! | m ∈M} ∪ {m¡ | m ∈M} such that

(a) M =
⋃
Mi∈γ

dom(µi) and (b) µ−1i (M∓i ) ⊆
⋃

Mj∈γ\{Mi}

µ−1j (M±j ).

In Fig. 2 (a) a connection C0 is shown whose set of messages is the union of
the messages of the ports TA1,H0,F0 and the family of mappings µ is formed
by the trivial identity mapping. In Fig. 2 (b) the automaton ΛC0

that describes
the behaviour of the communication channel is shown. This connection just
delivers every published message. Nevertheless it imposes some restrictions to
the sequences of messages that can be delivered. For example notice that, after
the message getHotels of TA1 is received (and delivered), only the message hotels
of H0 is accepted for delivery.
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Fig. 2. The C0 connection

With these elements we can now define asynchronous relational networks.

Definition 4 (Asynchronous Relational Net [3]). An asynchronous rela-
tional net α = 〈X,P,C, γ,M, µ, Λ〉 consists of

– a hypergraph 〈X,E〉, where X is a (finite) set of points and E = P ∪ C
is a set of hyperedges (non-empty subsets of X) partitioned into computa-
tion hyperedges p ∈ P and communication hyperedges c ∈ C such that no
adjacent hyperedges belong to the same partition, and

– three labelling functions that assign (a) a port Mx to each point x ∈ X, (b) a
process 〈γp, Λp〉 to each hyperedge p ∈ P , and (c) a connection 〈Mc, µc, Λc〉
to each hyperedge c ∈ C.

Definition 5 (Morphism of ARNs). A morphism δ : α → α′ between two
ARNs α = 〈X,P,C, γ,M, µ, Λ〉 and α′ = 〈X ′, P ′, C ′, γ′,M ′, µ′, Λ′〉 consists of

– an injective map δ : X → X ′ such that δ(P ) ⊆ P ′ and δ(C) ⊆ C ′, that is
an injective homomorphism between the underlying hypergraphs of α and α′

that preserves the computation and communication hyperedges, and



– a family of polarity-preserving injections δptx : Mx →M ′δ(x), for x ∈ X,

such that

– for every point x ∈
⋃
P , δptx = 1Mx ,

– for every computation hyperedge p ∈ P , Λp = Λ′δ(p), and

– for every communication hyperedge c ∈ C, Mc = M ′δ(c), Λc = Λ′δ(c) and, for

every point x ∈ γc, µc,x; δptx = µ′δ(c),δ(x).

ARNs together with morphisms of ARNs form a category, denoted ARN, in
which the composition is defined component-wise, and left and right identities
are given by morphisms whose components are identity functions.

Intuitively, an ARN is a hypergraph for which some of the hyperedges (pro-
cess hyperedges) formalise computations as Muller automata communicating
through ports (identified with nodes of the hypergraph) over a fixed language
of actions. Note that the communication between computational units is not es-
tablished directly but mediated by a communication hyperedge; the other kind
of hyperedge which use Muller automata to formalise communication channels.

In order to define service modules, repositories, and activities, we need to
distinguish between two types of interaction-points, i.e. of points that are not
incident with both computation and communication hyperedges.

Definition 6 (Requires- and provides-point). A requires-point of an ARN
is a point that is incident only with a communication hyperedge. Similarly, a
provides-point is a point incident only with a computation hyperedge.

Definition 7 (Service repository). A service repository is just a set R of
service modules, that is of triples 〈P, α,R〉, also written P ←−−

α
R, where α is an

ARN, P is a provides-point of α, and R is a finite set of requires-points of α.

Definition 8 (Activity). An activity is a pair 〈α,R〉, also denoted 7−−−
α
R, such

that α is an ARN and R is a finite set of requires-points of α.

The previous definitions formalise the idea of a service-oriented software arte-
fact as an activity whose computational requirements are modelled by “dangling”
connections, and that do not pursue the provision of any service to other com-
putational unit, modelled as the absence of provides points. Fig. 3 depicts a
TravelClient activity with a single requires-point through which this activity can
ask either for hotels or hotels and flights reservations. As we will show in the
forthcoming sections, requires-points act as the ports to which the provides-
points of services are bound in order to fulfil these requirements.

Turning a process into a service available for discovery and binding requires,
as we mentioned in the previous definitions, the declaration of the communi-
cation channels that will be used to connect to other services. In the case of
TravelAgent, three services are required to execute, communicating over two
different communication channels. On one of them the process interacts with
accommodation providers and flight tickets providers, while through the other
the process will obtain exchange rates to be able to show the options to the
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customer in its local currency. In some sense, TravelAgent provides the ability to
coherently combine these three services in order to offer a richer experience. It
should then be clear that whenever the TravelAgent is asked for hotels and flights
reservations, it will require both services in order to fulfil its task, plus the ser-
vice for currency exchange conversion. Fig. 4 (a) shows the TravelAgent service
obtained by attaching the communication channels to two of the ports defined
by the TravelAgent process, resulting in a network with three requires-points.
The Fig. 4 (b) shows the automaton for the connection C1.

3 Operational Semantics for ARNs

In this section we present the main contribution of the paper, being a full oper-
ational semantics for activities executing with respect to a given repository. To
do this, we introduce two different kinds of transitions for activities: 1) internal
transitions, those resulting from the execution of a certain set of actions by the
automata that synchronise over them, and 2) reconfiguration transitions, the
ones resulting from the need of executing a set of actions on a port of a commu-
nication hyperedge. Then, runs (on given traces) are legal infinite sequences of
states related by appropriate transitions.

Definition 9 (Alphabet of an ARN). The alphabet associated with an ARN
α is the vertex Aα of the colimit ξ : Dα ⇒ Aα of the functor Dα : Jα → Set, where

– Jα is the preordered category whose objects are points x ∈ X, hyperedges
e ∈ P ∪ C, or “attachments” 〈c, x〉 of α, with c ∈ C and x ∈ γc, and whose
arrows are given by {x → p | p ∈ P, x ∈ γp}, for computation hyperedges,
and {c← 〈c, x〉 → x | c ∈ C, x ∈ γc}, for communication hyperedges;

– Dα defines the sets of actions associated with the ports, processes and chan-
nels, together with the appropriate mappings between them.

Definition 10 (Automaton of an ARN). Let α = 〈X,P,C, γ,M, µ, Λ〉 be an
ARN and 〈Qe, 2AMe , ∆e, Ie,Fe〉 be the components of Λe, for each e ∈ P∪C. The
automaton Λα = 〈Qα, 2Aα , ∆α, Iα,Fα〉 associated with α is defined as follows:

Qα =
∏
e∈P∪C Qe,

∆α = {(p, ι, q) | (πe(p), ξ−1e (ι), πe(q)) ∈ ∆e for each e ∈ P ∪ C},
Iα =

∏
e∈P∪C Ie, and

Fα = {F ⊆ Qα | πe(F ) ∈ Fe for all e ∈ P ∪ C},
where πe : Qα → Qe are the corresponding projections of the product

∏
e∈P∪C Qe.

Fact 1. Under the notations of Def. 10, for every hyperedge e of α, the maps ξe
and πe define an MA-morphism 〈ξe, πe〉 : 〈AMe

, Λe〉 → 〈Aα, Λα〉.

Intuitively, the automaton of an ARN is the automaton resulting from taking
the product of the automata of the several components of the ARN. This product
is synchronized over the shared alphabet of the components. Notice that the
notion of shared alphabet is given by the mappings defined in the connections.



Proposition 1. For every ARN α = 〈X,P,C, γ,M, µ, Λ〉, the MA-morphisms
〈ξe, πe〉 : 〈AMe

, Λe〉 → 〈Aα, Λα〉 associated with hyperedges e ∈ P∪C form colimit
injections for the functor Gα : Jα →MA that maps

– every computation or communication hyperedge e ∈ P ∪C to 〈AMe
, Λe〉 and

– every point x ∈ X (or attachment 〈c, x〉) to 〈AMx
, Λx〉, where Λx is the

Muller automaton 〈{q}, 2AMx , {(q, ι, q) | ι ⊆ AMx
}, {q}, {{q}}〉 with only one

state, which is both initial and final, and with all possible transitions.

Therefore, both the alphabet and the automaton of an ARN α are given by the
vertex 〈Aα, Λα〉 of a colimiting cocone of the functor Gα : Jα →MA.

The universality property discussed above of the alphabet and of the au-
tomaton of an ARN allows us to extend Def. 10 to morphisms of networks.

Corollary 1. For every morphism of ARNs δ : α → α′ there exists a unique
MA-morphism 〈Aδ, �δ〉 : 〈Aα, Λα〉 → 〈Aα′ , Λα′〉 such that

(a) ξx;Aδ = ξ′δ(x) and (b) ( �δ) ;πx = π′δ(x)

for every point or hyperedge x of α, where 〈ξx, πx〉 and 〈ξ′x′ , π′x′〉 are components
of the colimiting cocones of the functors Gα : Jα →MA and Gα′ : Jα′ →MA.6

Operational semantics of ARNs. From a categorical perspective, the uniqueness
aspect of Cor. 1 is particularly important in capturing the operational semantics
of ARNs in a fully abstract manner: it enables us to describe both automata
and morphisms of automata associated with ARNs and morphisms of ARNs
through a functor A : ARN → MA that maps every ARN α to 〈Aα, Λα〉 and
every morphisms of ARNs δ : α→ α′ to 〈Aδ, �δ〉.

3.1 Open Executions of ARNs

In order to formalise open executions of ARNs, i.e. of executions in which not
only the states of the underlying automata of ARNs can change as a result of the
publication or the delivery of various messages, but also the ARNs themselves
through discovery and binding to other networks, we rely on the usual automata-
theoretic notions of execution, trace, and run, which we consider over a particular
(super-)automaton of ARNs and local states of their underlying automata.

Definition 11. The “flattened” automaton A] = 〈Q], A], ∆], I],F ]〉 induced by
the functor A : ARN→MA7 is defined as follows:

Q] = {〈α, q〉 | α ∈ |ARN| and q ∈ Qα},
A] = {〈δ, ι〉 | δ : α→ α′ and ι ⊆ Aα},
∆] = {(〈α, q〉, 〈δ, ι〉, 〈α′, q′〉) | δ : α→ α′ and (q, ι, q′�δ) ∈ ∆α},
I] = {〈α, q〉 | α ∈ |ARN| and q ∈ Iα}, and

F ] = {{〈α, q〉 | q ∈ F} | α ∈ |ARN| and F ∈ Fα}.
6 The definitions of Gα and Gα′ follow the presentation given in Prop. 1.
7 Note that Λ] is in fact a quasi-automaton, because its components are proper classes.



This “flattened” automaton amalgamates in a single structure both the con-
figuration and the state of the system. These two elements are viewed as a
pair 〈ARN, state〉. Now the transitions in this automaton can represent state
changes and structural changes together. In this sense, the “flattened” automa-
ton achieves the goal of giving us a unified view of both aspects of a service
oriented system. The construction of this automaton can be seen, from a cat-
egorical point of view, as the flattening of the indexed category induced by
A : ARN→MA.

We recall that a trace over a set A of actions is an infinite sequence λ ∈ (2A)
ω

,
and that a run of a Muller automaton Λ = 〈Q, 2A, ∆, I,F〉 on a trace λ is a
sequence of states % ∈ Qω such that %(0) ∈ I and (%(i), λ(i), %(i + 1)) ∈ ∆
for every i ∈ ω; together, λ and % form an execution of the automaton Λ. An
execution 〈λ, ρ〉, or simply the run %, is successful if the set of states that occur
infinitely often in %, denoted Inf(%), is a member of F . Furthermore, a trace λ
is accepted by Λ if and only if there exists a successful run of Λ on λ.

Definition 12 (Open execution of an ARN). An open execution of an ARN
α is an execution of A] that starts from an initial state of Λα, i.e. a sequence

〈α0, q0〉
δ0,ι0−−−→ 〈α1, q1〉

δ1,ι1−−−→ 〈α2, q2〉
δ2,ι2−−−→ · · ·

such that α0 = α, q0 ∈ Iα and, for every i ∈ ω, 〈αi, qi〉
〈δi,ιi〉−−−−→ 〈αi+1, qi+1〉 is a

transition in ∆]. An open execution as above is successful if it is successful with
respect to the automaton A], i.e. if there exists i ∈ ω such that (a) for all j ≥ i,
αj = αi, δj = 1αi , and (b) {qj | j ≥ i} ∈ Fαi .

Based on the definition of the transitions of A] and on the functoriality of
A : ARN → MA, it is easy to see that, for every ARN α, every successful open
execution of α gives a successful execution of its underlying automaton Λα.

Proposition 2. For every (successful) open execution

〈α0, q0〉
δ0,ι0−−−→ 〈α1, q1〉

δ1,ι1−−−→ 〈α2, q2〉
δ2,ι2−−−→ · · ·

of the quasi-automaton A], the infinite sequence

q0
ι0−→ q1�δ0

A−1
δ0

(ι1)
−−−−−→ q2�δ0;δ1

A−1
δ0;δ1

(ι2)
−−−−−−→ · · ·

corresponds to a (successful) execution of the automaton Λα0 .

Note that, since the restrictions imposed to the transitions of A] are very
weak – more precisely, because there are no constraints on the morphisms of ARN

δ : α → α′ that underlie open-transitions 〈α, q〉 δ,ι−→ 〈α′, q′〉 – Prop. 2 cannot be
generalised to executions of the automata Λαi , for i > 0. To address this aspect,
we need to take into consideration the fact that, in practice, the reconfigurations
of ARNs are actually triggered by certain actions of their alphabet, and that they
comply with the general rules of the process of service discovery and binding.
Therefore, we need to consider open executions of activities with respect to given
service repositories.



3.2 Open Executions of Activities

For the rest of this section we assume that R is an arbitrary but fixed repository
of service modules.

Definition 13. The activity (quasi-)automaton R] = 〈QR, AR, ∆R, IR,FR〉
generated by the service repository R is defined as follows:

The states in QR are pairs 〈7−−−
α
R, q〉, where 7−−−

α
R is an activity – i.e. α is an

ARN and R is a finite set of requires-points of α – and q is a state of Λα.

The alphabet AR is given by pairs 〈δ, ι〉, where δ : α → α′ is a morphism of
ARNs and ι is a set of α-actions; thus, AR is just the alphabet of A].

There exists a transition 〈7−−−
α
R, q〉 δ,ι−→ 〈7−−−

α′
R′, q′〉 whenever:

1. 〈α, q〉 δ,ι−→ 〈α′, q′〉 is a transition of A];
2. for each requires-point r ∈ R such that ξr(AM+

r
) ∩ ι 6= ∅ there exists

– a service module P r←−−
αr

Rr in R and

– a polarity-preserving injection θr : Mr →MP r

such that the following colimit can be defined in the category of ARNs

N (Mrn)

θrn

&&

⊆
��

... N (Mr1)
θr1 //

⊆

xxrrrrrrrrrrr
αr1

δr1
{{w

w
w

w
w αrn

δrnrr

u
r

pmkifα
δ

//______ α′

where {r1, . . . , rn} is the biggest subset of R such that ξri(AM+
ri

) ∩ ι 6= ∅ for

all 1 ≤ i ≤ n and N (Mri) is the atomic ARN that consists of only one point,
labelled with the port Mri , and no hyperedges;

3. there exists a transition p′
ι′−→ q′ of Λα′ such that p′�δ = q, A−1δ (ι′) = ι and,

for each requires-point r ∈ R as above, p′�δr is an initial state of Λαr .

The states in IR are those pairs 〈7−−−
α
R, q〉 for which q ∈ Iα.

The final-state sets in FR are those sets {〈7−−−
α
R, q〉 | q ∈ F} for which F ∈ Fα.

Note that the definition of the transitions of R] integrates both the opera-
tional semantics of ARNs given by the functor A : ARN → MA and the logic-
programming semantics of service discovery and binding described in [3], albeit
in a simplified form, since here we do not take into account the linear temporal
sentences that label requires-points. The removal of linear temporal sentences
does not limit the applicability of the theory, but rather enables us to give a
clearer and more concise presentation of the operational semantics of activities.

Open executions of activities can be defined relative to the automaton R] in
a similar way to the open executions of ARNs (see Def. 12).



Definition 14 (Open execution of an activity). An open execution of an
activity 7−−−

α
R with respect to R is an execution of the quasi-automaton R] that

starts from an initial state of Λα, i.e. a sequence of transitions of R]

〈7−−−
α0

R0, q0〉
δ0,ι0−−−→ 〈7−−−

α1
R1, q1〉

δ1,ι1−−−→ 〈7−−−
α2

R2, q2〉
δ2,ι2−−−→ · · ·

such that α0 = α, R0 = R, and q0 ∈ Iα. An open execution as above is suc-
cessful if there exists i ∈ ω such that (a) for all j ≥ i, αj = αi, δj = 1αi , and
(b) {qj | j ≥ i} ∈ Fαi .

To illustrate open executions, let’s consider a repository R formed by the service
TravelAgent (depicted in Fig. 4) and the very simple services CurrenciesAgent,
AccomodationAgent and FlightsAgent described in Fig. 5. Let’s also consider the
TravelClient activity of Fig. 3. Observing the automata of Fig. 3 (b) and 3 (c),
an execution starts with the activity TravelClient performing one of two actions,
hotels! or hotels&Flights!. Let us assume it is hotels! without loss of generality.
The prefix of the execution after the transition has the following shape:

〈7−−−−−−−−
TravelClient

{CC1}, q0〉
id,hotels!−−−−−−→ 〈7−−−−−−−−

TravelClient
{CC1}, q1〉

where q0 and q1 are the states (q0, q0) and (q1, q1) of the composed automaton
ΛTC × ΛCC respectively. After this, the only plausible action in this run is
the delivery of the message hotels by the communication channel CC. Since
ξTravelClient(AM+

CC1

) ∩ {hotels¡} = {hotels¡} this action triggers a reconfiguration

of the activity. In our example’s repository, R, the only service that can satisfy
the requirement CC1 is TravelAgent. Thus, the action hotels¡ leads us to the
activity TravelClient′ shown in Fig. 6. The prefix of the execution after this last
transition is:

· · · id,hotels!−−−−−−→ 〈7−−−−−−−−
TravelClient

{CC1}, q1〉
δ,hotels¡−−−−−→ 〈7−−−−−−−−−

TravelClient′
{H0,F0,CE0}, q2〉

where q2 is the state (q1, q0, q1, q0, q0) of the automaton of TravelClient′. To see
that the morphism δ : TravelClient→ TravelClient′ exists is straightforward.

A continuation for this execution is obtained by the automaton ΛTA, asso-
ciated with TravelAgent, publishing the action getHotels! and the mandatory
delivery getHotels! that comes after. This actions trigger a new reconfiguration
of the activity on port H0 of the communication channel C0; in this case, and
considering once again our repository R, the result of the reconfiguration should
be the attachment of the service module AccomodationsAgent.

The following fact allows us to easily generalise Prop. 2 from open executions
of ARNs to open executions of activities.

Fact 2. There exists a (trivial) forgetful morphism of Muller automata R] → A]
that maps every state 〈7−−−

α
R, q〉 of R] to the state 〈α, q〉 of A].

Proposition 3. For every (successful) execution

〈7−−−
α0

R0, q0〉
δ0,ι0−−−→ 〈7−−−

α1
R1, q1〉

δ1,ι1−−−→ 〈7−−−
α2

R2, q2〉
δ2,ι2−−−→ · · ·
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Fig. 5. Very simple services in R
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Fig. 6. The TravelClient′ activity



of the activity quasi-automaton R], the infinite sequence

q0
ι0−→ q1�δ0

A−1
δ0

(ι1)
−−−−−→ q2�δ0;δ1

A−1
δ0;δ1

(ι2)
−−−−−−→ · · ·

is a (successful) execution of the automaton Λα0
.

Theorem 1 shows the relation that exists between the traces of an activity
with respect to a respository and the automata of each component of the activity.
It shows that every (successful) open execution of an activity can be projected
to a (successful) execution of each of the automata interveaning. In order to
prove that open executions of activities give rise to “local” executions of Λαi –
for every i ∈ ω, not only for i = 0 – we rely on a consequence of the fact that
the functor A : ARN → MA preserves colimits and, in addition, we restrict the
automata associated with the underlying ARNs of service modules.

Proposition 4. The functor A : ARN → MA preserves colimits. In particular,

for every transition 〈7−−−
α
R, q〉 δ,ι−→ 〈7−−−

α′
R′, q′〉 as in Def. 13, the Muller automa-

ton Λα′ is isomorphic with the product

Λδα ×
∏
r∈R

ξr(AM+
r
)∩ι6=∅

Λδ
r

αr

of the cofree expansions Λδα and Λδ
r

αr , for r ∈ R such that ξr(AM+
r

) ∩ ι 6= ∅, of

the automata Λα and Λαr along the alphabet maps Aδ and Aδr , respectively.8

Consequently, a transition p′
ι′−→ q′ is defined in the automaton Λα′ if and only if

p′�δ
A−1
δ (ι′)
−−−−−→ q′�δ is a transition of Λα and, for each r ∈ R such that ξr(AM+

r
)∩ι 6=

∅, p′�δr
A−1
δr

(ι′)
−−−−−→ q′�δr is a transition of Λαr .

Definition 15 (Idle initial states). An automaton Λ = 〈Q, 2A, ∆, I,F〉 is
said to have idle initial states if for every initial state q ∈ I there exists a
transition (p, ∅, q) ∈ ∆ such that p is an initial state too.

The following result can be proved by induction on i ∈ ω. The base case
results directly from Prop. 3, while the induction step relies on condition 3 of
Def. 13 and on Prop. 4.

Theorem 1. If, for every service module P ←−−
α
R in R, the automaton Λα has

idle initial states, then for every (successful) execution

〈7−−−
α0

R0, q0〉
δ0,ι0−−−→ 〈7−−−

α1
R1, q1〉

δ1,ι1−−−→ 〈7−−−
α2

R2, q2〉
δ2,ι2−−−→ · · ·

8 We recall from [3] that the cofree expansion of an automaton Λ = 〈Q, 2A,∆, I,F〉
along a map σ : A→ A′ is the automaton Λ′ = 〈Q, 2A

′
,∆′, I,F〉 for which (p, ι′, q) ∈

∆′ if and only if (p, σ−1(X ′), q) ∈ ∆.



of R] there exists a (successful) execution of Λαi , for i ∈ ω, of the form

q′0
ι′0−→ q′1

ι′1−→ · · · q′i−1
ι′i−1−−−→ qi

ιi−→ qi+1�δi
A−1
δi

(ιi+1)

−−−−−−→ qi+2�δi;δi+1

A−1
δi;δi+1

(ιi+2)

−−−−−−−−−→ · · ·

where, for every j < i, q′j�δj ;··· ;δi−1
= qj and A−1δj ;··· ;δi−1

(ι′j) = ιj.

The reader should notice that all the automata used as examples in this work
have idle initial states as a consequence of the hidden self loop, labelled with
the empty set, that we assumed to exist in every state.

4 Satisfiability of Linear Temporal Logic Formulae

In this section we show how we can use the trace semantics we presented in
the previous section to reason about Linear Temporal Logic (LTL for short) [4,
22] properties of activities. Next we define linear temporal logic by providing its
grammar and semantics in terms of sets of traces.

Definition 16. Let V be a set of proposition symbols, then the set of LTL for-
mulae on V, denoted as LTLForm(V), is the smallest set S such that:

– V ⊆ S, and
– if φ, ψ ∈ S, then {¬φ, φ ∨ ψ,Xφ, φUψ} ⊆ S.

We consider the signature of a repository to be the union of all messages
of all the service modules in it. This can give rise to an infinite language over
which it is possible to express properties refering to any of the services in the
repository, even those that are not yet bound (and might never be). To achieve
this we require the alphabets of the service modules in a repository R to be
pairwise disjoint.

Definition 17. Let R be a repository and 7−−−
α
R an activity. We denote with

AR,α the set
(⋃
{Aα′}P ′←−−

α′
R′∈R

)
∪Aα

Defining satisfaction of an LTL formula requires that we first define what is
the set of propositions over which we can express the LTL formulae. We consider
as the set of propositions all the actions in the signature of the repository or in
the activity to which we are providing semantics. Thus, the propositions that
hold in a particular state will be the ones that correspond to the actions in the
label of the transition that took the system to that state.

In order to define if a run satisfies an LTL formula it is necessary to consider
the suffixes of a run, thus let

r=〈 7−−−
α0

R0,q0〉
δ0,ι0−−−→〈7−−−

α1
R1,q1〉

δ1,ι1−−−→〈7−−−
α2

R2,q2〉
δ2,ι2−−−→···

be a succesful open execution of 7−−−
α
R with respect to a repository R we denote

with ri the ith suffix of r. That is:

ri=〈 7−−−αi Ri,qi〉
δi,ιi−−−→〈 7−−−−−

αi+1
Ri+1,qi+1〉

δi+1,ιi+1−−−−−−→〈7−−−−−
αi+2

Ri+2,qi+2〉
δi+2,ιi+2−−−−−−→···



The thoughtful reader may notice that while our formulae are described over
the union of the alphabet of the repository R and the alphabet of the activity
7−−−
α
R, the labels ιi in a run belong to the alphabet Aαi , that is the computed co-

limit described in Def 9. Therefore, we need to translate our formula accordingly
with the modifications suffered by the activity during the particular run to be
able to check if it holds. In order to define how the translation of the formula is
carried out we rely on the result of Cor. 1. The following definition provides the
required notation to define these translations:

Definition 18. Let R be a repository and 〈7−−−
α
R, q〉 δ,ι−→ 〈7−−−

α′
R′, q′〉 a transition

of R] then we define Aδ̂ : AR,α → AR,α′ as

Aδ̂(a) =


Aδ(a) a ∈ Aα
Aδri (a) a ∈ Aαri
a otherwise

Definition 19. Let R be a repository and let 7−−−
α
R be an activity. Also let

V = AR,α, φ, ψ ∈ LTLForm(V), a ∈ V and v ⊆ V then:

– 〈r, v, τ〉 |= true,
– 〈r, v, τ〉 |= a iff τ(a) ∈ v,
– 〈r, v, τ〉 |= ¬φ iff 〈r, v, τ〉 6|= φ,
– 〈r, v, τ〉 |= φ ∨ ψ if 〈r, v, τ〉 |= φ or 〈r, v, τ〉 |= ψ,
– 〈r, v, τ〉 |= Xφ iff 〈r1, ι0, τ ;Aδ̂0〉 |= φ, and
– 〈r, v, τ〉 |= φUψ iff there exists 0 ≤ i such that 〈ri, ιi−1, τ ;Aδ̂0 ; ...;Aδ̂i−1

〉 |= ψ

and for all j, 0 ≤ j < i, 〈rj , ιj−1, τ ;Aδ̂0 ; ...;Aδ̂j−1
〉 |= φ where ι−1 = ∅ and

Aδ̂−1
= 1AR,α .

If V is a set of propositions, φ, ψ ∈ LTLForm(V), the rest of the boolean
constants and operators are defined as usual as: false ≡ ¬true, φ∧ψ ≡ ¬(¬φ∨
¬ψ), φ =⇒ ψ ≡ ¬φ∨ψ, etc. We define ♦φ ≡ trueUφ and �φ ≡ ¬(trueU¬φ).

Definition 20. Let R be a repository and let

r = 〈7−−−
α0

R0, q0〉
δ0,ι0−−−→ 〈7−−−

α1
R1, q1〉

δ1,ι1−−−→ 〈7−−−
α2

R2, q2〉
δ2,ι2−−−→ · · ·

be a successful open execution of R]. Then a formula φ ∈ LTLForm(AR,α0) is
satisfied by r (r |= φ) if and only if 〈r, ∅, 1AR,α0

〉 |= φ.

Following the previous definitions, checking if an activity 7−−−
α
R satisfies a

proposition φ under a repository R is equivalent to checking if every successful
open execution of 7−−−

α
R with respect to R satisfies φ.

In the following we will show how the satisfaction relation in Def. 20 can be
used to reason about properties of activities. We are particularly interested in
asserting properties regarding the future execution of an activity with respect
to a repository.



In order to exemplify, let us once again consider the activity TravelClient of
Fig. 3(a) and the repositoryR formed by the services TravelAgent, CurrenciesAgent,
AccomodationAgent, and FlightsAgent described in Figs. 4 and 5. We are then
interested in the open successful executions of the quasi-automaton R]. Two
examples of statements we could be interested in are the following properties:

1. Every execution of TravelClient requires the execution of CurrenciesAgent:

For all successful open executions r of R], r |= ♦
(∨

a∈AMCurrenciesAgent
a
)

.

2. There exists an execution of TravelClient that does not require the execution
of FlightsAgent:

There exists a successful open execution r ofR], r |= �
(
¬
∨
a∈AMFlightsAgent

a
)

.

The first property is true and it can be checked by observing that in the
automaton ΛTA no matter what is the choice for a transition made in the ini-
tial state (bookHotels¡, bookF lights¡, or bookHotels&Flights¡), the transition
labelled with action getExchangeRate! belongs to every path that returns to
the initial state, that is the only accepting state. Therefore, the reconfiguration
of the activity on port CE0 is enforced in every successful execution.

The second one is also true as it states that there is an execution that does not
requires the binding of a flights agent. Observing TravelClient, one can consider
the trace in which no order on flights is placed never as the client always choose
to order just accommodation.

5 Conclusions and Further Work

The approach that we put forward in this paper combines, in an integrated
way, the operational semantics of processes and communication channels, and
the dynamic reconfiguration of ARNs. As a result, it provides a full operational
semantics of ARNs by means of automata on infinite sequences built from the
local semantics of processes, together with the semantics of those ARNs that
are selected from a given repository by means of service discovery and binding.
Another use for this semantics is in identifying the differences between the non-
deterministic behaviour of a component, reflected within the execution of an
ARN, and the nondeterminism that arises from the discovery and binding to
other ARNs.

In comparison with the logic-programming semantics of services described
in [3], this gives us a more refined view of the execution of ARNs; in particular,
it provides a notion of execution trace that reflects both internal actions taken
by services that are already intervening in the execution of an activity, and
dynamic reconfiguration events that result from triggering actions associated
with a requires-point of the activity. In addition, by defining the semantics of
an activity with respect to an arbitrary but fixed repository, it is also possible
to describe and reason about the behaviour of those ARNs whose executions
may not lead to ground networks, despite the fact that they are still sound and
successful executions of the activity.



The proposed operational semantics allows us to use various forms of tempo-
ral logic to express properties concerning the behaviour of ARNs that surpasses
those considered before. We showed this by defining a variant of the satisfaction
relation for linear temporal logic, and exploiting the fact that reconfiguration
actions are observable in the execution traces; thus, it is possible to determine
whether or not a given service module of a repository is necessarily used, or may
be used, during the execution of an activity formalised as an ARN.

Many directions for further research are still to be explored in order to provide
an even more realistic execution environment for ARNs. Among them, in the
current formalism, services are bound once and forever. In real-life scenarios
services are bound only until they finish their computation (assuming that no
error occurs); this does not prevent the activity to require the execution of the
same action associated to the same requires-point, triggering a new discovery
with a potential different outcome on the choice of the service to be bound.
Also, our approach does not consider any possible change on the repository
during the execution which leads to a naive notion of distributed execution as
simple technical problems can make services temporarily unavailable.
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