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Abstract
K.A.S. Immink and J.H. Weber recently defined and studied a

channel with both gain and offset mismatch, modelling the behaviour
of charge-leakage in flash memory. They proposed a decoding measure
for this channel based on minimising Pearson distance (a notion from
cluster analysis). The paper derives a formula for maximum likelihood
decoding for this channel, and also defines and justifies a notion of
minimum distance of a code in this context.

1 Introduction

We begin by defining some notation. Let n be an integer, n ≥ 3. All our
vectors will have length n, and will have entries in the real numbers R. For
a vector x, we write xi for the ith entry of x, we write

x =
1

n

n∑
i=1

xi

for the mean of x and we write

σx =

√√√√ n∑
i=1

(xi − x)2
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for the (unnormalised) standard deviation of x. We write 1 for the all-
one vector of length n, and call any scalar multiple of 1 a constant vector.
For vectors u and v that are not constant vectors, the Pearson correlation
coefficient ρu,v is defined by

ρu,v =

∑n
i=1(ui − u)(vi − v)

σuσv
.

Finally, the Pearson distance δPearson(u,v) between vectors u and v is defined
to be

δPearson(u,v) = 1− ρu,v.

Since ρu,v lies between −1 and 1, the Pearson distance lies between 0 and 2.
Both Pearson distance and Pearson correlation are well-known concepts in
the area of cluster analysis.

The channel considered by Kees A. Schouhamer Immink and Jos H. We-
ber [3] is defined as follows. If the vector x is sent through the channel, the
channel outputs the received vector r where

r = a(x + ν) + b1.

Here a (the gain) and b (the offset) are unknown real numbers, with a > 0,
and

ν = (ν1, ν2, . . . , νn)

where the νi are independently normally distributed with mean 0 and stan-
dard deviation σ.

The channel is motivated by the properties of flash memory. We give some
basic details of this setting here; see [1, 9] for more detailed introductions,
and see (for example) [6, 7, 8] for another approach to modelling the problem
using rank modulation codes. Flash memory is made up of an array of
floating-gate transistors, known as flash cells. Data is stored in each cell by
varying the charge (equivalently, the voltage) on the cell. In single level cell
(SLC) flash memory, each cell stores one bit of information depending on
whether the voltage level is zero or non-zero. In more recent multi-level cell
(MLC) systems, more information is stored by allowing the cell to be charged
at one of several discrete non-zero voltage levels. The vector x corresponds
to the voltages we wish to store in a block of n cells, so xi is the voltage
we wish to store in the ith cell. We cannot hope to initialise a cell with the
exact voltage we wish: the errors in this process give rise to the error term ν.
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Over time, the voltage in each cell drops due to charge leakage. We assume
that the function that gives this voltage change is unknown, but is affine and
is independent of which cell in the block we are examining. The unknown
coefficients a and b specify this function; the coefficient a is positive since
charge leakage is monotonic increasing: the more charge we have initially,
the more we have after leakage. The received vector r thus models the set
of voltages we retrieve from a block of cells we have initialised with voltages
corresponding to x.

We note that the channel does not model some aspects of flash memory:
intercell coupling (where the charge on one cell influences the charge on
neighbouring cells) is not modelled in any way; nor is the possibility that the
magnitude of the error in the charging process depends on the charge in some
way. Nevertheless, the channel is very natural and captures key properties
of the process of retrieving data from flash memory.

Immink and Weber assume that the vectors x lie in some finite subset
C of Rn. (In fact, they assume that C ⊆ {0, 1, . . . , q − 1}n for some fixed
integer q.) This corresponds to the fact that we initialise each cell with one of
a finite discrete set of voltages. To ensure unique decoding in the absence of
noise, they assume that if x ∈ C then no other codeword y ∈ C has the form
y = ax+ b1 for real numbers a and b with a positive. They also assume that
no constant vector lies in C. This makes the Pearson distance between any
pair of vectors in C well-defined; see Section 6 for additional motivation for
this assumption. Weber, Immink and Blackburn [5] have studied maximal
codes C ⊆ {0, 1, . . . , q − 1}n with these properties.

A decoder based on Pearson distance is proposed in this setting in [3].
So we decode a received vector r as x̂, where x̂ ∈ C minimises δPearson(r, x̂).
One motivation for this choice is that Pearson distance behaves well with
respect to an affine charge-leakage function, since

δPearson(r, x̂) = δPearson(ar + b1, ax̂ + b1).

Pearson distance has a natural geometric meaning: see Section 6 for a brief
discussion.

In this paper, we derive a maximum likelihood decoding function for the
channel in [3], and compare a decoder based on this function with a decoder
based on minimising Pearson distance. We also propose and justify a notion
of minimum distance for codes used with this channel.

We should emphasise that the model makes no assumptions on the distri-
bution of the unknown (‘nuisance’) parameters a and b: if we know something
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about these distributions, other decoding methods might be appropriate. For
example, if a is known to be very close to 1, then decoding based on min-
imising Euclidean distance is sensible; Immink and Weber [4] have proposed
a decoder based on minimising a weighted sum of Euclidean and Pearson
distances in some situations.

The remainder of the paper is structured as follows. Section 2 sets up
notation, and contains some preliminary lemmas. In Section 3 we show
how to achieve Maximum Likelihood Decoding for this channel. Pearson
distance is not the measure to use for Maximum Likelihood decoding, but is
often a good approximation to it: simulations show comparable performance
between both MLD and Pearson decoders. Section 4 defines and justifies a
minimum distance measure for codes designed for the channel. In Section 5,
we give some results of simulations that compare the approach in [3] with
the one taken here. Finally, Section 6 provides some comments on various
aspects of the model in [3].

2 Preliminaries

This section contains notation that will be used in the remainder of this
paper. Some simple facts, which will often be used without further comment,
are also stated.

We define ||u|| to be the Euclidean length of u ∈ Rn, and we define δ(u,v)
to be the Euclidean distance between u,v ∈ Rn.

Define the subspace Z of Rn by

Z = {x ∈ Rn : x = 0}

=

{
(x1, x2, . . . , xn) ∈ Rn :

n∑
i=1

xi = 0

}
.

Let ζ : Rn → Z be defined by

ζ(x) = x− x1.

We can think of ζ as a ‘normalisation’, applying an offset to a vector so that
it has mean zero. Using ζ allows the formulas given in the introduction to be
expressed in a more geometric way. We now give more details. We see that

σu = ||ζ(u)||. (1)
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We write 〈x,y〉 for the standard inner product (the dot product) of x and
y. So

〈x,y〉 =
n∑
i=1

xiyi.

Since 〈x,y〉 = ||x|| ||y|| cos θ where θ is the angle between x and y, we see
that

ρu,v =
〈ζ(u), ζ(v)〉
σζ(u)σζ(v)

(2)

=
||ζ(u)|| ||ζ(v)|| cos θ

||ζ(u)|| ||ζ(v)||
= cos θ, (3)

where θ is the angle between ζ(u) and ζ(v).
Finally, we note that ζ(ζ(u)) = ζ(u), that ζ(u + v) = ζ(u) + ζ(v) and

that σζ(u) = σu.

3 Maximum likelihood decoding

This section provides a proof of the following theorem:

Theorem 1. A maximum likelihood decoder decodes a received vector r to
the codeword x̂ which minimises `r(x̂), where

`r(x̂) =

{
σ2
x̂(1− ρ2r,x̂) when ρr,x̂ > 0,

σ2
x̂ otherwise.

(4)

Before proving this theorem, we provide a geometrical interpretation for
the formula (4). For a non-zero vector r ∈ Rn, define

Ur = {a′r + b′1 | a′, b′ ∈ R}, and

U+
r = {a′r + b′1 | a′, b′ ∈ R, a′ > 0}.

So Ur is a subspace, and U+
r is a half-subspace, of Rn. For a vector r ∈ Rn

we write Rr for the ray from the origin in the direction of r, so

Rr = {a′r : a′ ∈ R, a′ > 0}.
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Lemma 2. Let r and x̂ be vectors in Rn. Let d1 be the Euclidean distance
between x̂ and U+

r . Let d2 be the Euclidean distance between ζ(x̂) and Rζ(r).
Then

d21 = d22 = `r(x̂).

Proof. We start by proving that d1 = d2. Let u = a′ζ(r) = a′r−a′r1 ∈ Rζ(r).
Then

δ(ζ(x̂),u) = δ(x̂− x̂1,u) = δ(x̂,u + x̂1),

and u + x̂1 = a′r + (x̂− r)1 ∈ U+
r . So d1 ≤ d2.

Let u = a′r + b′1 = a′ζ(r) + (b′ + r)1 ∈ U+
r . Then

δ(x̂,u) = δ(ζ(x̂),u− x̂1) = δ(ζ(x̂), a′ζ(r) + (b′ + r− x̂)1) ≥ δ(ζ(x̂), a′ζ(r)),

since ζ(x̂), a′ζ(r) ∈ Z and since 1 is orthogonal to Z. Since a′ζ(r) ∈ Rζ(r),
we see that d2 ≤ d1. Hence d1 = d2.

We now prove that d22 = `r(x̂). There are two cases, depending on whether
or not the closest point P to ζ(x̂) on the line generated by ζ(r) lies in the
ray Rζ(r): see Figure 1. The first case, when P lies on the ray, happens if
and only if 〈ζ(x̂), ζ(r)〉 > 0. This happens exactly when ρx̂,r > 0, by (2). In
this case,

d22 = ||ζ(x̂)||2 sin2 θ = ||ζ(x̂)||2(1− cos2 θ) = σ2
x̂(1− ρ2r,x̂),

where θ is the angle between ζ(x̂) and ζ(r), by (1) and (3). In the second
case, when 〈ζ(x̂), ζ(r)〉 ≤ 0, the distance between ζ(x̂) and the ray Rζ(r) is
given by the distance from ζ(x̂) to the origin. So

d22 = ||ζ(x̂)||2 = σ2
x̂,

by (1). This establishes the lemma.

Proof of Theorem 1. Since the components of ν are picked independently
according to a normal distribution with mean 0 and standard deviation σ,
each value of ν is associated with the value of the corresponding normal
Probability Density Function f(ν), where

f(ν) =
n∏
i=1

1

σ
√

2π
exp(−ν2i /(2σ2)).
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Figure 1: The distance of a point to a ray: two cases

For vectors r and x̂, define

La,b(x̂ | r) = f((r− b1)/a− x̂).

This is the likelihood of x̂ given r when a and b are fixed, since ν = (r −
b1)/a− x̂ in this case.

In maximum likelihood decoding, we decode a received vector r = a(x +
ν) + b1 as x̂ ∈ C, where x̂ is the codeword that maximises

max
a,b∈R,a>0

La,b(x̂ | r) = max
a,b∈R,a>0

f((r− b1)/a− x̂)

= max
a′,b′∈R,a′>0

f(a′r + b′1− x̂),

where a′ = 1/a and b′ = b/a. The logarithm function is strictly increasing on
the positive real numbers, and f is a positive function. So equivalently we
want to find x̂ ∈ C that maximises maxa′,b′∈R,a′>0 log f(a′r + b′1− x̂). But

log f(a′r + b′1− x̂) = −n log(σ
√

2π)− 1

2σ2

n∑
i=1

(a′ri + b′ − x̂i)2.

Since −n log(σ
√

2π) is a constant (in other words, independent of x̂ and
r), and since 1

2σ2 is a positive constant, we see that a maximum likelihood

7



decoder finds a codeword x̂ that minimises

min
a′,b′∈R,a′>0

n∑
i=1

(a′ri + b′ − x̂i)2,

which is the square of the Euclidean distance between U+
r and x̂. But,

by Lemma 2, this is exactly the same as minimising the function `r(x̂), as
required.

We describe techniques to reduce the amount of computation the max-
imum likelihood decoder needs. Firstly, the value σ2

x̂ can be precomputed
for all codewords x̂ ∈ C. Secondly, for codes such as 2-constrained codes [3]
that are preserved under permuting their cooordinates, we can significantly
reduce the number of codewords we need to consider by making the following
observations. The value of σx̂ is not changed if we permute the coordinates of
x̂, and the value of ρr,x̂ is maximised when we permute the coordinates of x̂ to
have the same order as the coordinates of r. So we may use the ‘composition
code’ decomposition technique from [3, Section IV.B] to decode more effi-
ciently, only storing codewords that are in sorted order. Finally, we observe
that 2-constrained codes C have the property that whenever x ∈ C then its
complement y = (q− 1)1−x also lies in C. We note that ζ(x) = −ζ(y) and
so we find that σx = σy and ρr,x = −ρr,y for any non-constant received word
r. So for codes which are closed under taking complements, we only need
to store one codeword from each pair {x,y}. If we do this, we search for a
codeword x̂ that minimises σ2

x̂(1− ρ2r,x̂); we then decode to the complement
of x̂ when ρr,x̂ < 0 and decode to x̂ otherwise. This technique can be com-
bined with the composition code technique above. The technique can also
be used with the decoder in [3]: here we find a codeword maximising |ρr,x̂|,
and decode to this codeword if ρr,x̂ ≥ 0 or to its complement otherwise.

4 The distance between codewords

For codewords u,y ∈ C, we define a (squared) distance measure δ′(u,v) by

δ′(u,v) =

{
σ2
uσ

2
v(1− ρ2u,v)/σ2

u+v when ρu,v > −min{σv/σu, σu/σv},
min{σ2

u, σ
2
v} otherwise.
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Note that δ′(u,v) = δ′(v,u). Also note that δ′(u,v) depends only on ζ(u)
and ζ(v), by (1) and (2). Finally, we claim that

σ2
uσ

2
v(1− ρ2u,v)/σ2

u+v ≤ min{σ2
u, σ

2
v}. (5)

To see this, we may verify by routine calculation that

σ2
uσ

2
v(1− ρ2u,v)/σ2

u+v =
〈ζ(u), ζ(u)〉〈ζ(v), ζ(v)〉 − 〈ζ(u), ζ(v)〉2

〈ζ(u + v), ζ(u + v)〉

= 〈ζ(u), ζ(u)〉 − 〈ζ(u), ζ(u) + ζ(v))〉2

〈ζ(u) + ζ(v), ζ(u) + ζ(v)〉
(6)

≤ 〈ζ(u), ζ(u)〉 = σ2
u.

A similar calculation shows that the left hand side of (5) is at most σ2
v, and

so the claim follows.
In this section, we will give a geometric interpretation for δ′(u,v), and

we relate the minimum distance of a code (using this notion of distance) to
the error rate of a maximum likelihood decoder.

We note that [3] defines a different distance measure (namely the distance
d2(u,v) = 2σ2

u(1 − ρu,v), which is not symmetrical in u and v) to be used
to calculate the minimum distance of a code in this context. This distance
measure is natural for the decoder in [3]; in Section 5 we briefly compare this
measure with the measure above.

Lemma 3. Let x,y ∈ Rn. Then δ′ = δ′(x,y) is the largest real number δ′

with the following property. Let B(x, δ′) be the ball in Z of radius
√
δ′ and

centre ζ(x) (using Euclidean distance). Let B(y, δ′) be the ball in Z of radius√
δ′ and centre ζ(y). Then there is no ray Rζ(r) that intersects the interior

of both B(x, δ′) and B(y, δ′).

Proof. Firstly, suppose that ρx,y > −min{σy/σx, σx/σy}. In particular this
means that ζ(x) 6= −ζ(y), and so ζ(x + y) is a non-zero vector.

The typical situation in this case is drawn in Figure 2. Let P be the
subplane of Z generated by ζ(x) and ζ(y), and let K be the subplane of
vectors orthogonal to P . Let H be the hyperplane in Z generated by ζ(x+y)
and K. We have that ζ(x) and ζ(y) lie on different sides of H. The closest
point in H to ζ(x) lies in P , and so lies on the line generated by ζ(x) + ζ(y);
the same is true for the closest point to ζ(y). Setting θ to be the angle
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Figure 2: A hyperplane in Z at equal distance from ζ(x) and ζ(y)

between ζ(x) and ζ(x) + ζ(y), we find that the squared distance between H
and ζ(x) is

||ζ(x)||2 sin2 θ = ||ζ(x)||2 − ||ζ(x)||2 cos2 θ

= 〈ζ(x), ζ(x)〉 − 〈ζ(x), ζ(x) + ζ(y)〉2

〈ζ(x) + ζ(y), ζ(x) + ζ(y)

= σ2
xσ

2
y(1− ρ2x,y)/σ2

x+y by (6)

= δ′.

So the interior of B(x, δ′) does not intersect H. Similarly, ζ(y) is also at
distance δ′ from H and so the interior of B(y, δ′) does not intersect H. So
the interiors of B(x, δ′) and B(y, δ′) lie on different sides of a hyperplane,
and therefore no ray from the origin intersects them both, as required.

We now show that the value for δ′ is optimal, by proving that the ray
Rζ(x+y) touches the boundaries of both B(x, δ′) and B(y, δ′). The nearest
point to ζ(x) on the line generated by ζ(x + y) is given by

||ζ(x)|| cos θ

||ζ(x + y)||
ζ(x + y) =

〈ζ(x), ζ(x + y)〉
||ζ(x + y)||2

ζ(x + y).
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Figure 3: A typical case when ||ζ(x)|| ≤ ||ζ(y)||

So Rζ(x+y) touches B(x, δ′) if and only if 〈ζ(x), ζ(x + y)〉 > 0. But

〈ζ(x), ζ(x + y)〉 = 〈ζ(x), ζ(x)〉+ 〈ζ(x), ζ(y)〉
= σ2

x + σxσyρx,y by (1) and (2)

> σ2
x − σxσy(σx/σy)

= 0.

So Rζ(x+y) touches B(x, δ′). The argument that Rζ(x+y) touches B(y, δ′) is
similar, and uses the fact that ρx,y > −σy/σx. This shows that our value for
δ′ is optimal in this case.

We now turn to the case when ρx,y ≤ −min{σy/σx, σx/σy}. See Figure 3
for a typical situation. Without loss of generality, assume that σx ≤ σy. So
δ′ = σ2

x and ρx,y ≤ −σx/σy.
Let H = ζ(x)⊥, so

H = {u ∈ Z : 〈ζ(x),u〉 = 0}

is the hyperplane in Z of all vectors that are orthogonal to x. Clearly the
nearest point on H to ζ(x) is the origin, so ζ(x) is at distance ||ζ(x)|| = σx
from H. Moreover, all points u in the interior of B(x, δ′) have 〈ζ(x),u〉 > 0.
Now let u be a point in the interior of B(y, δ′). Then u = ζ(y) + v, where
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||v|| <
√
δ′ and so

〈ζ(x),u〉 = 〈ζ(x), ζ(y)〉+ 〈ζ(x),v〉
< 〈ζ(x), ζ(y)〉+ ||ζ(x)||

√
δ′

≤ ||ζ(x)|| ||ζ(y)||ρx,y + ||ζ(x)||σx
≤ σxσy(−σx/σy) + σ2

x

= 0.

Thus all points in the interior of B(y, δ′) lie on the opposite side of the
hyperplane H to the points in the interior of B(x, δ′). So no ray from the
origin can pass through both B(x, δ′) and B(y, δ′), as required. Finally, it is
easy to see that no larger value of δ′ can have this property, for when δ′ > σ2

x

we find that the origin is in the interior of B(x, δ′), and so all rays from the
origin (including, for example, Rζ(y)) pass through B(x, δ′).

Theorem 4. Let C ⊆ Rn be a finite set of non-constant codewords. Define
the minimum distance δ′ of C by

δ′ = min
x,y∈C,x 6=y

δ′(x,y).

The word error probability of a maximum likelihood decoder is bounded above
by the probability that χ2(n− 1) ≥ δ′/σ2, where χ2(n− 1) is the chi-squared
distribution with n− 1 degrees of freedom.

Proof. When a codeword x is transmitted, the decoder receives a vector r =
a(x+ν)+b where a and b are unknown, and the components of ν are normally
distributed with mean 0 and standard deviation σ. Let e1, e2, . . . , en be an
orthonormal basis for Rn, with e1, e2, . . . , en−1 spanning Z. We may write
ν = ν ′ + cen where

ν ′ = ν ′1e1 + ν ′2e2 + · · ·+ ν ′n−1en−1

and where the real numbers ν ′i and c are independent and normally dis-
tributed with mean 0 and standard deviation σ. Now ||ν ′||2/σ2 is a chi-
squared random variable with n − 1 degrees of freedom, so ||ν ′||2 < δ′ with
probability equal to the probability that χ2(n − 1) ≥ δ′/σ2. Assume that
||ν ′||2 < δ′. It suffices to show that our maximum likelihood decoder returns
the codeword x.
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Figure 4: Word error rate when q = 2 and n = 4

Note that ζ(ν) = ν ′, and so ζ(r) = a(ζ(x) + ν ′). The ray Rζ(r) passes
within a squared distance of ||ν ′||2 from ζ(x), since ζ(x) +ν ′ lies on this ray.
So `x(r) ≤ ||ν ′||2 < δ′. Let x̂ ∈ C be such that x̂ 6= x. Lemma 3 and the
definition of δ′ shows that Rζ(r) cannot intersect the interior of a ball in Z
of radius δ′ centred at ζ(x̂). Hence `x̂(r) ≥ δ′. Thus a maximum likelihood
decoder will correctly decode to x.

5 Comparing the two decoders

Simulations indicate that the decoder in [3] has a comparable performance
with the maximum likelihood decoder when word error rate is considered.
Figure 4 shows the results of a simulation for the maximum likelihood decoder
when q = 2 and n = 4 for a range of noise levels when a 1-constrained code [3]
is used: the horizontal axis is the signal to noise ratio, defined as −20 log10 σ,
and the vertical axis is the word error rate. Each point was the result of
10,000 trials with a = 1.07 and b = 0.07. Figure 5 gives a similar situation
when n = 12. In each figure, simulation results are plotted along with the
error rate predicted by averaging the bound in Theorem 4 over all subcodes
of size 2. These parameters are chosen for direct comparison with Figure 5
in [3].

Figure 6 is a scatter plot of two notions of distance for 10,000 random
vectors when q = 100 and n = 20: the distance δ′(u,v) defined in Section 4
and the distance d2(u,v) defined in Section IV.B of [3] for the purposes of
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Figure 5: Word error rate when q = 2 and n = 12
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Figure 6: Two distances: d2 against δ′

estimating word error rates. The figure shows a close to linear relationship
between these two quantities for random vectors. Figure 7 is a scatter plot of
two likelihood functions (namely Pearson distance and the likelihood function
`x(y) used by the maximum likelihood decoder) for a similarly randomly
generated collection of vectors. Again, a close to linear relationship can be
observed, which provides an explanation for the similar performance of the
corresponding decoders.
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Figure 7: Two likelihood functions: Pearson distance against `x(y)

6 Comments

6.1 A geometric meaning for Pearson distance

Since the offset b is arbitrary and unknown, and changes the mean of a
vector by b, it seems sensible to normalise codewords and received words to
have mean 0. In other words, we consider the words ζ(x̂) = x̂ − x̂1 and
ζ(r) = r − r1 rather than x̂ and r. Scaling a vector of mean 0 by a does
not change the mean, but scales the standard deviation by a factor of a. So
it seems sensible to scale our normalised vectors so that they have standard
deviation 1: if our original vectors were non-constant, we can always find
a scaling factor a that does this. The resulting vectors, (x̂ − x̂1)/σx̂ and
(r− r1)/σr, lie on an n− 1-dimensional unit sphere, centred at the origin. A
natural distance measure between two vectors u and v on this unit sphere is
their squared Euclidean distance, and it is not difficult to show that this is
exactly δPearson(u,v).

6.2 Why are constant codewords forbidden?

The (unnormalised) standard deviation of a constant codeword is 0, so the
Pearson correlation coefficient ρr,x̂ is not defined when x̂ is constant. But
the forbidding of constant codewords is an artifact of the channel itself, not
just the distance measure that is proposed for decoding. To see this, suppose
that x̂ = α1 is a codeword. Let r be a received word, and define s = r− x̂.
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For any positive ε ∈ R we have

ε−1(x̂ + εs) + (1− ε−1)α1 = s + α1 = r.

Setting a = ε−1, b = (1− ε−1)α and ν = εs we have that r = a(x̂ + ν) + b1.
But ε may be taken to be arbitrarily small, and so we see r could have
been received when x̂ was transmitted, with an abitrarily small error vector
ν = εs. So any reasonable decoder for this channel would decode every
received vector to x̂, and a sensible distance measure would set the distance
between x̂ and any other vector as 0.

6.3 Future work

Weber, Immink and Blackburn [5] have studied optimal Pearson codes, which
are the largest codes contained in {0, q − 1}n that can be correctly decoded
in the zero-error case (when σ = 0, and so ν = 0). It would be very in-
teresting to fully explore the interplay between the error correcting capacity
of codes when σ > 0 and the rate of an optimal code. We hope that the
distance between codewords that is defined in Section 4 will provide a tool
to accomplish this.
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