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Abstract

We show the diagonal problem for higher-order pushdown automata (HOPDA), and
hence the simultaneous unboundedness problem, is decidable. From recent work by Zet-
zsche this means that we can construct the downward closure of the set of words accepted
by a given HOPDA. This also means we can construct the downward closure of the Parikh
image of a HOPDA. Both of these consequences play an important rôle in verifying concur-
rent higher-order programs expressed as HOPDA or safe higher-order recursion schemes.

1 Introduction

Recent work by Zetzsche [41] has given a new technique for computing the downward closure
of classes of languages. The downward closure ↓(L) of a language L is the set of all subwords
of words in L (e.g. aa is a subword of babab). It is well known that the downward closure is
regular for any language [20]. However, there are only a few classes of languages for which it
is known how to compute this closure. In general it is not possible to compute the downward
closure since it would easily lead to a solution to the halting problem for Turing machines.

However, once a regular representation of the downward closure has been obtained, it can
be used in all kinds of analysis, since regular languages are well behaved under all kinds of
transformations. For example, consider a system that waits for messages from a complex
environment. This complex environment can be abstracted by the downward closure of the
messages it sends or processes it spawns. This corresponds to a lossy system where some
messages may be ignored (or go missing), or some processes may simply not contribute to the
remainder of the execution. In many settings – e.g. the analysis of safety properties of certain
kinds of systems – unread messages or unscheduled processes do not effect the precision of
the analysis. Since many types of system permit synchronisation with a regular language, this
environment abstraction can often be built into the system being analysed.

Many popular languages such as JavaScript, Python, Ruby, and even C++, include higher-
order features – which are increasingly important given the popularity of event-based programs
and asynchronous programs based on a continuation or callback style of programming. Hence,
the modelling of higher-order function calls is becoming key to analysing modern day programs.

A popular approach to verifying higher-order programs is that of recursion schemes and sev-
eral tools and practical techniques have been developed [24, 39, 27, 25, 31, 5, 6, 35]. Recursion
schemes have an automaton model in the form of collapsible pushdown automata (CPDA) [19]
which generalises an order-2 model called 2-PDA with links [1] or, equivalently, panic au-
tomata [23]. When these recursion schemes satisfy a syntactical condition called safety, a
restriction of CPDA called higher-order pushdown automata (HOPDA or n-PDA for order-n
HOPDA) is sufficient [30, 22]. HOPDA can be considered an extension of pushdown automata
to a “stack of stacks” structure. It remains open as to whether CPDA are strictly more expres-
sive than nondeterministic HOPDA when generating languages of words. It is known that, at
order 2, nondeterministic HOPDA and CPDA generate the same word languages [1]. However,
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there exists a language generated by a deterministic order-2 CPDA that cannot be generated
by a deterministic HOPDA of any order [32].

It is well known that concurrency and first-order recursion very quickly leads to undecid-
ability (e.g. [34]). Hence, much recent research has focussed on decidable abstractions and
restrictions (e.g. [14, 4, 21, 28, 13, 38, 29, 10, 16]). Recently, these results have been extended
to concurrent versions of CPDA and recursion schemes (e.g. [36, 26, 15, 33]). Many approaches
rely on combining representations of the Parikh image of individual automata (e.g. [13, 18, 16]).
However, combining Parikh images of HOPDA quickly leads to undecidability (e.g. [18]). In
many cases, the downward closure of the Parikh image is an adequate abstraction.

Computing downward closures appears to be a hard problem. Recently Zetzsche introduced
a new general technique for classes of automata effectively closed under rational transductions
– also referred to as a full trio. For these automata the downward closure is computable iff the
simultaneous unboundedness problem (SUP) is decidable.

Definition 1.1 (SUP [41]). Given a language L ⊆ a∗1 . . . a
∗
α does ↓(L) = a∗1 . . . a

∗
α?

Theorem 1.1. [41, Theorem 1] Let C be class of languages that is a full trio. Then downward
closures are computable for C if and only if the SUP is decidable for C.

Zetzsche used this result to obtain the downward closure of languages definable by 2-PDA,
or equivalently, languages definable by indexed grammars [2]. Moreover, for classes of languages
closed under rational transductions, Zetzsche shows that the simultaneous unboundedness prob-
lem is decidable iff the diagonal problem is decidable. The diagonal problem was introduced by
Czerwiński and Martens [11]. Intuitively, it is a relaxation of the SUP that is insensitive to the
order the characters are output. For a word w, let |w|a be the number of occurrences of a in w.

Definition 1.2 (Diagonal Problem [11]). Given language L we define

Diagonala1,...,aα
(L) = ∀m.∃w ∈ L.∀1 ≤ i ≤ α.|w|ai ≥ m .

The diagonal problem asks if Diagonala1,...,aα
(L) holds of L.

Corollary 1.1 (Diagonal Problem and Downward Closures). Let C be class of languages that
is a full trio. Then downward closures are computable for C if and only if the diagonal problem
is decidable for C.

Proof. The only-if direction follows from Theorem 1.1 since given a language L ⊆ a∗1 . . . a
∗
α the

diagonal problem is immediately equivalent to the SUP. In the if direction, the result follows
since L satisfies the diagonal problem iff ↓(L) also satisfies the diagonal problem. Since the
diagonal problem is decidable for regular languages and ↓(L) is regular, we have the result.

In this work, we generalise Zetzsche’s result for 2-PDA to the general case of n-PDA. We
show that the diagonal problem is decidable. Since HOPDA are closed under rational transduc-
tions, we obtain decidability of the simultaneous unboundedness problem, and hence a method
for constructing the downward closure of a language defined by a HOPDA.

Corollary 1.2 (Downward Closures). Let P be an n-PDA. The downward closure ↓(L(P )) is
computable.

Proof. From Theorem 6.3 (proved in the sequel), we know that the diagonal problem for
HOPDA is decidable. Thus, using Corollary 1.1, we can construct the downward closure of
P .
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This result provides an abstraction upon which new results may be based. It also has several
immediate consequences:

1. decidability of separability by piecewise testable languages, from Czerwiński and Martens [11],

2. decidability of reachability for parameterised concurrent systems of HOPDA communi-
cating asynchronously via a shared global register, from La Torre et al. [37],

3. decidability of finiteness of a language defined by a HOPDA, and

4. computability of the downward closure of the Parikh image of a HOPDA.

We present our decidability proof in two stages. First we show how to decide Diagonala(P )
for a single character and HOPDA P in Sections 3 and 4. In Sections 5, 6, and 7 we generalise
our techniques to the full diagonal problem.

In Section 3.1 we give an outline of the proof techniques for deciding Diagonala(P ). In
short, the outermost stacks of an n-PDA are created and destroyed using pushn and popn
operations. These pushn and popn operations along a run of an n-PDA are “well-bracketed”
(each pushn has a matching popn and these matchings don’t overlap). The essence of the idea
is to take a standard tree decomposition of these well-bracketed runs and observe that each
branch of such a tree can be executed by an (n− 1)-PDA. We augment this (n− 1)-PDA with
“regular tests” that allow it to know if, each time a branch is chosen, the alternative branch
could have output some a characters. If this is true, then the (n− 1)-PDA outputs a single
a to account for these missed characters. We prove that, although the (n− 1)-PDA outputs
far fewer characters, it can still output an unbounded number iff the n-PDA could. Hence, by
repeating this reduction, we obtain a 1-PDA, for which the diagonal problem is decidable since
it is known how to compute their downward closures [40, 9].

In Section 6.1 we outline the generalisation of the proof to the full problem Diagonala1,...,aα
(P ).

The key difficulty is that it is no longer enough for the (n− 1)-PDA to follow only a single branch
of the tree decomposition: it may need up to one branch for each of the a1, . . . , aα. Hence, we
define HOPDA that can output trees with a bounded number (α) of branches. We then show
that our reduction can generalise to HOPDA outputting trees (relying essentially on the fact
that the number of branches is bounded).

2 Preliminaries

2.1 Downward Closures

Given two words w = γ1 . . . γm ∈ Σ∗ and w′ = σ1 . . . σl ∈ Σ∗ for some alphabet Σ, we write
w ≤ w′ iff there exist i1 < . . . < im such that for all 1 ≤ j ≤ m we have γj = σij . Given a set
of words L ⊆ Σ∗, we denote its downward closure ↓(L) = {w | w ≤ w′ ∈ L}.

2.2 Trees

A Σ-labelled finite tree is a tuple T = (D,λ) where Σ is a set of node labels, and D ⊂ N∗ is
a finite set of nodes that is prefix-closed, that is, η δ ∈ D implies η ∈ D, and λ : D → Σ is a
function labelling the nodes of the tree.

We write ε to denote the root of a tree (the empty sequence). We also write

a[T1, . . . , Tm]

to denote the tree whose root node is labelled a and has children T1, . . . , Tm. That is, we define
a[T1, . . . , Tm] = (D′, λ′) when for each δ we have Tδ = (Dδ, λδ) and D′ = {δη | η ∈ Dδ } ∪ {ε}
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and

λ′(η) =

{
a η = ε

λδ(η
′) η = δη′

.

Also, let T [a] denote the tree ({ε} , λ) where λ(ε) = a. A branch in T = (D,λ) is a sequence
of nodes of T , η1 · · · ηn, such that η1 = ϵ, ηn = δ1 δ2 · · · δn−1 is maximal in D, and ηj+1 = ηj δj
for each 1 ≤ j ≤ n− 1.

2.3 HOPDA

HOPDA are a generalisation of pushdown systems to a stack-of-stacks structure. An order-n
stack is a stack of order-(n− 1) stacks. An order-n push operation pushes a new order-(n− 1)
stack onto the stack that is a copy of the existing topmost order-(n−1) stack. Rewrite operations
update the character that is at the top of the topmost stacks.

Definition 2.1 (Order-n Stacks). The set of order-n stacks SΓ
n over a given stack alphabet Γ

is defined inductively as follows.

SΓ
0 = Γ

SΓ
k+1 =

{
[s1 . . . sm]k+1

∣∣ ∀i.si ∈ SΓ
k

}
.

Stacks are written with the top part of the stack to the left. We define several operations.

topk([s1 . . . sm]k) = s1
topk([s1 . . . sm]n) = topk(s1) n > k

rewγ([γ1 . . . γm]1) = [γ γ2 . . . γm]1
rewγ ([s1 . . . sm]n) = [rewγ(s1) s2 . . . sm]n n > 1

pushk([s1 . . . sm]k) = [s1 s1 . . . sm]k
pushk([s1 . . . sm]n) = [pushk(s1) s2, . . . , sm]n n > k

popk([s1 . . . sm]k) = [s2 . . . sm]k
popk([s1 . . . sm]n) = [popk( s1) s2, . . . , sm]n n > k

and set
Opsn = {rewγ | γ ∈ Γ} ∪ {pushk,popk | 1 ≤ k ≤ n}

to be the set of order-n stack operations.
For example

push2
(
[[γ σ]1]2

)
= [[γ σ]1 [γ σ]1]2

rewσ

(
[[γ σ]1 [γ σ]1]2

)
= [[σ σ]1 [γ σ]1]2 .

Definition 2.2 (HOPDA or n-PDA). An order-n higher order pushdown automaton (HOPDA
or n-PDA) is given by a tuple (P,Σ,Γ,R,F , pin, γin) where P is a finite set of control states,
Σ is a finite output alphabet (that contains the empty word character ϵ), Γ is a finite stack
alphabet, R ⊆ P ×Γ×Σ×Opsn ×P is a set of transition rules, F is a set of accepting control
states, pin ∈ P is the initial control state, and γin ∈ Γ is the initial stack character.

We write (p, γ)
a−→ (p′, o) for a rule (p, γ, a, o, p′) ∈ R.

A configuration of an n-PDA is a tuple ⟨p, s⟩ where p ∈ P and s is an order-n stack over

Γ. We have a transition ⟨p, s⟩ a−→ ⟨p′, s′⟩ whenever we have (p, γ)
a−→ (p′, o), top1(s) = γ, and

s′ = o(s).
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qf q13 q12 q11 q10 q9 q8 q7 q6 q5 q4 q3 q2 q1 qin
[2 [1 γ σ ]1 [1 σ ]1 ]2 [2 [1 σ ]1 ]2

Figure 1: A run over
[
[[γ σ]1 [σ]1]2 [[σ]1]2

]
3

A run over a word w ∈ Σ∗ is a sequence of configurations c0
a1−→ · · · am−−→ cm such that

the word a1 . . . am is w. It is an accepting run if c0 = ⟨pin, JγinKn⟩ — where we write JγKn for
[· · · [γ]1 · · ·]n — and where cm = ⟨p, s⟩ with p ∈ F . Furthermore, for a set of configurations C,
we define

Pre∗P (C)

to be the set of configurations c such that there is a run over some word from c to c′ ∈ C. When
C is defined as the language of some automaton A accepting configurations, we abuse notation
and write Pre∗P (A) instead of Pre∗P (L(A)).

For convenience, we sometimes allow a set of characters to be output instead of only one.
This is to be interpreted as outputing each of the characters in the set once (in some arbitrary
order). We also allow sequences of operations o1; . . . ; om in the rules instead of single operations.
When using sequences we allow a test operation γ? that only allows the sequence to proceed
if the top1 character of the stack is γ. All of these extensions can be encoded by introducing
intermediate control states.

2.3.1 Regular Sets of Stacks

We will need to represent sets of stacks. To do this we will use automata to recognise stacks.
We define the stack automaton model of Broadbent et al. [8] restricted to HOPDA rather
than CPDA. We will sometimes call these bottom-up stack automata or simply automata. The
automata operate over stacks interpreted as words, hence the opening and closing braces of the
stacks appear as part of the input. We annotate these braces with the order of the stack the
braces belong to. Let Γ[] = {[n−1, . . . , [1, ]1, . . . , ]n−1} ⊎ Γ. Note, we don’t include [n, ]n since
these appear exclusively at the start and end of the stack.

Definition 2.3 (Bottom-up Stack Automata). A tuple A is a bottom-up stack automaton when
A is (Q,Γ, qin,QF ,∆) where Q is a finite set of states, Γ is a finite input alphabet, qin ∈ Q is
the initial state and ∆ : (Q× Γ) → Q is a deterministic transition function.

Representing higher order stacks as a linear word graph, where the start of an order-k stack
is an edge labelled [k and the end of an order-k stack is an edge labelled ]k, a run of a bottom-up
stack automaton is a labelling of the nodes of the graph with states in Q such that

1. the rightmost (final) node is labelled by qin, and

2. whenever we have for any γ ∈ Γ[], and pair of labelled nodes with an edge q
γ−→ q′ then

q = ∆(q′, γ).

The run is accepting if the leftmost (initial) node is labelled by q ∈ QF . An example run over
the word graph representation of

[
[[γ σ]1 [σ]1]2 [[σ]1]2

]
3
is given in Figure 1.

Let L(A) be the set of stacks with accepting runs of A. Sometimes, for convenience, if we
have a configuration c = ⟨p, s⟩ of a HOPDA, we will write c ∈ L(A) when s ∈ L(A).

3 The Single Character Case

We assume Σ = {a, ε} and use b to range over Σ. This can be obtained by simply replacing

all other characters with ε. We also assume that all rules of the form (p, γ)
b−→ (p′, o) with
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o = pushn or o = popn have b = ε. We can enforce this using intermediate control states to
first apply o in one step, and then in another output b (the stack operation on the second step
will be rewγ where γ is the current top character). We start with an outline of the proof, and
then explain each step in detail.

For convenience, we assume acceptance is by reaching a unique control state in F with an
empty stack (i.e. the lowermost stack was removed with a popn and F = {pf}). This can
easily be obtained by adding a rule to a new accepting state whenever we have a rule leading
to a control state in F . From this new state we can loop and perform popn operations until
the stack is empty.

3.1 Outline of Proof

The approach is to take an n-PDA P and produce an (n− 1)-PDA P−1 that satisfies the
diagonal problem iff P does. The idea behind this reduction is that an (accepting) run of P can
be decomposed into a tree with out-degree at most 2: each pushn has a matching popn that
brings the stack back to be the same as it was before the pushn; we cut the run at the popn and
hang the tail next to the pushn and repeat this to form a tree from a run. This is illustrated in
Figure 2 where nodes are labelled by their configurations, and the pushn and popn points are
marked. The dotted arcs connect nodes matched by their pushes and pops – these nodes have
the same stacks. Notice that at each branching point, the left and right subtrees start with
the same order-(n− 1) stacks on top. Notice also that for each branch, none of its transitions
remove the topmost order-(n − 1) stack. Hence, we can produce an (n− 1)-PDA that picks
a branch of this tree decomposition to execute and only needs to keep track of the topmost
order-(n− 1) stack of the n-PDA. When picking a branch to execute, the (n− 1)-PDA outputs
a single a if the branch not chosen could have output some a characters. We prove that this is
enough to maintain unboundedness.

In more detail, we perform the following steps.

1. Instrument P to record whether an a character has been output. Then, using known
reachability results, obtain regular sets of configurations from which the current topn stack
can be popped, and moreover, we can know whether an a is output on the way. These
tests can be seen as a generalisation of pushdown systems with regular tests introduced
by Esparza et al. [12].

2. From an n-PDA P , we define an (n− 1)-PDA with tests P−1 and then an (n− 1)-PDA
P ′ such that

Diagonala(P ) ⇐⇒ Diagonala(P
′) .

The tests will be used to check the branches of the tree decomposition not explored by
P−1.

3. By repeated applications of the above reduction, we obtain an 1-PDA P for which
Diagonala(P ) is decidable since the downward closure of a context-free grammar (equiv-
alent to 1-PDA) is computable [40, 9] and this is equivalent to the diagonal problem.

The (n− 1)-PDA with tests P−1 will simulate the n-PDA P in the following way.

• All operations except for pushn and popn will be simulated directly.

• In lieu of performing a pushn, P−1 will choose to simulate the run of P between the push
and its corresponding popn, or the run of P after the corresponding popn has taken place.
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⟨p1, [s1]n⟩

⟨p2, [s2]n⟩

⟨p3, [s2 s2]n⟩

⟨p4, [s3 s2]n⟩

⟨p5, [s3 s3 s2]n⟩

⟨p6, [s4 s3 s2]n⟩

⟨p7, [s3 s2]n⟩

⟨p8, [s2]n⟩

⟨p9, [s5]n⟩

pushn

pushn

popn

popn

(a) a run of P with pushns and popns
marked.

⟨p1, [s1]n⟩

⟨p2, [s2]n⟩

⟨p3, [s2 s2]n⟩ ⟨p8, [s2]n⟩

⟨p4, [s3 s2]n⟩ ⟨p9, [s5]n⟩

⟨p5, [s3 s3 s2]n⟩ ⟨p7, [s3 s2]n⟩

⟨p6, [s4 s3 s2]n⟩

(b) The tree decomposition of the run

Figure 2: Tree decompositions of runs.

– Tests will be used to determine which control state could appear after the corre-
sponding popn.

– If the part of the run not being simulated output some as, then P will output a
single a in place of the omitted as.

Although P−1 will output far fewer a characters than P (since it does not execute the full run),
we show that it still outputs enough as for the language to remain unbounded.

We thus have the following theorem.

Theorem 3.1 (Decidability of the Diagonal Problem). Given an n-PDA P and output char-
acter a, whether Diagonala(P ) holds is decidable.

Proof. We construct via Lemma 3.2 an (n− 1)-PDA P ′ such that Diagonala(P ) iff Diagonala(P
′).

We repeat this step until we have a 1-PDA. It is known that Diagonala(P ) for an 1-PDA is
decidable since it is possible to compute the downward closure [40, 9].

3.2 HOPDA with Tests

When executing a branch of the tree decomposition, to be able to ensure the branch is correct
and whether we should output an extra a we need to know how the system could have behaved
on the skipped branch. To do this we add tests to the HOPDA that allow it to know if
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the current stack belongs to a given regular set. We show in the following sections that the
properties required for our reduction can be represented as regular sets of stacks. Although we
take Broadbent et al.’s logical reflection as the basis of our proof, HOPDA with tests can be
seen as a generalisation of pushdown systems with regular valuations due to Esparza et al. [12].

Definition 3.1 (n-PDA with Tests). Given a sequence of automata A1, . . . , Am recognising
regular sets of stacks, an n-PDA with tests is a tuple P = (P,Σ,Γ,R,F , pin, γin) where
P,Σ,Γ,F , pin, and γin are as in HOPDA, and

R ⊆ P × Γ× {A1, . . . , Am} × Σ×Opsn ×P

is a set of transition rules.

We write (p, γ,Ai)
b−→ (p′, o) for (p, γ,Ai, b, o, p

′) ∈ R. We have a transition ⟨p, s⟩ b−→ ⟨p′, s′⟩
whenever (p, γ,Ai)

b−→ (p′, o) ∈ R and top1(s) = γ, s ∈ L(Ai), and s′ = o(s).

We know from Broadbent et al. that these tests do not add any extra power to HOPDA.
Intuitively, we can embed runs of the automata into the stack during runs of the HOPDA.

Theorem 3.2 (Removing Tests). [8, Theorem 3 (adapted)] For every n-PDA with tests P , we
can compute an n-PDA P ′ with L(P ) = L(P ′).

Proof. This is a straightforward adaptation of Broadbent et al. [8]. A more general theorem is
proved in Theorem 6.1.

3.2.1 Marking Outputs

When the HOPDA is in a configuration of the form ⟨p, [s]n⟩ – i.e. the outermost stack contains
only a single order-(n− 1) stack – we require the HOPDA to be able to know whether,

• for a given p1 and p2, there is a run from ⟨p1, [s]n⟩ to ⟨p2, []n⟩ (that is, the HOPDA empties
the stack), and

• whether, during the run, an a is output.

Given P , we first augment P to record whether an a has been produced. This can be done
simply by recording in the control state whether a has been output.

Definition 3.2 (Pa). Given P = (P,Σ,Γ,R,F , pin, γin) we define

Pa = (P ∪ Pa,Σ,Γ,R∪Ra,F ∪ Fa, pin, γin)

where
Pa = {pa | p ∈ P }
Ra =

{
(pa, γ)

b−→ (p′a, o)
∣∣∣ (p, γ) b−→ (p′, o) ∈ R

}
∪{

(p, γ)
a−→ (p′a, o)

∣∣∣ (p, γ) a−→ (p′, o) ∈ R
}

Fa = {pa | p ∈ F }

It is easy to see that P and Pa accept the same languages, and that Pa is only in a control
state pa if an a has been output.
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3.2.2 Building the Automata

Fix some P = (P,Σ,Γ,R,F) and Pa = (Pa,Σ,Γ,Ra,Fa). To obtain a HOPDA with tests, we
need, for each p1, p2 ∈ P the following automata. Note, we define these automata to accept
order-(n− 1) stacks since they will be used in an (n− 1)-PDA with tests.

1. Ap1,p2 accepting all stacks s such that there is a run of P from ⟨p1, [s]n⟩ to ⟨p2, []n⟩,

2. Aa
p1,p2

accepting all stacks s such that there is a run of P from ⟨p1, [s]n⟩ to ⟨p2, []n⟩ that
outputs at least one a.

To do this we will use a reachability result due to Broadbent et al. that appeared in ICALP
2012 [7]. This result uses an automata representation of sets of configurations. However, these
automata are slightly different in that they read full configurations “top down”, whereas the
automata of Theorem 3.2 (Removing Tests) read only stacks “bottom up”.

It is known that these two representations are effectively equivalent, and that both form an
effective boolean algebra [8, 7]. In particular, for a top-down automaton A and a control state
p we can build a bottom-up stack automaton B such that ⟨p, s⟩ ∈ L(A) iff s ∈ L(B) and vice
versa. We recall the reachability result.

Theorem 3.3. [7, Theorem 1 (specialised)] Given an HOPDA P and a top-down automaton
A, we can construct an automaton A′ accepting Pre∗P (A).

Let Ap,γ be a top-down automaton accepting configurations of the form ⟨p, [s]n⟩ where
top1(s) = γ. Next, let

Ap =
∪

(p′,γ)
ε−→(p,popn)∈R

Ap′,γ

and

Aa
p =

∪
(p′,γ)

ε−→(p,popn)∈R

Ap′
a,γ

I.e. Ap and Aa
p accept configurations of Pa from which it is possible to perform a popn operation

to p and reach the empty stack.

Definition 3.3 (Ap1,p2 and Aa
p1,p2

). Using the preceding notation, given p1 and p2 we define
bottom-up automata

• Ap1,p2 where L(Ap1,p2) = {s | ⟨p1, [s]n⟩ ∈ Pre∗P (Ap2)} .

• Aa
p1,p2

where L
(
Aa

p1,p2

)
=
{
s
∣∣ ⟨p1, [s]n⟩ ∈ Pre∗Pa

(
Aa

p2

)}
.

It is easy to see both Ap1,p2 and Aa
p1,p2

are regular and representable by bottom-up automata
since both

Pre∗P (Ap2) and Pre∗Pa

(
Aa

p2

)
are regular from Theorem 3.3, and bottom-up and top-down automata are effectively equivalent.
To enforce only stacks of the form [s]n we intersect with an automaton A1 accepting all stacks
containing a single order-(n− 1) stack (this is clearly regular).

9
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3.3 Reduction to Lower Orders

We are now ready to complete the reduction. Correctness is shown in Section 4. Let Att be the
automaton accepting all stacks. In the following definition, a control state (p1, p2) means that
we are currently in control state p1 and are aiming to empty the stack on reaching p2, and the
rules Rsim simulate all operations apart from pushn and popn directly, Rfin detect when the
run is accepting, Rpush follow the push branch of the tree decomposition, using tests to ensure
the existence of the pop branch, and Rpop follow the pop branch of the tree decomposition,
also using tests to check the existence of the push branch.

Definition 3.4 (P−1). Given an n-PDA P described by the tuple (P,Σ,Γ,R, {pf} , pin, γin)
as well as families of automata (Ap1,p2)p1,p2∈P and

(
Aa

p1,p2

)
p1,p2∈P we define an (n− 1)-PDA

with tests
P−1 = (P−1,Σ,Γ,R−1,F−1, (pin, pf ) , γin)

where
P−1 = {(p1, p2) | p1, p2 ∈ P } ⊎ {f}
R−1 = Rsim ∪Rfin ∪Rpush ∪Rpop

F−1 = {f}
and we define

• Rsim is the set containing all rules of the form

((p1, p2), γ, Att)
b−→ ((p′1, p2), o)

for all (p1, γ)
b−→ (p′1, o) ∈ R with o /∈ {pushn, popn} and p2 ∈ P, and

• Rfin is the set containing all rules of the form

((p1, p2), γ, Att)
ε−→ (f, rewγ)

for all (p1, γ)
ε−→ (p2, popn) ∈ R, and

• Rpush is the smallest set of rules containing all rules of the form

((p1, p2), γ, Ap,p2)
ε−→ ((p′1, p), rewγ)

for all (p1, γ)
ε−→ (p′1, pushn) ∈ R and p, p2 ∈ P, and all rules of the form(

(p1, p2), γ, A
a
p,p2

) a−→ ((p′1, p), rewγ)

for all (p1, γ)
ε−→ (p′1, pushn) ∈ R and p, p2 ∈ P, and

• Rpop is the set containing all rules of the form(
(p1, p2), γ, Ap′

1,p

) ε−→ ((p, p2), rewγ)

for all (p1, γ)
ε−→ (p′1, pushn) ∈ R and p, p2 ∈ P and all rules of the form(

(p1, p2), γ, A
a
p′
1,p

)
a−→ ((p, p2), rewγ)

for all (p1, γ)
ε−→ (p′1, pushn) ∈ R and p, p2 ∈ P.

10
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In the next section, we show the reduction is correct.

Lemma 3.1 (Correctness of P−1).

Diagonala(P ) ⇐⇒ Diagonala(P−1)

To complete the reduction, we convert the HOPDA with tests into a HOPDA without tests.

Lemma 3.2 (Reduction to Lower Orders). For every n-PDA P we can construct an (n− 1)-
PDA P ′ such that

Diagonala(P ) ⇐⇒ Diagonala(P
′) .

Proof. From Definition 3.4 (P−1) and Lemma 3.1 (Correctness of P−1), we obtain from P an
(n− 1)-PDA with tests P−1 satisfying the conditions of the lemma. To complete the proof, we
invoke Theorem 3.2 (Removing Tests) to find P ′ as required.

4 Correctness of Reduction

This section is dedicated to the proof of Lemma 3.1 (Correctness of P−1).
The idea of the proof is that each run of P can be decomposed into a tree: each pushn

operation creates a node whose left child is the run up to the matching popn, and whose right
child is the run after the matching popn. All other operations create a node with a single child
which is the successor configuration.

Each branch of such a tree corresponds to a run of P−1. To prove that P−1 can output
an unbounded number of as we prove that any tree containing m edges outputting a must
have a branch along which P−1 would output log(m) a characters. Thus, if P can output an
unbounded number of a characters, so can P−1.

4.1 Tree Decomposition of Runs

Given a run
ρ = c0

b1−→ c1
b2−→ · · · bm−−→ cm

of P where each pushn operation has a matching popn, we can construct a tree representation
of ρ inductively. That is, we define Tree(c) = T [ε] for the single-configuration run c, and, when

ρ = c
b−→ ρ′

where the first rule applied does not contain a pushn operation, we have

Tree(ρ) = b[Tree(ρ′)]

and, when
ρ = c0

ε−→ ρ1
ε−→ ρ2

with c1 being the first configuration of ρ2 and where the first rule applied in ρ contains a pushn
operation, c0 = ⟨p, s⟩ and c1 = ⟨p′, s⟩ for some p, p′, s and there is no configuration in ρ1 of the
form ⟨p′′, s⟩, then

Tree(ρ) = ε[Tree(ρ1),Tree(ρ2)] .

An accepting run of P has the form ρ
ε−→ c where ρ has the property that all pushn operations

have a matching popn and the final transition is a popn operation to c = ⟨p, []n⟩ for some p ∈ F .
Hence, we define the tree decomposition of an accepting run to be

Tree
(
ρ

ε−→ c
)
= ε[Tree(ρ), T [ε]] .

11
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4.2 Scoring Trees

In the above tree decomposition of runs, the tree branches at each instance of a pushn operation.
This mimics the behaviour of P−1, which performs such branching non-deterministically. Hence,
given a run ρ of P , each branch of Tree(ρ) corresponds to a run of P−1.

We formalise this intuition in the following section. In this section, we assign scores to each
subtree T of Tree(ρ). These scores correspond directly to the largest number of a characters
that P−1 can output while simulating a branch of T .

Note, in the following definition, we exploit the fact that only nodes with exactly one child
may have a label other than ε. We also give a general definition applicable to trees with
out-degree larger than 2. This is needed in the simultaneous unboundedness section. For the
moment, we only have trees with out-degree at most 2.

Let

b =

{
0 b = ε

1 b = a
and m =

{
0 m = 0

1 m > 0
.

Then, Score(T ) =
0 T = T [ε]

Score(T1) + b T = b[T1]

max
1≤i≤m

(
Score(Ti) +

∑
j ̸=i

Score(Tj)

)
T = ε[T1, . . . , Tm]

We then have the following lemma for trees with out-degree 2.

Lemma 4.1 (Minimum Scores). Given a tree T containing m nodes labelled a, we have

Score(T ) ≥ log(m)

Proof. The proof is by induction over m. In the base case m = 1 and there is a single node η
in T labelled a. By definition, the subtree T ′ rooted at η has Score(T ′) = 1. Since the score of
a tree is bounded from below by the score of any of its subtrees, we have Score(T ) ≥ log(1) as
required.

Now, assume m > 1. Find the smallest subtree T ′ of T containing m nodes labelled a. We
necessarily have either

1. T ′ = a[T1], or

2. T ′ = ε[T1, T2] where T1 and T2 each have at least one node each labelled a.

In case (1) we have by induction

Score(T ′) = 1 + log(m− 1) ≥ log(m)

In case (2) we have

Score(T ′) = max

(
Score(T1) + Score(T2),

Score(T2) + Score(T1)

)
.

We pick whichever of T1 and T2 has the most nodes labelled a. This tree has at least ⌈m/2⌉
nodes labelled a. Note, since both trees contain nodes labelled a, the right-hand side of the
addition is always 1. Hence, we need to show

log(⌈m/2⌉) + 1 ≥ log(m)

12
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ε

a1 a2

...
...

a1 a2

ε ε

Figure 3: An example showing that following a single branch does not work for simultaneous
unboundedness.

which follows from

log(m)− log(⌈m/2⌉) = log
(

m
⌈m/2⌉

)
≤

log
(

m
m/2

)
= log(2) = 1 .

By our choice of T ′ we thus have Score(T ) = Score(T ′) ≥ log(m) as required.

4.3 Completing the Proof

To complete the proof we show the following lemmas, whose proofs are given in the full ver-
sion [17]. These lemmas simply formalise the connection between runs of P and runs of P−1.

Lemma 4.2 (Scores to Runs). Given an accepting run ρ of P , if Score(Tree(ρ)) = m then
am ∈ L(P−1).

Lemma 4.3 (P−1 to P ). If Diagonala(P−1) then Diagonala(P ).

5 Multiple Characters
We generalise the previous result to the full diagonal problem. Näıvely, the previous approach
cannot work. Consider the HOPDA executing

pushm1 ; pushn; pop
m
1 ; popn; pop

m
1

where the first sequence of pop1 operations output a1 and the second sequence output a2.
The corresponding run trees are of the form given in Figure 3. In particular, P−1 can only

choose one branch, hence all runs of P−1 produce a bounded number of a1s or a bounded
number of a2s. They cannot be simultaneously unbounded.

For P−1 to be able to output both an unbounded number of a1 and a2 characters, it must be
able to output two branches of the tree. To this end, we define a notion of α-branch HOPDA,
which output trees with up to α branches. We then show that the reduction from n-PDA to
(n− 1)-PDA can be generalised to α-branch HOPDA.

5.1 Branching HOPDA

We define n-PDA outputting trees with at most α branches, denoted (n, α)-PDA. Note, an
n-PDA that outputs a word is an (n, 1)-PDA. Indeed, any (n, α)-PDA is also an (n, α′)-PDA
whenever α ≤ α′.

13
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Definition 5.1 ((n, α)-PDA). We define an order-n α-branch pushdown automaton ((n, α)-
PDA) to be given by a tuple P = (P,Σ,Γ,R,F , pin, γin, θ) where P, Σ, Γ, F , pin, and γin are
as in HOPDA. The set of rules R ⊆

∪
1≤m≤α

P × Γ × Σ × Opsn × Pm together with a mapping

θ : P → {1, . . . , α} such that for all (p, γ, b, o, p1, . . . , pm) ∈ R we have θ(p) ≥ θ(p1)+· · ·+θ(pm).

We use the notation (p, γ)
b−→ (p1, . . . , pm, o) to denote a rule (p, γ, b, o, p1, . . . , pm) ∈ R.

Intuitively, such a rule generates a node of a tree with m children. The purpose of the mapping
θ is to bound the number of branches that this tree may have. Hence, at each branching rule,
the quota of branches is split between the different subtrees. The existence of such a mapping
implies this information is implicit in the control states and an (n, α)-PDA can only output
trees with at most α branches.

From the initial configuration c0 = ⟨pin, JγinKn⟩ a run of an (n, α)-PDA is a tree T = (D,λ)
whose nodes are labelled with n-PDA configurations, and generates an output tree T ′ = (D,λ′)
whose nodes are labelled with symbols from the output alphabet. Precisely

• λ(ε) = c0, and

• for a node η with children η1, . . . , ηm and λ(η) = ⟨p, s⟩ there is a rule (p, γ) b−→ (p1, . . . , pm, o)
such that for all 1 ≤ i ≤ m we have λ(ηi) = ⟨pi, s′⟩ where top1(s) = γ, s′ = o(s). Moreover
we have λ′(η) = b.

• For all leaf nodes η we have λ′(η) = ε.

The run is accepting if for all leaf nodes η we have λ(η) = ⟨p, []n⟩ and p ∈ F . Let L(P ) be the
set of output trees of P .

Given an output tree T we write |T |a to denote the number of nodes labelled a in T . For
an (n, α)-PDA P , we define

Diagonala1,...,aα
(P ) =

∀m.∃T ∈ L(P ).∀1 ≤ i ≤ α.|T |ai ≥ m .

6 Reduction For Simultaneous Unboundedness

Given an (n, α)-PDA P we construct an (n− 1, α)-PDA P−1 such that

Diagonala1,...,aα
(P ) ⇐⇒ Diagonala1,...,aα

(P−1) .

Moreover, we show Diagonala1,...,aα
(P ) is decidable for a (0, α)-PDA (i.e. a regular automaton

outputting an α-branch tree) P .

For simplicity, we assume for all rules (p, γ)
b−→ (p1, . . . , pm, o) if m > 1 then o = rewγ (i.e.

the stack is unchanged). Additionally we have b = ε.
We also make analogous assumptions to the single character case. That is, we assume

Σ = {a1, . . . , aα, ε} and use b to range over Σ. Moreover, all rules of the form (p, γ)
b−→ (p′, o)

with o = pushn or o = popn have b = ε. Finally, we assume acceptance is by reaching a unique
control state in F with an empty stack.

6.1 Some Intuition

We briefly sketch the intuition behind the algorithm. We illustrate the reduction from (n, α)-
PDA to (n− 1, α)-PDA in Figure 4.

14
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1

2

3 5

4 6

...
...

pushn

popn popn

(a) An α-branch run tree of
P

1

2 4 6

3 5
...

...

(b) The decomposition of the run tree

1

2 4

5
...

(c) An α-branch
subtree of (4b)

Figure 4: Illustrating the reduction steps.

• We begin with an n-PDA which we first interpret as an (n, α)-PDA. This is possible
because an (n, α)-PDA can produce at most α branches. Thus, an n-PDA — which
produces a single branch — is also a (n, α)-PDA. We work with HOPDA producing α
branches because, after each reduction step, we will need to output one branch for each
character in a1, . . . , aα.

• We have an (n, α)-PDA P that outputs a tree with at most α branches. In Figure 4
we show part of a run tree with 2 branches. The pushn and popn operations are shown
on the edges of the tree. Nodes are numbered to help identify them during the different
transformations.

• We “decompose” this tree into another tree where the branches appearing after the popn
operations are hung from the same parent as their matching pushn. This is shown in
the middle of Figure 4. Notice that this tree has an unbounded number of branches (it
branches at each pushn). However, we know that the maximum out-degree of any of its
nodes is (α + 1) since the source of a pushn-labelled edge has one child, and we add at
most α extra children corresponding to the popn on each of its at most α branches.

• We prove a generalisation of Lemma 4.1 (Minimum Scores) that shows a run tree with
at least m instances of a character a has a branch with a score of at least log(α+1)(m).
Thus, we need to select one branch for each a we wish to output.

• We build an (n− 1, α)-PDA P−1 that non-deterministically picks out the highest scoring
branches for each a. This is shown on the right of Figure 4.

6.2 Branching HOPDA with Regular Tests

As before, we instrument our HOPDA with tests. Removing these tests requires a simple
adaptation of Broadbent et al. [8].

Definition 6.1 ((n, α)-PDA with Tests). Given a sequence of automata A1, . . . , Am, an (n, α)-
PDA with tests is given by a tuple P = (P,Σ,Γ,R,F , pin, γin, θ) where P, Σ, Γ, F , pin, γin are
as in HOPDA. The set of rules R ⊆

∪
1≤m≤α

P × Γ× {A1, . . . , Am} × Σ× Opsn × Pm together

with a mapping θ : P → {1, . . . , α} such that for all (p, γ,A, b, o, p1, . . . , pm) ∈ R we have
θ(p) ≥ θ(p1) + · · ·+ θ(pm).
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We use the notation (p, γ,A)
b−→ (p1, . . . , pm, o) to denote a rule (p, γ,A, b, o, p1, . . . , pm) ∈ R.

From the initial configuration c0 = ⟨pin, JγinKn⟩ a run of an (n, α)-PDA with tests is a tree
T = (D,λ) and generates an output tree ρ = (D,λ′) where

• λ(ε) = c0, and

• for a node η with children η1, . . . , ηm and λ(η) = ⟨p, s⟩ there is a rule (p, γ,A)
b−→

(p1, . . . , pm, o) such that s ∈ L(A) and for all 1 ≤ i ≤ m we have λ(ηi) = ⟨pi, s′⟩ where
top1(s) = γ, and s′ = o(s). Moreover we have λ′(η) = b.

• For all leaf nodes η we have λ′(η) = ε.

The run is accepting if for all leaf nodes η we have λ(η) = ⟨p, []n⟩ and p ∈ F . Let L(P ) be the
set of output trees of P .

Theorem 6.1 (Removing Tests). [8, Theorem 3 (adapted)] For every (n, α)-PDA with tests
P , we can compute an (n, α)-PDA P ′ with L(P ) = L(P ′).

The adapted proof of the above theorem is given in the full version [17].

6.3 Building The Automata

Previously we built automata Ap1,p2 to indicate that from p1, the current top stack could be
removed, arriving at p2. This is fine for words, however, we now have α-branch trees. It
is no longer enough to specify a single control state: the top stack may be popped once on
each branch of the tree, hence for a control state p we need to recognise configurations with
control state p from which there is a run tree where the leaves of the trees are labelled with
configurations with control states p1, . . . , pm and empty stacks. Moreover we need to recognise
the set O of characters output by the run tree. More precisely, for these automata we write

AO
p,p1,...,pm

where θ(p) ≥ θ(p1) + · · · + θ(pm) and O ⊆ {a1, . . . , aα}. We have s ∈ L
(
AO

p,p1,...,pm

)
iff there

is a run tree T with the root labelled ⟨p, [s]n⟩ and m leaf nodes labelled ⟨p1, []n⟩, . . . , ⟨pm, []n⟩
respectively. Moreover, we have a ∈ O iff the corresponding output tree T ′ has |T ′|a > 0.

6.3.1 Alternating HOPDA

To construct the required stack automata, we need to do reachability analysis of (n, α)-PDA.
We show that such analyses can be rephrased in terms of alternating higher-order pushdown
systems (HOPDS), for which the required algorithms are already known [7]. Note, we refer to
these machines as “systems” rather than “automata” because they do not output a language.

Definition 6.2 (Alternating HOPDS). An alternating order-n pushdown system is a tuple
P = (P,Γ,R) where P is a finite set of control states, Γ is a finite stack alphabet, and

R ⊆ (P × Γ×Opsn × P) ∪
(
P × Γ× 2P

)
is a set of transition rules.

We write (p, γ) → (p, o) to denote (p, γ, o, p) ∈ R and (p, γ) → p1, . . . , pm to denote
(p, γ, {p1, . . . , pm}) ∈ R.

An run of an alternating HOPDS may split into several configurations, each of which must
reach a target state. Hence, the branching of the alternating HOPDS mimics the branching of
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the (n, α)-PDA. Given a set C of configurations, we define Pre∗P (C) to be the smallest set C ′

such that
C ′ = C ∪⟨p, s⟩

∣∣∣∣∣∣
(p, γ) → (p′, o) ∈ R ∧

top1(s) = γ ∧
⟨p′, o(s)⟩ ∈ C ′

 ∪⟨p, s⟩

∣∣∣∣∣∣
(p, γ) → p1, . . . , pm ∈ R ∧

top1(s) = γ ∧
∀i.⟨pi, s⟩ ∈ C ′

 .

6.3.2 Constructing the Tests

In order to use standard results to obtain AO
p,p1,...,pm

we construct an alternating HOPDS P⋄
and automaton A such that checking c ∈ Pre∗P⋄

(A) for a suitably constructed c allows us to
check whether s ∈ L

(
AO

p,p1,...,pm

)
.

The alternating HOPDS P⋄ will mimic the branching of P with alternating transitions1

(p, γ) → p1, . . . , pm of P⋄. It will maintain in its control states information about which char-
acters have been output, as well as which control states should appear on the leaves of the
branches. This final piece of information prevents all copies of the alternating HOPDS from
verifying the same branch of P .

Definition 6.3 (P⋄). Given an (n, α)-PDA P described by the tuple (P,Σ,Γ,R,F , pin, γin), of
P , we define

P⋄ = (P⋄,Γ,R⋄)

where

P⋄ =

(p,O, p1, . . . , pm)

∣∣∣∣∣∣
1 ≤ m ≤ α ∧

O ⊆ {a1, . . . , aα} ∧
p1, . . . , pm ∈ P


and R⋄ is the set of rules containing, for each

(p, γ)
b−→ (p′, o) ∈ R

all rules
((p,O, p1, . . . , pi), γ) → ((p1, O \ {b} , p1, . . . , pi), o)

and for each
(p, γ)

ε−→ (p1, . . . , pm, rewγ) ∈ R

with m > 1 all alternating rules

((p,O, p′1, . . . , p
′
i), γ) →

(
p1, O1, p

1
1, . . . , p

1
i1

)
,

. . .(
pm, Om, pm1 , . . . , pmim

)
where p′1, . . . , p

′
i is a permutation of p11, . . . , p

1
i1
, . . . pm1 , . . . , pmim and O = O1 ∪ · · · ∪Om.

In the above definition, the permutation condition ensures that the target control states
are properly distributed amongst the newly created branches.

1We slightly alter the alternation rule from ICALP 2012 [7] by matching the top stack character as well as
the control state. This is a benign alteration since it one can track the top of stack character in the control
state.
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Lemma 6.1. We have s ∈ L
(
AO

p,p1,...,pm

)
iff

⟨(p,O, p1, . . . , pm), [s]n⟩ ∈ Pre∗P⋄
(A)

where A is such that

L(A) = {⟨(p, ∅, p), []n⟩ | p ∈ {p1, . . . , pm}} .

The proof of the above lemma is given in the full version [17].
It is known that Pre∗P (A) is computable for alternating HOPDS.

Theorem 6.2. [7, Theorem 1 (specialised)] Given an alternating HOPDS P and a top-down
automaton A, we can construct an automaton A′ accepting Pre∗P (A).

Hence, we can now build AO
p,p1,...,pm

from the control state p and top-down automaton
representation of Pre∗P⋄

(A) since we can effectively translate from top-down to bottom-up stack
automata.

6.4 Reduction to Lower Orders

We generalise our reduction to (n, α)-PDA. Let Att be the automata accepting all configu-
rations. Note, in the following definition we allow all transitions (including branching) to be
labelled by sets of output characters. To maintain our assumed normal form we have to re-
place these transitions using intermediate control states to ensure all branching transitions are
labelled by ε and all transitions labelled O are replaced by a sequence of transitions outputting
a single instance of each character in O.

The construction follows the intuition of the single character case, but with a lot more
bookkeeping. Given an (n, α)-PDA P we define an (n− 1, α)-PDA with tests P−1 such that
P satisfies the diagonal problem iff P−1 also satisfies the diagonal problem. The main control
states of P−1 take the form

(p, p1, . . . , pm, O,B)

where p, p1, . . . , pm are control states of P and both O and B are sets of output characters. We
explain the purpose of each of these components.

We will define P−1 to generate up to m branches of the tree decomposition of a run of P . In
particular, for each of the characters a ∈ {a1, . . . , aα} there will be a branch of the run of P−1

responsible for outputting “enough” of the character a to satisfy the diagonal problem. Note
that two characters a and a′ may share the same branch. When a control state of the above
form appears on a node of the run tree, the final component B makes explicit which characters
the subtree rooted at that node is responsible for generating in large numbers. Thus, the initial
control state will have B = {a1, . . . , aα} since all characters must be generated from this node.
However, when the output tree branches – i.e. a node has more than one child – the contents of
B will be partitioned amongst the children. That is, the responsibility of the parent to output
enough of the characters in B is divided amongst its children.

The remaining components play the role of a test AO
p,p1,...,pm

. That is, the current node is
simulating the control state p of P , and is required to produce m branches, where the stack is
emptied on each leaf and the control states appearing on these leaves are p1, . . . , pm. Moreover,
the tree should output at least one of each character in O.

Note, P−1 also has (external) tests of the form AO
p,p1,...,pm

that it can use to make decisions,
just like in the single character case. However, it also performs tests “online” in its control
states. This is necessary because the tests were used to check what could have happened on
branches not followed by P−1. In the single character case, there was only one branch, hence
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P−1 would uses tests to check all the branches not followed, and then continue down a single
branch of the tree. In the multi-character case the situation is different. Suppose a subtree
rooted at a given node was responsible for outputting enough of both a1 and a2. Amongst
the possible children of this node we may select two children: one for outputting enough a1
characters, and one for outputting enough a2 characters. The alternatives not taken will be
checked using tests as before. However, the child responsible for outputting a1 may have also
wanted to run a test on the child responsible for outputting a2. Thus, as well as having to
output enough a2 characters, this latter child will also have to run the test required by the
former. Thus, we have to build these tests into the control state. As a sanity condition we
enforce O ∩B = ∅ since a branch outputting a should never ask itself if it is able to produce at
least one a.

We explain the rules of P−1 intuitively. It will be beneficial to refer to the formal definition
(below) while reading the explanations. The case for Rpush is illustrated in Figure 5 since it
covers most of the situations appearing in the other rules as well.

• The rules in Rinit guess how many branches will be needed to output enough of each a.
(This might be less than α since one branch might account for several characters.)

• The rules in Rfin check whether the run can be finished (always via a popn since we are
aiming for the empty stack). This is true if we only have one branch to complete (just
reach p′) and we have no more characters that we’re obliged to output.

• The rules in Rsim simulate a non-branching operation. They do this faithfully, simply
passing along all information (updating O if a character is output by the simulated
transition).

• The rules in Rbr are the first of the complicated rules. This is mainly a matter of notation.
The reasoning behind the rules is that we’re at a point where the tree splits into l different
branches. These have control states p′1, . . . , p

′
l respectively. We non-deterministically guess

which of these branches should output which of the characters in B. Thus, we split B into
B1, . . . , Bi. This means we are exploring i branches. Let x1, . . . , xi be the control states on
these branches. The remaining branches we handle using tests on the stack. Let y1, . . . , yj
be the control states appearing on these branches. We require that all of p′1, . . . , p

′
l are

accounted for, so we assert that p′1, . . . , p
′
l is a permutation of x1, . . . , xi, y1, . . . , yj .

Similarly, in the current subtree we are obliged to pop to leaf nodes containing the control
states p1, . . . , pm. We split these obligations between the branches we are exploring and
those we are handling using tests. We use another permutation check to ensure the
obligations have been distributed properly.

Finally, we are required to output characters in O. We may also, in choosing a particular
branch for a character a, need to output a to account for instances appearing on a missed
branch. Hence we also output O′ to account for these. We distribute the obligations O
and O′ amongst the different branches using X1, . . . , Xi and Y1, . . . , Yj .

• The rules in Rpush and Rpop follow the same intuition as in the single character case,
except we have the branching to deal with. In particular, at a push we have one branch
corresponding to exploring what happens between the push and the corresponding pops,
and a branch for each of the corresponding pops. We choose a selection of these branches
to track with the HOPDA and a selection to handle using tests. The difference between
Rpush and Rpop is that the former explores the branch of the push using the HOPDA
and the latter uses a test.

19



Unboundedness of HOPDA M. Hague J. Kochems C.-H. L. Ong

p

p′
pushn

(p′, p′1, . . . , p
′
l, O,B)

p′1, . . . , p
′
l︷ ︸︸ ︷

popn
y1, . . . , yj x1, . . . , xi

y11 , . . . , y
1
i1
, . . . , yj1, . . . , y

j
ij

x1
1, . . . , x

1
j1
, . . . , xi

1, . . . , x
i
ji popn︸ ︷︷ ︸

p1, . . . , pm


AY1

y1,y1
1 ,...,y

1
i1

∩ · · · ∩
A

Yj

yj ,y
j
1,...,y

j
ij


 (

x1, x
1
1, . . . , x

1
j1
, X1, B1

)
,

. . . ,(
xi, x

i
1, . . . , x

i
ji
, Xi, Bi

)


Figure 5: Illustrating the rules in Rpush.

In these rules, after the push we’re in control state p′ and we guess that we will pop to
control states p′1, . . . , p

′
l. Hence we have a branch or a test to ensure that this happens.

The remaining branches and tests are for what happens after the pops. The start from
the states p′1, . . . , p

′
l and must, in total, pop to the original pop obligation p1, . . . , pm.

Hence, we distribute these tasks in the same way as the Rbr.

Before giving the formal definition, we summarise the discussion above by recalling the
meaning of the various components. A control state (p, p1, . . . , pm, O,B) means we’re currently
simulating a node at control state p that is required to produce m branches terminating in
control states p1, . . . , pm respectively, that the produced tree should output at least one of each
character in O and the entire subtree should output enough of each character in B to satisfy the
diagonal problem. In the definition below, the set O′ is the set of new single character output
obligations produced when the automaton decides which branches to follow faithfully and which
to test (for the output of at least one of each character). The sets X1, . . . , Xi and Y1, . . . , Yj

represent the partitioning of the single character output obligations amongst the tests and new
branches.

The correctness of the reduction is stated after the definition. A discussion of the proof
appears in Section 7.

Definition 6.4 (P−1). Given an (n, α)-PDA P described by (P,Σ,Γ,R, {pf} , pin, γin, θ) and
automata AO

p,p1,...,pm
for all 1 ≤ m ≤ α, p, p1, . . . , pm ∈ P, and O ⊆ {a1, . . . , aα} we define an

(n− 1, α)-PDA with tests

P−1 =
(
P−1,Σ,Γ,R−1,F−1, p

−1
in , γin, θ−1

)
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where P−1 is the set(p, p1, . . . , pm, O,B)

∣∣∣∣∣∣∣∣
1 ≤ m ≤ α ∧

p, p1, . . . , pm ∈ P ∧
O,B ⊆ {a1, . . . , aα} ∧

O ∩B = ∅

 ⊎

{
p−1
in , f

}
and

R−1 = Rinit ∪Rsim ∪Rbr ∪Rfin ∪Rpush ∪Rpop

F−1 = {f}

and θ−1((p, p1, . . . , pm, O,B)) = |B| and is 1 for all other control states. We define the sets of
rules, where in all cases, p1, . . . , pm ∈ P and O,O′, B ⊆ {a1, . . . , aα}, to be as follows:

• Rinit is the set containing all rules of the form(
p−1
in , γin

) ε−→ ((pin, pf , . . . , pf , ∅, {a1, . . . , aα}), rewγin)

where |pf , . . . , pf | ≤ α, and

• Rfin is the set containing all rules of the form

((p, p′, ∅, B), γ, Att)
ε−→ (f, rewγ)

for all (p, γ)
ε−→ (p′, popn) ∈ R and B ⊆ {a1, . . . , aα}, and

• Rsim is the set containing all rules of the form

((p, p1, . . . , pm, O,B), γ, Att)y {b} ∩B

((p′, p1, . . . , pm, O \ {b}, B), o)

for (p, γ)
b−→ (p′, o) ∈ R, and o /∈ {pushn, popn}, and

• Rbr is the set containing all rules of the form(p, p1, . . . , pm, O,B), γ,

AY1

y1,y1
1 ,...,y

1
i1

∩ · · · ∩
A

Yj

yj ,y
j
1,...,y

j
ij

y O′ ∩B (
x1, x

1
1, . . . , x

1
j1
, X1, B1

)
,

. . . ,(
xi, x

i
1, . . . , x

i
ji
, Xi, Bi

) , rewγ


where

(p, γ)
ε−→ (p′1, . . . , p

′
l, rewγ) ∈ R
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and p′1, . . . p
′
l is a permutation of

x1, . . . , xi, y1, . . . , yj

and p1, . . . , pm is a permutation of

x1
1, . . . , x

1
j1 , . . . x

i
1, . . . , x

i
jiy

1
1 , . . . , y

1
i1 , . . . y

j
1, . . . , y

j
ij

and
O ∪O′ = X1 ∪ · · · ∪Xi ∪ Y1 ∪ · · · ∪ Yj

and B = B1 ∪ · · · ∪Bi.

• Rpush is the set containing all rules of the form(p, p1, . . . , pm, O,B), γ,

AY1

y1,y1
1 ,...,y

1
i1

∩ · · · ∩
A

Yj

yj ,y
j
1,...,y

j
ij

y O′ ∩B
(p′, p′1, . . . , p

′
l, X,B0) ,(

x1, x
1
1, . . . , x

1
j1
, X1, B1

)
,

. . . ,(
xi, x

i
1, . . . , x

i
ji
, Xi, Bi

) , rewγ


where

(p, γ)
ε−→ (p′, pushn)

and p′1, . . . p
′
l is a permutation of

x1, . . . , xi, y1, . . . , yj

and p1, . . . , pm is a permutation of

x1
1, . . . , x

1
j1 , . . . x

i
1, . . . , x

i
jiy

1
1 , . . . , y

1
i1 , . . . y

j
1, . . . , y

j
ij

and
O ∪O′ = X ∪X1 ∪ · · · ∪Xi ∪ Y1 ∪ · · · ∪ Yj

and B = B0 ∪ · · · ∪Bi.

• we have Rpop is the set containing all rules of the form(p, p1, . . . , pm, O,B), γ,

AY
p′,p′

1,...,p
′
l
∩

AY1

y1,y1
1 ,...,y

1
i1

∩ · · · ∩
A

Yj

yj ,y
j
1,...,y

j
ij


y O′ ∩B (

x1, x
1
1, . . . , x

1
j1
, X1, B1

)
,

. . . ,(
xi, x

i
1, . . . , x

i
ji
, Xi, Bi

) , rewγ


22



Unboundedness of HOPDA M. Hague J. Kochems C.-H. L. Ong

where
(p, γ)

ε−→ (p′, pushn)

and p′1, . . . p
′
l is a permutation of

x1, . . . , xi, y1, . . . , yj

and p1, . . . , pm is a permutation of

x1
1, . . . , x

1
j1 , . . . x

i
1, . . . , x

i
jiy

1
1 , . . . , y

1
i1 , . . . y

j
1, . . . , y

j
ij

and
O ∪O′ = Y ∪X1 ∪ · · · ∪Xi ∪ Y1 ∪ · · · ∪ Yj

and B = B1 ∪ · · · ∪Bi.

In Section 7 we show that the reduction is correct.

Lemma 6.2 (Correctness of P−1).

Diagonala1,...,aα
(P ) ⇐⇒ Diagonala1,...,aα

(P−1)

To complete the reduction, we convert the (n, α)-PDA with tests into a (n, α)-PDA without
tests.

Lemma 6.3 (Reduction to Lower Orders). For every (n, α)-PDA P we can build an order-
(n− 1) α-branch HOPDA P ′ such that

Diagonala1,...,aα
(P ) ⇐⇒ Diagonala1,...,aα

(P ′) .

Proof. From Definition 6.4 (P−1) and Lemma 6.2 (Correctness of P−1), we obtain from P an
(n− 1, α)-PDA with tests P−1 satisfying the conditions of the lemma. To complete the proof,
we invoke Theorem 6.1 (Removing Tests) to find P ′ as required.

We show correctness of the reduction in Section 7. First we show that we have decidability
once we have reduced to order-0.

6.5 Decidability at Order-0

We show that the problem becomes decidable for a 0-PDA P . This is essentially a finite state
machine and we can linearise the trees generated by saving the list of states that have been
branched to in the control state. After one branch has completed, we run the next in the list,
until all branches have completed. Hence, a tree of P becomes a run of the linearised 0-PDA,
and vice-versa. Since each output tree has a bounded number of branches, the list length
is bounded. Thus, we convert P into a finite state word automaton, for which the diagonal
problem is decidable. Note, this result can also be obtained from the decidability of the
diagonal problem for pushdown automata. The details are given in the full version [17].

6.6 Decidability of The Diagonal Problem

Theorem 6.3 (Decidability of the Diagonal Problem). For an n-PDA P and output characters
a1, . . . , aα, it is decidable whether Diagonala1,...,aα

(P ).

Proof. We first interpret P as an (n, α)-PDA and then construct via Lemma 6.3 (Reduction
to Lower Orders) an (n− 1, α)-PDA P ′ such that Diagonala1,...,aα

(P ) iff Diagonala1,...,aα
(P ′).

We repeat this step until we have an (0, α)-PDA. Then, from decidability at order-0 we obtain
decidability as required.
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7 Correctness for Simultaneous Unboundedness

In this section we prove Lemma 6.2 (Correctness of P−1). The proof follows the same outline
as the single character case. To show there is a run with at least m of each character, we take
via Lemma 7.1 (Section 7.2), m′ = (α + 1)m, and a run of P outputting at least this many of
each character. Then from Lemma 7.2 (Section 7.3) a run of P−1 outputting at least m of each
character as required. The other direction is shown in Lemma 7.3 (Section 7.3).

We first generalise our tree decomposition and notion of scores. We then show that every
α-branch subtree of a tree decomposition generates a run tree of P−1 matching the scores of
the tree. Finally we prove the opposite direction.

7.1 Tree Decomposition of Output Trees

Given an output tree T of P where each pushn operation has a matching popn on all branches,
we can construct a decomposed tree representation of the run inductively as follows. We define
Tree(T [ε]) = T [ε] and, when

T = b[T1, . . . , Tm]

where the rule applied at the root does not contain a pushn operation, we have

Tree(T ) = b[Tree(T1), . . . ,Tree(Tm)] .

In the final case, let

T = ε[T ′]

where the rule applied at the root contains a pushn operation and the corresponding popn
operations occur at nodes η1, . . . , ηm.

Note, if the output trees had an arbitrary number of branches, m may be unbounded. In
our case, m ≤ α, without which our reduction would fail: P−1 would be unable to accurately
count the number of popn nodes. In fact, our trees would have unbounded out degree and
Lemma 4.1 (Minimum Scores) would not generalise.

Let T1, . . . , Tm be the output trees rooted at η1, . . . , ηm respectively and let T ′ be T with
these subtrees removed. Observe all branches of T are cut by this operation since the pushn
must be matched on all branches. We define

Tree(T ) = ε[Tree(T ′),Tree(T1), . . . ,Tree(Tm)] .

An accepting run of P has an extra popn operation at the end of each branch leading to
the empty stack. Let T ′ be the tree obtained by removing the final popn-induced edge leading
to the leaves of each branch. The tree decomposition of an accepting run is

Tree(T ) = ε[Tree(T ′), T [ε], . . . , T [ε]]

where there are as many T [ε] as there are leaves of T .
Notice that our trees have out-degree at most (α+ 1).

7.2 Scoring Trees

We score branches in the same way as the single character case. We simply define Scorea(ρ) to
be Score(ρ) when a is considered as the only output character (all others are replaced with ε).

We have to slightly modify our minimum score lemma to accommodate the increased out-
degree of the nodes in the trees.
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Lemma 7.1 (Minimum Scores). Given a tree T with maximum out-degree (α+1), containing,
for each a ∈ {a1, . . . , aα}, at least m nodes labelled a, for each a ∈ {a1, . . . , aα} we have

Scorea(T ) ≥ log(α+1)(m)

Proof. This is a simple extension of the proof of Lemma 4.1 (Minimum Scores). We simply
replace the two-child case with a tree with up to (α+ 1) children. In this case, we have to use
log(α+1) rather than log to maintain the lemma.

7.3 Completing the proof

As in the single character case, we complete the proof with the following two lemmas, shown
in the full version [17]. As before, these lemmas simply formalise the fact that P−1 runs along
branches of a tree decomposition of a run of P .

Lemma 7.2 (Scores to Runs). Given an accepting output tree ρ of P , if for all a ∈ {a1, . . . , aα}
we have Scorea(Tree(ρ)) ≥ m, then ∃T ∈ L(P−1) with |T |a ≥ m for all a ∈ {a1, . . . , aα}.

Lemma 7.3 (P−1 to P ). We have

Diagonala1,...,aα
(P−1) ⇒ Diagonala1,...,aα

(P ) .

8 Conclusions

We have shown, using a recent result by Zetzsche, that the downward closures of languages
defined by HOPDA are computable. We believe this to be a useful foundational result upon
which new analyses may be based. Our result already has several immediate consequences,
including separation by piecewise testability and asynchronous parameterised systems.

Regarding the complexity of the approach. We are unaware of any complexity bounds im-
plied by Zetzsche’s techniques. Due to the complexity of the reachability problem for HOPDA,
the test automata may be a tower of exponentials of height n for HOPDA of order n. These
test automata are built into the system before proceeding to reduce to order (n− 1). Thus, we
may reach a tower of exponentials of height O(n2).

A natural next step is to consider collapsible pushdown systems, which are equivalent to
recursion schemes (without the safety constraint). However, it is not currently clear how to
generalise our techniques due to the non-local behaviour introduced by collapse. We may also
try to adapt our techniques to a higher-order version of BS-automata [3], which may be used,
e.g., to check boundedness of resource usage for higher-order programs.
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