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Key learning points: 

 

• There are a number of monogenic disorders for stroke of which CADASIL is the 

most common 

 

• Large scale population studies have demonstrated that 'sporadic'  ischaemic 

stroke has a genetic aetiology 

 

• Studies on those of non-European descent are few and require more 

investigations to make reliable conclusions and comparisons  
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Nearly 15 million individuals suffer from stroke each year of which 5.5 million (10% of 

all global deaths) die. Stroke also consumes 2-4% of global health care costs and about 

4% of direct health care costs in industrialized countries. Besides the economic effects 

of stroke there are several social implications of the disease. Stroke leaves over 60% of 

the survivors with moderate to severe disability, limiting their ability to gain 

employment and resulting in a decline in their social functioning. Stroke survivors are 

also known to suffer from psychological disorders such as post stroke depression which 

results in greater mortality rates than non-depressive survivors. Socio-economic status 

of stroke patients also affects their propensity to risk factors and mortality due to an 

individual’s ability to access healthcare, take medication and maintain a healthy 

lifestyle. 

Heritability of Stroke 

90% of the population attributable risk for stroke rests with ten conventional stroke 

risk factors including hypertension, atrial fibrillation, cigarette smoking, diabetes 

mellitus and obesity. Management of these risk factors offers the exciting possibility of 

near complete elimination of stroke. However, stroke risk extends well beyond the 

boundaries of these risk factors and the disparity in stroke prevalence within a 

population that is uniformly exposed to environmental risk factors suggests that some 

other unknown mechanisms are at play. Some of this phenotypic variability has been 

attributed to genetic differences, with familial patterns of inheritance lending support.  

 

Most family and twin studies suggest the genetic liability is greater in individuals aged 

younger than 70 years and varies with stroke subtype. Case-control studies suggest a 

76% increase in the risk of ischemic stroke in the presence of a family history of stroke, 

although not all reports have demonstrated a positive relationship with family history 

possibly due to confounding factors such as blood pressure.  

 

The genetic basis of stroke may, for practical purposes, broadly be divided between 

single gene (monogenic) and polygenic (complex/multifactorial, i.e. genes interacting 

with environmental determinants). The difference is clinically important as the 

monogenic diseases have a higher penetrance and larger effect size, while polygenic 

presence may have lower penetrance but likely be more prevalent in the population and 
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may be countered by managing modifiable environmental determinants (e.g. 

hypertension). 

 

Monogenic stroke studies 

Monogenic stroke provides the most convincing evidence for the genetic aetiology of 

human stroke and genes have been identified using solely the distribution of genotypes 

and phenotypes within narrowly delimited families to determine the location of disease 

loci. While stroke remains principally a common sporadic disorder, our understanding 

of monogenic forms of stroke has improved greatly in recent times. However, these rare 

forms of stroke account for only a small percentage of stroke incidence and while not 

useful for determining the incidence of sporadic or polygenic forms of ischemic stroke 

that affect the general population they may be extremely useful in improving our 

understanding of the underlying mechanisms involved in the more common disorder. 

 

CADASIL 

Described by Joutel et al in 1996, CADASIL is a Mendelian form of hereditary small-

vessel disease and vascular dementia. Over 100 pathogenic mutations in the NOTCH3 

gene, an evolutionarily highly conserved transmembrane receptor protein regulating 

cell fate, are known to almost always lead to an odd number of cysteine residues in one 

of the 33 EGF like repeats in the extracellular domain of the Notch3 protein. These 

mainly missense mutations are thought to result in conformational changes of the 

Notch3 protein. Mutations have predominately been identified in individuals of 

European descent, although cases have been found in other populations such as South 

Asia. A recent sequencing study has shown the association between common variants in 

the NOTCH3 gene and increase in the risk of age-related white matter hyperintensities 

in hypertensives, suggesting that NOTCH3 may play an important role in sporadic stroke 

as well[1]. 

 

The prevalence of CADASIL is likely underestimated, as clinical suspicion along with 

laboratory diagnosis is required. There are few prevalence studies but UK estimates of  

prevalence rate of confirmed CADASIL cases are about 1.98/100,000. Genotype-

phenotype correlations have been difficult to determine precisely, mainly because of the 

heterogeneous nature of the mutations, although some mutations are associated with a 
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worse prognosis [2 3]. Adding to this problem, CADASIL-like symptoms have also been 

observed in patients without NOTCH3 mutations[4]. Phenotypic differences such as 

higher volume of white matter hyperintensities have also been observed in patients 

with mutations in the NOTCH3 Delta/Serrate/LAG-2 (DSL) ligand-binding domain as 

compared to patients with mutations outside of the DSL-binding domain. 

 

Studies investigating CADASIL in monozygotic twins with the NOTCH3 Cys251Tyr 

mutation demonstrated significant phenotypic differences in the severity of disease. The 

study hinted at interplay of genes and environment, with the physically inactive-

smoking twin suffering a stroke 14 years earlier than the twin who led an active and 

healthy lifestyle[5].  

 

There is no cure for CADASIL with treatment mainly directed at aggressive vascular risk 

management. 

 

CARASIL 

CARASIL or Maeda syndrome is caused by mutations in HTRA1 gene localized on 

Chr10q encoding HTRA1 that represses signalling mediated by Transforming Growth 

Factor β (TGF-β) family. Resultantly, CARASIL patients have unproteolized cellular 

proteins, which affect the signal transduction process. Brain MRI shows 

diffuse white matter changes and multiple lacunar infarctions in the basal ganglia 

and thalamus. Histopathologically, arteriosclerosis is seen in the penetrating arteries in 

the absence of granular osmiophilic or amyloid material. Compared to CADASIL, 

CARASIL patients are also less likely to have migraines and exhibit psychiatric 

disorders, such as euphoria and emotional liability. 

 

Prevalence rates for CARASIL are lower than CADASIL, although it is probably more 

frequent than the few dozen currently reported cases, which to-date have only been 

described from Japan and China.  

Fabry's Disease 

Fabry disease is a congenital metabolic disorder caused by deficient activity of α-

galactosidase A, resulting in a progressive accumulation of globotriaosylceramide and 
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related glycosphingolipids within vascular endothelial cells, myocardial cells and 

neurons. Prevalence rate of Fabry’s is unclear with studies reporting different results. A 

German study by Rolf et al reported the prevalence of Fabry's in young male stroke 

patients as 4.9%[6] and suggested that Fabry’s could be a common cause of cryptogenic 

ischemic stroke. Another multi-racial study refutes this finding suggesting reporting 

Fabry’s disease in 0.18% of all strokes and 0.65% of cryptogenic strokes[7]. Although an 

X-linked lysosomal storage disorder, female carriers can develop symptoms that appear 

comparatively later in life as compared to males, at a median age of 45.7 years. 

Treatment for Fabry’s includes bi-weekly recombinant α-gal enzyme replacement 

therapy at a dose of 1mg/kg body weight, however, continued management of 

conventional stroke risk factors is important as well. 

 

MELAS 

MELAS is one of the most clinically prevalent and commonly encountered genetic 

disorder, 80% of which is accounted for by maternally transmitted mitochondrial tRNA 

(Leu) A3243G mutations. Another 10% of patients carry the T3271C mutation. The 

prevalence of MELAS varies from 7.9/100,000 in England to 236/100,000 in Australia 

with an age of onset ranging from 2 to 20 years. 

 

Treatments for MELAS are varied and include the use of vitamin supplements (B 

complex, E and C) and enzyme co-factors (Q10, idebenone) that enhance mitochondrial 

metabolism and respiratory chain activity. 

 

Other Monogenic Disorders 

A number of other monogenic disorders have also been associated with stroke; Marfan 

syndrome, Sickle cell disease, homocystinuria and systemic lupus erythematosus.  For a 

more detailed review of these disorders we direct the reader to the book 'Stroke 

Genetics' published in 2012 by Springer (Eds: Pankaj Sharma & James Meschia). 

 

Strategies to Study Genetics of Stroke  

With the emergence of large stroke consortia and developments in genotyping 

technology, statistical methods and computational power, researchers have finally 



7 
 

begun to address the genetics of ischemic stroke effectively. Advances in our knowledge 

of the molecular underpinnings of stroke will enable scientists and clinicians to better 

understand the mechanistic workings of stroke and design effective treatments for it.  

 

Evidence for stroke genetics can come from two different platforms; study of 

individuals and population based studies. Study of individuals can help identify genetic 

variants that causally affect stroke and provides concrete evidence for the genetic risk 

of stroke. Individual studies usually identify rare genetic variants with large effect sizes 

and high penetrance. Although such studies are of immense value, they rarely 

contribute to the prevention of stroke at a population level since it involves a large 

number of individuals at a small risk of stroke which gives rise to more cases of disease 

than a small number who are at high risk. Individual based studies have led to the 

identification of several monogenic forms of stroke such as CADASIL and enabled 

clinicians to use this information in their everyday clinical practice. 

 

Population based genetic association studies have found great popularity with genetic 

epidemiologists since the study samples are more representative of the general 

population and easier to recruit as compared to stroke families. Results from a large 

population study are useful in calculating population attributable risk (PAR) of a genetic 

variant, which can be extrapolated to the general population. Population studies also 

have greater power in detecting common genetic variants that affect >5% of the 

population. 

 

Candidate gene based studies 

The study of candidate genes are often based on a priori hypothesis, primarily driven by 

the choice of a candidate gene which is based on the investigators research interest in a 

particular biological pathway such as coagulation, lipid metabolism, inflammation and 

blood pressure regulation, or candidate genes derived from related vascular conditions 

such as MI or CAD. This is not surprising as the pathophysiology of stroke and coronary 

disease are similar. However, replication of such candidate genes in other phenotypes 

has not always been successful, with some candidates appearing to be organ-specific 

rather than pathophysiology-specific[8]. Candidate genes found to be associated with 

stroke in one ethnic population are also routinely replicated in other ethnicities. Genes 
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involved in lipid metabolism and enzymatic activities are the most widely studied 

candidates for association with stroke. 

 

Recently, findings from candidate gene association studies in stroke and other vascular 

phenotypes such as CAD and AF were replicated using statistically robust GWAS models. 

Using >3500 stroke cases and 5700 controls from the WTCCC-2 (Wellcome Trust Case 

Control Consortium) ischemic stroke GWAS[9] association for 50 previously reported 

candidate genes were tested[10]. Of the 32 stroke associated genes tested, 4 genes 

ALOX5AP (CE), APOA (LPA) (SVD), Fibrinogen (all ischemic stroke), and Paroxonase-1 

(SVD)) survived Bonferroni correction but failed when the more stringent Nyholt 

correction was applied. The study also tested 18 genes associated with cardiovascular 

phenotypes and validated the association for 3 genes at the modified Nyholt threshold: 

PHACTR1 in LVD (P=2.63x10−6), PITX2 in CE stroke (P=4.78x10−8), and ZFHX3 in CE 

stroke (P=5.50x10−7). Given the failure to replicate most stroke associated genes, the 

study concluded that the risk association is likely to be sub-type specific and success in 

identifying risk variants would continue to evade researchers unless the study 

populations are larger and extensively sub-typed. 

 

Candidate gene studies have also been applied to test the progression of stroke through 

its intermediate phenotypes. Adib-Samii et al examined the 17q25 locus that was 

previously found to be associated with white matter hyperintensities in stroke-free 

individuals and replicated the association with white matter hyperintensity volume in 

ischemic stroke patients to determine whether the 17q25 locus promotes small vessel 

arteriopathy. The study furnished evidence in support of an association between 17q25 

and white matter hyperintensities[11]. 

 

Similarly, search for blood pressure genes by the International Consortium for blood 

pressure genome-wide association studies (ICGP 2011) in 200,000 individuals of 

European descent identified 16 novel loci who’s cumulative genetic risk score (in 

addition to 13 other loci) was associated with stroke[12]. Hypertension being the 

biggest risk factor for stroke, rendered this an anticipated finding. Besides the ‘routine’ 

phenotypes of blood pressure such as systolic BP, diastolic BP, mean arterial pressure 

and pulse pressure, the genetics of long-term variability in blood pressure or episodic 
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hypertension have also been investigated. In a recent study, the ASCOT IR-UK cohort 

identified an association between NLGN1 gene and BP variability but could not replicate 

the association in a large ischemic stroke population comprising 8624 cases and 12722 

controls[13].  

 

Unique step-back approaches have also been implemented to test association of 

candidate genes with stroke. A study by Krug et al performed gene expression profiling 

in peripheral blood mononuclear cells of 20 stroke cases and 20 controls and examined 

the differentially expressed genes between the two groups. Sixteen differentially 

expressed genes were then mapped to GWAS-derived regions associated with various 

vascular disorders. Using this approach the group was able to identify a risk association 

between stroke and the TTC7B gene locus[14]. 

 

Over all, results from candidate gene studies suggest that common stroke has a genetic 

component with several genes exerting individual modest effects but no single gene 

having a major effect. Meta-analyses of these studies has allowed disease associated 

genes to be reliable identified and assigned odds ratios with much greater robustness 

(OR 1.1-1.8) depending on the gene of interest[15]. Candidate gene studies have also 

demonstrated that genetic risk associations for ischemic stroke are broadly similar 

across different ethnicities, with some notable exceptions[16]. Such studies have also 

implicated disparity in the genetic burden of stroke for different stroke subtypes long 

before this was discovered in large-scale GWA studies.  

 

Candidate gene studies demonstrate that while the effect sizes per gene were small, the 

sum of the PARs across all associations is ~30% and given the relative frequency of 

stroke, translates to a large clinically observed effect, although publication bias may be a 

reason for this probably inflated size estimate. Using a Mendelian randomization 

methodology, some candidate genes (MTHFR, Factor V Leiden, ACE, Prothrombin and 

PAI-1) have gone on to be not just associated with stroke but causally linked[15]. Some 

of these genes are associated with an ischemic process per se (e.g. with stroke and 

ischemic heart disease) while others are stroke specific (Table 1)[15]. 

  

Genome wide association studies 
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The natural extension of studying single gene regions in the human chromosome to 

studying all regions (of millions of genetic variants in a single experiment), and thereby 

avoiding investigator bias, has led to an explosion in genome wide association studies. 

As these studies are conducted without an a priori hypothesis, these have the added 

advantage of potentially identifying new and unpredictable genes, which could 

eventually lead to the development of novel therapeutic targets. The emergence of 

genome wide approaches have also presented investigators with an alternative and 

more powerful method to test the productivity of the candidate gene based approached. 

 

Powerful GWA studies have been made possible by the advent of the human genome 

project and the HapMap consortium. With completion of the Human Genome Project in 

2003, scientists identified regions of variation between individuals, the most common 

form of which is the single nucleotide polymorphism or SNP. The human genome is 

believed to consist of over 10 million SNPs and, with the efforts of the International 

HapMap project, 3 million SNPs have been characterised. Information provided by 

HapMap has enabled the development of commercially available genotyping 

microarrays, which heralded the era of the GWA study. In recent times the 1000 

Genomes project (http://www.1000genomes.org) has provided 4X deep sequencing 

data and added immensely to the knowledge base. As technology used to unravel the 

genetic basis of disease has advanced, our ability to rapidly and inexpensively search for 

susceptibility loci has dramatically improved. Individual candidate gene studies have 

predominantly been replaced by whole-genome screening, which has been successfully 

conducted in a variety of disorders including bipolar disorder, CAD, Crohn’s disease, 

hypertension, rheumatoid arthritis and diabetes (NHGRI catalogue, 

http://www.genome.gov/gwastudies/). 

 

One of the first major GWAS in stroke was published in 2003, which identified 

phosphodiesterase 4D (PDE4D) to be significantly associated with risk of ischemic 

stroke in an Icelandic population[17]. However several attempts to replicate these 

findings failed, while others reported conflicting results. These discrepancies were 

attributed to possible problems in study design, i.e. not accounting for stroke sub-type 

heterogeneity.  

 

http://www.1000genomes.org/
http://www.genome.gov/gwastudies/
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The WTCCC-2 and the ISGC (International Stroke Genetics Consortium) performed a 

GWAS involving 3,548 cases of ischemic stroke with replication of potential signals in 

5,859 additional cases[9]. The study demonstrated, as others had done previously, 

associations for CE stroke near PITX2 and ZFHX3, which are known risk loci for AF.  The 

study also confirmed the association for LVD and 9p21 locus.  A novel finding was an 

association for large vessel stroke within HDAC9 on chromosome 7p21.1 (OR 1.42). In a 

recent GWAS, the evidence for a stroke sub-type specific genetic influence became more 

compelling with the association of the 6p21.1 locus with large artery stroke 

subtype[18]. The METASTROKE meta-analysis, (~12,000 cases and ~60,000 controls) 

further validated previous findings of genes PITX2, ZFHX3, and HDAC9 suggesting that 

these were true associations[19]. All loci exhibited heterogeneous effect across 

subtypes, supporting distinct genetic architectures for each subtype. The largest and 

most recent GWAS consisting of 17,900 ischemic stroke cases failed to replicate the 

METASTROKE findings but identified a novel locus at 12q24.12[20]. 

 

Several other GWAS have been conducted in stroke mostly in those of European 

descent, with very little comparative data available in other ethnic populations.  A few 

studies have been conducted in populations of Asian ancestry with broadly similar 

effect sizes (< 1.85). Many studies, however, have failed to replicate their findings.  

 

Noting that some ischemic stroke has a maternal heritability, a GWAS of common 

mitochondrial sequence variants failed to find a genome significance threshold, 

although this study was underpowered for GWAS[21]. GWA studies on stroke twins 

found no significant hits but were able to demonstrate significant correlation of age at 

stroke within pairs of affected siblings (r=0.83, 95% CI 0.78–0.86, p=2.2x10-16) and high 

concordance of stroke subtypes among affected pairs (33.8%, kappa=0.13, p=5.06x10-4) 

which did not differ by age at stroke in the proband[22]. Some investigators have 

undertaken GWAS on surrogate markers such as white matter hypertensities 

intermediate phenotypes or intermediate phenotypes such as intima-media thinkness. 

Reports of a new wave of GWA studies are underway, including the WTCCC-2 and 

NINDS Stroke Genetics Network, which will utilize the CCS classification system[23]. 

The studies will focus entirely on sub-typing large number of ischemic stroke cases. A 
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total of 24 genetic research centres across Europe and America will participate in this 

global consortium amassing over 14,549 stroke cases. Large-scale prospective case-

control studies examining ethnic/racial variances in ICH are also in the making and are 

likely to extend to ischemic stroke in the near future. 

 

GWA studies are not a panacea for identifying genetic loci, suffering several important 

limitations. Errors in genotyping, quality control, and choice of analytical methods can 

lead to false positive results. The European population is genetically stratified and 

admixture of populations with different ancestry can also lead to inflated statistics. 

Results from large GWA studies have implied that dissecting out the susceptibility genes 

for stroke needs to consider its subtypes as different entities. This should not be 

surprising, as stroke is a clinical syndrome encompassing any sudden focal neurological 

deficit from a vascular etiology. Notwithstanding the arguments about sub-typing, a 

recent GWAS provided evidence for a genetic influence on all-cause ischemic stroke[18]. 

GWA studies also provide a limited understanding of the gene-environment interaction, 

which may play a major role in the differential gene expression. Another major 

limitation of the GWA study model is its inability to identify common genetic variants 

(>5%) with large effect sizes that exert an effect measureable at the population level. 

Most published studies have identified common variants with small to modest effect 

sizes for dichotomous traits (OR <1.5) and variance of <1% for quantitative traits.  

 

 

Genotyping platforms  

DNA microarrays allow researchers the ability to undertake high-throughput gene 

expression. Rapid growth in microarray technology has been spearheaded by 

companies such as Illumina (San Diego, USA) and Affymetrix (Santa Clara, USA), which 

differ considerably in SNP selection strategy and hybridization chemistry. 

 

These technologies are reliant on the availability of large, well-characterised bio banks. 

A number of stroke specific DNA repositories exist and our own biobank, Bio Repository 

of DNA in Stroke (BRAINS) is composed of samples from those of European descent in 

the UK, British Asians, Indians living in India and Middle Eastern's in Qatar 



13 
 

(www.BrainsGenetics.com). This international repository should allow a unique 

comparison between disparate ancestral stroke populations[24]. 

 

Next generation sequencing 

Just as candidate genes were regarded as a stepping-stone to GWAS, the latter may be 

regarded as a stepping-stone to Next Generation Sequencing (NGS) which will allow 

deep sequencing of the human genome and detection of ‘rare variant, common disease’. 

As the cost of whole genome sequencing has plummeted in the last decade (from $ 100 

million per genome in 2001 to $ 8 thousand per genome in 2014) (www.genome.gov), 

NGS is likely to greatly advance our understanding in stroke - where bio-repositories 

will be well placed to take advantage. 

 

Although HapMap database has some rare variants, it is mostly the common SNPs that 

are genotyped. The general perception is that the ‘missing heritability ‘of stroke lies 

with rare genetic variants, which are too infrequent to be picked up by commercially 

available genotyping platforms. The availability of the entire human genome via 

HapMap aided by advances in statistical computation makes it a promising strategy for 

studying genetics of stroke. The 1000 Genomes project with whole genomes of 1000 

healthy individuals will further provide dense coverage of both common and rare 

variants and add important information to the current knowledge base.  

Although large-scale NGS approaches are already in the pipeline for various disease 

traits, currently there have been no published NGS studies on common stroke.  

Conclusion 

The genetic aetiology of stroke is currently the subject of intense international 

collaborative efforts. It is unlikely that a single gene will be responsible for sporadic 

age-related stroke; rather multiple genes acting with environmental determinants will 

decide eventual susceptibility. This is an exciting time in stroke genetics with promises 

of understanding its molecular mechanisms likely to be honoured, potential novel 

therapeutic targets identified and pharmacological interventions being directed by 

genotyping in a more personalized medicine approach. 
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