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Abstract

Like many other bacteria, Pseudomonas aeruginosa sequesters iron from the
environment through the secretion, and subsequent uptake, of iron-binding mo-
lecules. As these molecules can be taken up by other bacteria in the population
than those who secreted them, this is a form of cooperation through a public
good. Traditionally, this problem has been studied by comparing the relative
fitnesses of siderophore-producing and non-producing strains, but this gives no
information about the fate of strains that do produce intermediate amounts of
siderophores. Here, we investigate theoretically how the amount invested in this
form of cooperation evolves. We use a mechanistic description of the laboratory
protocols used in experimental evolution studies to describe the competition
and cooperation of the bacteria. From this dynamical model we derive the
fitness following the adaptive dynamics method. The results show how selec-
tion is driven by local siderophore production and local competition. Because
siderophore production reduces the growth rate, local competition decreases
with the degree of relatedness (which is a dynamical variable in our model).

Our model is not restricted to the analysis of small phenotypic differences
and allows for theoretical exploration of the effects of large phenotypic differ-
ences between cooperators and cheats. We predict that an intermediate ESS
level of cooperation (molecule production) should exist. The adaptive dynamics
approach allows us to assess evolutionary stability, which is often not possible in
other kin-selection models. We found that selection can lead to an intermediate
strategy which in our model is always evolutionarily, yet can allow invasion of
strategies that are much more cooperative. Our model describes the evolution
of a public good in the context of the ecology of the microorganism, which al-
lows us to relate the extent of production of the public good to the details of
the interactions.
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Introduction
Cooperation can take several forms. Individuals can help each other directly
in pairwise interactions, but also indirectly, for instance, by investing in traits
that improve the environment so as to increase population growth. If such
a modification of the environment benefits all members of a population, it is
referred to in the biological literature as a public good (Rankin et al., 2007).
It is well-known that public good production can evolve despite the possibility
of cheaters or free-loaders, if there is spatial structure or some other form of
assortment (Lion and van Baalen, 2008; Fletcher and Doebeli, 2009). However,
it is not always clear how to relate these quite general models to specific cases,
in particular when aspects such as relatedness are not constants but depend
on the local and global dynamics. Here, we will explore how cooperation via
a public good can evolve in the specific instance of siderophore production in
parasitic bacteria.

Virtually all bacteria need iron for various metabolic functions (Andrews
et al., 2003). Parasitic bacteria, in particular, live inside host organisms where
free iron is scarce but also many other bacterial habitats have little free iron
available. In order to take up iron many bacteria excrete siderophores, which
are molecules that bind to iron with high affinity. A siderophore-iron complex,
once formed, can be taken up by any cell with appropriate siderophore receptors
(Ratledge and Dover, 2000; Griffin et al., 2004; Wandersman and Delepelaire,
2004). This system has been particularly well studied for the bacterium Pseudo-
monas aeruginosa, an opportunistic pathogen which produces the siderophore
pyoverdine. Experimental work has shown that when iron is limiting, pyoverdine
producing strains reach higher densities than strains which do not produce py-
overdine, yet when put in competition the pyoverdine producers are outcom-
peted, which shows that there is a cost associated with siderophore production
(Griffin et al., 2004; Ross-Gillespie et al., 2007). Thus, because the produc-
tion of these siderophores is costly, strains that produce less, or altogether no
siderophores should be advantaged when competing against high siderophore
producers, and cooperation should not evolve if selection is dominated by local
competition (West and Buckling, 2002; Kümmerli et al., 2009, 2010).

The evolution of siderophore use depends on how strains interact, both loc-
ally and globally. Bacterial populations that produce more siderophores reach
higher densities and thus contribute more to the next generation. But these
strains are vulnerable to cheater strains that are better local competitors (as
these do not pay the cost yet benefit from siderophores). Bacterial strains
that produce siderophores thus face a trade off between their ability to com-
pete locally (siderophore production reduces growth rate), and productivity
(siderophores allow higher densities). The balance between these two forces
has been shown to affect the evolution of siderophore production (Griffin et al.,
2004; Kümmerli et al., 2009, 2010).
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There has been considerable debate whether siderophore production can
invariably be seen as a public good (Zhang and Rainey, 2013; Kümmerli and
Ross-Gillespie, 2014; Ghoul et al., 2014). Zhang and Rainey (2013) argued, on
the basis of an experimental approach, that under some conditions siderophore
production can be outright counterselected, in which case non-producers cannot
be considered to be ‘cheats.’ Whether siderophores are a common good thus
depends on the conditions. This debate shows that fitness functions should be
derived from the full underlying dynamics and for arbitrary trait complexes
(siderophore production and use) (see also Alizon (2013)).

This argument extends to evolution in general, but in particular to the evol-
ution of pathogens. Pathogen evolution, for instance in the development of
resistance, depends on the epidemiological interaction between host and bac-
terium, bacterial genetics as well and the molecular mechanisms of antibiotic
action. To predict and understand such evolutionary processes we need models
that integrate all these aspects (MacLean et al., 2010a,b; Metcalf et al., 2015).
Here we show that it is possible, and practically feasible, to derive fitness ex-
pressions from models that include a detailed description of the dynamics. This
allows us to apply an inclusive fitness perspective to evolutionary problems us-
ing an adaptive dynamics approach. Although this paper focuses on siderophore
production, the approach can, and should, be used for a much wider class of
evolutionary problems.

Evolutionary models for siderophore production have tended to focus on
scenarios in which the local and global interactions are described in a highly
stylised form, either based on the model framework developed by Frank (1998)
(e.g., West and Buckling, 2002; Brown et al., 2009) or models based on a priori
chosen, stylised fitness functions (Ross-Gillespie et al., 2009, 2007; Cornforth
et al., 2012). The construction of such models appears to be based on simply
filling in the components of Hamilton’s Rule by choosing plausible functions.
This may give insight in the potential for kin selection, but this methodology
can easily miss essential feedback mechanisms. This is particularly relevant
if one goes beyond marginal fitness considerations and one needs to know the
fitness to a higher degree of approximation than a first degree. This is important
if larger mutational steps are studied and if one wants to know where the long-
term evolutionary process will end (i.e if the endpoint is evolutionarily stable
or whether branching will occur). As we wish to develop an understanding
of how ecological and evolutionary processes interact in shaping the evolution
of common goods, we here derive the fitness from a model based on simple
but plausible assumptions about experimental protocol and the local bacterial
ecology. Because we base our model on explicit mechanisms, we can assess how
the relevant costs and benefits (as well as the relatedness parameter) depend on
the ecological details, instead of having to assume they are constants, as it is
usually done. In doing so we go beyond agent-based simulation models in which
such realism is included, but for which it is normally not possible to interpret
the results in terms of inclusive fitness theory, or to identify cost and benefits.
Without identifying costs and benefits it is hard to generalise the results from
models and to form an integrative understanding of the evolutionary process.
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To analyse our model we have applied a separation of timescales. This is
based on the observation that while bacteria grow fast, competition between
strains (in a local population) is much slower. This analysis allows us to eas-
ily identify fitness costs and benefits. Furthermore, this approach enables us
to assess how the degree of assortment in a metapopulation, as measured by
relatedness, depends on local and global processes. We will study how this feed-
back affects the evolutionary end result using an adaptive dynamics approach
(Metz et al. 1992). This not only allows us to work out the optimum comprom-
ise between cooperation and cheating, but also to assess whether this optimum
is an evolutionarily stable strategy, that is, whether natural selection will favour
a monomorphic population with a unique strategy or whether it will favour a
heterogeneous population with divergent strategies (Geritz et al. 1998). Such
approaches have been developed and are frequently used in ecologically inspired
models of evolution, but have rarely been applied to the evolution of social
interactions (but see Ohtsuki (2010).)

In previous work we have shown that social interactions can lead to the
emergence of a diversity of competing types of cooperators and cheaters (Lee
et al., 2012). For this work we assumed that all cooperators (and all cheaters)
have the same level of siderophore production, and hence, a strain can be char-
acterised by the type of siderophore it produces, and its strategy (cooperate or
cheat). However, there exists a high diversity of siderophore production rate
between different strains (Jiricny et al., 2010). Here, we focus on the evolution
of production rate of a single siderophore type. We assume that all strains pro-
duce the same type of siderophore, but each strain is now characterized by its
rate of production. Similarly to Lee et al (2012), we determine if social interac-
tions can lead to the emergence of a diversity of different coexisting strains. We
do this by formulating and analyzing a model for the evolution of siderophore
production that takes into account both the interactions at the individual and
at the metapopulation level.

The model
The model framework is inspired by the Haystack model (Maynard Smith, 1964)
and its mathematical analysis follows Jansen and Mulder (1999) and Jansen
(2011). We consider a collection of many subpopulations inhabiting identical
environments, such as the wells on a plate, which are referred to as patches (as
in e.g. Dumas et al., 2013). Our model is inspired by experimental protocols in
which wells are inoculated with bacteria by pipetting a fixed volume into each
well, grown for an incubation period, harvested and the contents redistributed
to a new plate of wells (e.g. Griffin et al. 2004; Kümmerli et al. 2009, 2010;
Livingston et al. 2012; Dumas and Kümmerli 2012) (Figure 1). This gives two
levels of dynamics: the local dynamics (what happens inside a patch or well) and
the global dynamics (what happens at the metapopulation, or plate, level). The
local interactions are based on similar assumptions as in Brown et al. (2009).
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Figure 1: Illustration of the model. Patches are represented by tubes, which could be wells
on a multi-well plate. First, the bacteria compete in each tube for a fixed time τ (causing
local competition among strains present in the patch). Then, the solutions are harvested and
mixed. A fixed volume µ is taken and transferred to new tubes (causing global competition
among strains for places in the inoculum). The cycle starts anew after a time τ .

Within-patch dynamics
Within a particular patch several strains of bacteria may coexist. Within this
patch a given strain i has a density of Qi cells, which produce siderophores with
per capita rate bi. The production of siderophores is costly and the metabolic
cost incurred reduces the per capita growth rate of the strain by αbi. We assume
that iron concentration, denoted F , is low and constant. Siderophores can be
either free in the environment, or bound with iron. The dynamics of the free
siderophores are described by the differential equation

dS

dt
=
∑
i

biQi − uFS (1)

where
∑
i biQi is the total amount of siderophores produced and uFS the rate

with which siderophores bind with iron.
The dynamics of bound siderophores is given by

dSF
dt

= uFS − θSF
∑
i

Qi (2)

where θSF
∑
iQi is the assimilation of bound siderophores by bacteria.

Next we describe the dynamics of the different populations of bacteria within
a patch. The dynamics of strain Qi is given by

dQi
dt

= Qi (r (1− κQ)− αbi + εθSF − λ) (3)

where r(1− κQ) is the rate of density-dependent reproduction and where Q is
the total density of bacteria Q =

∑
iQi, αbi the cost of siderophore production,
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Symbol Description Value used

N Average number of bacteria in the inoculum
S Density of free siderophores
SF Density of bound siderophores
Qi Density of strain i
Q Density of the total population
bi Rate of siderophore production of strain i 0 to 40
F Iron concentration 10−2

u Affinity of siderophore to iron ions 103

λ Bacteria mortality 10−2

θ Rate of assimilation of siderophores 10−2

ε Increase in growth rate due to siderophore assimilation 1
α Decrease in growth rate due to siderophore production 10−2

r Base-line growth rate 1
κ Density-dependence in growth rate 10−2

µ Volume transferred to seed a patch 10−2

τ Duration of local interaction 10

Table 1: Table of symbols, with the value for parameters used in the figures (unless otherwise
indicated).

εθSF the increase in growth through the assimilation of bound siderophores, and
λ the mortality rate. Together with the initial conditions for these equations
this completely describes the within-patch dynamics.

For a single strain the within patch dynamics allow for, at most, one positive
equilibrium that is always stable. If there are more strains, numerical simula-
tions for a range of parameters showed that the dynamics always go to a stable
equilibrium. The total bacterial numbers tend to settle quickly, after which the
different strains compete, leading to a slow process of replacement of all strain
by the strain with the lowest value of bi. We could not derive explicit solutions
for this non-linear system of ODEs, but in what follows we will derive a close
approximation to the dynamics.

To approximate the dynamics, following the rationale given in Jansen and
Mulder (1999), we first describe the dynamics in terms of the total local bacterial
density Q, and the fraction fi of the population of strain i, where fi = Qi/Q.
We can now rewrite the dynamics as

dS

dt
= Qb̄− uFS (4)

dSF
dt

= uFS − θSFQ (5)

dQ

dt
= Q

(
r (1− κQ)− αb̄+ εθSF − λ

)
(6)

dfi
dt

= αfi(b̄− bi) (7)
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where b̄ =
∑
i bifi.

It is easy to check that

fi,t =
fi,0e

−αtbi∑
j fj,0e

−αtbj
(8)

is a solution of (7). We thus find that the average siderophore production is a
function of time, given by

b̄t =

∑
i bifi,0e

−αtbi∑
j fj,0e

−αtbj
. (9)

If this change in the proportion of the different strains of bacteria is slow com-
pared to the change in the total bacterial population we can apply a time scale
separation. The fast change in the total bacterial and siderophore densities will
lead them to quasi-steady states (denoted with tildes) given by

S̃(b̄t) =
b̄tQ̃(b̄t)

uF
(10)

S̃F (b̄t) =
b̄t
θ

(11)

where the stable quasi-steady state of the bacteria Q̃(b̄t) is

Q̃(b̄t) =
1

rκ
(r + (ε− α)b̄t − λ). (12)

If there is only one strain present, with siderophore production rate b, then
Q̃(b) is simply the equilibrium density. The approximate rate of approach of

the variables S, SF and Q to the quasi steady state is, respectively, uF , b̄Q̃ and
rκQ̃. In contrast, the fraction of the bacterial population fi changes with rate
α(b̄t − bi). Therefore quasi-steady state approximation above requires

uF, b̄Q̃, rκQ̃� α|b̄t − bi|, (13)

or in words, the rate of binding of siderophores to iron, the siderophore produc-
tion rate and the maximum growth rate of the bacterial population should be
much bigger than the change in the relative dominance of individual strains. If
the time scales separate the quasi-steady state Q̃(b̄t) changes slowly over time
with b̄t, which depends on time through equation (9) (Figure 2). The time scale
separation works particularly well for a population that is largely monomorphic
and in which strains with marginally different traits appear occasionally.

Global population dynamics and fitness

In the previous section, we considered the dynamics of a collection of strains
with different siderophore production rates within a patch. In this section we will
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Figure 2: Example of the dynamics in a patch being invaded by a cheat. The predominant
strain, produces siderophores at rate b1. A second strain, which produces siderophores at
rate b2, can invade because it produces siderophores at a lower rate (b1 > b2), and could
thus be seen as a ’cheat’. The grey drawn lines are the result of numerical integration of the
model for the within patch dynamics, the dashed lines are the approximation that we obtained
through a separation of time scales. In most places the two lines overlap, meaning that the
approximation is very close. The top panel (a) shows the density of bacteria in the patch.
The middle panel (b) shows the frequency of the mutant (‘cheater’ strain). The lower panel
(c) shows the mean production of siderophores. As the competitor increases in frequency,
the density of bacteria decreases because there are less siderophores produced. Note the
difference in timescales: the bacterial density very quickly goes up to its quasi equilibrium.
Once that has happened the balance between the two strain changes at a much slower time
scale. Parameters as in Table 1, with in addition b1 = 10, b2 = 7.
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focus on the evolution of this production rate at the metapopulation level, and
ask whether there is an evolutionary stable strategy: an unbeatable siderophore
production rate, such that populations which produce siderophores at this rate
cannot be invaded by strains which produce slightly more or less siderophores.
To find this unbeatable rate we will establish which strains are evolutionarily
stable by applying the approach used in adaptive dynamics, based on whether a
strain with a given siderophore production rate can be invaded by a rare mutant
with a different siderophore production rate.

As outlined above, we consider a discrete-time metapopulation of infinitely
many patches, where in every cycle the patches are inoculated with a random
sample taken from the previous growth cycle of pooled subpopulations and then
allowed to grow for a time τ . In reality the number of patches will be finite, but
our assumption can be justified if this number is sufficiently large. For instance,
for a lab based protocol based on plates with 96 wells (e.g Livingston et al.
(2012)), the variation in the average size of the inoculum that the finite number
of wells causes in an experiment using several 96 well plates is unlikely to be a
significant factor.

We assume that the number of cells in the inocula is a random variable, i,
which follows a Poisson distribution, P(i,N), with mean N . This describes a
distribution of the number of cells in fixed volume as would result from pipetting
a small volume from the same solution (Livingston et al., 2012, V. Calcagno,
pers. comm.). No further migration occurs until the end of the interaction
within the patches, when all subpopulations are pooled again. We assume that
the amount of siderophores that is transferred with the inoculum is negligible.

We will start with the description of a global population consisting only of a
resident strain with siderophore production rate b. In all inoculated patches, the
production rate is therefore b̄ = b (we assume that the length of the interaction,
τ is sufficiently long for the local populations to converge to their equilibrial
densities). These patches will thus produce Q̃(b) bacteria. There is obviously
no output if a patch receives no inoculum, which happens with a probability
P(0, NT ) = e−NT where NT is the average number of bacteria in the inoculum.
Therefore, when at the end of a cycle all patches are pooled together, the con-
centration of bacteria in the pool is

∑∞
i=1 Q̃(b)P(i,NT ) = Q̃(b)(1 − P(0, NT )).

If a volume µ is taken from the pool to inoculate each new patch, the average
number of bacteria in the next cycle is

NT+1 = µQ̃(b)(1− P(0, NT )) (14)

which defines the dynamics of the average inoculum size NT and the global
population dynamics. The average will converge to an equilibrium, given by the
solution of

N = µQ̃(b)
(
1− P(0, N)

)
. (15)

Next, we consider a mutant appearing in the population, which produces
siderophores at a rate b∗. The output of this mutant at the next cycle depends
on how many of its propagules arrive in every patch. The distribution of mutant
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inocula, is also random and given by the Poisson distribution P(j,N∗T ), where
N∗T is the average number of mutants in the inocula in growth cycle number T
and j is the actual number of mutants. Note that while N∗T may be an arbitrarily
small real number, j is a non-negative integer, typically either zero or one (if the
probability of two or more mutants arriving in the patch is vanishingly small).
Even if the mutant is globally rare, in the few patches where it does arrive
it may form a significant proportion of the local population. As illustrated in
Figure 2, the introduction of a new competitor in a patch will set off a process
of competition and partial replacement, which will affect the overall bacterial
density. The global dynamics are given by

NT+1 = µ

∞∑
i=1

∞∑
j=0

P(i,NT )P(j,N∗T )Q̃(b̄)(1− fτ ) (16)

N∗T+1 = µ

∞∑
i=0

∞∑
j=1

P(i,NT )P(j,N∗T )Q̃(b̄)fτ (17)

where i and j respectively count the number of residents and mutants in the
inoculum and fτ and 1 − fτ denote the fractions of mutants and residents
respectively, at the end of the interaction, when t = τ . The average siderophore
production in a patch with mutants at the end of the interaction is given by
b̄τ = fτ b

∗+(1−fτ )b, and the total amount of bacteria in the patch is then Q̃(b̄τ )
(note that this depends on the resident and mutant traits, b and b∗, through
b̄τ ). The fractions relate to the number of bacteria in the inoculum through (8);

the initial fraction of mutants is given by f0 =
j

i+ j
.

Next, we make the assumption that the mutant is globally very rare, so that
the resident’s (global) dynamics is not affected by the mutant (Metz et al., 1992;
Geritz et al., 1998) which will thus settle at the equilibrium value N associated
with b. As the mutant is rare it is very unlikely to have a patch inoculated with
more than one mutant (for small N , P(1, N) = Ne−N ≈ N and P(i,N) ≈ 0 for
i > 1). The expression for the global dynamics of the mutant then simplifies to

N∗T+1 ≈ µN∗T
∞∑
i=0

P(i,N)Q̃(b̄τ )fτ . (18)

The fitness of a strain with a siderophore production rate b∗ in a population
which produces siderophores at rate b is thus

W (b∗, b) = µ

∞∑
i=0

P(i,N)Q̃(b̄τ )fτ . (19)

Using equilibrium condition (15) to eliminate µ and, using the fact that for
Poisson distributions it holds that P(i,N)N = P(i + 1, N)(i + 1), this can be
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rewritten as

W (b∗, b) =

∑∞
i=0 P(i+ 1, N)Q̃(b̄τ )(i+ 1)fτ

(1− P(0, N))Q̃(b)
(20)

where it should be remembered that the functions b̄τ and fτ depend on both
b and b∗ (under mild assumptions a similar result can be derived for other
distributions than Poisson (Jansen, 2011)). If the mutant’s trait is the same as
that of the resident the fitness is unity, that is W (b, b) = 1. This follows from

the fact that if b∗ = b then Q̃(b̄τ ) = Q̃(b) and (i+ 1)fτ = 1.
Because our model describes the full dynamics between any pair of traits, the

fitness function is valid for any pair of trait values. We can therefore construct
a pairwise invasibility plot (Figure 3a), which shows which mutants with trait
b∗ can invade a resident population with trait b (Metz et al., 1992; Geritz et al.,
1998). From this, we can also construct the mutual invasibility plot, showing the
areas where both resident and mutant both have a positive fitness when rare
and thus where combinations of strains with these traits can coexist (Figure
3b). The diagram also indicates that there is an evolutionarily stable trait; a
population of individuals carrying this trait cannot be invaded by strains with
similar traits.

Marginal fitness and Hamilton’s rule

The pairwise invasibility plot (Figure 3a) shows that an evolutionarily stable
point can exist. To characterise and interpret the trait value for this point we
will derive the marginal fitness, which is the change of fitness with a small
change of siderophore production rate, which is proportional to ∂W

∂b∗ . To do so
we first observe that if there are only two traits, those of the mutant and the
resident, the dynamics of fτ obeys logistic growth. It follows from (8) that, if
the mutant differs marginally from the resident, the fraction of mutants at time
τ changes with the trait as:

dfτ
db∗

∣∣∣∣
b∗=b

≈ −ατf0(1− f0), (21)

and from (9) that
db̄τ
db∗

∣∣∣∣
b∗=b

≈ f0. (22)
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Figure 3: Invasion diagrams. (a) Pairwise invasibility plot. Areas where the fitness of the
mutant is positive are white and areas where the fitness of the mutant is negative are black.
(b) Mutual invasibility plot. White areas designate combinations of trait values that are
mutually invasible. Parameters as in Table 1.

12



Because we only need to consider patches with one mutant in the inoculum we
have f0 = 1/(1 + i). Putting this all together gives for the marginal fitness

∂W (b∗, b)

∂b∗

∣∣∣∣
b∗=b

=

∑∞
i=0 P(i+ 1, N)

[
Q̃′(b)f0 − ατQ̃(b)(1− f0)

]
(1− P(0, N))Q̃(b)

=

∑∞
i=1 P(i,N)

[
Q̃′(b) 1

i − ατQ̃(b)(1− 1
i )
]

(1− P(0, N))Q̃(b)
,

(23)

where the prime stands for the derivative of a function with respect to its argu-
ment.

Inspection of this expression reveals that marginal fitness depends on the
relatedness (Grafen, 1985; Queller and Goodnight, 1989) given by

R =

∑∞
i=1 P(i,N) 1

i

1− P(0, N)
. (24)

If the mutant is globally rare, the fraction 1/i is the probability to randomly pick
a mutant bacterium from a patch that contains mutants. Because for neutral
mutants the local siderophore concentration is proportional to the mutant cell
density, this is also the probability that a rare, selectively neutral mutant indi-
vidual retrieves a siderophore that was produced by itself or a fellow mutant. It
can be shown that the expression (24) also carries the interpretation of related-
ness as the probability to pick two individuals of the same type from the same
patch over and above the probability of picking two individuals of the same type
from the global population, relative to the probability of picking the same pair
of types in the population at large (Queller and Goodnight, 1989; Jansen, 2011).
For the latter interpretation the mutant does not have to be rare; also note that
this result and interpretation can be generalised to other distributions than a
Poisson (Jansen, 2011).

Thus we can rewrite the marginal fitness as

∂W (b∗, b)

∂b∗

∣∣∣∣
b∗=b

=
Q̃′(b)

Q̃(b)
R− ατ(1−R) (25)

In the first term ( Q̃
′(b)

Q̃(b)
R = (ε−α)

rκQ̃(b)
R) we recognise that if there is a net benefit

to siderophore production (ε > α) a mutant which produces more siderophores
gains a benefit from the change of output from the patch: the share of the benefit
is proportional to the relatedness. The second term ατ(1 − R) is the cost this
mutant will pay through the decreased competitive ability, from its reduction in
growth rate that results from siderophore production. As competition amongst
the mutants is neutral, this cost is proportional to the fraction of unrelated
individuals (1 − R) (see also Jansen and Vitalis, 2007; Bryden and Jansen,
2010). The marginal fitness thus has three contributing elements: the change
in the output of a patch, the change in competitive ability, and thirdly the
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relatedness. The first two elements are associated with local behaviour and can
be quantified by straightforward experimentation. The relatedness results from
the global dynamics and associated redistribution. It can be assessed through
the global bacterial density, or through the fraction of patches that are occupied
(see Fig. 4).

An alternative, and perhaps more familiar, way of writing the marginal
fitness is

∂W (b∗, b)

∂b∗

∣∣∣∣
b∗=b

= R

(
Q̃′(b)

Q̃(b)
+ ατ

)
− ατ (26)

in which we recognise the structure of Hamilton’s rule (Hamilton, 1964),

∂W (b∗, b)

∂b∗

∣∣∣∣
b∗=b

= RB − C (27)

The important result to notice here is that we do recover Hamilton’s Rule
(Hamilton, 1964), but with costs and benefits that are compound functions
of both physiological and environmental parameters. For instance, the overall
benefit (B = Q̃′(b)Q̃(b)−1 +ατ) consists of the increase of the output of a patch
plus the benefit of not suffering from competition with related individuals. De-
riving costs and benefits from the local dynamics thus allows to gain insight in
the mechanisms causing frequency and density dependence. As we will discuss
later in some more detail, note that the cost and benefits are not constant but
depend on the length of the interaction.

Evolutionarily Stable Strategies

We can now calculate the candidate evolutionary stable siderophore pro-
duction rates from the equation RB − C = 0. To show that solutions are
evolutionary stable strategies, however, we have to demonstrate that they are
evolutionary and convergence stable. It can be seen from the sign structure in
the pairwise invasibility plot that the candidate points are always convergence
stable (Metz et al., 1992). The calculation of the evolutionary stability requires
that the second derivative of the fitness function is negative (Geritz et al., 1998).
We find that production rates are only evolutionary stable if(
Q̃′′

Q̃
− 2

Q̃′2

Q̃2

)
R−α2τ2

(
2

(1−R)2

R
− (1−R) + 2

(
R−

∑∞
i=1 P(i,N)

(
1
i2

)
1− P(0, N)

))
< 0.

(28)
In the appendix we show that this condition is always fulfilled and that this is
independent of the way the patches are inoculated. For the model presented
here Q′′ ≤ 0; however if Q′′ > 0 it is possible the singular point is not evolution-
arily stable, depending on the magnitude of the second derivative. In this case
disruptive selection and evolutionary branching would be possible. Note that
the condition above contains information about the population structure that
goes beyond relatedness. The term in 1

i2 suggests that for evolutionary stability
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the chance for a mutant to encounter 2 other mutants is an important factor
(see also Ohtsuki 2010)

For our model all singular points are thus evolutionarily stable. Figure 4
shows the values of b at the ESS as a function of the length of the interaction.

The ESS investment in siderophore production depends on all ecologically
relevant parameters. Of particular interest is the transfer volume µ: if µ in-
creases more individuals will arrive in a patch to start a new cycle, reducing
the relatedness and giving kin selection less potential. Figure 6a shows that
this is indeed the case. The decrease of the ESS value is caused by the de-
crease in relatedness (Figure 6b). An increase in µ will cause an increase in
N , which in turn will cause the relatedness (given by Eq. 24) to decreases with
µ (Figure 6b). This result is interesting as transfer volume, µ, can be easily
manipulated experimentally.

All singular points in this model are always evolutionarily stable. However,
evolutionary stability is a local form of stability, which tells us that strains
that are marginally different cannot invade. It is possible that at the ESS
strains with very different siderophore production rate can invade. For suitably
chosen parameters, the pairwise invasiblity plot in Figure 7 shows that it is
indeed possible that strains with a much larger siderophore production rate can
invade. This is possible, because these strains can survive in patches that are
left empty by the strain at ESS. If the siderophore production rate is very large,
these strains can persist in the restricted number of patches to which they have
sole access, even though they are eliminated in patches already occupied by
the strain at ESS. Such ultra-cooperators are likely to evolve to their own ESS
value, and in this way a diversity of strains can coexist in an evolutionarily
stable manner (Jansen and Mulder, 1999).

Discussion
We found that for some parameter combinations, siderophore producer (‘cooper-
ator’) strains can indeed stably coexist with non-producer (‘cheater’) strains,
confirming the results of earlier studies (Ross-Gillespie et al., 2007). However
we also found that typically such producer, non-producer pairs are not evol-
utionarily stable and can be invaded by phenotypically similar intermediate
strains, that is, strains that do produce siderophores but at a slightly different
rate. Such intermediates are often predicted by adaptive dynamics analyses,
where phenotypes can be drawn from a continuum instead of from a discrete,
predefined set (Metz et al., 1992) and may also arise in cooperative interactions
(van Baalen and Rand, 1998; Le Galliard et al., 2003). The evolutionary end
result is therefore an intermediate production rate rather than a mixture of
producers and non-producers.

Theory predicts that under certain conditions populations may diverge to
produce a pair of evolutionarily stable daughter populations (or more) (Metz
et al., 1992; Geritz et al., 1998), but this will not occur with the fitness functions
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of transfer volume µ. The relatedness is given by R =
∑∞

i=1 P(i,N) 1
i

1−P(0,N)
=

Ei(N)−γ−lnN

eN−1
where

γ ≈ 0.5772 is the Euler-Mascheroni constant and Ei the exponential integral. The relatedness

depends on µ through N , which is a solution of N = µQ̃(b)(1−e−N ). This has to be evaluated

for the value of b that satisfies
∂W (b∗,b)
∂b∗

∣∣∣
b∗=b

= 0. In practice, this plot is easiest constructed

as a parametric plot, by calculating, for a given value of N , the corresponding R, then work

out the ESS value for b, and with this information calculate µ from µ = N(Q̃(b)(1−e−N ))−1.
Parameters as in Table 1.
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that we derived. A necessary condition for divergence is that the equilibrium
bacterial density is a convex function of the siderophore production rate. That
said, it is possible that further strains can invade, if they produce substantially
more siderophores. These strains typically persist in the patches that are left un-
occupied. Because such strains are competitively weak, they do not have much
impact on the ESS value of the most competitive strain (Jansen and Mulder,
1999). This mechanism can lead to evolutionary stable diversity in which strains
with moderate levels of cooperation coexist with strains with very high levels of
cooperation. In how far the existence of such ultra-cooperators is realistic we
do not know, although also in other studies they have been predicted on the-
oretical grounds (Brown et al., 2009). As hypermutable strains of siderophore
producing bacteria are found in the wild (Oliver et al., 2000), it is plausible that
large phenotypic effects can occur through mutation.

In agreement with other studies (West and Buckling, 2002; Ross-Gillespie
et al., 2007; Kümmerli et al., 2009, 2010) the outcome can be understood
in terms of kin selection. If all members of the population are fully related
siderophore production would be maximal; but the fact that the population
infecting a host typically results from multiple ancestors (either because the in-
fective dose is a mixture, or because of multiple infection events), reducing the
average relatedness and, with it, the incentive to cooperate. In contrast with
previous approaches, however, in our analysis the components of Hamilton’s
Rule, (that is, benefits, costs and relatedness) are not fixed constants but emerge
from the underlying within- and between-host dynamics. A consequence is that
fitness costs and benefits are compound variables that do not simply depend on
the physiological costs and benefits as is usually assumed (cf. Eqn (26)).

One can incorporate considerable ecological detail in evolutionary models by
using agent based simulation studies. Such simulation models have been made
in the context of siderophore production and the evolution of public goods (see,
e.g. Xavier and Foster (2007); Dobay et al. (2014)). Although such models are
useful for investigating the effect of mechanism, we argue that there is merit
in the expression and interpretation of fitness functions in a form compatible
with inclusive fitness theory. The advantage is that this identifies the compon-
ents that separate the local interaction (the cost and benefits) from the effect
of global redistribution and assortment (relatedness). This allows, firstly, to
reduce fitness expressions to simpler components which, in principle, are meas-
urable. Relatedness can be measured using standard methods based on neutral
variants. In principle, the costs and benefits can be estimated in experiments
after manipulation of the relatedness (using a linear regression of marginal fit-
ness on relatedness), but this is difficult without an analytical derivation and
interpretation of the results. A second conceptual advantage is that, once the
cost and benefits have been established, results can then be generalised to more
complicated spatial arrangements of the local populations.

An important novel aspect of our analysis is that it shows how the dynamical
processes involved in the use of public goods integrate to produce inclusive
fitness. This allows us to interpret the fitness elements in terms of observable
and measurable quantities: here the increased output that comes with increased
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siderophore production, the decreased competitive ability and the relatedness.
To do this requires models that include relevant details of the ecology and
experimental protocol, but that at the same time are mathematically tractable
so that the fitness can be teased out (Rousset and Ronce, 2004). These models
need to lie between the strategic models based on arguments of plausibility
and convenience and highly detailed simulation models. Here, we do this by
approximating the local dynamics by a separation of time scales; a technique
which is applicable well beyond the simple ecology dealt with here (see, for
instance, Jansen and Mulder (1999); Bryden and Jansen (2010); Jansen (2011)).

An important additional advantage of such an approach is that it not only
allows us to gain insight in the short-term evolutionary dynamics (whether a
given mutant can invade, as given by Hamilton’s Rule) but also where the long-
term evolutionary process will end (at an ESS characterised by an intermediate
production rate). Approaches that limit the analysis to two fixed types (e.g.,
‘cooperators’, ‘cheaters’) cannot make such predictions.

We have shown that the effect of competition is modulated through the
length of the local interaction. If the interaction is long-lasting, then compet-
ition dominates and the ESS level for public good production is low. If the
interaction is for a short period of time, cooperation is promoted and high
levels of public good production arise. This suggests a way to experimentally
vary the importance of competition through variation of the time of interac-
tion. The relative importance of competition has previously been investigated
through manipulation of the “scale of competition” (Frank, 1998), which de-
scribes the extent to which patches can export the benefits from cooperation
(Grafen, 1984). Varying the duration of the interaction provides an alternative
for this manipulation that is arguably of closer to the ecology of natural pop-
ulations than imposed variations of the scale of competition. An alternative
method of experimentation, in particular to demonstrate the role of kin selec-
tion, is leaving the patch duration constant but varying the transfer volume µ:
if µ is small, mutants will face little competition with residents whereas if µ
becomes larger there will be more residents in the inoculum and hence com-
petition with non-kin will become more important. A change in µ will affect
the distribution of immigrants, and through this, the relatedness, R, without
affecting other elements of the marginal fitness. To obtain interesting results,
relatedness values should be neither too low nor too high; the average number
of bacteria per patch should roughly be between 0.1 and 10. Note that the
occurrence of empty patches in the experiment is an unavoidable consequence
if one aims for experiments with relatively high relatedness.

Our model is obviously a very simple one that mimics an experimental setup.
More than that, it incorporates all important aspects of bacteria and their
interaction with the environment. For instance, we assume that the system is
well-mixed at the patch level, so that locally all bacteria profit equally from the
siderophores that have been released. This will change if one would incorporate
diffusion of siderophores, either locally at a small scale, or at the larger inter-
patch scale (see Allen et al. (2013); Dobay et al. (2014)), but this is an aspect
that we did not include in our model for the sake of mathematical tractability.
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However, the method that we have outlined here can, in principle, also be used
to assess where siderophores sit on the continuum between common and private
goods and how this depends on the details of the reassortment between cycles.
For such more complicated situations we anticipate that the calculation of the
relatedness measure will become cumbersome, but that the other elements of
the marginal fitness (changes in output and competitive ability) will remain
qualitatively unaffected.

An important aspect that is missing from most models (including the one
we studied here) is the fact that siderophore production is not a fixed constant,
but dependent on the conditions. Not surprisingly, bacteria do not produce
siderophores if there is sufficient iron available (Kümmerli et al., 2009; Harrison,
2013). However, as Alizon (2013) points out, because not enough is known
about the mechanisms it may be premature to consider this plasticity as an
adaptation to the presence of cheaters. An important next step would thus be
to use our approach to predict how production strategies evolve rather than just
production rates, as a function of various aspects of the bacterial environment.

Our model does predict that the evolutionary dynamics are dominated by an
optimum compromise between cheating and cooperation, but that at such evolu-
tionarily stable strategies highly cooperative strains can invade — if the bacteria
are limited to using one standard type of siderophore. However, it should be
noted that bacteria have potentially the means to exclude other groups from
using the public good and to reserve the benefits to themselves and their kin
(Dionisio and Gordo, 2007). What happens if, rather than changing the rate
of production, mutations affect the type of siderophore that is produced is in-
vestigated in a previous study, in which we found that cheaters can regulate
the diversity of siderophore types: even if they rarely appear in the population,
they can stabilise the balance of the different types of siderophore by episodically
counteracting genetic drift (Lee et al., 2012). A further theoretical possibility is
that coexisting pairs of cheaters and cooperators strains coexist with other such
pairs that use different types of siderophore. This can result in a coexistence
equilibrium or complex chromodynamics: the coexistence of different recogni-
tion markers under non-equilibrium dynamics (Jansen and van Baalen, 2006).
Our results suggest that it is possible that the coexistence of cheaters and co-
operators, together with the dynamics that go with such recognition systems
(Lee et al., 2012; Jansen and van Baalen, 2006), may emerge if both production
rate and type can evolve simultaneously.
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Appendix
1. Evolutionary Stability

To find out if our candidate ESS points are evolutionarily stable we need to
assess whether

∂2W (b∗, b)

∂b∗2

∣∣∣∣
b∗=b

< 0

To do so we first derive from (8) that

d2fτ

db∗2

∣∣∣∣
b∗=b

≈ α2τ2f0(1− f0)(1− 2f0), (29)

and from (9) that
d2b̄τ

db∗2

∣∣∣∣
b∗=b

≈ −2ατf0(1− f0). (30)

The second derivative takes the form

∂2W (b∗, b)

∂b∗2

∣∣∣∣
b∗=b

=

∑∞
i=0 P(i+ 1, N)

[
Q̃′′f0 − 4ατQ̃′(1− f0) +Q(b)α2τ2(1− f0)(1− 2f0)

]
(1− P(0, N))Q̃(b)

=

∑∞
i=1 P(i,N)

[
Q̃′′ 1i − 4ατQ̃′(1− 1

i ) + Q̃α2τ2(1− 1
i )(1− 2 1

i )
]

(1− P(0, N))Q̃(b)

=
Q̃′′

Q̃
R− 4ατ

Q̃′

Q̃
(1−R) + α2τ2

∑∞
i=1 P(i,N)(1− 1

i )(1−
2
i )

1− P(0, N)

using that at the ES point Q̃′

Q̃
= ατ 1−R

R , and ατ = Q̃′

Q̃

R
1−R this can be written

as
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∂2W (b∗, b)

∂b∗2

∣∣∣∣
b∗=b

=

(
Q̃′′

Q̃
− 2

Q̃′2

Q̃2

)
R− α2τ2

(
2

(1−R)2

R
−
∑∞
i=1 P(i,N)(1− 1

i )(1−
2
i )

1− P(0, N)

)
.

Note that∑∞
i=1 P(i,N)

(
1− 1

i

) (
1− 2

i

)
1− P(0, N)

=

∑∞
i=1 P(i,N)

(
1− 3

i + 2
i2

)
1− P(0, N)

can be written as

1− 3R+ 2

∑∞
i=1 P(i,N)

(
1
i2

)
1− P(0, N)

Because 2− 4R ≥ 1− 3R for 0 ≤ R ≤ 1, therefore

2
1− 2R

R
≥ 1− 3R

for 0 ≤ R ≤ 1. Because R =
∑∞

i=1 P(i,N)) 1
i

1−P(0,N)
≥

∑∞
i=1 P(i,N)) 1

i2

1−P(0,N)
with equality if

R = 1 (which implies that N = 0) it follows that

2
(1−R)2

R
−
∑∞
i=1 P(i,N)(1− 1

i )(1− 2 1
i )

1− P(0, N)
=

2
1− 2R

R
− (1− 3R) + 2R− 2

∑∞
i=1 P(i,N)

(
1
i2

)
1− P(0, N)

≥ 0

if N ≥ 0, with equality if R = 1 and N = 0.
Because Q′′(b) = 0 we have always that

Q̃′′

Q̃
− 2

Q̃′2

Q̃2
< 0.

It follows that if we define bES as

∂W (b∗, bES)

∂b∗

∣∣∣∣
b∗=bES

= 0

if Q̃(bES) > 0 (which implies ε > α) then

∂2W (b∗, bES)

∂b∗2

∣∣∣∣
b∗=bES

< 0.

This means the candidate evolutionary stable siderophore production rates are
indeed always evolutionarily stable, provided Q̃ > 0 at the ESS. This result
holds for all inoculum distributions.
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