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The one clean qubit model of quantum computation (DQC1) efficiently implements a computa-
tional task that is not known to have a classical alternative. During the computation, there is never
more than a small but finite amount of entanglement present, and it is typically vanishingly small in
the system size. In this paper, we demonstrate that there is nothing unexpected hidden within the
DQC1 model – Grover’s Search, when acting on a mixed state, provably exhibits a speed-up over clas-
sical with guarantees as to the presence of only vanishingly small amounts of quantum correlations
(entanglement and quantum discord) – while arguing that this is not an artefact of the oracle-based
construction. We also present some important refinements in the evaluation of how much entangle-
ment may be present in DQC1, and how the typical entanglement of the system must be evaluated.

I. INTRODUCTION

Any computation whose quantum algorithm has a su-
perior scaling of running time compared to its classical
counterpart ought to pass through an intermediate state
with non-trivial quantum properties, e.g. entanglement.
Indeed, for pure-state computations, it has been shown
that entanglement is necessary [1]. However, computa-
tion involving mixed states is a far more subtle issue,
with no firm resolution, although it is looking increas-
ingly likely that quantum discord must be present in or-
der for there to be an exponential speed-up [2, 3].

The DQC1 model [4] can provide important insights.
Expressed as a decision problem, this is defined as:

Problem 1. Given an efficient classical description of a quan-
tum computation U on n qubits, and a promise that either
Tr(U) > 1/poly(n) or Tr(U) < −1/poly(n), determine
which is the case with error probability ε < 1

3 .

There is no known classical algorithm which can effi-
ciently solve this problem, while there is a quantum
circuit that is remarkably simple (Fig. 1). In this cir-
cuit, there is one special (‘clean’) qubit which is initially
prepared in the state |+〉 = (|0〉 + |1〉)/

√
2, and a set

of n qubits are prepared in the maximally mixed state
1/2n. After applying controlled-U between the clean
qubit (control) and the mixed qubits (target), we can
estimate the probabilities that the clean qubit is in the
state |+〉 (to find Re(Tr(U))) or (|0〉 + i |1〉)/

√
2 (to find

Im(Tr(U))). There is a very obvious division in the sys-
tem between the clean qubit and the mixed ones. As
such, the authors of [4] examined the entanglement be-
tween that bipartition of the system, and discovered it
was 0. Entanglement seemed to not be necessary for
mixed state quantum computation, although other mea-
sures of non-classicality such as the quantum discord
and measurement-induced disturbance have since been
shown to be non-zero across that bipartition [5, 6].

Detecting entanglement in a multipartite state using
bipartite divisions is, however, quite subtle. A clear
demonstration of this is the distribution of entangle-
ment using separable states [7, 8]; just because two of

|+〉 •

1

2n U


FIG. 1. The DQC1 model. There is no entanglement present
in the bipartite split between the top (special) qubit and the
rest. Estimation of the trace of U proceeds by performing
measurements in the bases (|0〉±|1〉)/

√
2 and (|0〉± i |1〉)/

√
2.

the three possible bipartitions of a 3-qubit system have
no entanglement does not mean that the third biparti-
tion has no entanglement. So it is with the DQC1 model
– in [9], it was demonstrated that by considering differ-
ent bipartitions, there is indeed entanglement present.
Two additional results are provided in [9]: upper and
lower bounds on the maximum amount of entangle-
ment present across any bipartition and a numerical in-
vestigation of the entanglement produced by a typical
unitary (in the sense of selecting a U uniformly at ran-
dom from the Haar measure). This investigation sug-
gests that the entanglement is typically exponentially
small in n. So, although there is some entanglement
present, it is a vanishingly small amount on average.

Even the presence of almost no entanglement in the
computation might seem surprising. However, in
this paper, we draw parallels with a noisy version of
Grover’s Search [10] in which we demonstrate the ex-
istence of a quantum speed-up in the presence of van-
ishingly small entanglement (such a result could have
been proven from [11] but does not appear to have
been), and other non-classicality measures such as the
quantum discord [12, 13]. Moreover, unlike the case of
DQC1 where the speed-up over classical is only believed,
Grover’s search is subject to an oracle-based complex-
ity classification with a proven gap over the classical
case. Placed in this context, the power of DQC1 seems
much less surprising. However, we only demand the
existence of a quantum speed-up, and do not address
the important conceptual transition between a polyno-
mial and an exponential speed-up. We also improve the
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results of [9], giving a tight upper bound on the entan-
glement present in the DQC1 model for any U .

A further criticism of the DQC1 model (or, similarly,
the Grover search that we describe here) is that it as-
sumes an implementation of the controlled-U gate. In
practice, we have no such implementation, and need
to decompose the action in terms of elementary gates.
Even if the net implementation of controlled-U yields
little or no entanglement, there is no a priori reason
why all the intermediate steps should also be almost
entanglement free across all bipartitions. On the other
hand, if the controlled-U is treated as an oracle, then we
can consider other oracle based problems that are even
more trivial in the entanglement sense – the Bernstein-
Vazirani problem transforms a product state into a prod-
uct state [14, 15]. The internal workings of the oracle are
evidently important, and receive further discussion.

A. Notation

Consider a density matrix of n+1 qubits, ρ. Whenever
we write ρ in the context of DQC1, we refer specifically
to the output of the circuit for estimating the trace of U
(Fig. 1), which is a block matrix of the form

ρ = 1
2n+1

(
1 U†

U 1

)
. (1)

We denote by ρy , where y ∈ {0, 1}n, the partial trans-
pose of ρ taken over the non-clean qubits i : yi = 1, and
never the clean qubit, without losing generality. Simi-
larly, Uy denotes the partial transpose of U , such that

ρy = 1
2n+1

(
1 U†y
Uy 1

)
. (2)

The Hamming weight of the string y is denoted by wy .
Throughout this paper, the multiplicative negativity

[16, 17] is chosen as the entanglement measure in order
to maintain consistency with [9]. If Λy = spec (ρy) is the
spectrum of ρy , then the multiplicative negativity of ρ
with respect to bipartition y is

My =
∑
λ∈Λy

|λ|. (3)

If no entanglement is present, My = 1 for all y ∈ {0, 1}n,
while My > 1 implies the presence of entanglement.

II. MAXIMUM ENTANGLEMENT IN DQC1

We start by examining the entanglement properties of
the DQC1 model, strengthening the assertions in [9].

Theorem 1. For any unitary U , the output ρ of the DQC1
computation always satisfies

My ≤
5
4

for all possible bipartitions y ∈ {0, 1}n.

Proof. Since it is not immediately clear that Uy is normal,
we use the singular value decomposition of Uy ,

Uy = RDV †

where R and V are unitary matrices and D is diago-
nal, with non-negative diagonal elements di. We need
to find the eigenvalues of ρy , but note that the eigenval-
ues are invariant under the application of any unitary.
We apply the unitary transformation of controlled-R†
(controlled off the clean qubit), followed by a Pauli-X
on the clean qubit, controlled-V †, and finished by an-
other Pauli-X on the clean qubit. This yields

ρy 7→
1

2n+1

(
1 D
D 1

)
.

The eigenvalues of ρy are therefore readily calculated to
be (1± di)/2n+1 for i = 1 . . . 2n.

How, then, are we to pick {di} such that the value of

My = 1 + 2
∑
i:di>1

di − 1
2n+1 (4)

is maximised? We perform a constrained optimisation
by noting from [9] that

2n = Tr(UU†) = Tr(UyU†y ) =
∑
i

d2
i . (5)

Assume that t of the values di > 1 (i = 1 . . . t). Hence,

My = 1− t

2n + 1
2n

t∑
i=1

di

subject to
∑2n

i=1 d
2
i = 2n. This is true for all values di and

t, so we can find the largest possible value by maximis-
ing over all possible values (subject to the constraint):

My ≤ max
t,{di}

1− t

2n + 1
2n

t∑
i=1

di. (6)

The optimal choice of the di is clear: di = 0 for i = t +
1 . . . 2n and

di =
√

2n
t

otherwise, which gives

My ≤ max
t

1− t

2n +
√

t

2n .

This is maximised by t = 2n/4 (requiring n ≥ 2 such
that t is an integer), yielding

My ≤
5
4 ,

compared to the maximum possible value of≈ 2n/2.
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The limit My = 5
4 is readily saturated. For example,

when n = 2 we can use

U =

 0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0


since U01 has eigenvalues 2, 0, 0, 0 as required for the op-
timal construction. For larger n, a construction such as
U ⊗ 1

⊗(n−2) would provide the requisite eigenvalues.
There are then many ways of dressing this operator with
unitaries that don’t affect the partial transpose to dis-
guise its structure slightly. For example, [9] uses a se-
ries of controlled-not gates. Incidentally, this trivial ex-
ample shows that there are many bipartitions for which
My = 5

4 : of the 2n − 1 possible choices, all 2n−1 choices
that have y1 ⊕ y2 = 1 exhibit this value.

This section reiterates the conclusion of [9]: there are
bipartitions of the DQC1 model in which there is some
entanglement present, and it can be present up to a fi-
nite amount. Indeed, there can be many such biparti-
tions. What we want to investigate in the rest of this
paper is how surprising this result is – should the fact
that we are guaranteed that no more than a small but
finite amount of entanglement is present in a biparti-
tion suggest to us that a quantum speed-up should be
more difficult to realise? What about the fact that for
most unitaries it seems that the entanglement is vanish-
ingly small (exponentially small in the system size, N )?
To that end, we are now going to compare to a depo-
larised version of Grover’s Search, for which we will
show that even in situations where there is a provable
(oracle-based) quantum speed-up, this can occur when
we are guaranteed that there is never more than an ex-
ponentially small amount of entanglement in any bipar-
tition. This is a much stronger statement than has been
made for DQC1. As such, using DQC1 to make conclu-
sions about the existence of a computational speed-up in
the presence of little or no entanglement seems obsolete.

III. COMPARISON WITH GROVER’S SEARCH

A standard formulation of Grover’s Search algorithm
[10] starts with an initial state |+〉⊗n, trying to evolve
to some (unknown) target state |x0〉. The evolution is
restricted to a subspace spanned by |x0〉 and∣∣ψ⊥〉 = 1√

2n − 1
∑
x 6=x0

|x〉 , (7)

such that the populated states are of the form

|Ψ〉 = cos θ |x0〉+ sin θ
∣∣ψ⊥〉 (8)

where θ ∈ [0, π/2]. For finite n, only integer multiples of
sin−1(2−n) are allowed. If we select a particular bipar-
tition, then |x0〉 = |xy〉 |xȳ〉 where, here, the subscript y

merely refers to the set of qubits on which the state is
defined, and ȳ is the complement of y. Similarly, we can
define ∣∣ψ⊥y 〉 = 1√

2wy − 1
∑

x∈{0,1}wy :x 6=xy

|x〉 ,

allowing
∣∣ψ⊥〉 to be expressed as

∣∣ψ⊥〉 =
√

(2wy − 1)(2n−wy − 1)
2n − 1

∣∣ψ⊥y 〉 ∣∣ψ⊥ȳ 〉
+
√

2n−wy − 1
2n − 1 |xy〉

∣∣ψ⊥ȳ 〉+
√

2wy − 1
2n − 1

∣∣ψ⊥y 〉 |xȳ〉 .
Evidently, the state |Ψ〉 across this bipartition may be
written as a state with no more than two Schmidt co-
efficients. The maximum entanglement is when the two
Schmidt coefficients are λ1 = λ2 = 1

2 (wy = 1 as n→∞),
yielding a value of My = 2 for this standard, pure state,
version of Grover’s search. There is only ever a finite
amount of entanglement between any bipartition, much
like DQC1, the only difference being the value.

We will now show that there is a variant of this algo-
rithm for which the entanglement can be made vanish-

ingly small (no more than My = 1 + 2−n( 1
2−ε) for any

ε > 0). Consider using an initial state of

ρ = p |+〉 〈+|⊗n + (1− p) 12n (9)

for any 0 < p ≤ 1. A single run of the algorithm re-
quires the standard quantum time, O(2n/2), and suc-
ceeds in finding the search target x0 with probability
p̃ = p+ 1−p

2n (the mixture describes that with probability p
the pure-state algorithm proceeds, while with probabil-
ity 1− p, a maximally mixed state is present. This is un-
changed by the application of unitaries and hence is still
the maximally mixed state when the measurement out-
come is determined, and hence gives every possible an-
swer with equal probability). By allowing L repetitions,
the algorithm succeeds with probability 1−(1−p̃)L ≈ p̃L
for small p̃. Thus, for a given finite ε, we could select p

to be as small as p ∼ 2−n( 1
2−ε). For sufficiently large n,

p̃ ≈ p, and we need a number of repetitions L ∼ 1/p.
This requires a run-time 2n/2L ∼ 2n(1−ε), thereby pro-
viding an advantage over the classical run-time of 2n,
while we anticipate (and prove in the next subsection)
that for smaller p, there is less entanglement present.

A. Entanglement

We turn to calculating the entanglement present in the
depolarised algorithm. Progress through the algorithm
can be specified by a parameter θ, such that the state is

ρ(θ) = p |Ψ(θ)〉 〈Ψ(θ)|+ (1− p) 12n
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Assume the Schmidt coefficients for the state |Ψ〉 are
cos2 φ and sin2 φ with respect to bipartition y. In the
large n limit, φ can take on any value (0, π/2]. ρ(θ) is
unitarily equivalent (where the unitaries are local with
respect to the bipartition, and hence do not change the
eigenvalues under the partial transposition) to a state

p cos2 φ+ 1−p
2n 0 0 p cosφ sinφ

0 1−p
2n 0 0

0 0 1−p
2n 0

p cosφ sinφ 0 0 p sin2 φ+ 1−p
2n

1−p
2n 12n−4


(10)

where the upper left 4 × 4 describes the space spanned
by |xy〉 |xȳ〉, |xy〉

∣∣ψ⊥ȳ 〉, ∣∣ψ⊥y 〉 |xȳ〉 and
∣∣ψ⊥y 〉 ∣∣ψ⊥ȳ 〉. We

can readily take the partial transpose of this, and cal-
culate the eigenvalues: 1−p

2n (repeated 2n − 4 times),
p
2 (1± cos(2φ)) + 1−p

2n , and 1−p
2n ± p

2 sin(2φ). Hence,

My = 1− 1− p
2n−1 + p sin(2φ).

This is maximised at φ = π/4, indicating that for all bi-
partitions, and at all points during the computation,

M < 1 + p− 1− p
2n−1 . (11)

When p is exponentially small, the entanglement is al-
ways exponentially small and there is still a provable
(oracle-based) speed-up in searching over the classical
case. This compares favourably to DQC1 wherein typ-
ical unitaries have been numerically shown to produce
exponentially small amounts of entanglement [9], while
having a believed speed-up over classical.

B. Quantum Discord

Perhaps it is not entanglement that needs to be
present in a mixed state quantum computation. Instead,
other measures of non-classicality, such as the quantum
discord have arisen. If exponentially small entangle-
ment might be considered surprising, perhaps it is the
case that there is finite quantum discord? We will now
show that the discord is also vanishingly small. A pre-
cise definition [12, 13] of the discord is unnecessary. It
suffices to know that it is a non-negative quantity which
is always 0 in the classical limit and, for pure states, re-
duces to the entanglement entropy.

We take ρ(θ) as for the previous calculation,
p cos2 φ+ 1−p

2n 0 0 p cosφ sinφ
0 1−p

2n 0 0
0 0 1−p

2n 0
p cosφ sinφ 0 0 p sin2 φ+ 1−p

2n

1−p
2n 12n−4



and define a second state σ =
p cos2 φ+ 1−p

2n 0 0 0
0 1−p

2n 0 0
0 0 1−p

2n 0
0 0 0 p sin2 φ+ 1−p

2n

1−p
2n 12n−4

 .

By virtue of being diagonal with respect to a separable
basis, the state σ has 0 discord [18], and yet is very close
in terms of trace distance to ρ:

d = Tr|ρ− σ| = p sin(2φ).

The quantum discord is continuous [19, 20], meaning
that we can bound the amount of discord present in ρ(θ)
[19]:

D(ρ) ≤ 8d(n− 1) + 4h(d) (12)

where h(x) = −x log2 x− (1−x) log2(1−x) is the binary

entropy. This scales as O(n2−n( 1
2−ε)), and is therefore

also vanishingly small across all bipartitions simultane-
ously, and for all steps of the algorithm.

C. Decomposing the Oracle

An oracle-based problem (whether this is explicit, as
for Grover’s search, or implicit, requiring the implemen-
tation of controlled-U in DQC1) is useful for determin-
ing the computational complexity of a problem (with
respect to that oracle), often enabling lower bounds as
well as upper bounds. However, it has the potential to
mask a lot of the entanglement properties. If one has
to implement an oracle by using a collection of smaller,
more manageable, operations, we need to be sure that
each of those individual operations does not leave an
intermediate state that has large amounts of entangle-
ment. After all, there are many quantum computa-
tions that start and end in separable states, and it is
only the intermediate products that are entangled. The
Bernstein-Vazirani algorithm is one case that hides all
the entanglement in such a way [14, 15]. Typical DQC1
computations probably also hide their entanglement –
imagine decomposing U in terms of one-qubit unitaries
and controlled-nots, and implementing the controlled-U
by consecutively applying the appropriate controlled-
one-qubit and Toffoli gates1. The first Toffoli gate is
likely to introduce a finite amount of entanglement.

We claim that there need be no corresponding diffi-
culty when using Grover’s search. The Grover iterator
may be written as

H⊗nP0H
⊗nPx0 ,

1 This is certainly far from the only decomposition that one could
make, and this is merely an illustrative argument.
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where H is the Hadamard gate, and Px is an n-qubit
controlled-phase gate which adds a phase of π only to
the state |x〉, and P0 is the reflection operator (which
works as Px0 but acting on |0〉⊗n instead of |x0〉). Let us
take each step in turn. If ρin is the state before the action
of the iterator, and ρout is the state after the application,
then our results so far show that both have exponen-
itally small entanglement and discord. Now, observe
that after the action of Px0 , the form of ρin in Eq. (10)
is only changed by adding a negative sign on the off-
diagonal elements. Both the entanglement and discord
are unchanged. Application of a set of local unitaries
(H⊗N ) also cannot change these values. What about the
application of P0? Instead, we observe that after the ac-
tion by P0, this is the same as state ρout withH⊗n applied
to it, which must have the same entanglement proper-
ties as ρout.

Should we decompose the operations any further,
perhaps by writing Px0 in terms of a universal set of
two-qubit gates? We suggest this is unnecessary as it
appears that in a wide variety of experimental imple-
mentations, the gate Px0 can be implemented directly
[21–23]. So, we are justified in our claim that every el-
ementary step of the algorithm leaves us in a state of
almost no entanglement and almost no discord.

IV. CONCLUSIONS

One of the aspects of the DQC1 model of compu-
tation that originally generated much interest was the
suggestion that it achieved its computational speed-up
without entanglement. In fact, it does use entanglement
[9], and that entanglement can be up to a finite amount
across many different bipartitions of the system. Even
on those bipartitions for which there is no entanglement,
it has been shown [5] instead that other measures of
non-classicality are present in finite amounts and could
be a resource for the computational speed-up that is be-
lieved to be present in DQC1.

In this paper, we have contrasted this with Grover’s
search when acting on an initial state that has a large
admixture of the maximally mixed state. The degree
of admixture for which a computational speed-up is
still possible (without any attempt at error correction)
was readily derived and, as such, it was shown that
over every bipartition both the entanglement and quan-
tum discord are vanishingly small. Moreover, we know
that the computational speed-up is present for Grover’s

search, since we know the minimum running time for
the classical algorithm (using a certain oracle). We con-
clude that DQC1 is nothing special – Grover’s search ex-
hibits stronger properties in every way (guaranteed c.f.
assumed speed-up, guaranteed exponentially little en-
tanglement c.f. little entanglement on average, exponen-
tially little discord c.f. finite discord), except for one fea-
ture – DQC1 is believed to have an exponential speed-
up while Grover’s search is only polynomial.

The presence of quantum discord in the DQC1 model
has been taken by a number of authors as “the first
real evidence that mixed-state quantum computation
can have an advantage over classical computation even
when entanglement is absent” [24], choosing to view the
almost-no entanglement as essentially equivalent to no
entanglement. However, here, we have almost no entan-
glement, and almost no quantum discord (and, indeed,
any measure of quantum resource that is continuous).
We are left to conclude that there is a marked difference
between ‘almost no’ and ‘no’ entanglement/discord.
Exactly what is required for a computation to gain speed
over a classical one remains unclear, but it seems that
only small amounts of whatever resource suffice. How-
ever, this leaves open the possibility that larger amounts
of a resource, such as quantum discord, are necessary
for an exponential vs. polynomial speed-up. In this
context, it is interesting to contrast with the results of
[25], wherein it is shown that any quantum computa-
tion (including those with exponential speed-ups) can
be rewritten such that they have an amount of en-
tanglement that vanishes polynomially quickly (for a
broad class of entanglement measures), while the cur-
rent study has demonstrated the case of exponentially
little entanglement.

On a final note, we wish to raise an important issue
with the calculation of the typical entanglement [9] or
discord [5] across a bipartition in the DQC1 computa-
tion. The decision problem for DQC1 was defined by ex-
plicitly bounding the trace away from 0. However, typ-
ical unitaries have an expected trace of 0, and the trace
is closely centred on the 0 value. As such, the decision
problem explicitly asserts that the unitaries involved are
not typical, and further studies are required to clarify
the impact of this, although the studies of special cases
that are performed in the Appendix suggest that the im-
pact is not significant.

Acknowledgements: We thank L.C. Kwek for introduc-
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Appendix A: Typical Entanglement

In this Appendix, we illustrate some important fea-
tures of the calculation of typical entanglement in the
DQC1 model. Rather than permitting an arbitrary Haar-
random unitary, we concentrate on a subset of unitaries,
based on graph states, that facilitate simpler calcula-
tions. We define the random unitary, U , in the following
way: consider n qubits and select a random diagonal
matrix, meaning that each diagonal element is selected
at random to be eiθx for all x ∈ {0, 1}n. We then conju-
gate this with Hadamard gates on each qubit (i.e. both
before and after the diagonal matrix) before conjugat-
ing by controlled phase gates between all pairs of qubits
(i, i + 1). These conjugations are the unitaries required
for preparing the one-dimensional cluster state.

The reason for concentrating on graph states is that
there is a well established formalism for calculating the
partial transpose [8, 26, 27]. If the eigenvalues of U are
written as a vector

|Θ〉 =
∑
x

eiθx |x〉 ,

then the eigenvalues of U01010101...01 are given by the

vector R |Θ〉where

R = H⊗n

 ∑
x∈{0,1}n

(−1)
∑n−1

i=1
xixi+1 |x〉 〈x|

H⊗n.

Lemma 1. If n is even, then every matrix element of R has
| 〈y|R |z〉 | = 1

2n/2 . In every row, there are 1
2 (2n + 2n/2)

positive entries, and 1
2 (2n − 2n/2) negative entries.

Proof. The matrix elements have the form

〈y|R |z〉 = 1
2n

∑
x∈{0,1}n

(−1)x·(z+y)(−1)
∑n−1

i=1
xixi+1 .

First, observe that 〈y|R |z〉 = 〈000 . . . 0|R |z ⊕ y〉, so it
suffices to concentrate solely on the first row. The ele-
ments of all other rows are just permutations of the first.
We will denote the elements of this first row by Rz .

Notice that ∑
z∈{0,1}n

Rz = 1.

This means that if it is true that all 2n elements have
|Rz| = 1/2n/2, then since they are all real, it must be that
there are 1

2 (2n + 2n/2) positive entries, and 1
2 (2n − 2n/2)

negative entries.
We will prove the first half of the lemma by induction,

using the base case of n = 2:

R(00) = 1
2 R(01) = 1

2 R(10) = − 1
2 R(11) = 1

2 .

Assume that |R(n−2)(z)| = 1
2n/2−1 . Now con-

sider R(n)(z‖zn−1zn). For each term x in the sum
for R(n−2)(z), there are 4 terms in R(n)(z‖zn−1zn):
x‖xn−1xn. We can consider each of them separately, and
how they affect the additional phases

(−1)znxn+zn−1xn−1+xnxn−1+xn−1xn−2 .

One of the phases can be moved into an effective z:

R(n)(z‖zn−1zn) =1
4
∑

xn,xn−1

(−1)znxn+zn−1xn−1+xnxn−1×

R(n−2)(z ⊕ (00 . . . 0xn−1)).

On performing the sum over xn, we either have
1
2R

(n−2)(z) (if zn = 0) or 1
2R

(n−2)(z ⊕ (00 . . . 01)).
By assumption both have the same absolute value,
1/2n/2.

Our aim is to evaluate the multiplicative negativity:

My = 1 + 1
2n

∑
λ∈R|Θ〉:λ>1

(λ− 1).

We assume that each element of R |Θ〉 is independent
(this may not be strictly true, but is a good approxima-
tion). This reduces My to My = 1 +E where E is the ex-
pected value of max(λ− 1, 0). To evaluate this, we need
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FIG. 2. (Color online) Comparison of theoretical results
(lines), Eq. (A1), and average for 10000 samples (points) for
both 1D (upper, blue) and 2D (lower, purple) random walks.

FIG. 3. Typical entanglement for a graph diagonal unitary of
fixed trace Tr(U)/2n = 1

4 , 5
8 , 3

4 , 7
8 for shades black through to

light grey respectively. The larger the trace, the less entan-
glement is present.

the probability distribution for λ. As a consequence of
the Lemma, we have

P (λ ≥ 1) = P


∣∣∣∣∣∣∣

1
2 (2n+2n/2)∑

i=1
eiθi −

2n∑
i= 1

2 (2n+2n/2)+1

eiθi

∣∣∣∣∣∣∣ ≥ 2n/2

 .

However, if the probability distribution of θi is unaf-

fected by a π shift, this is entirely equivalent to

P

(∣∣∣∣∣
2n∑
i=1

eiθi

∣∣∣∣∣ ≥ 2n/2
)
.

We consider two cases. Firstly, each θi is a random
choice, θi ∈ {0, π}. In this case,

∣∣∣∑2n

i=1 e
iθi

∣∣∣ is simply
the expected distance of a random walk in 1D. Secondly,
θi ∈ [0, 2π) leads to the interpretation of

∣∣∣∑2n

i=1 e
iθi

∣∣∣ as a

random walk in 2D2. In either case, Rayleigh’s solution
for the probability distribution at large n is

P

(
x ≤

∣∣∣∣∣
2n∑
i=1

eiθi

∣∣∣∣∣ < x+ δx

)
=
{ √

2
π2n e

−x2/2n+1
dx 1D

2x
2n e
−x2/2n

dx 2D

in order to calculate

E =
∫ ∞

2n/2
P

(
x ≤

∣∣∣∣∣
2n∑
i=1

eiθi

∣∣∣∣∣ < x+ δx

)( x

2n/2
− 1
)
,

which yields

E =
{ √

2
πe − erfc

(
1√
2

)
1D

√
π

2 erfc(1) 2D
(A1)

Fig. 2 provides numerical confirmation of this calcula-
tion. We conclude that in both cases there is a constant
amount of entanglement. This is in contrast with the nu-
merical results in [9] for general random unitaries.

However, there is one further subtlety that it is im-
portant to raise. Recall that for the DQC1 model we are
given the promise that the trace of U is bounded away
from 0. Meanwhile, the probability distribution for the
trace of a typical unitary is strongly centred on the value
0 – in effect, we are post-selecting on highly atypical
unitaries so typicality arguments might not reveal ev-
erything. However, it turns out that this only serves to
reduce the amount of entanglement present. For a sim-
ple argument, consider the case where Tr(U) = 2n. In
this case, we know that U = 1, and that My = 1, less
than the above-calculated values. More generally, we
have numerically examined the random unitary model
described above (restricting the eigenvalues to ±1), fix-
ing the trace to be different values of Tr(U), see Fig. 3.
The amount of entanglement present decreases as the
value of the trace is increased.

2 We define this to be the walk such that at each step, a step length of
1 is taken in a random direction in the plane. Some authors choose

to define it as a walk on a square lattice.
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